
Performance Evaluation of a High Precision Software-based Timestamping Solution

for Network Monitoring

Peter Orosz, Tamas Skopko

Faculty of Informatics

University of Debrecen

Debrecen, Hungary

e-mail: oroszp@unideb.hu, skopkot@unideb.hu

Abstract — Widely used network measurement applications,

such as tcpdump and Wireshark, use the same common

libpcap packet capture library. Libpcap assigns a 10
-6

 second

precision timestamp to all processed frames. Higher physical

bandwidth implies shorter inter-arrival times between

consecutive frames. Accordingly timestamp resolution must be

proportional to the link speed. The latest version 1.1.x of

libpcap provides 10
-6

 second native resolution, however pcap

format supports a larger 2 x 32-bit timestamp value for each

stored packet. On Gigabit Ethernet or faster networks, a

timestamp resolution that works in the microsecond domain

may not enable us to precisely reproduce the time-domain

relation between consecutive frames. Therefore overall

analysis of the data transmission could lead to a false result.

For packet capturing with libpcap, it is assumed that the

timestamp represents the time moment when a frame reaches

the kernel’s input packet queue. In an idealized case generated

timestamps are always converging and suitably close to the

real arrival or transmission time of each frame so as to

conserve the original inter-arrival time values. The timestamp

resolution of network measurement applications must be

increased according to the requirements of advanced high

speed data networks. In our paper, we are going to show and

evaluate an alternative libpcap-based solution that features

nanosecond precision timestamping.

Keywords-libpcap; timestamp resolution; inter-arrival time;

Linux kernel; high speed network.

I. INTRODUCTION

This paper is the extended version of our previous work
[1] that focuses on a software solution based on the libpcap
packet capture library and high resolution kernel-based
timestamp generation. On Linux machines the libpcap
library retrieves timestamps of captured frames from the
kernel through some special kernel functions. Independently
from one other, several impact factors could directly bias the
generation of timestamps [2].

Some timestamp-related terms that will be used in the
rest of this paper should be introduced here:

 Timestamp size (TSS): bit length of the timestamp

 Timestamp precision (TSP): sub-second resolution

 Timestamping time (TST): time required to generate
a timestamp value

High resolution timestamping of data packets on high

speed networks is a challenging issue [3], which is even
more critical on a software-based packet capture

environment such as libpcap [4]. Libpcap relies on the
operating system kernel to provide the arrival or transmission
time moment of the processed data packets. Since
timestamping is performed in the kernel space, several
hardware and software factors impact the overall precision
and accuracy of the generated timestamps. Furthermore, data
structures in libpcap are designed for 32-bit TSS.

The precision requirement of TSP depends on:

 Link speed

 The minimum of packet inter-arrival times within a
data stream

The following factors affect TST:

 Hardware architecture

 NIC driver design

 OS kernel (enqueing/dequeuing, handlers)

 Clock sources

 Libpcap

Let us suppose that two uniform sequences of minimum-
sized and maximum-sized Ethernet frames are transmitted
over Gigabit and Ten Gigabit Ethernet links at the theoretical
maximum rate. Table 1 and Table 2 show the PHY (physical
layer) level timing parameters of the Gigabit and Ten Gigabit
Ethernet standards.

TABLE I. GIGABIT ETHERNET TIME PARAMETERS

Timing parameters

1 GbE

Smallest Ethernet frame

length: 72 Bytes

Largest Ethernet frame

length: 1526 Bytes

Bit time 1 ns 1 ns

Inter-frame gap 96 ns = 96 x bit time 96 ns = 96 x bit time

Δt between
timestamps of two
consecutive frames

576 ns + 96 ns = 672 ns
12,208ns + 96ns =
12,304ns

Theoretical precision
of NTP sync

≥1 msec ≥1 msec

Required time sync
precision

≤600 ns (theoretical
minimum)

≤12 µs (theoretical
maximum)

Maximum number of
frames per second

1,488,096 81,274

181

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. TEN GIGABIT ETHERNET TIME PARAMETERS

Timing parameters

10 GbE

Smallest Ethernet frame

length: 72 Bytes

Largest Ethernet frame

length: 1526 Bytes

Bit time .1 ns .1 ns

Inter-frame gap 9.6 ns = 96 x bit time 9.6 ns = 96 x bit time

Δt between
timestamps of two
consecutive frames

57.6 ns + 9.6 ns = 67.2 ns
1,220.8 ns + 9.6 ns =
1,230 ns

Theoretical precision
of NTP sync

≥1 msec ≥1 msec

Required time sync
precision

≤60.0 ns (theoretical
minimum)

≤1.2 µs (theoretical
maximum)

Maximum number of
frames per second

14,880,960 812,740

We assume that the indicated frame sizes include 8 bytes

preamble, 6 bytes destination MAC address, 6 bytes Source
MAC address, 2 bytes MAC Type/length, 4 bytes CRC and
the payload (46-1500 bytes). The inter-frame gap is 12 bytes
according to the Ethernet specification. Based on these
values the minimum of packet inter-arrival time can be
determined that is 672 ns for Gigabit Ethernet and 67.2 ns for
Ten Gigabit Ethernet respectively.

IP Packet Delay Variation (IPDV) is an IETF RFC 3393

proposal [5][6]:

(1)

Delay per hop:

(2)

End-to-end delay:

(3)

We assume that (3) has a Gamma distribution function [7]:

(4)

A 64-Byte packet sequence has been generated according to

(4) at a 1 Gbps transmission rate (Fig. 1).

■ Δt at µs resolution ■ Δt at ns resolution

Figure 1. Gamma distributed PDV of 64-Byte frames at 1Gbps

transmission rate

It can easily be shown that microsecond time resolution
could be insufficient to describe the time domain relation
(1)(2) between packet arrivals on Gbit/s or a higher speed
network path [8].

II. RELATED WORK

In the last couple of years several research projects have
realized the problem of the inefficient time resolution of
packet timestamps [9][10][11]; most of their proposals and
solutions resulted in hardware-based packet timestamping.
For higher performance some of them integrated the entire
capturing process into a dedicated hardware device
[9][11][12][13]. However, none of them was focused on
extending the resolution of software-based packet
timestamping.

III. PROBLEM DEFINITION

A. NIC driver architecture

The NIC driver connects the physical layer and the
internal packet structures of the operating system. A
sophisticated network driver design combines interrupt and
polling operation modes using the kernel feature NAPI (New
API) [14]: at lower traffic it uses interrupts, while at higher
loads it switches to polling mode [15].

Interrupt mode: When a frame arrives at the NIC, it

generates an interrupt that calls a specific handler registered
by the driver. The handler places the frame into the input
packet queue and the kernel processes it thereafter. The
handler is given priority over the kernel‟s processing code as
long as frames are arriving at a higher rate (due to a high
network load) than the kernel can handle them. High traffic
results in a high number of interrupts that could consume
hardware resources.

Some NIC drivers can support the passing of multiple

frames within an interrupt.

0 20 40 60 80 100 120

0.000000000

0.000000500

0.000001000

0.000001500

0.000002000

0.000002500

TTT d=dd 12

n

=i
i

HT d=d
1

)(
);;(

/
1

k

e
xkxf

k

x
k

0 where θk,x,

qptH dddd

hops ofnumber n...

hopper ...delay d

delay end-to-...endd

where

H

T

delay queuing ...d

delay processing ...d

delayion transmiss...d

hopper delay ...d

where

q

p

t

H

ndestinatio tosource from ipdv-way-one-P- type...d

T at timesent packet a ofdelay ...d

T at timesent packet a ofdelay ...d

where

ΔT

2T2

1T1

182

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Polling mode: The kernel queries the driver about
the arrival of new frames with a specific frequency.
Resource consumption of this method is optimal at
high network load.

 Timer-driven interrupts: The NIC asynchronously
notifies the kernel about frame reception. The
handler processes the frame, which has arrived since
the last interrupt.

Since timestamping of the incoming packets is performed

by the queue handler, the timestamp value does not
necessarily depend on the operation mode of the NIC driver.
Nevertheless, in order to determine the dependency of the
timestamp value on the operation mode further analysis is
required.

B. The OS kernel

We must define the exact code point over the data path
from the NIC to the kernel input queue where timestamping
is performed. The Linux kernel puts timestamps onto each
frame when they are enqueued to the input packet queue.
This is the point where the kernel processes the frame (Fig.
1).

Since libpcap relies on kernel timestamps, we had to
observe the latest Linux kernel functions, which could
acquire 10-9 TSP from a high frequency and very accurate
clock source.

Figure 2. Sk_buff structure of the linux kernel

C. Clock sources

The Linux kernel supports multiple clock sources. Their
availability depends on the underlying hardware architecture.

1) ACPI (Advanced Configuration and Power Interface)

Power Management Timer

This clock, known as the RTC (Real Time Clock), is usually

integrated into the south bridge of the motherboard. Its

3.579545 MHz clock frequency limits its precision to the

microsecond domain.

2) HPET (High Precision Event Timer)

This is available on most of today‟s PC architectures. HPET

is a high precision clock source due to its very low jitter,

which is within the nanosecond domain. However its clock

frequency is about 10 MHz, which is not an appropriate for

high resolution timestamping.

3) Jiffies
These are based on timer interrupt and are referred to as

the kernel heartbeats. Jiffy frequency can be specified at

compile time. Under recent 2.6.x Linux kernels it is set to

1/250 Hz (4 ms resolution) or its maximum 1/1000 Hz (1

ms) by default, which is far from the requirements of proper

timestamping. There are plans to remove this timing method
and move to tickless systems because of power saving

considerations.

4) TSC (Time Stamp Counter)
A 64-bit CPU register that is present on all x86

processors since the Intel Pentium. It counts the number of
ticks since boot or reset. The time stamp counter is an
excellent high-resolution, low-overhead way of providing
timestamps. The novel constant TSC feature ensures that the
duration of each clock tick is uniform and supports the use of
the TSC as a wall clock timer even if the processor core
changes frequency. “This is the architectural behaviour
moving forward for all Intel processors.” [16]

Constant TSC operates at the CPU's clock speed from

which the 10-9 second TSP can be easily derived.

D. Libpcap

The last stage of transmission just before getting to the
capture application is the libpcap. Timestamp information
received by the libpcap depends on the factors discussed in
the previous sub-sections. The Linux-specific part of the
libpcap is contained in the pcap-linux.c source file. The
library captures the packets with the pcap_read_packet()
function. Timestamping is handled either by the
SIOCGSTAMP IOCTL call or by the TPACKETv2
structure.

IV. IMPLEMENTATION OF HIGH RESOLUTION

TIMESTAMPING

Our goal was to reveal and test all of the kernel functions
and features that will be essential parts of our project to
modify libpcap to a nanosecond-capable capture library. In
this section, related source code snippets are presented in
such a way that the beginning of deleted and inserted source
code lines are marked with the „-‟ and „+‟ signs respectively.

A. Implementation

It is feasible to reach nanosecond TSP resolution purely
on software-based tapping:

 The tstamp member of sk_buff structure is capable of
nanosecond resolution

 The Linux kernel function ktime_get_real() to query
the system clock is in nanosecond resolution

 This function is adequate to fill up nanosecond
tstamp fields in sk_buff

 Accordingly user-space applications (such as
libpcap-based ones) could display and process 10-9
second resolution timestamps

183

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 The Linux kernel supports TSC as a clock source

 For efficient time synchronization dedicated LAN
interfaces and a PTP timing protocol could be used
within a low latency wired environment

The input queue handler within the 2.6 kernel puts a 64-

bit timestamp onto each frame that is enqueued to the
input_packet_queue. The Linux kernel API features the
ktime_get_real() function that enables us to query
nanosecond resolution timestamps from the kernel.

For nanosecond time resolution we assume that the

kernel‟s clock source is a constant TSC that operates at
≥1GHz frequency.

The latest Linux kernels (v2.6.27+) introduce the
SIOCGSTAMPNS call that returns with the nanosecond
precision timestamp of the last incoming packet.

Through this IOCTL call, we indirectly get to the
sock_get_timestampns() function inside kernel‟s sock.c. This
function relies on the ktime_get_real() for timestamp
generation and uses the ktime_to_timespec() to convert it to
tv_nsec format, which is a nanosecond capable time variable
within the timespec data structure.

Our first modification is replacing the SIOCGSTAMP

IOCTL call with the more recent SIOCGSTAMPNS one:

Libpcap alternatively uses the tpacket_hdr structure to query
packet description header information.

We would like to emphasize the limitation of this
structure: content of the tp_usec element is always a
microsecond precision sub-second time value (TSP). Latest
linux kernels (2.6.27+) now feature the enhanced tpacket_v2
structure:

The novel tpacket_v2 is able to store nanosecond

precision TSP as well as some VLAN information. We
managed to maintain and adapt the benefits of tpacket_v2
structure within the packet capturing process. Our next
modification is to retain the nanosecond information
provided by the tpacket_v2 structure:

include/linux/sk_buff.h:

struct sk_buff {
/* These two members must be first. */
struct sk_buff *next;
struct sk_buff *prev;
struct sock *sk;
ktime_t tstamp;
struct net_device *dev;
}

include/linux/ktime.h:

ktime_t
union ktime {
 s64 tv64;
#if BITS_PER_LONG != 64 &&
!defined(CONFIG_KTIME_SCALAR)
 struct {
ifdef __BIG_ENDIAN
 s32 sec, nsec;
else
 s32 nsec, sec;
endif
 } tv;
#endif
};

typedef union ktime ktime_t;

pcap-linux.c, in function pcap_read_packet():

- if (ioctl(handle->fd, SIOCGSTAMP,

&pcap_header.ts) == -1) {
- snprintf(handle->errbuf,

PCAP_ERRBUF_SIZE, "SIOCGSTAMP: %s",
pcap_strerror(errno));

+ if (ioctl(handle->fd, SIOCGSTAMPNS,
&pcap_header.ts) == -1) {

+ snprintf(handle->errbuf,
PCAP_ERRBUF_SIZE, "SIOCGSTAMPNS:
%s", pcap_strerror(errno));

 return -1;
 }

struct tpacket_hdr
{
 unsigned long tp_status;
 unsigned int tp_len;
 unsigned int tp_snaplen;
 unsigned short tp_mac;
 unsigned short tp_net;
 unsigned int tp_sec;
 unsigned int tp_usec;
};

struct tpacket2_hdr
{
 __u32 tp_status;
 __u32 tp_len;
 __u32 tp_snaplen;
 __u16 tp_mac;
 __u16 tp_net;
 __u32 tp_sec;
 __u32 tp_nsec;
 __u16 tp_vlan_tci;
};

184

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Using the default capture buffer size of libpcap (which is

2 Mbytes) disk I/O performance could lead to a serious
number of packet drops at a high transmission rate.
Unfortunately libpcap does not feature any option for
adjusting capture buffer. In order to prepare libpcap for high
speed packet procession, its capture buffer had to be
increased. We made a series of measurements at 1 Gbps
transmission rate so as to determine the optimal size of this
buffer for capturing without packet loss. These
measurements resulted in a capture buffer of 128 Mbytes,
which is an empirical value. The last modification made to
libpcap is to increase the default buffer size:

With this modification we enhanced the well-known

libpcap (v1.1.x) library so as to be able to put nanosecond
precision timestamps onto captured packets without packet
loss. This feature relies on some novel features of the latest
linux kernels that we effectively integrated into the libpcap
library via our modifications. We made libpcap ready to
operate with nanosecond precision timestamps; however its
effective TST greatly depends on the performance of the
underlying hardware.

At this point it is important to note that the nanosecond
resolution is largely theoretical. On a dedicated server-class
machine with 2 x Intel Xeon dual-core 3GHz (Woodcrest
5160) CPUs and 8GB of RAM, we managed to get a TST of
approx. 75 ns. Hence, we would like to emphasize that
effective TST and its variance greatly depends on the
hardware performance of the host computer, its current
system load, various critical kernel parameters and the time
data conversion overhead. Even so, in our result TST is close
to the time precision requirement of packet capturing on 10
Gbps Ethernet since the inter-arrival time of minimum-sized
consecutive frames is about 61ns.

System dependency and variance of TST are rooted in
the software-based nature of the solution. Accordingly, an
extensive series of comparative tests against hardware-based
solutions is required for its validation (see Section IV for
details).

B. Application

With the nanosecond capable libpcap, a wide range of
network data traces can be captured and stored for
subsequent analysis. Accordingly, we have made further
developments to make the commonly used tcpdump and
Wireshark capable of easily processing, displaying and
storing these high precision timestamps in the quasi-standard
pcap file format (Figs. 3, 4).

Figure 3. Output screen for microsecond timestamp resolution with the

standard libpcap and Wireshark

Figure 4. Output screen for nanosecond timestamp resolution with the

enhanced libpcap and Wireshark

pcap-linux.c, in function pcap_read_linux_mmap():

 case TPACKET_V2:
 tp_len = h.h2->tp_len;
 tp_mac = h.h2->tp_mac;
 tp_snaplen = h.h2->tp_snaplen;
 tp_sec = h.h2->tp_sec;
- tp_usec = h.h2->tp_nsec / 1000;
+ tp_usec = h.h2->tp_nsec;
 break;

pcap-linux.c, in function activate_mmap():

 if (handle->opt.buffer_size == 0) {
- /* by default request 2M for the ring buffer

*/
- handle->opt.buffer_size = 2*1024*1024;
+ /* request 128M for the ring buffer */
+ handle->opt.buffer_size =

128*1024*1024;
 }

185

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

While tcpdump is not, Wireshark 1.2.x is indeed ready to
process pcap trace files that feature nanosecond precision
packet timestamps [17]. We had to apply a specific magic
number (0xa1b23c4d) that registered for the nanosecond
pcap format. Using this number, Wireshark could be made
capable of identifying and capturing pcap files with
alternative attributes and structures.

The magic number of 0xa1b23c4d stands for a

subversion of pcap that includes nanosecond precision
timestamps for each packet.

The default time precision of the Wireshark GUI must be

set to a nanosecond:

For comparison, two screenshots present the timestamp

resolution enhancement. Microsecond scale TSP is the
default time resolution for libpcap and Wireshark (Fig. 3),
while our modified version is capable of capturing nanoscale
TSP as displayed in the “Time” column (Fig. 4).

V. PRECISION EVALUATION OF THE SOFTWARE

TIMESTAMPING

A. The timestamp generation process within the kernel

Timestamp put onto each packet must be adequately
accurate. Hence, it is essential to investigate the process of
its generation and to minimize CPU consumption of its sub-
processes. Received packets are enqueued by the kernel in
the CPU‟s incoming packet queue. Packet enqueuing is
performed within interrupt context while software
timestamps are generated by the getnstimeofday() and
ns_to_timespec() functions (Fig. 5).

For representing time domain relation of the successive

packets in 10-9 second resolution, TST also has to be kept in
this time domain. The minimum of this overhead can be
predicted by measuring the execution times for
getnstimeofday() and ns_to_timespec(). For this
measurement we applied a clock source with the lowest and
the most uniform overhead, called TSC. The CPU instruction
used to read the TSC register value is RDTSC [18] since its
execution time takes constant or shows a very low variation
on most systems. Time consumption for the aforementioned
functions are measured by inserting TSC checkpoints into

the kernel code. The read TSC values are corrected with its
overhead on the current system as well as taking the system
CPU clock frequency in account.

Figure 5. The sub-processes of software-based timestamp generation

The minimum overhead of TST for common CPU
frequencies can be derived from mean results of a
measurement series made on various hardware architectures
(Fig. 6). For a CPU of 3 GHz only some 10 ns is the
estimated minimum value of TST. Real execution times
show some variation since several processes must share the
hardware resources, in this case the CPU itself. In the
extreme timestamp generation instructions are preceded or
interrupted by the execution of other processes' instructions,
which the kernel scheduler decides upon.

Figure 6. Timestamping overhead on different CPU speed

B. Timestamping performance of the common kernel clock

sources

In order to compare timestamping capabilities of the
mostly available clock sources, we set up a Gigabit Ethernet
test network. A dedicated FPGA (Field-programmable Gate
Array) packet generator had been set up and a continuous
sequence of 72-Byte packets has been generated and
captured. Since the PCI-based Netfpga-1G board [19] was
applied as GbE NIC the inter-frame gap was adjusted to
1472 bytes due to the data transfer limitation of the PCI bus
and the Netfpga device driver. Also note that its driver does
not support NAPI, more packets per interrupt mode or other
performance enhancing technologies. The inter-arrival times
and packet losses were recorded for every clock source.
Beside the software timestamp derived from the kernel clock
source an additional 8 ns resolution hardware timestamp was
inserted by the NetFPGA (Fig. 7).

In the pcapio.c source file, in function
libpcap_write_file_header():

-file_hdr.magic = PCAP_MAGIC;
+file_hdr.magic = PCAP_NSEC_MAGIC;

In the gtk/recent.c source file:
- recent.gui_time_precision = TS_PREC_AUTO;
+ recent.gui_time_precision

=TS_PREC_FIXED_NSEC;

186

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Precision evaluation of the timestamping

On Figure 7, one dot represents a successfully received
and timestamped packet where the timestamp value is
relative to the arrival of the previous packet.

For this dual timestamping operation mode, we modified
the Linux kernel as well as the libpcap library to be able to
store both timestamps side by side. Since our FPGA-based
packet generator injects a 32-bit serial number into each
packet, losses were easy to detect.

In this case beside that the inter-arrival times show large
variation using the ACPI-PM and HPET clock sources,
serious packet drops were present due to the high overhead
of accessing these clock sources.. ACPI-PM based
timestamps show the highest overhead. The three nearly
solid lines of HPET show that TST variance is lower than
that of ACPI-PM. Since the packet sending rate was constant
a higher inter-arrival time value indicates a higher execution
overhead.

Figure 8. TST performance comparison (TSC and hardware

timestamping)

Based on the hardware timestamps we can assume that
the time values derived from TSC show a more realistic

representation of the inter-arrival times. Moreover, it features
the lowest TST overhead among the supported kernel clock
sources.

Accordingly, it is reasonable to compare the variance of

inter-arrival times gained from the TSC and the NetFPGA
(Fig. 8). It is important to note that hardware timestamps
show inter-arrival times of the packets in the MAC layer in
contrast to the software based timestamps that represent the
time moment of enqueuing the received packet.

Nevertheless, there is an obvious difference between the

hardware and software timestamps in absolute time since
their generation occurs at different points of the data path.
They are not related very closely but the comparison shows
that the relative inter-arrival times derived from TSC can be
fairly close to the hardware-based values. However, even
with TSC the TST variation of software timestamps has a
significant extent since the execution of the generator
functions is triggered by the kernel‟s scheduler subsystem
(Fig. 8). Software timestamps are generated by kernel space
functions, thus it is easy to see that kernels with pre-emption
enabled are not eligible for high precision timestamping and
high performance packet capturing.

C. Timestamp generation using TSC

To generate a timestamp based on TSC its value has to be
converted, since the register value read by RDTSC is not
represented in natural time but in the CPU frequency. Linux
kernel has the cyclecounter/timecounter/timecompare
framework. It makes possible to use independent cycle
counter running on an arbitrary frequency to convert it to
natural time. The cyclecounter structure has to be initialized
by storing the counter's current value (in this case the register
value of TSC) and letting it know its ticking frequency.
Since there is no floating point support in the kernel, this
frequency conversion is described by a mask, a shift and a
mult member. Mask describes the size of the counter (64 bit
for TSC). Shift is fixed at 22 (based on an algorithm in
arch/mips/kernel/time.c from the Linux kernel) and
clocksource_khz2mult() helps to convert CPU frequency
into a multiplier. Then the timecounter has to be fixed to a
base time (using ktime_get_real() and another clock source
such as HPET) and to be stored the counter's current cycle
counter value.

Timecounter_cyc2time() function is applied to convert
counter value to natural time and timecompare_update() to
update offset since last conversion, furthermore to handle
possible counter turnaround. Downside is that the usage of
these function calls adds significant processing overhead.

Nevertheless, TSC is actually the most adequate clock
among the commonly available Linux kernel clock sources.
On high performance and carefully tuned systems, its
precision is sufficient for generating timestamps in the
nanosecond time domain for certain traffic patterns, however
for intensive traffic (high packet rate) hardware-based
solution has to be applied.

187

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As a future project, a post-processing of TSC data could
be implemented to get the potential benefits of offloading
register data conversion to time of day format.

VI. CONCLUSION

Version 1.1.1 of libpcap provides a 10-6 second native
resolution, however pcap format supports a larger 2 x 32-bit
timestamp value for each stored packet. On Gigabit Ethernet
and faster networks, a timestamp resolution that works in the
microsecond domain may not enable the precise
reproduction of the time-domain relation between
consecutive frames. Therefore overall analysis of the data
transmission could lead to a false result.

For packet capturing with libpcap, it is assumed that
timestamping is performed when a frame is enqueued to the
kernel‟s input packet queue. Accordingly libpcap must
retrieve timestamps from the kernel.

In this paper, we showed our alternative libpcap-based
network monitoring solution for Linux systems, which
features nanosecond resolution timestamping. Our primary
goal was to test and evaluate all of the clock sources and
kernel functions and features that are essential parts of our
project to turn libpcap into a nanosecond-capable capture
library. With the presented modifications and additions to the
original codes, we managed to maintain and adapt the
benefits of tpacket_v2 structure within the entire packet
capturing process, which resulted in our enhanced libpcap
solution. In Section V, the precision of the applied software-
based timestamping was analyzed and evaluated. We showed
that the variation of the TST derived from two factors: the
retrieval overhead of the applied clock source and the
kernel‟s scheduler that commands the execution of running
processes.

ACKNOWLEDGMENT

The work is supported by the TÁMOP 4.2.1./B-
09/1/KONV-2010-0007 project. The project is implemented
through the New Hungary Development Plan, co-financed
by the European Social Fund and the European Regional
Development Fund.

REFERENCES

[1] Peter Orosz and Tamas Skopko, “Software-based Packet
Capturing with High Precision Timestamping for Linux,”
August 22-27, 2010, 5th International Conference on Systems
and Networks Communications, Nice, France

[2] Peter Orosz and Tamas Skopko, Timestamp-resolution
problem of traffic capturing on high speed networks, January
28-30, 2010, ICAI international conference, Eger, Hungary

[3] Gianluca Iannaccone, Christophe Diot, Ian Graham, and Nick
McKeown, “Monitoring very high speed links,” Proceedings
of the 1st ACM SIGCOMM Workshop on Internet
Measurement, November 01-02, 2001, San Francisco,
California, USA

[4] Libpcap, a common open source packet capture library for
Unix/Linux systems. [Online]. Available:
http://www.tcpdump.org/, 29/07/2011

[5] IETF RFC2679, A one-way delay metric for IPPM. [Online].
Available: http://www.ietf.org/rfc/rfc2679.txt, 29/07/2011

[6] IETF 3393, IP Packet Delay Variation Metric for IPPM.
[Online]. Available: http://www.ietf.org/rfc/rfc3393.txt,
29/07/2011

[7] C. J. Bovy, H. T. Mertodimedjo, G. Hooghiemstra, H.
Uijterwal, and P. Van Mieghem, “Analysis of End-to-end
Delay Measurements in Internet,” submitted to PAM 2002

[8] Jörg Micheel, Stephen Donnelly, and Ian Graham, “Precision
timestamping of network packets,” Proceedings of the 1st
ACM SIGCOMM Workshop on Internet Measurement,
November 01-02, 2001, San Francisco, California, USA

[9] The DAG project. [Online]. Available:
http://www.endace.com, 29/07/2011

[10] Attila Pásztor and Darryl Veitch, “PC based precision timing
without GPS,” Proceedings of the 2002 ACM SIGMETRICS
international conference on Measurement and modeling of
computer systems, June 15-19, 2002, Marina Del Rey,
California, USA

[11] Cace TurboCap network interface card. [Online]. Available:
http://www.cacetech.com/products/turbocap.html, 29/07/2011

[12] Nethawk iPro traffic analysis appliance. [Online]. Available:
https://www.nethawk.fi/products/nethawk_ipsolutions/ipro/,
29/07/2011

[13] Cascade Shark Appliance. [Online]. Available:
http://www.riverbed.com/us/products/cascade/cascade_shark_
appliance.php, 29/07/2011

[14] Linux NAPI device driver packet processing framework.
[Online]. Available:
http://www.linuxfoundation.org/collaborate/workgroups/netw
orking/napi, 29/07/2011

[15] Christian Benvenuti, Understanding Linux Network Internals,
O‟Reilly, 2006

[16] TSC, Intel 64 and IA-32 Architectures Software Developer‟s
Manual. [Online]. Available:
http://developer.intel.com/Assets/PDF/manual/253667.pdf,
29/07/2011

[17] Wireshark Network Protocol Analyser. [Online]. Available:
http://www.wireshark.org/, 29/07/2011

[18] Performance monitoring with the RDTSC instruction,
[Online]. Available:
http://www.ccsl.carleton.ca/~jamuir/rdtscpm1.pdf,
29/07/2011

[19] NetFPGA project. [Online]. Available:
http://www.netfpga.org/, 13/01/2011

188

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

