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Abstract—In this article we present a novel model–driven
system testing methodology for service–centric systems called
Telling TestStories, its tool implementation and the underlying
model validation mechanism. Telling TestStories is based on
tightly integrated but separated platform–independent require-
ments, system and test models. The test models integrate test
data tables and encourage domain experts to design tests. This
process is supported by consistency, completeness, and coverage
checks in and between the requirements, system and test models
which guarantees a high quality of the models. Telling TestStories
is capable of test–driven development on the model level and pro-
vides full traceability between all system and testing artifacts. The
testing process of the Telling TestStories methodology comprises
model development, model validation and system validation. The
model development and the system validation are managed by
the Telling TestStories tool and the model validation is managed
by the SQUAM tool. All process steps, the underlying artifacts
and the tools for implementing the process steps are presented
by an industrial case study.

Keywords-Model–Driven Testing; System Testing; Model Val-
idation; Testing Methodology; Testing Tools; Service–Oriented
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I. INTRODUCTION

The number and complexity of service–oriented systems for
implementing flexible inter–organizational IT based business
processes is steadily increasing. Basically, a service–oriented
system consists of a set of independent peers offering services
that provide and require operations [1]. Orchestration and
choreography technologies allow the flexible composition of
services to workflows [2], [3]. Arising application scenarios
have demonstrated the power of service–oriented systems.
These range from the exchange of health related data among
stakeholders in health care, over new business models
like SAAS (Software as a Service) to the cross-linking of
traffic participants. Elaborated standards, technologies and
frameworks for realizing service–oriented systems have been
developed, but system testing tools and methodologies have
been neglected so far.

System testing of service–oriented systems, i.e., validating
the system’s compliance with the specified requirements, has
to consider specific issues that limit the testability of such

systems including the integration of various component and
communication technologies, the dynamic adaptation and
integration of services, the lack of service control, the lack of
observability of service code and structure, the cost of testing,
and the importance of service level agreements (SLA) [4].

Model–driven testing approaches [5], i.e., the derivation of
executable test code from test models by analogy to Model
Driven Architecture (MDA) [6], are particularly suitable for
system testing of service–oriented systems because they can
be adapted easily to changing requirements, they support
static model validation to improve the quality of the tests,
they provide an abstract technology and implementation
independent view on tests, and they allow the modeling
and testing of service level agreements. The latter allows
for defining test models in a very early phase of system
development even before or simultaneous with system
modeling supporting test–driven development on the model
level.

In this article, we present a tool–based methodology to
model–driven system testing of service–oriented systems
called Telling TestStories (TTS) and its integrated model
validation mechanism. The methodology is explained by an
industrial case study from the telecommunication domain.

TTS is based on separated but interrelated requirements,
system, and test models. All requirements in the requirements
model are traceable to system and test model artifacts. The
test model invokes operations provided by system services.

The quality of manually designed models and therefore
the quality of the overall test results in our methodology
can significantly be improved by model validation which is
therefore a core component of TTS.

Model validation is an activity where the model is statically
analyzed against a set of consistency and completeness criteria
and metrics. Consistency criteria assure that a model is non–
contradictory, and completeness criteria assure that a model
element contains all essential information. We define intra–
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model validation checks, e.g., that each test contains at least
one assertion, and inter–model validation checks, e.g., that
each requirement is traceable to at least one test. Additionally,
we consider coverage checks, i.e., inter–model completeness
checks where one model is the test model, e.g., that each
system service is invoked in at least one test. Although our
validation rules check the conformance of models and model
elements, we do not use the term verification in our respect
to avoid confusion with formal verification based on a proof
system.

Besides the advantages of model–driven testing and model
validation, our approach supports test–driven development
on the model level, the definition and execution of tests in
a tabular form as in the Framework for Integrated Testing
(FIT) [7], guarantees traceability between all types of
modeling and system artifacts, and is suitable for testing SLA
which we consider as non–functional properties. We also
show how our testing approach supports traceability between
requirements, system and test models, and the system under
test (SUT).

This article substantially extends the tool–based
methodology for model–driven system testing of service–
oriented systems presented in [8] where the model
development and the system validation in TTS have
been considered. Herein, we complete the work of [8] by
also considering the model validation in TTS. We define
consistency and completeness/coverage metrics and criteria
in and between the requirements, system and test model. We
also explain how the model validation has been implemented
in the framework for Systematic Quality Assessment of
Models (SQUAM).

The article is structured as follows. We first present the basic
concepts of the TTS methodology by defining the underlying
artifacts, the testing process and the metamodel of the model
artifacts (see Section II). We then explain the model develop-
ment, the model validation, and the system validation by a case
study and its tool integration (see Section III) and describe the
architecture of the TTS and SQUAM tool–implementations
(see Section IV). Afterwards we provide related work (see
Section V), and finally we draw conclusions and discuss future
work (see Section VI).

II. BASIC CONCEPTS OF THE METHODOLOGY

A testing methodology defines a testing process and the
underlying artifacts such as the defined models, the generated
code, and the running systems.

In this section, we provide an overview of the TTS artifacts,
the testing process and the metamodel of the model artifacts
which is the basis for model validation.

A. Artifacts of TTS

Fig. 1 shows the artifacts and dependencies within the
TTS framework. In the TTS framework we can distinguish

three formalization levels with informal artifacts (at the top),
model artifacts (in the middle), and implementation artifacts
(at the bottom). Informal artifacts are depicted by clouds,
formal models by graphs, code by transparent blocks and
running systems by filled blocks. Due to formalization at the
two lower levels we can conduct automatic transformations
and validations. Formalized dependencies between artifacts
are depicted by solid lines, whereas informal dependencies
are depicted by dashed lines. In the following paragraphs, we
explain the artifacts and dependencies of the TTS framework.

System Under Test
Test Code

Requirements Model

System Model

Test System

Validation,Coverage,Transformation

Test Controller

Adapter

Informal Requirements

Informal Artefact

Formal Model

Code

Running System

Code Generation

Traceability

Validation

Traceability

Validation

Testing

Test Model

Fig. 1. Overview of the TTS Artifacts

1) Informal level: There is only one type of artifact on
this level, namely the Informal Requirements, i.e., written
or non–written capabilities and properties of the system. This
artifact is not discussed in detail because it is not in the main
focus of our testing methodology and as an informal one can
not be automatically validated.

2) Model level: There are three models on this level:
requirements, system and test model. The models are formally
related through different dependencies related to: traceability,
validation, coverage, and transformation.

Requirements Model. The requirements model contains
the requirements for system development and testing. Its
structured part consists of a requirements hierarchy. The
requirements are based on informal requirements depicted as
cloud. The requirements model provides a way to integrate
textual descriptions of requirements which are needed for
communication with non–technicians into a modeling tool.

System Model. The system model describes the system
structure and system behavior in a platform independent
way. Its static structure is based on the notions of services,
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components and types. Each service operation call is assigned
to use cases, actors correspond to components providing
and requiring services, and domain types correspond to
types. We assume that each service in the system model
has a one–to–one correspondence to an executable service
in the running system to guarantee traceability. Therefore
the requirements, the service operations and the executable
services are traceable.

Test Model. The test model defines the test data and the test
scenarios as so called test stories. Test stories are controlled
sequences of service operation invocations exemplifying the
interaction of components. Test stories may be generic in the
sense that they do not contain concrete objects but variables
which refer to test objects provided in tables. Test stories
can also contain setup procedures, tear down procedures and
contain assertions for test result evaluation. The notion of
a test story is principally independent of its representation.
We have used UML sequence diagrams in previous case
studies [9] and use activity diagrams in this article. Test
stories include references to a table of test data including
values for all free parameters of the test story. Each line in
this table defines test data for one test case. We use the terms
’test story’ and ’test’ interchangeably in this article depending
on the context. If we address the more abstract view, we use
the term ’test’. If we address the more application–oriented
and process–oriented view, we use the term ’test story’.

Traceability. For model maintenance, transformations and
validations traceability between different model elements is
required. In the TTS framework traceability between elements
on the model level is guaranteed by links between model
elements, and between the model level and the implementation
level by adapters for each service. The adapters link service
calls in the model to executable services. Therefore every
service invocation is traceable to a requirement.

Transformation. In the TTS framework we consider
model–to–model transformations to obtain a (partial) test
model from the system model. In such a system–driven
development approach, test behavior and test data can be
extracted from the graph of a global or local workflow.

Validation. Models designed manually require tool
supported validation. Our approach is suitable for test–driven
modeling because the test model is used to validate the
system. In the context of TTS, we consider two properties:
consistency and completeness/coverage.

Consistency checks assure that there is no conflicting in-
formation in models. Consistency of a model enables error–
free transformation from the model to another model or to
the source code. For manually designed (parts of) models
consistency within and between them should be automatically
checked. In TTS we have implemented consistency criteria for
all three models and between pairs of them.

Completeness checks assure that one artifact is complete,
i.e., contains all essential information. Similarly like for
consistency, we can consider completeness within one model
(for elements and their properties) and between models.
Completeness of the system model is crucial for the TTS
framework and determines whether transformations from the
system model to the test model can be applied. If the system
model is complete, then behavioral parts of the test model
can be generated by model transformations.

Coverage can be considered as a variant of inter–model
completeness where one model is the test model. This aspect
is very important in context of testing and is used to check
to what extend the test model covers the requirements and
system model and implicitly the system. We adopted a series
of coverage criteria from testing [10] and model–driven
testing [11] to fit into the TTS framework.

3) Implementation level: At this level the test code
generated from the test model is executed by the test
controller against the system under test. The executable
services of the system under test are invoked by adapters.

Code Generation. The test code is generated automatically
by a model–to–text transformation from the test model as
explained in [12]. For each test in the test model, a test code
file is generated.

Test Code. The test code language is Java. Adapters which
bind abstract service calls in the test code to running services
of the system under test make the test code executable.

Adapters. The adapters are needed to access service
operations provided and required by components of the
system under test. For a service implemented as web service,
an adapter can be generated from its WSDL description.
Adapters for each service are the link for traceability between
the executable system, the test model and the requirements.
Adapters make it possible to derive executable tests even
before the system implementation has been finished which
supports test–driven development.

Test Controller. The test controller executes the test
code and accesses the system services via adapters. Our
implementation of the test controller executes test code
in Java but other JVM–based programming or scripting
languages are also executable without much implementation
effort.

Test System. The test controller, the adapter and the test
code constitute the test system.

Testing. The evaluation of the service–centric system by
observing its execution [10] is called testing. Services are
invoked in the test code executed by the test controller via
adapters.
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System Under Test. The system under test is a service–
oriented system, i.e., offering services that provide and
require interfaces. It may contain special interfaces for testing
purposes.

The informal requirements can be considered as external
input to the TTS framework, and the system under test is the
target of the application of TTS. This is shown by two dashed
arrows in Fig. 1. The first dashed arrow goes from the informal
requirements to the TTS requirements model, and the second
dashed arrow goes from the test controller and adapters to the
system under test. Both, the informal requirements and the
system under test, are out of the scope of this article.

B. Testing Process

The process consists of a design, validation, execution, and
evaluation phase and is processed in an iterative way. Initially,
the process is triggered by requirements for which services and
tests have to be defined. The process is depicted in Fig. 2.

Test Execution

TestModel

TestRequirements

Test
Design

DatapoolTests

TestCode

Test Selection and Test Code Generation

SystemModel

System
Design

Services

SUT

System Implementation

TestReport Test Analysis

Validation
Coverage

Transformation

Testlog

Requirements Model

Adapter
Implementation/

Generation

Adapter

Requirements 
Definition

Fig. 2. Model–driven Testing Process

The first step is the definition of requirements. Based on
the requirements, the system model containing services and
the test model containing tests are designed. The test design
additionally includes the data pool definition and the definition
of test requirements. The system model and the test model,
including the tests, the data pool and the test requirements, can
be validated for consistency and completeness and checked for
coverage. In a system–driven approach tests can be generated
from the system model by model–to–model transformations,
and in a test–driven approach tests can be integrated in the
system model. This validity checks allow for an iterative
improvement of the system and test quality. In principle, the
testing process can also be considered as test model–driven
development process. Our methodology does not consider
the system development itself but is based on traceable ser-
vices offered by the system under test. As soon as adapters
which may be – depending on the technology – generated

(semi–)automatically or implemented manually are available
for the system services, the process of test selection and test
code generation, i.e., model–to–text transformation can take
place. In the tool implementation, adapters for web services
can be generated automatically based on a WSDL descrip-
tion, adapters for RMI access can only be generated semi–
automatically. The generated test code is then automatically
compiled and executed by a test controller which logs all
occurring events into a test log. The test evaluation is done
offline by a test analysis tool which generates test reports
and annotations to those elements of the system and test
model influencing the test result. Test reports and test logs are
implementation artifacts that are not important for the overall
process but for the practical evaluation. Therefore test reports
and test logs have not been considered in the previous section.

In [13] we have introduced the term test story for our way
how to define tests by analogy to the agile term user story
defining a manageable requirement together with acceptance
tests.

The separation of the test behavior and the test data has
been influenced by the column fixture of the Framework for
Integrated Test (FIT) [7] which allows the test designer to
focus directly on the domain because tests are expressed in a
very easy–to–write and easy–to–understand tabular form also
suited for data–driven testing.

The manual activities in the TTS testing process and the
test execution are conducted by specific roles. In Fig. 3 these
roles and their activities are shown.

Test
Execution

Requirements
Definition

System
Design

Test 
Design

Adapter 
Implementation Software Architect

System Analyst

Domain Expert
Customer

Developer

Fig. 3. Roles in the TTS Process

A Domain Expert or Customer, which are represented by
one role in Fig. 3, are responsible for the test design and
the requirements definition. Additionally, domain experts or
customers may initiate the test execution and all related auto-
matic activities (validation, test code generation, test analysis).
Domain experts and customers are responsible for the same
activities but have different views on testing, i.e., domain
experts represent the internal view conducting system tests and
customers represent the external view conducting acceptance
tests.

A System Analyst is partially responsible for the test design,
the requirements definition, and the system design. Addition-
ally, the system analyst may also initiate the test execution
and all related activities. The system analyst is especially
responsible for the definition of non–functional requirements,
e.g., for security or performance and corresponding tests.
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A Software Architect is partially responsible for the system
design and the adapter implementation. The software architect
defines interfaces and component technologies in coordination
with the system analyst and the developer.

A Developer implements adapters if they have to be devel-
oped manually.

C. Metamodel

In this section we define a metamodel for the requirements
model, the system model, and the test model of TTS. The
consistency, completeness, and coverage checks defined in
Section III-B are based on this metamodel. The metamodel is
shown in Fig. 4.

The package Requirements Model defines
the element Requirement which is supertype
of the types FunctionalRequirement and
NonFunctionalRequirement. The type
NonFunctionalRequirement may have further
subtypes for specific types of non–functional requirements,
e.g., security or performance. The requirements itself can
be of an arbitrary level of granularity ranging from abstract
goals to concrete performance requirements. Requirements
are modeled explicitly on the metamodel level to define
traceability between requirements and other model elements
such as tests. The requirements model is very generic but it
can easily be extended for specific purposes.

The package System Model defines Service elements
which provide and require Interface elements and are
composed of basic services. Each interface consists of
Operation elements which refer to Type elements for
input and output parameters. Types may be primitive types,
enumeration types or reference types. Operations may also
have a precondition (pre constraint) and a postcondition
(post constraint). Each service has a reference to Actor
elements. It is also possible to identify services with a service
operation (if there is only one) and to identify them with
service calls. Services can be therefore be considered as
executable use cases. Services may have LocalProcess
elements that have a central control implemented by a
workflow management system defining its internal behavior.
Different services may be integrated into a GlobalProcess
without central control. Orchestrations can be modeled as
local processes, and choreographies as global processes.

The package Test Model defines all elements needed for
system testing of service–centric systems. A TestSequence
consists of SequenceElement blocks, that integrate a
Teststory, its DataList, and an Arbitration. A
Teststory consists of the following elements:

• Assertion elements for defining expressions for com-
puting verdicts,

• Call elements, i.e. Servicecall elements for invok-
ing operations on services, or Trigger elements for
operations that are called by a service,

• ParallelTask elements for the parallel execution of
behavior, or

• Decision elements for defining alternatives.
Testsstory elements are completely recursive and, in

principle, there is no limit to the number of levels to which
tests can be nested. However, in practice nesting depths greater
than three are not applied and it is even not clear what use
nesting depths greater than two or three would be.

A DataList contains Data elements that may be gen-
erated by a DataSelection function. A Testsequence
has several TestRun elements assigning Verdict values
to assertions. The verdict can have the values pass, fail,
inconclusive, or error. Pass indicates that the SUT behaves
correctly for the specific test case. Fail indicates that the
test case has violated. Inconclusive is used where the test
neither passes nor fails. An error verdict indicates exceptions
within the test system itself. In the model itself only a pass
or a fail can be specified. Inconclusive or error are assigned
automatically. This definition of verdicts originates from the
OSI Conformance Testing Methodology and Framework [14].

Assertions are boolean expressions that define criteria for
computing pass, fail or inconclusive verdicts. Assertions can
access all variables in the actual evaluation context.

The system model and the test model are created manually
or are partially generated from each other. If the system
model and the test model are created manually, their quality
is validated by consistency, completeness and coverage rules.
Alternatively, if the system model is complete then test sce-
narios, test data and oracles can be generated. If the test model
is complete, then behavioral fragments of the system model
can be generated.

An Arbitration element defines a criterion on the set
of the verdicts of a test run to determine whether a sequence
of tests assigned to a SequenceElement has been executed
successfully or not.

In the case of a test, a data list defines a test table, i.e., a
list of lists. Data selection functions for example randomly
generate integers within a specific range. This function is
then denoted by genInt(a,b) and generates a random
integer between the integers a and b.

The TTS metamodel has been implemented as a UML
profile. For all metamodel elements despite data–specific el-
ements that are implemented in tables, stereotypes of the
same name have been introduced and assigned to UML
metaclasses, e.g., a Service in our metamodel is as-
signed to the UML metaclass Class, a Requirement
is assigned to Class, a Testsequence is assigned to
an Activity, a SequenceElement is assigned to an
Action, a Teststory is assigned to an Activity, and
a Servicecall is assigned to an Action.

III. TOOL–BASED CASE STUDY

In this section we present a tool–based case study for our
testing methodology. We consider the the model development
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Fig. 4. Requirements, System and Test Metamodel of TTS

phase (see Section III-A), the model validation phase (see
Section III-B), and finally the system validation phase (see
Section III-C) of the TTS testing process.

A. Model Development

We have applied our testing tool on several case studies,
including an industrial one. In this section, we explain our
methodology and its tool implementation by a Telephony
Connector case study.

The Telephony Connector is an application in the area of
Computer Telephony Integration (CTI) and parts of it have
already been tested with unit tests. But the whole application
can currently only be tested by manual tests. TTS provides
model–driven testing support for the telephony connector
which is more efficient concerning the testing time and the
error detection rate.

In this section, we explain how we have tested the
telephony connector case study with our framework and
which conclusions can be drawn. As first step, we have
developed the requirements, the static parts of the system
model and the test model with our tool.

The requirements are modeled as class diagram where high
level requirements are aggregated by low level functional and
non–functional requirements. This representation is analogous
to requirements diagrams of SysML [15] and guarantees that
requirements are integrated into the model which simplifies
the implementation of traceability.

The requirements for routing a call are depicted in Fig. 5.

Fig. 5. Requirements to the Callmanager Application

We have modeled a requirement for routing a call
(Req_1) and its parts, including non–functional performance
requirements to hangup a call within 1000ms (Req_1.1.1)
and to send the route signal within 1000ms (Req_1.2.1).

In the system model types are represented as class diagrams,
and services as classes with their providing and requiring
interfaces. In Fig. 6 the interfaces provided by the service
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VehicleService and TelephonyConnectorService are depicted.
Required contracts for the operations depicted in the inter-
faces, are modeled in terms of pre– and postconditions. Yet
these contracts may only be defined over the scope of input
parameters to service invocations, as currently SUT specific
program variables reside in another runtime and hence are
outside the accessibility of TTS.

Fig. 6. Extract of the Services of the Callmanager Application

Local and global processes are modeled as behavior
diagrams, i.e., state machines, activity diagrams or sequence
diagrams. In our experiments we have mainly modeled global
workflows by activity diagrams, and local workflows by
activity diagrams and state machines.

Tests are modeled as activity diagrams or sequence dia-
grams. Test sequences or high level test suites are modeled as
activity diagrams. In Fig. 7 a test is depicted.

Fig. 7. Test story for the Callmanager Application

In the upper part of the test depicted in Fig. 7, the test
RouteCall for routing a call is depicted. After the car service
(Vsim) initiated a call, the Callmanager routes the call and
terminates the call. The results of these calls are triggered
on the test controller. Intermediate assertions check whether

the result provided by the trigger equals to the expected one.
Each test may have test data which is defined for the test
story RouteCall in the table RouteCall.test depicted in the
lower part of Fig. 7. The test stories and their corresponding
data files are executed as test sequence elements depicted in
Fig. 10 which defines an additional arbitration to define a
global verdict specifying when all tests of a story have passed.

B. Model Validation

As mentioned in Section II-A model validation comprises
checks for consistency and completeness or coverage. The val-
idation is static, i.e., it is based on rules defined on metamodel
elements without program execution. Due to the dynamic eval-
uation of test models provided by early test execution, static
validation provides the most efficient and effective validation
result: dynamic validation is provided by early test execution,
and the modeling effort and computational complexity for
static analysis is not as high as for verification techniques
like model checking and constraint solving. The focus on
static analysis is also supported by empirical research because
in [16] it is shown that incompleteness and inconsistencies
in UML models are already detected with OCL–based static
analysis and that formal methods such as model checking or
constraint solving are not required.

First each model is validated as a separate artifact (intra–
model aspects) and then in relation to other models (inter–
model aspects). In total we have 3 single models (require-
ments, system and test model) and 3 pairs of models (Table I).
The inter–model relationship between the requirements, sys-
tem and test model is implemented by tagged values or asso-
ciations. For instance, the relationship between a requirement
(in the requirements model) and a test (in the test model)
is implemented by a tagged value of the requirement and
the test model element referencing each other. In Fig. 5 the
requirement Req_1 is associated to the test RouteCall.

As mentioned before in TTS we investigate three types
of validation rules: consistency, completeness, and coverage
rules.

Consistency checks assure that there is no conflicting
information in models. Consistency of a model enables
error–free transformation from the model to another model
or to the source code.

Completeness checks assure that one artifact is complete,
i.e., contains all essential information. Completeness of
the system model is crucial for the TTS framework and
determines whether transformations from the system model
to the test model can be applied.

Coverage can be considered as a variant of inter–model
completeness where one model is the test model. This aspect
is very important in context of testing and is used to check
to what extend the test model covers the system model and
implicitly the system. We adopted a series of coverage criteria
from testing [10] and model–driven testing [11] to fit into TTS.
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Additionally, we distinguish between criteria and metrics.
Criteria provide only a boolean result: true if a model fulfills
a given criterion, false otherwise. They provide a warning
mechanism implemented, i.e., the severity levels information,
warning, and error, to inform modelers about an incorrectness
in a model. Metrics have a numeric result. Typically they
provide information to what extend a corresponding criterion
is fulfilled, thus they are fractions ranging from 0 to 100%.
They can be used for the evaluation of models in a similar way
as for the evaluation of source code in [17]. Metrics are well
suited for summarizing particular aspects of models and for
detecting outliers in large models. They scale up and aggregate
many details of models.

To address particular quality criteria we start from informal
descriptions to obtain metrics at the final stage. First we define
a criteria in natural language. We adapt it to the context of the
TTS metamodel. Next, we express it either as a constraint
over a model or as a boolean query. Finally, we construct a
numeric metric for it. As a formalization language we apply
the Object Constraint Language (OCL) [18]. Table I provides
and overview of specified criteria and metrics as a proof of
concept. Before we give more details about example criteria
and metrics, we will describe their development process.

TABLE I
OVERVIEW OF VALIDATION ASPECTS

consistency completeness/coverage
type models metrics criteria metrics criteria

in
tr

a Requirements ×
√ √ √

co
m

pl
et

.

System ×
√ √ √

Test ×
√ √ √

in
te

r Req–Syst ×
√ √ √

Req–Test ×
√ √ √

co
v.

Syst–Test ×
√ √ √

To specify criteria and metrics we follow the model analysis
and OCL library development process (Fig. 8). The upper
swimlane corresponds to the manual model analysis, the lower
swimlane to the library development process. First, a common
requirement for model analysis and library development is
specified. A quality aspect is selected, e.g., a completeness
criterion defining that each requirement should have a unique
name. For this aspect OCL definitions and queries are specified
in the development step. The next step is quality assessment,
where the results of the manual and automatic analysis are
cross–checked. For the selected aspect, manual inspection is
used to determine the result of this aspect for the model. Si-
multaneously, appropriate queries are evaluated on the model.
If the results of the model inspection and the query evaluation
differ, the reason has to be determined and either the OCL
definition specification or manual inspection needs to be
repeated. The manual inspection of the model is conducted as
long as correctness of a query achieves a defined confidence
level. Afterwards the query can be used for automatic model
analysis.

If the results are equal, the last step, i.e., quality assurance,
can be executed. The aim of this step is to assure semantic

correctness of OCL expressions in the future development of
the library. For this purpose OCL unit tests [19] are specified
and evaluated regularly. In the test evaluation step, OCL unit
tests with corresponding OCL test models are required. The
OCL test model is an instance of the requirements, system
and test metamodel. Note that the OCL test model is not the
same as a test model in TTS but a model instance of the
considered metamodel for the OCL expression under test. This
instance is used as test data for OCL unit tests to assess the
desired semantics of definitions. OCL unit tests are similar to
JUnit [20] tests applied to assess the semantic correctness of
source code.

In Fig. 9 we show the size of the OCL project developed
for the TTS approach. We specified 83 definitions used in
43 queries and split into 13 libraries. The number of OCL
expressions is higher than the total number of the criteria (26)
and metrics (10) as it was necessary to define helper methods.
The helper expressions can be used in the specification of
further criteria/metrics and make their development less time
consuming. To assure correctness of OCL expressions we
wrote 57 OCL unit tests [19] and evaluated them over one
test model.

Fig. 9. OCL Project Statistics

In the next paragraphs we show the OCL formalization of
selected consistency, completeness and coverage rules.

a) Consistency: We have defined several consistency
criteria to assure that there is no conflicting information in
the models.

The criterion isServiceUnique in Listing 1 guarantees
the uniqueness of service definitions in a system model.

The criterion checks for a specific service whether
its name identifier is unique. An additional query
allServicesUnique checks whether all services in
the system model are unique.

The criterion isAssertionConsistent in Listing 2
guarantees the consistency of an assertion.

If the definition of pass equals the definition of fail
then the definition is inconsistent because it is not
possible to compute a meaningful verdict. The definition
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Fig. 8. The model analysis and library development process (from [21]).

c o n t e x t TTS : : S e r v i c e
def i s S e r v i c e U n i q u e :

i s S e r v i c e U n i q u e ( ) : Boolean =
TTS : : S e r v i c e . a l l I n s t a n c e s ( )
−>s e l e c t ( r | r . b a s e C l a s s . name= b a s e C l a s s . name )
−>s i z e ( ) = 1

c o n t e x t Model
def a l l S e r v i c e s U n i q u e :

a l l S e r v i c e s U n i q u e ( ) : Boolean =
TTS : : S e r v i c e . a l l I n s t a n c e s ( ) .

i s S e r v i c e U n i q u e ()−> f o r A l l ( s | s = t rue )

Listing 1. OCL definition for unique service

c o n t e x t TTS : : A s s e r t i o n
def i s A s s e r t i o n C o n s i s t e n t :

i s A s s e r t i o n C o n s i s t e n t ( ) : Boolean =
not ( p a s s = f a i l )

c o n t e x t Model
def a l l A s s e r t i o n s C o n s i s t e n t :

a l l A s s e r t i o n s C o n s i s t e n t ( ) : Boolean =
TTS : : A s s e r t i o n . a l l I n s t a n c e s ( ) .

i s A s s e r t i o n C o n s i s t e n t ()−> f o r A l l ( a | a = t rue )

Listing 2. OCL definition for consistent assertion

allAssertionsConsistent checks the criterion
isAssertionConsistent for all assertions in a specific
model.

b) Completeness: We have defined several completeness
criteria which guarantee that artifacts contain all essential
information. In our respect the completeness of test models is
very important because otherwise no meaningful test code can
be generated. In Listing 3 a criterion to check the completeness
of a test story is defined.

A test story is complete if it has at least one assertion
to compute a verdict and a service call to interact with the
system. The definition hasAssertion checks whether
a test story has at least one assertion and the definition

c o n t e x t TTS : : T e s t s t o r y
def h a s A s s e r t i o n :

h a s A s s e r t i o n ( ) : Boolean =
b a s e A c t i v i t y . a l lOwnedElements ()−> s e l e c t ( o |

o . p r o f i l e I s T y p e O f ( ’ A s s e r t i o n ’))−> s i z e ( ) > 0

c o n t e x t TTS : : T e s t s t o r y
def h a s S e r v i c e c a l l :

h a s S e r v i c e c a l l ( ) : Boolean =
b a s e A c t i v i t y . a l lOwnedElements ( )
−>s e l e c t ( o | o . p r o f i l e I s T y p e O f ( ’ S e r v i c e c a l l ’ ) )
−>s i z e ( ) > 0

c o n t e x t TTS : : T e s t s t o r y
def i s T e s t s t o r y C o m p l e t e :

i s T e s t s t o r y C o m p l e t e ( ) : Boolean =
h a s A s s e r t i o n ( ) and h a s S e r v i c e c a l l ( )

Listing 3. OCL for completeness of test stories

hasServicecall checks whether a test story has at least
one service call. Finally, the definition isTestComplete
checks whether a test story has at least one assertion
and one service call by invoking hasAssertion and
hasServicecall.

c) Coverage: We have developed several coverage
criteria and metrics based on the coverage criteria from
testing [10] and model–driven testing [11]. In the next
paragraphs we demonstrate how coverage criteria and metrics
are implemented in our approach.

As first example we consider the all requirements coverage
(ARC) defined in [11]. In our context this represents the
coverage between the requirement and the test model. In [11]
ARC says only that all requirements are covered. It is refined
in the context of the TTS metamodel to each requirement has
a test story. “Requirement” in this regard is a model element
that applies the TTS::Requirement stereotype and “has a
test story” means that it has either an action, or an activity
defined, i.e., at least one tagged value referring to a test story
is set. This informal definition results in the OCL definitions
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c o n t e x t TTS : : Requ i remen t
def h a s T e s t S t o r y :

h a s T e s t S t o r y ( ) : Boolean =
( not s e l f . a c t i o n . o c l I s U n d e f i n e d ( ) ) or
( not s e l f . a c t i v i t y . o c l I s U n d e f i n e d ( ) ) or
( not s e l f . c l a s s . o c l I s U n d e f i n e d ( ) )

c o n t e x t Model
def a l l R e q u i r e m e n t s C o v e r a g e :

a l l R e q u i r e m e n t s C o v e r a g e ( ) : Boolean =
TTS : : Requ i remen t . a l l I n s t a n c e s ( )

. h a s T e s t S t o r y ()−> f o r A l l ( e | e = t rue )

Listing 4. OCL definitions for ARC

p u b l i c q u e r i e s
c o n t e x t Model

query q R e q u i r e m e n t C o v e r a g e M e t r i c :
s e v e r i t y 2
l e t r e s u l t : I n t e g e r =

r e q u i r e m e n t s W i t h T e s t S t o r i e s ()−> s i z e ( )
message r e s u l t + ’ from ’

+ TTS : : Requ i remen t . a l l I n s t a n c e s ()−> s i z e ( )
+ ’ r e q u i r e m e n t s have a t e s t s t o r y . ( ’
+ ( r e s u l t / ( TTS : : Requ i remen t . a l l I n s t a n c e s ( )
−>s i z e ( ) . max ( 1 ) ) ∗ 1 0 0 ) . round ( )
+ ’%) ’

endmessage
endquer ie s

Listing 5. OCL Metrics for ARC

presented in Listing 4.
In the listing both definitions return a value of the

type Boolean which provides decision support but is
not very informative. To gain more information from the
model we have defined informative queries that com-
pute a metric and are based on definitions. The query
qRequirementCoverageMetric in Listing 5 extracts
the total number of requirements and the number of all
requirements which have a test story assigned. The num-
ber of all tested requirements is computed by the query
requirementsWithTests which is based on the query
hasTestStory defined in Listing 4. The metrics then
computes the ratio between the total number of requirements
and the number of tested requirements. It informs to which
degree the coverage criterion is satisfied. From the metric we
obtain a value between 0 and 1. Alternatively, the ratio can
be expressed as percentage.

For the callmanager example model (see Fig. 5) we obtained
the following result: 6 from 6 requirements have a
test story.(100%). A coverage metrics assigns a num-
ber to a coverage criterion measuring the degree of coverage.
The coverage metrics qRequirementCoverageMetric
in Listing 5 measures the requirements coverage by the ratio of
requirements with an assigned test story to the overall number
of requirements.

Another important coverage criterion is the all services
coverage criterion (ASC) which means that from every service

def i s S e r v i c e I n v o k e d B y C a l l :
i s S e r v i c e I n v o k e d B y C a l l ( ) : Boolean =

s e l f . p r o v i d e s −> e x i s t s ( i
| i . g e t A l l O p e r a t i o n s ( )
−> e x i s t s ( o
| TTS : : S e r v i c e c a l l . a l l I n s t a n c e s ( )
−> c o l l e c t ( s | s . o p e r a t i o n )
−> i n c l u d e s ( o )

)
)

def i s S e r v i c e I n v o k e d B y T r i g g e r :
/∗ t h e same as i s S e r v i c e I n v o k e d B y C a l l

b u t w i t h TTS : : T r i g g e r . a l l I n s t a n c e s ( ) ∗ /

def i s S e r v i c e I n v o k e d :
i s S e r v i c e I n v o k e d ( ) : Boolean =

s e l f . i s S e r v i c e I n v o k e d B y C a l l ( ) or
s e l f . i s S e r v i c e I n v o k e d B y T r i g g e r ( )

c o n t e x t Model
def a l l S e r v i c e s C o v e r a g e :

a l l S e r v i c e s C o v e r a g e ( ) : Boolean =
TTS : : S e r v i c e . a l l I n s t a n c e s ( )
. i s S e r v i c e I n v o k e d ()−> f o r A l l ( e | e = t rue )

Listing 6. OCL Definitions for ASC

at least one operation is invoked in at least one test story. This
coverage criterion is defined between the system and the test
model. This informal definition results in the OCL definitions
shown in Listing 6.

For additional information we have defined a metrics
based on the definition allServicesCoverage which
computes the number of services covered by a set of
tests. The metrics prints the number and the ratio of
all covered services. For the callmanager example model
(see Fig. 6) we obtained the following result: 3 from
3 services have a test story regarding All
Services Coverage.(100%).

C. System Validation

After the test model quality has been validated, the test
execution phase starts. Based on RMI adapters, which have
been provided by the system developer, test code in Java has
been generated from the test model and afterward executed
by the test controller. The evaluation of test run be assigning
verdicts is based on the explicitly defined assertions, the
implicitly defined preconditions and postconditions of the
service calls, and errors originated in the test environment.
Details on these components are explained in the next section.

Finally, the test results are evaluated. In Fig. 10 the evalu-
ation result is depicted by coloring test cases in the test data
table, by coloring test sequence elements, and by annotating
test sequence elements.

The evaluation is based on arbitrations which define criteria
for a sequence of test results in an OCL–like language defined
in [22].

TTS allowed us to perform system wide tests on the
application. In a first step, the system model was developed,
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Fig. 10. Test Result of a Test Run

needed for the modeling of the various test cases in a next
step. After generating the test code and preparing the test data,
finally the tests had been executed against the SUT.

Among the lessons learned during this case study, the three
most important are:

1) providing complex test data in a proper way to the
testing framework,

2) the communication with asynchronous message ex-
change patterns, and

3) developing an assertion language capable of iterating
complex object structures for test evaluation.

IV. TOOL IMPLEMENTATION

Our methodology is tool–driven and based on Telling Test-
Stories providing the modeling and testing environment (pre-
sented in Section IV-A) and SQUAM providing the validation
environment (presented in Section IV-B).

A. TTS

In this section, we describe the TTS tool implementation
that has been applied on the case study in the previous section
and developed in an industrial cooperation within the Telling
TestStories project [23]

Designed as a set of Eclipse [24] plug-ins, the tool consists
of various components setting up the whole environment, to
keep a high level of modularity. The architecture of the TTS
tool is shown in Fig. 11.

The main components correspond to the activities of our
testing methodology depicted in Fig. 2 and are as follows:

The Modeling Environment is used for designing
the requirements model, the system model and the test
model. It processes the workflow activities Requirements
Definition, System Model Design, Test Model
Design, and Data Pool Definition.

SUTRepository

Testlog

Model

Testdata

TestReport

ModelValidator

TestGenerator

ModelingEnvironment

TestController

TestEvaluator

ServiceAdapter

Fig. 11. Components of the TTS Tool

The Model Evaluator is based on the SQUAM framework
(Section IV-B) and uses OCL as constraint language. It pro-
cesses the workflow activity Validation, Coverage,
Transformation.

The Test Code Generator generates executable Java code
from the test model. It processes the workflow activity Test
Code Generation.

The Service Adapters are used by the test controller to
invoke services on the system under test (SUT). They can
be created manually or generated automatically depending on
the service technology. Adapters correspond to the workflow
activity Adapter Implementation/Generation.

The Test Controller executes the tests against the SUT. It
processes the workflow activity Test Execution.

The Test Evaluator generates test reports and visualizes
test results within the models. It corresponds to the workflow
activity Test Analysis.

In its modularity, the tool is only bound to the Eclipse
framework. The various components can be exchanged
by more custom triggered extensions as the tool follows
established practices (test data modeling in XML, test case
modeling in XMI). In the following, the components will be
outlined in more detail.

1) Modeling Environment: The requirements, system and
test models are denoted as UML models and stored in the XMI
format. Our language is defined via an UML profile imple-
menting the metamodel of Section II-C. Therefore stereotypes
are used to label model elements and tagged values are used to
define additional attributes. The modeling of requirements and
the system model is then straightforward with our customized
editor.

The modeling of tests is more complicated because test
data has to be considered. In a first step, test stories are
described using activity diagrams containing control flow
elements, service invocations and assertions. Not only test
stories, but also test sequences are described using a UML
activity diagram, yet contained in another package of the test
model. Valid test models which can be checked via the model
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p u b l i c i n t e r f a c e I A d a p t e r {
p u b l i c O b j e c t

i n vo ke ( S t r i n g se rv i cename , O b j e c t . . . a rgumen t s ) ;
}

Listing 7. Service Adapter Interface

evaluator are the input for the test code generator.
After describing a test, the tool allows for generating test

data tables for each test case as a second step of the test
modeling process. These test tables follow the approach of
the FIT framework [7], which allows for assigning concrete
test data (in our case concrete object IDs) to every input
parameter and free variable of assertions occurring in a test
story. The various test data objects referred in the test tables
are provided from a data context, holding instances of the
concrete data objects needed for system testing. By making
use of the Inversion of Control (IoC) container of the Spring
Framework [25], TTS allows for modeling complex data
objects and not only primitive types.

Hence, these test data tables allow for describing and
modeling the execution flow of test cases in a very fine
grained and deterministic way, by manually manipulating the
object contents. Additionally, it is possible to trace down the
erroneous execution of test cases to the test data level by
making use of the IoC’s user-defined object IDs.

2) Model Evaluator: The model evaluator is based on the
SQUAM framework, which is presented in Section IV-B.

3) Service Adapters: The communication of the test con-
troller with the SUT is encapsulated inside generated or
manually implemented adapters, tailored to the concrete SUT.
By encapsulating service invocations and data mapping, the
modeling of test stories and the generation of test code is eased
(see sections IV-A1 and IV-A4) because it can be abstracted
from technical details.

Currently the tool supports the automatic generation of
adapters for services providing a proper WSDL description
of their operation interfaces. The WSDL description itself can
be generated from a proper system model.

In Listing 7 the root interface for every adapter is denoted.
A tailored adapter only has to implement one single method
invoke to be ready–for–use in the tool environment during
the testing process. It support the manual or automatic
development of an adapter for different technologies such as
web services, RMI or CORBA as much as possible.

4) Test Code Generation: The test code generation consti-
tutes one of the core components of the tool environment. The
code generator is implemented based on oAW [26] which is
a framework for domain modeling and model driven devel-
opment, allowing to realize model–to–text transformations as
needed in our case.

The test code generator enables to generate executable Java

code out of the modeled test stories (activity diagrams). In
its implementation the generator visits the contained model
elements of each distinct activity diagram in the order of
the modeled execution flow and produces equivalent source
code (in our case Java). The generated test code is composed
of predefined code templates, called and evaluated during
the visitation of the various model elements. For pre– and
postconditions aspects in the notation of AspectJ [27] are
generated to be evaluated as aspects on service calls during
the test execution.

The above mentioned evaluation of the code templates
focuses on the processing of the applied stereotypes (see
section IV-A1) defined as a part of the tool environment. As
already mentioned earlier, those stereotypes define element
specific tagged values, containing the required information
for proper test case generation. To assure that the test model
meets the requirements posed by the test code generator,
prior to test code generation, the test model is checked for
consistency as explained in section IV-A2. The consistency
rules assure that on the one hand side, the test model only
calls services defined by the SUT and uses data types
processable by the SUT. On the other side, those OCL rules
are used to check, that the test model is valid, in a sense, that
the tagged values of the test specific stereotypes are set.

5) Test Controller: The test controller processes the test
code which is executed with concrete test data and logged
afterwards. Additionally, the engine also provides a commu-
nication interface to the SUT to realize asynchronous service
communication, i.e., the execution of a workflow in the SUT
whose completion is indicated by a callback method onto the
invoking client.

Considered from an architectural point of view, the test
controller itself again consists out of various components:
Data Management Provides the test data objects referenced
in the various test data tables (see section IV-A1). Again, the
IoC container of Spring is used to provide the test data objects
to the test engine. Inside this container the objects are retrieved
by their unique object ID used in the test data tables.

Event Handling This component is used by the whole tool
environment to process events thrown during test execution,
i.e., a VerdictEvent to indicate the evaluation of an assertion
during test execution. Additionally, this component generates
tables as in the FIT framework [7], illustrating the successful
or erroneous execution of a set of test data.

Assertion Evaluation Inferring the outcome of a test run is
provided by this component. Yet, as in contradiction to JUnit
and the like, Telling TestStories allows complex test data to
be used, and hence, also this component allows for iterating
through complex object structures for test evaluation.

Timing Dealing with asynchronous services requires en-
suring that timeouts are met for service responses. This is
encapsulated inside this component by ensuring that responses
to specific service invocations receive the test controller within
a pre–specified duration. Responses are assigned to corre-
sponding service invocations by their method signatures.
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c o n t e x t Model query c h e c k I s V a l i d T e s t M o d e l :
l e t r e s u l t : Boolean =

i f Package . a l l I n s t a n c e s ()−>
any ( o | o . p r o f i l e I s T y p e O f ( ’ T e s t ’ ) ) . o c l I s U n d e f i n e d ( )

then f a l s e
e l s e

Package . a l l I n s t a n c e s ()−>
any ( o | o . p r o f i l e I s T y p e O f ( ’ T e s t ’ ) ) . i s V a l i d T e s t M o d e l ( )

e n d i f
message r e s u l t endmessage

Listing 8. OCL Query for Testmodel Validity

In the execution phase, the test controller passes through
three states. In an initial state, the test workflow is parsed
and according to its contents, test tasks are generated
encapsulating the modeled test cases. After completion of
creating the tasks the engine enters its second, main state in
which the tests are executed against the SUT. In a third and
final state, the engine generates the above mentioned result
table containing the test outcomes, after all events have been
processed.

6) Test Evaluator: The test evaluator is responsible for
evaluating the results of a test run. As in the FIT framework,
our test evaluator colors test case lines in test tables green,
red or yellow depending on the test result. If a failure can be
assigned to a specific model element, our tool is able to color
it in the activity diagram. We have also integrated high–level
test reporting based on BIRT [28] which generates different
types of graphical test summary reports.

B. SQUAM

In this section, we describe the SQUAM tool implementa-
tion that has been used for the model evaluation within the
TTS framework. SQUAM (Systematic QUality Assessment
of Models) is an integrated framework for UML/OCL–based
model development and OCL–based quality analysis.

It provides support for consistency and coverage checks
in OCL, and supports the definition and generation of high–
quality system and test models. Coverage checks guarantee
that the test models are complete with respect to the system
model and the requirements model. Additionally, coverage
checks are useful exit criteria for test generation. Consistency
checks guarantee model validity which is a prerequisite for
test code generation. Therefore the test code generator uses
the model evaluator to check test model validity prior to test
code generation. In Listing 8 a sample top–level query for
assuring test model validity is denoted.

The SQUAM tool has a plug–in architecture incorporating
in–house developed and existing open source solutions. There
are two editions of SQUAM, a community and a professional
edition. The community edition is integrated into the TTS
framework, whereas the professional one provides features
that can be used to obtain an integrated and user–friendly
OCL development process for criteria and metrics within the

TTS framework. Below we describe the part of the SQUAM
framework integrated into the TTS framework.

Fig. 12. Architecture of the SQUAM Community Edition Tool

The community edition is the core of the framework. It
provides the basic features for writing and editing OCL expres-
sions supporting definitions, (running) queries, (running) unit
tests and their documentation (OCLDoc). It consists of several
plug–ins (see Fig. 12): 3 in–house plug–ins: core, general
library, and OCL evaluator and 2 third plug–ins: Eclipse OCL
evaluator and Antlr.

The core (ocl.editor.community.core) forms the backbone
of the SQUAM application. It contains the basic functionality
like two–step parsing of libraries: using Antrl (org.antlr) for
pre–parsing our OCL extensions and the OCL evaluator
(ocl.evaluator) with Eclipse OCL evaluator (org.eclipse.ocl)
for parsing standard OCL. Moreover, the core provides basic
features for editing OCL expressions (like syntax highlight-
ing, code completion or code formatting), managing UM-
L/ECORE/XML models (and meta–models) and UML profiles
(loading, removing and creation of qualified names).

The general library (library.general) defines an abstract
OCL library as an Eclipse extension point to access OCL
definitions and queries. The basic principle of the general
library is to give third party plug–ins the ability to retrieve
all definitions and queries for further processing.

There are two integration points of the SQUAM framework
into the TTS framework, one for the evaluation of interactive
checks and one for the evaluation of automatic checks. For the
interactive checks, the validation view from the core is used,
and for the automatic checks, the OCL evaluator is used.

V. RELATED WORK

In this section we present tool–based testing frameworks,
model validation techniques, and coverage criteria related to
TTS.

A. Tool–based Testing Frameworks

Model–based testing approaches always have a methodolog-
ical and a tool aspect [11]. There are already some industrial
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tools available [29]. TDE/UML [30], a tool suite for test
generation from UML behavioral models, is related to our
approach but focuses on GUI–based systems whereas TTS
focuses on service–centric systems.

FIT/Fitnesse [7] is the most prominent framework which
supports system test–driven development of applications al-
lowing the tabular specification, observation and execution
of test cases by system analysts. Our framework is due
to the tabular specification of test data based on the ideas
of FIT/Fitnesse but integrates it with model–based testing
techniques.

Although test sheets [31] define a fully tabular approach,
support for model–driven testing is missing there.

In [32] a model–driven system testing approach and a
tool implementation that enables test engineers to graphically
design complex test cases based on METAFrame Technolo-
gies’ Application Building Center [33] has been defined. The
approach is similar to TTS but not based on UML and its
generic profiling mechanism.

The PLASTIC framework [34] provides a collection of
tools for online and offline testing both functional and non–
functional properties of service–oriented applications. Some
of the tools are model–based but the tools are not integrated
and do not follow a model–driven testing approach as in the
TTS tool implementation.

B. Model Validation

Validating consistency of UML models has received greater
attention by researchers in recent years [35], but completeness
has also been addressed [16]. Even the interplay between
consistency and completeness has been investigated [36].

Only a small number of approaches such as [37] consider
consistency and completeness of test models, i.e., behavioral
descriptions of operations. But consistency and completeness
between requirements, system and test models as in TTS is
not considered.

C. Coverage Criteria

Comprehensive collections of coverage criteria are defined
in [11] and [10]. In [10] a coverage–driven approach to
software testing is discussed. There are four different types
of testing and corresponding coverage criteria distinguished,
i.e. graph coverage, logical expression coverage, input space
partitioning, and syntax–based coverage. In our integrated
approach, we use artifacts of our metamodel as sources for
test coverage. Behaviors provide graphs, decisions provide
logical expressions and types or services provide partitions of
the input space. We do not have explicit grammar definitions
and therefore syntax–based coverage is not relevant in our
approach.

A collection of structural UML–based coverage criteria for
class diagrams, sequence diagrams, communication diagrams,
state machines, activity diagrams and use case diagrams is
provided in [38]. It includes coverage criteria for state ma-
chines and activity diagrams from [39] where test generation
from UML specifications is discussed. Our approach provides

specific model–based coverage criteria for service–centric sys-
tems supporting the manual or automatic test definition.

VI. CONCLUSIONS AND FUTURE WORK

In this article, we have outlined the model–driven and
tabular system testing methodology Telling TestStories and its
tool implementation. TTS is based on traceable requirements,
system, and test models which are validated even before
test code is generated and executed. The TTS tool used for
model development and system validation, plus the SQUAM
tool used for model validation are explained by a case study
from the telecommunication domain. The TTS tool and the
SQUAM tool consist of a set of Eclipse plug–ins [24] and
are integrated to implement the TTS methodology.

Prior to the use of TTS the system test design has
been done ad–hoc in an unsystematic way mainly by testers
themselves. TTS allows for designing tests in an effective way
because its intuitive graphical and tabular notation supports
the design of tests that can be validated by consistency,
completeness and coverage checks. The TTS methodology
naturally integrates domain experts and customers into the
process of formal and executable test design. The integration
of domain experts and customers may be helpful to reveal
specific test scenarios that would not have been detected
otherwise. TTS is also efficient because the tests can be
defined on an abstract visual level with tool support. After
the initial effort of system model design the advantages of
TTS can be applied. Our implementation of the methodology
has shown that the checks provide additional support for the
validation of the requirements, system, and test model, but
also raises the failure detection rate due to the higher test
quality. In the model of the callmanager case study we found
inconsistencies and incompletenesses that have been detected
with our criteria and removed afterwards. With our validation
checks the effectiveness and efficiency of the approach has
been improved because the quality of test models is higher
and failures are detected earlier. The coverage criteria and
metrics provide useful information to all stakeholders whether
additional tests have to be defined manually or not. Our
validation checks are defined statically on the metamodel and
do not support the dynamic simulation of a model. But due
to our experience this is replaced by early test execution in
iterative software testing and therefore not a severe restriction
compared to dynamic approaches like model–checking which
need additional modeling effort and more knowledge in
formal modeling. Additionally, the information provided
in this process supports the system engineers who are not
experts in test design when defining tests.

Based on research results and user feedback we have
planned further extensions to our methodology, the tool, and
its application.

In the case study at hand functional and performance re-
quirements are considered. But TTS will also be applied to test
other non–functional requirements, e.g., security requirements.
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We have already tested positive security requirements with
TTS [40], but testing negative security requirements with TTS
has not been considered yet. So far coverage criteria in TTS
only check the quality of the test model as adequacy criteria
but are not applied for the generation of test cases as selection
criteria. Our OCL–based coverage criteria can be applied to
integrate selective test generation into the TTS methodology.

The TTS tool is already quite mature and on its way
to a practically usable open–source tool for model–driven
system testing of service–centric systems [41]. For this step the
usability of the tool and the interoperability to integrate TTS
with other testing tools has to be improved. For instance, the
usability of modeling tests can be improved by an additional
textual representation of test models which is synchronized
with the graphical representation, to support fast text–based
editing of test models. TTS is suitable for arbitrary service–
centric systems and therefore many application domains are
arising. Applications to an industrial service–centric system
from the health care domain and to the upcoming paradigm
of cloud computing which can also be considered as a specific
service–centric system are planned.
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