
A Scalable Solution to Deterministic Per-Flow Resource Booking

Pier Luca Montessoro Daniele De Caneva
Department of Electrical, Management and Mechanical Engineering

University of Udine, 33100 ITALY
{montessoro, decaneva}@uniud.it

Abstract— This paper presents REBOOK, a resource reservation
management algorithm for packet switching network. It provides
deterministic, fast (real-time) dynamic resource allocation and
release; it can be used as an engine supporting different network-
oriented techniques for Quality of Service. Based on a stateful
approach, it handles faults and network errors, and recovers
from route changes and unexpected flows shutdown. The
distributed scheme used to store flows information avoids the
need of searching for entries within the routers’ control memory
when packets are received and guarantees constant complexity.
REBOOK can be implemented in hardware and is compatible
with any packet switching network. In the Internet, it can be
integrated in TCP or used with UDP to make it network friendly.
Moreover, a slightly extended RSVP implementation can be used
as signaling and hosting protocol. A software implementation as
standalone protocol has been developed to prove its effectiveness,
robustness, and performances.

Keywords- Quality of Service; network reliability; fast resource
reservation; transmission rate control.

I. INTRODUCTION
The number of multimedia services on the Internet is

rapidly growing, and the importance of Quality of Service
(QoS) is increasing. A major problem in providing QoS
guarantees in a packet switching network comes from the
difficulty of handling, in routers, the state information
belonging to active flows. In the core of the Internet, the
conventional known techniques simply fail in keeping up-to-
date the huge amount of flows information at a reasonable
cost. This paper proposes a new technique that, involving end
nodes’ applications or edge routers or firewalls, provides
constant-cost access to resource reservation information.

Quite often multimedia applications’ designers prefer UDP
as transport protocol because its efficiency, although those
applications generally require high bandwidth and would
benefit from congestion control mechanisms. Several methods
have been introduced for adding QoS control mechanisms to
packet switching networks, mainly based on adapting the
sender’s transmission rate in accordance with the network
congestion state (see Section II), but typically with such
approaches no QoS guarantees can be made effectively.

The proposed algorithm, that we call REBOOK [1], allows
a control protocol to prevent congestion by reserving
resources in advance. REBOOK is not dependant on TCP/IP

protocols, as it can be used in any other packet switching
network. Obviously, in the following the Internet and the
TCP/IP protocol suite will be used as reference environment
for its description.

REBOOK requires a hosting protocol to carry the
algorithm’s messages. They can be handled by a dedicated
signaling protocol, like RSVP [3] or a new ad hoc protocol, or
it can be embedded in a data transport protocol, like TCP
using the options field.

In REBOOK, the node requested to send QoS-sensitive data
(e.g., the sender of a multimedia stream) is responsible for
resource reservation request, on the bases of the amount and
type of data to be transmitted, application constraints and,
possibly, SLA (Service Level Agreement) parameters. While
the connection is active the amount of granted resources may
be reduced to allow the activation of new flows in an almost-
congested network or may be increased if switching nodes
become less loaded. These events are acknowledged by the
sender that will consequently adapt its transmission rate.
RSVP is receiver-oriented mainly because it is designed to
support singlecast and multicast flows as well. A possible
implementation of REBOOK in RSVP for multicast support
has been designed.

The proposed algorithm does not rely on any special
network feature: it works even if only part of the network is
REBOOK-aware; the resource reservation is effective even if
part of a flow traverses unaware routers. There are no special
requirements to routing, that can be asymmetrical
(transmitting and receiving flows can follow different paths),
except, obviously, its stability: in normal conditions data
packets and control messages must follow the same route for
the duration of the connection.

REBOOK does not rely on special hardware in routers
either. Its status storage scheme allows direct access to table
entries, without any hardware lookup feature, using
conventional memory architecture. This makes its
implementation faster and cheaper than today’s typical
solutions provided by hardware hashing.

Finally, REBOOK does not require any improvement in the
switching fabric. No additional memory for queues and
buffers nor different packet handling. On the contrary, the
router architecture will drive the resource granting phase,
depending on available resources left by previous reservations.

23

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In the following, after a summary of related work in Section
II, Section III discusses the scalability of the proposed stateful
approach, whereas Section IV presents the algorithm itself.
Section V and VI analyze implementation issues and
experimental results, respectively. In Section VII, some
conclusions are drawn and the future work is presented.

II. RELATED WORK
Congestion control in IP networks is a challenging issue,

since it represents a critical factor for the robustness of the
Internet [2]. Reservation of resources, admission control and
traffic policing are among the most commonly used open-loop
mechanisms to avoid congestion. On the other hand, closed-
loop mechanisms rely on feedback to detect and prevent
congestion [3].

A. Resource reservation and management
The IntServ architecture is an interesting implementation,

because it uses RSVP [4] to reserve the resources required by
the QoS-sensitive user’s applications. Nevertheless,
experience with real networks has revealed severe scalability
problems of this architecture, due to the amount of routing and
reservation information stored inside the routers.

Furthermore, RSVP implements a soft state model and uses
periodic refresh control messages to manage its states, that
introduces signaling overhead [5].

On the other side, the approach proposed by DiffServ is
based on flow aggregates: it allows an efficient
implementation inside the network. On the other hand, it
conserves a statistical approach to resource provisioning and
thus it does not provide any real service guarantee to any
possible flow [6]. Enhancements to DiffServ may come from
the Bandwidth Broker (BB) [7][8].

Cross-layer congestion control in IP networks has been
addressed by XCP [9] that proposes a protocol-oriented model
that puts the control state in the packets and not in the routers,
with the objective of improving the scalability. Unfortunately,
such schemes are hard to deploy in today’s Internet [10].

Recent studies have also demonstrated that soft-state
approaches coupled with explicit removal substantially
improves the degree of state consistency while introducing
little additional signaling message overhead [11]. This is the
direction followed to design REBOOK.

B. Efficiency and path recovery
Resource reservation in packet networks is widely

recognized as an essential requirement for applications, which
require guaranteed minimum bandwidth, low delay, or both
[12]; several fast resource reservation protocols are thus being
studied and developed.

In order to increase RSVP efficiency, REDO RSVP [4]
proposed a refresh mechanism made per aggregation instead
of per flow, improving RSVP scalability by reducing the
granularity of signaling information.

The YESSIR [13] and the LFS [14] protocols attempt to
avoid complexity of RSVP by limiting its objectives and
fulfilling bandwidth reservation for one-way, unicast flows.

MPLS with Traffic Engineering sets up label-switched
paths (LSPs) along links with available resources: thus,
ensuring that bandwidth is always available for a particular
flow and avoiding congestion both in the steady state and in
failure scenarios. The paradigm is that MPLS can easily
address prioritized and/or guaranteed traffic along an arbitrary
path, which can be independent from the underlying routing
protocol. This would allow enhancing network utilization and
fairness [15][16].

Interesting works on path selection algorithms are shown in
literature [17][18][19], giving also some interesting solutions
to failure recovery and QoS-aware fast rerouting procedures
[19][20]. Nevertheless, the optimal resource allocation on all
links and nodes along a reserved path when a topology change
occurs is a common challenge, which relies on the trade-off
between scalability and overall efficiency in resource
management.

REBOOK is based on a Distributed Linked Data Structure
(DLDS). DLDS are linked data structures that keep pointers to
memory locations or indexes to table entries containing
information stored in the routers that are very likely to be
accessed in the future. When a packet whose handling requires
access to that information is received, the DLDS pointer/index
can be found in the packet itself and lookup procedures can be
avoided. DLDS are distributed data structures since each
pointer/index is not stored within the router it addresses, but in
the end nodes, in the packets, and possibly in adjacent routers.
DLDS are dynamic, since the collection of pointers/indexes is
dynamically built and travels along the routes between the end
nodes. To keep the pointers consistent in a dynamic
environment, where route changes may send packets
containing a pointer/index belonging to a router different by
the one being traversed, a specific integrity check is adopted.
Thanks to DLDS, REBOOK can improve many known
techniques because it provides an efficient way to handle
reservation information within the network nodes regardless
the actual strategy to assign resources to the flows.

III. SCALABILITY
One widely accepted paradigm in networking is that packet

switching is a scalable technique because it does not keep
information for each connection (flow) traversing a node.
Stateful approaches, in which some information are kept up to
date for each connection in every router along the path, are not
generally believed to be scalable enough to handle the
increasing traffic on the Internet.

However, memory is no longer a limitation with today’s
technology. Provided that a tuple describing the status of a
flow should contain network and transport layer addresses,
some fields about the allocated resources and some control
fields, we can roughly estimate a memory occupation of about
50 bytes per active flow, even for 128-bits IPv6 network
addresses. In a conventional 4 GB memory the router could
store information belonging to almost 86 million flows.

The open problem is the excessive computation time needed
to handle the state information. As shown in the following,
REBOOK solves this problem with a distributed status storage

24

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

scheme that keeps track of memory addresses in routers and
allows direct access to the stored information, well avoiding
the need of searching data continuously.

IV. THE ALGORITHM
The REBOOK algorithm allows resource booking/release

on a packet network. It is based on several key concepts:
1) a distributed scheme for storing the resource reservation

status
2) each router keeps a very limited amount of information

for each flow requiring resources (as shown above,
REBOOK can handle millions of flows in very high speed
nodes)

3) a distributed scheme for keeping track of memory
addresses (pointers) overcomes the need for searching the
resource allocation tables

4) “keepalive” messages periodically signal the persistence
of each flow along the path; the routers use this signaling
to recover from route changes, uncommitted flow
shutdowns, hosts or nodes faults, loss of REBOOK
messages

5) the order of nodes traversed by a flow is kept in a
distributed form and used to discover route changes.

REBOOK provides a unidirectional resource reservation, in

the sense that to reserve resources in both direction of a flow
two instances of the algorithm should be activated, even
though some setup and shutdown messages can be glued
together. REBOOK, in fact, can be easily integrated in
existing transport or application layer protocols to merge end-
to-end session setup and hop-by-hop resource reservation.

REBOOK works as follows: when a flow requires resource
reservation, the host (or a border router that controls the QoS
parameters for flows accessing the network) sends to the
receiver (host or border router) a reservation request message
that is normally routed along the path. Each node keeps track
of the request and reserves the requested resource or the
amount still available (if less than requested). Reduction in the
allocated resources is written in the resource reservation
request message while it traverses the router. The receiving
end system sends back to the sender a resource reservation
acknowledge notifying the current amount reserved. From that
point on, periodical keepalive messages are sent to confirm the
activity of the flow and to notify the routers along the path the
current amount reserved. If the amount reserved by a router
was subsequently reduced by the next ones along the path,
from keepalive messages it will know how much can be
released. Keepalive messages are also used to notify a booking
reduction request from a overloaded router.

So far, REBOOK appears quite straightforward. The
problem is that in the real world flows can suddenly disappear
(due to host or router faults) or change way (dynamic routing).
It is mandatory the quick identification and release of all the
allocated resources that are no longer used. Even the smallest
fraction of “lost” resources would produce catastrophic effects
when cumulated over the days, months or even years long
routers uptime. This requires continuous update of the

resource allocation tables in routers, a task that so far has been
believed to be too expensive, requiring special hardware
architectures (e.g., Content Addressable Memories, hardware
hash tables) or high computing power. The REBOOK’s
distributed status storage scheme overcomes these limitations
with a pure software solution.

In order to make the resource reservation, the end node
must communicate to the network the minimum amount of
resources needed for the application to work and the
maximum amount that can actually be used. How an
application could know this information? And, more
important, why an end node should not attempt to reserve
much more than what it needs? There are several reasons,
some general and others related to specific environments. The
self-regulation of the end node is not new: the very basic TCP
congestion control drastically reduces the transmission rate
after a packet loss. Nodes share the resources trying not to
overload the network. In the same way a multimedia
application, on the basis of encoding and compression
information, knows the peak transmission rate and the
minimum bandwidth required to play the stream without
interruptions. The reasons because a node should not
overestimate its requirements depend on the environment. The
most obvious case is a controlled environment where nodes
are set-top box or computers with specific accounting and
descrambling hardware for pay-per-view web TV distribution
or similar multimedia services. A more general scenario is
provided by ISPs that implement traffic shaping to limit high-
speed peer-to-peer download; self-reducing bandwidth
requests would avoid generalized slow-down of the user
access and, on heavily loaded networks, connection refusal
due to excessive resource reservation. In the future, speed-
based accounting could become quite common; reducing the
required bandwidth for non-real-time applications could help
reducing access costs.

A. Rebook Messages and Data Structures
Figure 1 represents the REBOOK message fields. In order

to compute the message size, IPv4 address format has been
considered. Please note that for some message types
(“RESET”, for instance), not all the fields are needed, but in
the following we will ignore this possible optimization.

A RESV message is used to start resource booking. The

flow identification field is made of the tuple { source IP,
source PORT, destination IP, destination PORT } and
uniquely identifies a TCP or UDP flow. The resource
reservation request is expressed by the Resource field,
containing the minimum amount of resource needed by the
flow to support the application and the maximum amount of
resource that it can really use. Rcurr is the actual resource
available and reserved along the path; this value is reduced by
the traversed router if the available resource is less than the
maximum required. The remaining fields belong to the direct
table access and fault recovery algorithms, and will be
discussed later.

The reservation request carried by the RESV message is

25

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

acknowledged by a RESV_ACK message, from receiver to
sender. The KPALV type is used to identify the keepalive
messages, from sender to receiver, while UP_RESV,
RL_RESV, PRL_ACK are used to dynamically change the
amount of allocated resources. The RESET message type
signals that a flow’s resource booking is no longer valid due to
an unexpected event along the path.

Each time a new flow requires resource booking, the router
creates a new Resource Allocation Table (RAT) entry. Its
format is fixed, 29-bytes wide (IPv4, 53 bytes in IPv6), as
shown in Figure 2.

The new entry is created from a free list using the List
pointer field. The RAT entry stores the Flow ID field, the
amount of requested and currently allocated resource and the
system time (the Age field), used to identify reservations
hanging due to faults or network errors. The two fields IN and
OUT are router’s implementation-dependent, and can be
substituted by the actual internal information the router needs
to handle the resources release when the flow terminates.

The field Path Position is the key that makes REBOOK
robust at a very minimum cost and will be discussed in next
Section.

The field Rrel allows a partial resource release when the
router needs to free resources to make room for new flows.

B. Resource Reservation Algorithm
Figure 3 represents a simple network in which host A must

reserve a resource along the route to host B.
At the very beginning, host A sends a RESV message to the

receiving host B requesting Rreq resource (8 for instance) and
stating that Rmin (4 in the example) is the minimum acceptable.

The Rcurr field is initialized to Rreq. The packet is travelling
along the first hop, so the Hop Counter field is set to 1. The
total length of the path (Plen) is still unknown and left to 0.

The router makes the resource reservation (if enough is
available) and creates a RAT entry. The path position field
(Ppos) is set to the current hop counter received in the RESV
message and the Age field is set to the current system time. If
resource availability is less than requested, the Rcurr field in the
outgoing message is set to the actual value (router R3 at step 3
in the example: Rcurr = 7). Of course, previous routers in the
path do not know yet that part of the reserved resources will
not be used due to subsequent bottleneck: they will release
them as soon as a keepalive message will be received.

Before increasing the hop counter and forwarding the
RESV message to the next hop, a Resource Reservation
Vector (RRV) entry is appended to the message, to save the
index (or the memory address) of the newly created RAT
entry. This index will return to the router in subsequent
keepalive messages and will be used to update the RAT entry
without the need of searching. Of course this approach makes
the RESV messages increase their length from sender to
receiver. This is limited to the RESV messages, only once for
each flow, and the maximum message length for a 128 hops
route (approximately the maximum length in IP, being half the
maximum Time To Live value) would be less than 600 bytes.
Anyhow, an alternative implementation for small fixed size
messages is possible at the cost of a single backward message
for each router traversed by the RESV message. This
implementation is based on an address swapping mechanism.

1 byte

PLEN

Path
Length

N x 3 or 4 bytes1 byte3 x 2 bytes12 bytes1 byte

HOPS
(N, -1 when reset)

Hop Counter /
Reset

Rreq, Rmin,
Rcurr

Resource

[RAT index] 1..N
(RAT: resource
allocation table)

IPs, Ps,
IPd, Pd

source to destination:
RESV, KPALV
UP_RESV, RL_RESV
destination to source:
RESV_ACK, PRL_ACK,
RESET

Resource Reservation
Vector (RRV)

Flow IDType

1 byte

PLEN

Path
Length

N x 3 or 4 bytes1 byte3 x 2 bytes12 bytes1 byte

HOPS
(N, -1 when reset)

Hop Counter /
Reset

Rreq, Rmin,
Rcurr

Resource

[RAT index] 1..N
(RAT: resource
allocation table)

IPs, Ps,
IPd, Pd

source to destination:
RESV, KPALV
UP_RESV, RL_RESV
destination to source:
RESV_ACK, PRL_ACK,
RESET

Resource Reservation
Vector (RRV)

Flow IDType

Figure 1. REBOOK message format.

2 bytes

IN, OUT

Local physical
ports

2 bytes

Rrel

Resource Release
Request

1 byte

PPOS

Path
Position

4 bytes2 bytes3 x 2 bytes12 bytes

Age

Age

Rreq, Rmin,
Rcurr

Resource

list_ptrIPs, Ps,
IPd, Pd

List
pointer

Flow ID

2 bytes

IN, OUT

Local physical
ports

2 bytes

Rrel

Resource Release
Request

1 byte

PPOS

Path
Position

4 bytes2 bytes3 x 2 bytes12 bytes

Age

Age

Rreq, Rmin,
Rcurr

Resource

list_ptrIPs, Ps,
IPd, Pd

List
pointer

Flow ID

Figure 2. Resource Allocation Table format.

26

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

When the RESV message is received by host B it is sent

back to host A in the form of a RESV_ACK message. At this
point both hosts know the maximum amount of resource
reserved along the path, the length of the route and the list of
indexes/memory addresses where the status information are
stored in the routers. Host A sends the first keepalive message
and will keep sending them periodically until the flow is
terminated.

C. Errors, faults and route changes
Handling a keepalive message in the routers consists in

three tasks. Thanks to the distributed recording of RAT
indexes, the complexity of keepalive messages handling is
constant regardless the number of active flows.

At first, an integrity check is performed, for security
reasons and to identify errors, faults or route changes. The
current hop counter in the KPALV message is checked, then it
is used to get the RRV entry containing the index or the
memory address of the flow entry in the router’s RAT. The
stored Flow ID and Path Position fields are compared with the
Flow ID and the hop counter in the message. If some changes
or faults occurred along the route, these values no longer
match and a new resource booking reset request is signaled by
setting the Hop Counter field to the reset value (-1) in the
message to be forwarded.

The second task while handling a keepalive message is to
partially release the allocated resources if greater than the
amount reached at the end of the path by the RESV message,
value now stored in the Rcurr field. This is the case of router R1
at time 6 in Figure 3. There is no need for an explicit booking

confirmation to the routers since keepalive messages will
always contain this information. Unnecessary booking will be
released sooner or later even if some keepalive message is
lost. Frequency of keepalive messages must be set according
to the required reaction time to unexpected events.

When a route change happens or a flow unexpectedly dies,
keepalive messages no longer update the Age field in the RAT
entry. Booked resources will be released thanks to a low-
priority process that scans the list of active RAT entries and
removes the expired ones.

D. Dynamic Resource Allocation
Sometimes a router may be required to allocate some

resources, but it might happen that not enough are left.
Nevertheless, it is possible that some flows have been
allocated more resources than the minimum requested. Here
comes the third task when handling keepalive messages: the
dynamic resource reallocation. When needed, some RAT
entries may be marked for resource release by setting the Rrel
field to a value less than Rcurr. When a keepalive message is
processed for those entries, the Rrel value is set in the Rreq field
of the message to be forwarded, so that the receiving host B
will notify the request by sending a partial release message
(PRL_ACK) to the transmitting host A. Host A will reduce the
corresponding activity and will put in subsequent keepalive
messages the new Rcurr value.

Two other message types complete the algorithm:
UP_RESV and RL_RESV. UP_RESV is sent from the
transmitting host to attempt a resource allocation upgrade for a
flow currently active. Their handling is similar to the one for
RESV messages. RL_RESV is used to release the allocated

1) {“RESV”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 8, PLEN = 0, HOPS = 1, RRV = NULL }

2) {“RESV”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 8, PLEN = 0, HOPS = 2, RRV = [ADDRR1] }

3) {“RESV”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 7, PLEN = 0, HOPS = 3, RRV = [ADDRR1, ADDRR2]}

4) {“RESV”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 7, PLEN = 0, HOPS = 4, RRV = [ADDRR1, ADDRR2 , ADDRR3]}

5) {“RESV_ACK”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 7, PLEN = 4, HOPS = 0, RRV = [ADDRR1, ADDRR2 , ADDRR3 , ADDRR4]}

6) {“KPALV”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 7, PLEN = 4, HOPS = 1, RRV = [ADDRR1, ADDRR2 , ADDRR3 , ADDRR4]}

7) {“KPALV”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 7, PLEN = 4, HOPS = 2, RRV = [ADDRR1, ADDRR2 , ADDRR3 , ADDRR4]}

8) {“KPALV”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 7, PLEN = 4, HOPS = 3, RRV = [ADDRR1, ADDRR2 , ADDRR3 , ADDRR4]}

9) {“KPALV”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 7, PLEN = 4, HOPS = 4, RRV = [ADDRR1, ADDRR2 , ADDRR3 , ADDRR4]}

A

R1

R2

R3

R4

B

1

6 3
2

7

8

9

5

4

IN,
OUT

Rrel = 8PPOS = 1 Age = T1Rreq = 8
Rmin = 4
Rcurr = 8

FLOWID IN,
OUT

Rrel = 8PPOS = 1 Age = T1Rreq = 8
Rmin = 4
Rcurr = 8

FLOWID

IN,
OUT

Rrel = 8PPOS = 2 Age = T2Rreq = 8
Rmin = 4
Rcurr = 7

FLOWID IN,
OUT

Rrel = 8PPOS = 2 Age = T2Rreq = 8
Rmin = 4
Rcurr = 7

FLOWID

RAT|R1,T=1

IN,
OUT

Rrel = 8PPOS = 1 Age = T6Rreq = 8
Rmin = 4
Rcurr = 7

FLOWID IN,
OUT

Rrel = 8PPOS = 1 Age = T6Rreq = 8
Rmin = 4
Rcurr = 7

FLOWID

RAT|R1,T=6

less resources than requested are available

RAT|R3,T=2

Figure 3. Resource Reservation.

27

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

resources under normal circumstances, that is, when the
transmitting host terminates the connection and explicitly
requires the resource release along the path.

E. Multicast
In order to support multicast flows, reservation and

keepalive messages must be replicated at the multicast tree
forks. Slightly different procedures in respect of the ones
described above shall be called when a received REBOOK
message is encapsulated in a network layer packet containing
a multicast destination address. Obviously, the REBOOK
engine must access (or receive) the multicast routing
information, but this happens only during the resource
reservation setup phase, as the output ports and other useful
information will be stored in the Multicast Resource
Allocation Table (MRAT) table. Unlike the RAT, in the
MRAT a multicast flow is represented by a linked list of
entries, each one related to a branch toward the destinations.
Some fields are common to all the linked entries and an
optimized implementation may collapse them into a single
record: Flow Id, Rreq, Rmin, Path Position, Age, IN. The
remaining fields are branch-dependent; in particular, keeping
apart the Rmin information allows each branch to reserve a
different amount of resource without affecting the other
branches. This is useful for multimedia flows featuring
progressive or scalable encoding, provided that the router is
able to forward the multicast packets according to the contents
and to the required speed on each branch. To keep up to date
the MRAT entries, in each router the keepalive messages are
replicated, partially rewritten and sent along each branch.

The easiest way to setup resource reservation in a multicast
environment is making each router at a multicast tree fork act
as both a source (toward the subsequent nodes) and a
destination (toward the preceding nodes) for REBOOK setup
messages. The reservation should be driven by a signaling
protocol, like RSVP [3] (next section will discuss the relations
between REBOOK and RSVP). This way, the reservation
request is receiver-initiated, as usual for multicast services,
and REBOOK may anticipate the pointers collection using a
backward pointers collection. When the first REBOOK packet
sent by the receiver of the data flow reaches the sender, it
contains the pointers referring to the traversed routers in
reverse order. Like in RSVP, the actual reservation starts in
the next step, when resource reservation messages are sent by
the sender of the data flow to the receiver(s).

Dynamic joining and removal of hosts to and from the
multicast services will be handled by the REBOOK agent
active in each router.

V. IMPLEMENTATION ISSUES
Designing a REBOOK implementation integrated in

industry-level routers requires choices depending on
economical and technical constraints coming from hardware
manufacturers and is therefore beyond the purpose of this
paper. However, some general considerations can be drawn.

A. Impact on switching architectures
REBOOK does not require any dedicated hardware

solution, even though it can be partially or fully implemented
in hardware. The REBOOK management engine is required to
handle reservation request/release and keepalive messages
only, whose rate is orders of magnitude slower than the data
traffic. The only mandatory constraint is the presence of an
ingress filter to identify REBOOK messages: they must be
delivered to the management process and are sent back to the
switching fabric for forwarding. Depending on the
architecture, this may require an additional internal buffer.

The switching architecture should not be affected by
REBOOK at all. The REBOOK engine will contain
parameters and rules stating the switch capabilities (port-to-
port bandwidth, buffers length, etc.) and will continuously
keep track of the amount of resources still available, in order
to acknowledge or not the reservation requests. If all the data
traffic was REBOOK compliant, resource would never be
overloaded (e.g., buffer overflow) and no data packet would
be lost, simply because the sender would not be allowed to
transmit (or would be allowed to talk slower). In the more
realistic scenario where only part of the traffic could be
REBOOK compliant, priority tags or Type of Service fields
could be used to identify REBOOK flows; packets belonging
to such flows can be handled by separated queues and buffers
to isolate them from the non-REBOOK traffic and to fulfil the
resource reservation for REBOOK traffic. It is worthwhile to
notice that REBOOK aims at reporting to the sender the
maximum transfer rate allowed along the path to the receiver;
as long as the sender respects this boundary, best-effort routers
provide a QoS-like service.

B. RSVP and other hosting protocols

REBOOK can be implemented as a standalone control
protocol and/or can be integrated in existing protocols, e.g.,
RSVP or TCP.

REBOOK can be used to improve RSVP by efficiently
handling its resource reservation requests and by providing a
deterministic tracking of the amount of reserved and available
resources. As discussed above, the main adjustment required
in respect of the algorithm described in Section IV is that the
pointers collection may start during the RSVP receiver-
initiated reservation request, instead of being activated by the
sender. However, reservation setup and final confirmation of
pre-allocated resource amounts are sender-driven: the sender
knows the data flow bandwidth constraints, and the
reservation messages are always processed in the same
direction, thus working with symmetrical and asymmetrical
routing as well.

To support multicast flows, REBOOK can work within
RSVP provided that in intermediate nodes of the distribution
tree the same RSVP process that merges reservation requests
for multicast flows manage the entries in the MRAT described
in Section IV.

Many multimedia streaming applications use TCP
connections to control UDP data flows. REBOOK can be

28

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

integrated in TCP packets thus drastically reducing the need of
additional packets for keepalive messages.

Anyhow, the easiest implementation is designing an ad hoc
protocol around the REBOOK messages. This is the way
followed for the experiments presented in the next section.

C. Deployment
We foresee several, non-exclusive ways to make REBOOK

available at the application layer. The first and the most
obvious one consists in including the REBOOK algorithm
within clients and servers software for QoS-critical
applications. It is quite easy to implement REBOOK as an
add-on for already existing applications and let it negotiate the
bandwidth required for the specific application. REBOOK
could be implemented as a browser plug-in embedded within
web pages of multimedia services. In this trail we are
following the development of a plug-in module for the
widespread multimedia application VLC.

An alternative that reduces the implementation effort is the
deployment of REBOOK-aware agents at the boundary
between each network and the Internet (Figure 4).

data

REBOOK

the Internet

Border device with an
embedded REBOOK agent

data

Figure 4. REBOOK agent at network edge.

Such agents will autonomously negotiate the required
bandwidth with outer REBOOK aware routers on the basis of
the traversed traffic, managing the QoS needs of the whole
network. An agent of this kind could be easily integrated
within firewalls that perform stateful packet inspection (some
examples can be found in the web site of the major producers
[22] [23] [24]). For a stateful firewall already keeping track of
each traversed flow it is straightforward to handle REBOOK
messages. Moreover, agents could be installed within
boundary routers too, especially if they are software routers. A
natural extension of this approach is the integration of
REBOOK agents within border routers and traffic shaping
appliances. In fact, flows that require resource reservation are
typically characterized by an almost constant bit rate and thus
they are easily identifiable and manageable by automatic
resource reservation. This can be applicable even for networks
invested by billions of flows per second thanks to the many
algorithms for elephant flow identification present in literature
[25] [26] [27]. This way the traffic shaping router will became
an integrated bandwidth manager for the network; it is
responsible of classifying flows, automatically issuing
reservation requests only for flows that really need it, assuring
fairness in bandwidth sharing and finally assuring that flows
will not exceed the bandwidth reserved to each of them.

Moreover, it is worthwhile to notice that REBOOK agents
would prevent possible Denial-of-Service attacks based on
REBOOK messages, as no reservation request could be
accepted if coming directly from end nodes.

A key feature of the REBOOK algorithm is that REBOOK-
aware devices and hosts may be deployed progressively.
Obviously, it is impossible to deploy REBOOK or any other
new protocol at the same moment throughout the entire
Internet. Indeed, REBOOK might never be deployed
everywhere. However, since REBOOK does not interfere with
routing, unaware routers are transparently traversed by
REBOOK messages. Only REBOOK-aware nodes handle the
messages as described and guarantee the resource reservation.
Nevertheless, as will be discussed below, REBOOK may
improve network performances even in partially deployed
networks.

Intermediate clouds that do not support REBOOK are not
capable of performing resource reservations, so strict service
guarantee cannot be made. However, if such clouds have
sufficient excess capacity, they can provide acceptable and
useful real-time services. The problem is now shifted to
estimation of the service provided by that cloud. Depending
on the real framework, this problem has different solutions
(Figure 5).

A

B

C

Cloudwith SLA

Cloudwithout SLA

data + REBOOK

data + REBOOK

Capacity and Bandwidth
estimation alg.

Figure 5. REBOOK and SLA support.

In the first case (A-B) the owner of the REBOOK-aware
network uses the cloud to perform tunneling and has some
kind of SLA with the owner of the cloud. The straightforward
solution is to assign to each flow routed through the cloud a
reservation compatible with that SLA. If there is no agreement
between the owners (case A-C), the resource reservation
control may be driven by the end systems (that monitor the
data flow) instead of intermediate systems (that should
communicate the available resource amounts). Non-
REBOOK-aware nodes traversed by a data flow may drop
packets if congested; the packet loss or keepalive messages
missing rate may be monitored by the receiver; when these

29

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

events overcome a predefined threshold, PRL_ACK
REBOOK messages may be generated by the receiver itself in
order to reduce the reserved bandwidth and, therefore, the
maximum sender’s transmission rate. In extremely congested
situations, when entire sequences of keepalive messages are
missing, the reservation (and the flow) may be dropped.
However, more complex strategies can be adopted: REBOOK-
aware routers that communicate through a non-REBOOK
cloud could monitor the state of the route traversing the cloud
by means of one of the many bandwidth or capacity estimation
algorithms (e.g., [28][29][30]) and consequently make an
estimation of the resource amount available for reservation.

Additionally, it is worth noting that even if a complete
Internet coverage is not possible, whole REBOOK-aware
networks are absolutely plausible. In fact, multi-content
providers that supply a wide range of services like IP
television, Internet access and telephony are becoming
popular. These providers usually manage entire networks with
the need for QoS guarantees for their services. Such closed,
single-owner networks could easily deploy REBOOK-aware
devices.

Another situation that is gaining importance nowadays is
the QoS management within overlay-networks. There is an
increasing interest in their use to deliver multimedia content
like video on demand, video telephony and so on. Integrating
REBOOK in them is easier than interfacing a real router since
these architectures are software-based and run on general-
purpose servers.

D. Security
Cooperation between intermediate systems and end systems

requires trust. Just like the TCP congestion-control
mechanism, REBOOK works as soon as all the participating
nodes behave as expected. As described at the beginning of
Section IV, there is no advantage for an unfaithful node that
stores or communicates invalid pointers. However, a security
issue may come from DoS (Denial of Service) attacks, in two
directions: invalid pointers and over-reservation requests.

REBOOK provide an intrinsic robust solution to the invalid
pointers problem. The consistency check prevents the use of
invalid information, but a key feature of REBOOK is that each
pointer is never used by agents other than the router that stored
it in a previous phase of the algorithm: pointers are not
communicated to others, but only stored in a distributed data
structure. Therefore, they can be encrypted and signed with
symmetrical cryptography, without the need of key exchange.

The over-reservation problem may come from tampered
software in end nodes. But the sender-driven reservation
model makes the server and the service provider, and not the
end user, responsible for correct reservation. Moreover,
several possible applications are related to specific highly
controlled environment such as video-on-demand distribution,
where the end nodes are proprietary set-top boxes or web
browsers plug-in. Lastly, nodes and REBOOK applications
may be required to authenticate before starting the reservation,
using some of the existing protocols and data encryption
mechanisms already available.

More detailed studies will be required after the applications
have been designed, but this is beyond the scope of this paper.

E. Software architecture
The REBOOK engine has been fully implemented. For the

experiments, a standalone connectionless UDP-based
signaling protocol has been designed and used to exchange
REBOOK messages.

REBOOK implementation consists in three portable
modules written in C language: router, sender and receiver.
Each module, or a combination of two or all of them, can be
attached to software router kernels, server programs and client
applications. Thanks to several preprocessor directives a
Dynamic Link Library or a linkable object code can be
produced; moreover, a pure C single agent or multiple
instances of C++ classes can be generated, allowing the same
to be included in real routers and in simulators as well.

Figures 6, 7 and 8 show the interactions between the
REBOOK modules and the host and router software.

handle REBOOK message

get currently available resource

notify available resource increase

notify available resource reduction

send rebook message

ROUTER REBOOK ENGINE

Figure 6. Router module software interface.

reservation request

reservation upgrade request

reservation removal request

handle rebook message

notify reservation ACK

notify reduction ACK

notify reset

send rebook message

SENDER REBOOK ENGINE

Figure 7. Sender module software interface.

handle rebook message

send rebook message

RECEIVER REBOOK ENGINE

Figure 8. Receiver module software interface.

30

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. EXPERIMENTAL RESULTS
Several experiments have been designed and run to

demonstrate the REBOOK robustness, performance and
scalability in a real distributed environment. In order to make
the experimental framework as close as possible to real,
complex and possibly overloaded networks, a router emulation
environment has been developed, allowing us to use computer
lab Personal Computers as routers. This way, we could
emulate a network with several routers actually running
asynchronously, where packets can be really dropped and
route changes happen asynchronously as well.

Five kinds of nodes have been developed.
Sender host: it can transmit several UDP flows towards one

or more destinations; for each flow REBOOK control packets
are handled to book resources along the path, and the flow
transmission packet rate is modulated according with the
granted bandwidth.

Receiver host: it receives and handle REBOOK messages as
described in previous sections. Data packets contain a counter
used by the receiver for signaling when packets are lost.

REBOOK-aware router: it is the key module, running the
resource booking procedures. A periodically activated thread

performs the RAT “cleanup” procedure, i.e., removes the
entries expired due to repeated missing keepalive messages.
Each router is assigned a maximum capacity (total number of
packets per second that can be forwarded). If the traffic
exceeds this value in a given time window, packets are
dropped (both data packets and REBOOK messages, of
course).

REBOOK-unaware router: REBOOK has been tested even
in mixed environments where only some routers are
REBOOK-aware. This kind of router treats REBOOK
messages as normal data packets and drops packets exceeding
its capacity.

Routing Control Center: this is the module that sends the
routing tables to the routers. Each routing table update is
acknowledge by the router and becomes immediately
operative. Therefore, during route changes rules can become
temporarily incoherent and packet routing errors are possible.

Figure 9 shows a 7-routers network where 40 data flows are

exchanged between 4 sender-receiver pairs. Before and after
the route change the network capacity is large enough to
accept all the flows at full speed. When the link between
routers 2 and 6 is dropped, flows from senders 1 and 7 start

0

50

100

150

200

250

300

0

2

4

6

8

10

12 T1: route changeT1: route change T2: route changeT2: route change

number of booked flows
per sender node

total packet rate per sender

δ

Rtr1 Rtr2 Rtr3 Rtr4 Rtr5 Rtr6 Rtr7

Snd1

Rcv1

Snd7

Rcv7Rcv3 Rcv5

Snd3 Snd5

Rtr1 Rtr2 Rtr3 Rtr4 Rtr5 Rtr6 Rtr7

Snd1

Rcv1

Snd7

Rcv7Rcv3 Rcv5

Snd3 Snd5

γ

this link is down between T1 and T2

650 650 650 650 650 650 650

ε

10 flows, Rmin=15 Rreq=25

Figure 9. Congestion prevention during route change

31

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

competing for bandwidth in routers 3, 4 and 5. It is interesting
to notice that the flows Snd3-Rcv5 and Snd5-Rcv3 are not
affected by the route change and their booking is maintained
(γ). Instead, flows Snd1-Rcv7 and Snd7-Rcv1 are dropped and
when the senders start sending new reservation requests the
routers signal to the already active senders the need of partial
resource release. As soon as this happens (δ), new flows can
be accepted and the system finds a new stability (ε). When the
link between routers 2 and 6 is restored new reservations are
made for flows Snd1-Rcv7 and Snd7-Rcv1 obtaining
permission to send at full speed again.

Figure 10 shows the result of an experiment that

demonstrates how REBOOK can be useful even in partially
REBOOK-aware networks to limit the packet loss by
controlling the sender’s transmission rate on the basis of the
packet loss rate measured at the receiver side.

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Figure 10. Packets drop control in partially REBOOK-unaware network

In the experiment, one router along the path does not
support REBOOK and, in addition, it is a bottleneck due to
insufficient capacity in respect of the number of active flows.
The REBOOK-unaware router is transparent to REBOOK
messages (the hop counter field in keepalive messages is
updated by REBOOK-aware routers only). Keepalive
messages and data packets are monitored by the receiver;
when the number of lost packets exceeds a given threshold,
the receiver autonomously generates a PR_ACK message to
the sender, just like when a resource release request comes
from a router. The graph of Figure 9 reports the number of
dropped packet in the REBOOK-unaware router. Periodically,
the sender attempts to increase the resource reservation,
REBOOK-aware routers acknowledge the requests, the
REBOOK-unaware router restarts dropping packets and the
receiver asks the sender to reduce the transmission rate again.

Since REBOOK requires control messages in addition to
data packets, a possible issue regards the traffic overhead. The
experiments showed an increase in traffic load less than 1.8%
with neglectable keepalive messages processing time. More
precisely, on the congested network of Figure 9 we measured
an increase of 5% for the seven routers total CPU time in the
REBOOK-enabled run. However, since about 15% of the
packets have been lost during the run without REBOOK, the
average CPU time per delivered packet has been indeed
reduced by 9%.

Routers must periodically remove obsolete entries in the

RAT to free resources belonging to rerouted or dead flows. In
our implementation the RAT is an array whose used and
unused elements are linked in two list. To measure the actual

management cost the RAT has been populated with
10.000.000 entries representing data flows with expiration
times randomly distributed over 100 cleanup process
scheduled activations. On a Pentium 4, 2.80 GHz, 512 MB
RAM computer running Windows XP each cleanup run
required, in average, approximately 100 ms CPU time.

VII. CONCLUSION AND FUTURE WORK
This paper presented an innovative algorithm for robust and

deterministic resource reservation, based on a Distributed
Linked Data Structure that provides direct access to flow
information within the routers. This makes the algoritm
computational cost constant, regardless the number of active
flows.

Several options are available to implement the algorithm.
REBOOK has been fully implemented as a standalone
protocol in a software-based router emulator and has been
extensively tested on heavily loaded networks with
dynamically changing topologies. It demonstrated to be
scalable and robust.

Many research directions can bee foreseen starting from
REBOOK: investigating the integration in existing protocols,
with special focus on multicast-oriented protocols and
applications; REBOOK engine hardware implementation for
high performance routers; REBOOK-aware firewalls, proxy
servers and traffic shaping routers design; fair resource release
request strategy within REBOOK-aware routers; extension to
other fields like High Performance Computing (HPC) and
Wireless Sensor Networks (WSN).

REFERENCES
[1] P. L. Montessoro, D. De Caneva, “A Distributed Algorithm for Efficient

and Scalable Resource Booking Management,” Proceedings of CTRQ
2010 Third International Conference on Communication Theory,
Reliability, and Quality of Service, June 13-19, 2010 - Athens/Glyfada
(Greece), pp. 128-134

[2] S. Floyd and K. Fall, “Promoting the Use of End-to-End Congestion
Control in the Internet,” IEEE/ACM Trans. on Networking, vol. 7, no. 4,
pp. 458-472, August 1999.

[3] Cui-Qing Yang and Alapati V. S. Reddy, “A Taxonomy for Congestion
Control Algorithms in Packet Switching Networks,” IEEE Network
Magazine, Vol. 9, Number 5, July/August 1995.

[4] L. Zhang, S. Deering, D. Estrin, S. Shenker and D. Zappala, “RSVP: A
new resource ReSerVation Protocol,” IEEE Network, vol. 7, no. 5, pp.
8-18, September 1993.

[5] L. Mathy, D. Hutchison, S. Schmid and G. Coulson, “Improving RSVP
for Better Support of Internet Multimedia Communications,”
Proceedings of ICMS’99, Florence, Italy, June 9-11, 1999. IEEE press,
pp 102-106.

[6] W. Almesberger, S. Giordano, R. Mameli, S. Salsano and F. Salvatore,
“Combining IntServ and DiffServ under Linux,” Public file.

[7] S. Sohail and S. Jha, “The Survey of Bandwidth Broker,” Technical
Report UNSW CSE TR 0206, School of Computer Science and
Engineering, University of New South Wales, Sydney 2052, Australia,
May 2002.

[8] Z. Zhang, Z. Duan and Y. Hou, “On Scalable Design of Bandwidth
Brokers,” IEICE Trans. Communications, Vol. E84-B, No.8 August
2001.

[9] D. Katabi, M. Handley and C. Rohrs, “Congestion Control for High
Bandwidth Delay Product Networks,” SIGCOMM’02. Pittsburgh,
Pennsylvania, USA. August 19-23, 2002.

[10] Yong Xia, L. Subramanian and S. Kalynaraman, “One more bit is
enough,” SIGCOMM’05. Philadelphia, Pennsylvania, USA. August 22-
26, 2005.

32

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[11] Ping Ji; Zihui Ge, J. Kurose and D. Towsley, “A Comparison of Hard-
State and Soft-State Signaling Protocols,” Networking, IEEE/ACM
Transactions on , vol.15, no.2, pp.281-294, April 2007

[12] F. Kuhns, J. Turner and S. Norden, “Lightweight Flow Setup for
Wirespeed Resource Reservatio,” Proceedings of the Allerton
Conference on Communication, Control and Computing, 2003.

[13] Ping Pan and H. Schulzrinne, “YESSIR: A Simple Reservation
Mechanism for the Internet,” Communication review, vol. 29, no. 2,
April 1999.

[14] F. Kuhns, J. Turner and S. Norden, “Lightweight Flow Setup for
Wirespeed Resource Reservation,” Proceeding of the Allerton
Conference Communication, Control and Computing, 2003.

[15] I. Minei, “MPLS DiffServ-aware Traffic Engineering,” Juniper
Networks, 2004, White Paper

[16] V. Sharma et al., “Framework for Multi-Protocol Label Switching
(MPLS)-based recovery,” RFC 3469, 2003

[17] F. Rafique Dogar, Z. Uzmi and S. Baqai, “CAIP: A Restoration Routing
Architecture for DiffServ Aware MPLS Traffic Engineering,” 5th
Workshop on Design of Reliable Communication Networks
(DRCN), pp 55-60, 2005.

[18] T. Anjali, C. Scoglio, J. de Oliveira, I. Akyildiz and G. Uhl, “Optimal
Policy for LSP Setup in MPLS Networks,” Computer Networks, vol. 39,
no. 2, pp. 165–183, June 2002.

[19] B.A. Movsichoff, C.M. Lagoa and Hao Che, “End-to-End Optimal
Algorithms for Integrated QoS, Traffic Engineering, and Failure
Recovery,” IEEE/ACM Transactions on Networking, vol.15, no.4,
pp.813-823, August 2007

[20] A. Kvalbein, A.F. Hansen, T. Cicic, S. Gjessing and O. Lysne, “Fast IP
Network Recovery Using Multiple Routing Configurations,” INFOCOM
2006. 25th IEEE International Conference on Computer
Communications. Proceedings , vol., no., pp.1-11, April 2006

[21] R.S. Bhatia, M. Kodialam, T.V. Lakshman and S. Sengupta, “Bandwidth
Guaranteed Routing With Fast Restoration Against Link and Node
Failures,” Networking, IEEE/ACM Transactions on , vol.16, no.6,
pp.1321-1330, Dec. 2008

[22] Juniper Networks web site, www.juniper.net, 2010.
[23] Cisco Systems web site, www.cisco.com, 2010.
[24] HP networking products and solutions web site,

http://h17007.www1.hp.com/us/en/, 2010.
[25] K. Psounis, A. Ghosh, B. Prabhakar, and G. Wang. „SIFT: a Simple

Algorithm for Trucking Elephant Flows and Taking Advantage of Power
Laws,” Proceedings of the 43rd Allerton Conference on
Communication, Control, and Computing, Urbana-Champain, Illinois,
USA, September 2005

[26] C. Guang, G. Jian, “Online identifying elephant flows through a scalable
non-uniform sampling algorithm”, Proceedings of ICCT 2008. 11th
IEEE International Conference on Communication Technology, 10-12
Nov. 2008.

[27] M. Zadnik, M. Canini, A. W. Moore, D. J. Miller, W. Li, “Tracking
Elephant Flows in Internet Backbone Traffic with an FPGA-based
Cache,” Proceedings of the 19th International Conference on Field
Programmable Logic and Applications, Prague 2009.

[1] [28] V J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil, L. Cottrell
“pathChirp: Efficient Available Bandwidth Estimation for Network
Paths,” Proc. Passive and Active Measurement Conference, La Jolla,
CA, Apr. 2003

[29] S. Suthaharan, S. Kumar, “Measuring Available Bandwidth: pathChirp's
Chirp Train Structure Remodeled,” Telecommunication Networks and
Applications Conference, 2008. ATNAC 2008. Australasian, 7-10 Dec.
2008.

[30] R. Prasad, C. Dovrolis, M. Murray, K. Claffy, “Bandwidth estimation:
metrics, measurement techniques, and tools,” Network, IEEE , vol.17,
no.6, pp. 27-35, Nov.-Dec. 2003.

33

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

