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Abstract— This paper presents REBOOK, a resource reservation 
management algorithm for packet switching network. It provides 
deterministic, fast (real-time) dynamic resource allocation and 
release; it can be used as an engine supporting different network-
oriented techniques for Quality of Service. Based on a stateful 
approach, it handles faults and network errors, and recovers 
from route changes and unexpected flows shutdown. The 
distributed scheme used to store flows information avoids the 
need of searching for entries within the routers’ control memory 
when packets are received and guarantees constant complexity. 
REBOOK can be implemented in hardware and is compatible 
with any packet switching network. In the Internet, it can be 
integrated in TCP or used with UDP to make it network friendly. 
Moreover, a slightly extended RSVP implementation can be used 
as signaling and hosting protocol. A software implementation as 
standalone protocol has been developed to prove its effectiveness, 
robustness, and performances. 

Keywords- Quality of Service; network reliability; fast resource 
reservation; transmission rate control. 

I. INTRODUCTION 
The number of multimedia services on the Internet is 

rapidly growing, and the importance of Quality of Service 
(QoS) is increasing. A major problem in providing QoS 
guarantees in a packet switching network comes from the 
difficulty of handling, in routers, the state information 
belonging to active flows. In the core of the Internet, the 
conventional known techniques simply fail in keeping up-to-
date the huge amount of flows information at a reasonable 
cost. This paper proposes a new technique that, involving end 
nodes’ applications or edge routers or firewalls, provides 
constant-cost access to resource reservation information.  

Quite often multimedia applications’ designers prefer UDP 
as transport protocol because its efficiency, although those 
applications generally require high bandwidth and would 
benefit from congestion control mechanisms. Several methods 
have been introduced for adding QoS control mechanisms to 
packet switching networks, mainly based on adapting the 
sender’s transmission rate in accordance with the network 
congestion state (see Section II), but typically with such 
approaches no QoS guarantees can be made effectively. 

The proposed algorithm, that we call REBOOK [1], allows 
a control protocol to prevent congestion by reserving 
resources in advance. REBOOK is not dependant on TCP/IP 

protocols, as it can be used in any other packet switching 
network. Obviously, in the following the Internet and the 
TCP/IP protocol suite will be used as reference environment 
for its description. 

REBOOK requires a hosting protocol to carry the 
algorithm’s messages. They can be handled by a dedicated 
signaling protocol, like RSVP [3] or a new ad hoc protocol, or 
it can be embedded in a data transport protocol, like TCP 
using the options field.  

In REBOOK, the node requested to send QoS-sensitive data 
(e.g., the sender of a multimedia stream) is responsible for 
resource reservation request, on the bases of the amount and 
type of data to be transmitted, application constraints and, 
possibly, SLA (Service Level Agreement) parameters. While 
the connection is active the amount of granted resources may 
be reduced to allow the activation of new flows in an almost-
congested network or may be increased if switching nodes 
become less loaded. These events are acknowledged by the 
sender that will consequently adapt its transmission rate. 
RSVP is receiver-oriented mainly because it is designed to 
support singlecast and multicast flows as well. A possible 
implementation of REBOOK in RSVP for multicast support 
has been designed. 

The proposed algorithm does not rely on any special 
network feature: it works even if only part of the network is 
REBOOK-aware; the resource reservation is effective even if 
part of a flow traverses unaware routers. There are no special 
requirements to routing, that can be asymmetrical 
(transmitting and receiving flows can follow different paths), 
except, obviously, its stability: in normal conditions data 
packets and control messages must follow the same route for 
the duration of the connection. 

REBOOK does not rely on special hardware in routers 
either. Its status storage scheme allows direct access to table 
entries, without any hardware lookup feature, using 
conventional memory architecture. This makes its 
implementation faster and cheaper than today’s typical 
solutions provided by hardware hashing. 

Finally, REBOOK does not require any improvement in the 
switching fabric. No additional memory for queues and 
buffers nor different packet handling. On the contrary, the 
router architecture will drive the resource granting phase, 
depending on available resources left by previous reservations. 
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In the following, after a summary of related work in Section 
II, Section III discusses the scalability of the proposed stateful 
approach, whereas Section IV presents the algorithm itself. 
Section V and VI analyze implementation issues and 
experimental results, respectively. In Section VII, some 
conclusions are drawn and the future work is presented. 

II. RELATED WORK 
Congestion control in IP networks is a challenging issue, 

since it represents a critical factor for the robustness of the 
Internet [2]. Reservation of resources, admission control and 
traffic policing are among the most commonly used open-loop 
mechanisms to avoid congestion. On the other hand, closed-
loop mechanisms rely on feedback to detect and prevent 
congestion [3]. 

A. Resource reservation and management 
The IntServ architecture is an interesting implementation, 

because it uses RSVP [4] to reserve the resources required by 
the QoS-sensitive user’s applications. Nevertheless, 
experience with real networks has revealed severe scalability 
problems of this architecture, due to the amount of routing and 
reservation information stored inside the routers.  

Furthermore, RSVP implements a soft state model and uses 
periodic refresh control messages to manage its states, that 
introduces signaling overhead [5]. 

On the other side, the approach proposed by DiffServ is 
based on flow aggregates: it allows an efficient 
implementation inside the network. On the other hand, it 
conserves a statistical approach to resource provisioning and 
thus it does not provide any real service guarantee to any 
possible flow [6]. Enhancements to DiffServ may come from 
the Bandwidth Broker (BB) [7][8].  

Cross-layer congestion control in IP networks has been 
addressed by XCP [9] that proposes a protocol-oriented model 
that puts the control state in the packets and not in the routers, 
with the objective of improving the scalability. Unfortunately, 
such schemes are hard to deploy in today’s Internet [10]. 

Recent studies have also demonstrated that soft-state 
approaches coupled with explicit removal substantially 
improves the degree of state consistency while introducing 
little additional signaling message overhead [11]. This is the 
direction followed to design REBOOK.  

B. Efficiency and path recovery  
Resource reservation in packet networks is widely 

recognized as an essential requirement for applications, which 
require guaranteed minimum bandwidth, low delay, or both 
[12]; several fast resource reservation protocols are thus being 
studied and developed. 

In order to increase RSVP efficiency, REDO RSVP [4] 
proposed a refresh mechanism made per aggregation instead 
of per flow, improving RSVP scalability by reducing the 
granularity of signaling information. 

The YESSIR [13] and the LFS [14] protocols attempt to 
avoid complexity of RSVP by limiting its objectives and 
fulfilling bandwidth reservation for one-way, unicast flows. 

MPLS with Traffic Engineering sets up label-switched 
paths (LSPs) along links with available resources: thus, 
ensuring that bandwidth is always available for a particular 
flow and avoiding congestion both in the steady state and in 
failure scenarios. The paradigm is that MPLS can easily 
address prioritized and/or guaranteed traffic along an arbitrary 
path, which can be independent from the underlying routing 
protocol. This would allow enhancing network utilization and 
fairness [15][16].  

Interesting works on path selection algorithms are shown in 
literature [17][18][19], giving also some interesting solutions 
to failure recovery and QoS-aware fast rerouting procedures 
[19][20]. Nevertheless, the optimal resource allocation on all 
links and nodes along a reserved path when a topology change 
occurs is a common challenge, which relies on the trade-off 
between scalability and overall efficiency in resource 
management. 

REBOOK is based on a Distributed Linked Data Structure 
(DLDS). DLDS are linked data structures that keep pointers to 
memory locations or indexes to table entries containing 
information stored in the routers that are very likely to be 
accessed in the future. When a packet whose handling requires 
access to that information is received, the DLDS pointer/index 
can be found in the packet itself and lookup procedures can be 
avoided. DLDS are distributed data structures since each 
pointer/index is not stored within the router it addresses, but in 
the end nodes, in the packets, and possibly in adjacent routers. 
DLDS are dynamic, since the collection of pointers/indexes is 
dynamically built and travels along the routes between the end 
nodes. To keep the pointers consistent in a dynamic 
environment, where route changes may send packets 
containing a pointer/index belonging to a router different by 
the one being traversed, a specific integrity check is adopted. 
Thanks to DLDS, REBOOK can improve many known 
techniques because it provides an efficient way to handle 
reservation information within the network nodes regardless 
the actual strategy to assign resources to the flows. 

III. SCALABILITY 
One widely accepted paradigm in networking is that packet 

switching is a scalable technique because it does not keep 
information for each connection (flow) traversing a node. 
Stateful approaches, in which some information are kept up to 
date for each connection in every router along the path, are not 
generally believed to be scalable enough to handle the 
increasing traffic on the Internet.  

However, memory is no longer a limitation with today’s 
technology. Provided that a tuple describing the status of a 
flow should contain network and transport layer addresses, 
some fields about the allocated resources and some control 
fields, we can roughly estimate a memory occupation of about 
50 bytes per active flow, even for 128-bits IPv6 network 
addresses. In a conventional 4 GB memory the router could 
store information belonging to almost 86 million flows.  

The open problem is the excessive computation time needed 
to handle the state information. As shown in the following, 
REBOOK solves this problem with a distributed status storage 
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scheme that keeps track of memory addresses in routers and 
allows direct access to the stored information, well avoiding 
the need of searching data continuously. 

IV. THE ALGORITHM 
The REBOOK algorithm allows resource booking/release 

on a packet network. It is based on several key concepts: 
1) a distributed scheme for storing the resource reservation 

status 
2) each router keeps a very limited amount of information 

for each flow requiring resources (as shown above, 
REBOOK can handle millions of flows in very high speed 
nodes) 

3) a distributed scheme for keeping track of memory 
addresses (pointers) overcomes the need for searching the 
resource allocation tables 

4) “keepalive” messages periodically signal the persistence 
of each flow along the path; the routers use this signaling 
to recover from route changes, uncommitted flow 
shutdowns, hosts or nodes faults, loss of REBOOK 
messages 

5) the order of nodes traversed by a flow is kept in a 
distributed form and used to discover route changes. 

 
REBOOK provides a unidirectional resource reservation, in 

the sense that to reserve resources in both direction of a flow 
two instances of the algorithm should be activated, even 
though some setup and shutdown messages can be glued 
together. REBOOK, in fact, can be easily integrated in 
existing transport or application layer protocols to merge end-
to-end session setup and hop-by-hop resource reservation. 

REBOOK works as follows: when a flow requires resource 
reservation, the host (or a border router that controls the QoS 
parameters for flows accessing the network) sends to the 
receiver (host or border router) a reservation request message 
that is normally routed along the path. Each node keeps track 
of the request and reserves the requested resource or the 
amount still available (if less than requested). Reduction in the 
allocated resources is written in the resource reservation 
request message while it traverses the router. The receiving 
end system sends back to the sender a resource reservation 
acknowledge notifying the current amount reserved. From that 
point on, periodical keepalive messages are sent to confirm the 
activity of the flow and to notify the routers along the path the 
current amount reserved. If the amount reserved by a router 
was subsequently reduced by the next ones along the path, 
from keepalive messages it will know how much can be 
released. Keepalive messages are also used to notify a booking 
reduction request from a overloaded router.  

So far, REBOOK appears quite straightforward. The 
problem is that in the real world flows can suddenly disappear 
(due to host or router faults) or change way (dynamic routing). 
It is mandatory the quick identification and release of all the 
allocated resources that are no longer used. Even the smallest 
fraction of “lost” resources would produce catastrophic effects 
when cumulated over the days, months or even years long 
routers uptime. This requires continuous update of the 

resource allocation tables in routers, a task that so far has been 
believed to be too expensive, requiring special hardware 
architectures (e.g., Content Addressable Memories, hardware 
hash tables) or high computing power. The REBOOK’s 
distributed status storage scheme overcomes these limitations 
with a pure software solution. 

In order to make the resource reservation, the end node 
must communicate to the network the minimum amount of 
resources needed for the application to work and the 
maximum amount that can actually be used. How an 
application could know this information? And, more 
important, why an end node should not attempt to reserve 
much more than what it needs? There are several reasons, 
some general and others related to specific environments. The 
self-regulation of the end node is not new: the very basic TCP 
congestion control drastically reduces the transmission rate 
after a packet loss. Nodes share the resources trying not to 
overload the network. In the same way a multimedia 
application, on the basis of encoding and compression 
information, knows the peak transmission rate and the 
minimum bandwidth required to play the stream without 
interruptions. The reasons because a node should not 
overestimate its requirements depend on the environment. The 
most obvious case is a controlled environment where nodes 
are set-top box or computers with specific accounting and 
descrambling hardware for pay-per-view web TV distribution 
or similar multimedia services. A more general scenario is 
provided by ISPs that implement traffic shaping to limit high-
speed peer-to-peer download; self-reducing bandwidth 
requests would avoid generalized slow-down of the user 
access and, on heavily loaded networks, connection refusal 
due to excessive resource reservation. In the future, speed-
based accounting could become quite common; reducing the 
required bandwidth for non-real-time applications could help 
reducing access costs.  

A. Rebook Messages and Data Structures 
Figure 1 represents the REBOOK message fields. In order 

to compute the message size, IPv4 address format has been 
considered. Please note that for some message types 
(“RESET”, for instance), not all the fields are needed, but in 
the following we will ignore this possible optimization.  

 
A RESV message is used to start resource booking. The 

flow identification field is made of the tuple { source IP, 
source PORT, destination IP, destination PORT } and 
uniquely identifies a TCP or UDP flow. The resource 
reservation request is expressed by the Resource field, 
containing the minimum amount of resource needed by the 
flow to support the application and the maximum amount of 
resource that it can really use. Rcurr is the actual resource 
available and reserved along the path; this value is reduced by 
the traversed router if the available resource is less than the 
maximum required. The remaining fields belong to the direct 
table access and fault recovery algorithms, and will be 
discussed later. 

The reservation request carried by the RESV message is 
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acknowledged by a RESV_ACK message, from receiver to 
sender. The KPALV type is used to identify the keepalive 
messages, from sender to receiver, while UP_RESV, 
RL_RESV, PRL_ACK are used to dynamically change the 
amount of allocated resources. The RESET message type 
signals that a flow’s resource booking is no longer valid due to 
an unexpected event along the path.  

Each time a new flow requires resource booking, the router 
creates a new Resource Allocation Table (RAT) entry. Its 
format is fixed, 29-bytes wide (IPv4, 53 bytes in IPv6), as 
shown in Figure 2. 

The new entry is created from a free list using the List 
pointer field. The RAT entry stores the Flow ID field, the 
amount of requested and currently allocated resource and the 
system time (the Age field), used to identify reservations 
hanging due to faults or network errors. The two fields IN and 
OUT are router’s implementation-dependent, and can be 
substituted by the actual internal information the router needs 
to handle the resources release when the flow terminates. 

The field Path Position is the key that makes REBOOK 
robust at a very minimum cost and will be discussed in next 
Section.  

The field Rrel allows a partial resource release when the 
router needs to free resources to make room for new flows. 

B. Resource Reservation Algorithm 
Figure 3 represents a simple network in which host A must 

reserve a resource along the route to host B.  
At the very beginning, host A sends a RESV message to the 

receiving host B requesting Rreq resource (8 for instance) and 
stating that Rmin (4 in the example) is the minimum acceptable. 

The Rcurr field is initialized to Rreq. The packet is travelling 
along the first hop, so the Hop Counter field is set to 1. The 
total length of the path (Plen) is still unknown and left to 0. 

The router makes the resource reservation (if enough is 
available) and creates a RAT entry. The path position field 
(Ppos) is set to the current hop counter received in the RESV 
message and the Age field is set to the current system time. If 
resource availability is less than requested, the Rcurr field in the 
outgoing message is set to the actual value (router R3 at step 3 
in the example: Rcurr = 7). Of course, previous routers in the 
path do not know yet that part of the reserved resources will 
not be used due to subsequent bottleneck:  they will release 
them as soon as a keepalive message will be received. 

Before increasing the hop counter and forwarding the 
RESV message to the next hop, a Resource Reservation 
Vector (RRV) entry is appended to the message, to save the 
index (or the memory address) of the newly created RAT 
entry. This index will return to the router in subsequent 
keepalive messages and will be used to update the RAT entry 
without the need of searching. Of course this approach makes 
the RESV messages increase their length from sender to 
receiver. This is limited to the RESV messages, only once for 
each flow, and the maximum message length for a 128 hops 
route (approximately the maximum length in IP, being half the 
maximum Time To Live value) would be less than 600 bytes. 
Anyhow, an alternative implementation for small fixed size 
messages is possible at the cost of a single backward message 
for each router traversed by the RESV message. This 
implementation is based on an address swapping mechanism. 

1 byte

PLEN

Path 
Length

N x 3 or 4 bytes1 byte3 x 2 bytes12 bytes1 byte

HOPS
(N, -1 when reset)

Hop Counter / 
Reset

Rreq, Rmin, 
Rcurr

Resource

[ RAT index ] 1..N
(RAT: resource 
allocation table)

IPs, Ps, 
IPd, Pd

source to destination:
RESV, KPALV
UP_RESV, RL_RESV
destination to source:
RESV_ACK, PRL_ACK, 
RESET

Resource Reservation 
Vector (RRV)

Flow IDType

1 byte

PLEN

Path 
Length

N x 3 or 4 bytes1 byte3 x 2 bytes12 bytes1 byte

HOPS
(N, -1 when reset)

Hop Counter / 
Reset

Rreq, Rmin, 
Rcurr

Resource

[ RAT index ] 1..N
(RAT: resource 
allocation table)

IPs, Ps, 
IPd, Pd

source to destination:
RESV, KPALV
UP_RESV, RL_RESV
destination to source:
RESV_ACK, PRL_ACK, 
RESET

Resource Reservation 
Vector (RRV)

Flow IDType

 
Figure 1. REBOOK message format. 

2 bytes

IN, OUT

Local physical 
ports

2 bytes

Rrel

Resource Release 
Request

1 byte

PPOS

Path 
Position

4 bytes2 bytes3 x 2 bytes12 bytes

Age

Age

Rreq, Rmin, 
Rcurr

Resource

list_ptrIPs, Ps, 
IPd, Pd

List 
pointer

Flow ID

2 bytes

IN, OUT

Local physical 
ports

2 bytes

Rrel

Resource Release 
Request

1 byte

PPOS

Path 
Position

4 bytes2 bytes3 x 2 bytes12 bytes

Age

Age

Rreq, Rmin, 
Rcurr

Resource

list_ptrIPs, Ps, 
IPd, Pd

List 
pointer

Flow ID

 

Figure 2. Resource Allocation Table format. 
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When the RESV message is received by host B it is sent 

back to host A in the form of a RESV_ACK message. At this 
point both hosts know the maximum amount of resource 
reserved along the path, the length of the route and the list of 
indexes/memory addresses where the status information are 
stored in the routers. Host A sends the first keepalive message 
and will keep sending them periodically until the flow is 
terminated. 

C. Errors, faults and route changes 
Handling a keepalive message in the routers consists in 

three tasks. Thanks to the distributed recording of RAT 
indexes, the complexity of keepalive messages handling is 
constant regardless the number of active flows. 

At first, an integrity check is performed, for security 
reasons and to identify errors, faults or route changes. The 
current hop counter in the KPALV message is checked, then it 
is used to get the RRV entry containing the index or the 
memory address of the flow entry in the router’s RAT. The 
stored Flow ID and Path Position fields are compared with the 
Flow ID and the hop counter in the message. If some changes 
or faults occurred along the route, these values no longer 
match and a new resource booking reset request is signaled by 
setting the Hop Counter field to the reset value (-1) in the 
message to be forwarded.  

The second task while handling a keepalive message is to 
partially release the allocated resources if greater than the 
amount reached at the end of the path by the RESV message, 
value now stored in the Rcurr field. This is the case of router R1 
at time 6 in Figure 3. There is no need for an explicit booking 

confirmation to the routers since keepalive messages will 
always contain this information. Unnecessary booking will be 
released sooner or later even if some keepalive message is 
lost. Frequency of keepalive messages must be set according 
to the required reaction time to unexpected events. 

When a route change happens or a flow unexpectedly dies, 
keepalive messages no longer update the Age field in the RAT 
entry. Booked resources will be released thanks to a low-
priority process that scans the list of active RAT entries and 
removes the expired ones. 

D. Dynamic Resource Allocation 
Sometimes a router may be required to allocate some 

resources, but it might happen that not enough are left. 
Nevertheless, it is possible that some flows have been 
allocated more resources than the minimum requested. Here 
comes the third task when handling keepalive messages: the 
dynamic resource reallocation. When needed, some RAT 
entries may be marked for resource release by setting the Rrel 
field to a value less than Rcurr. When a keepalive message is 
processed for those entries, the Rrel value is set in the Rreq field 
of the message to be forwarded, so that the receiving host B 
will notify the request by sending a partial release message 
(PRL_ACK) to the transmitting host A. Host A will reduce the 
corresponding activity and will put in subsequent keepalive 
messages the new Rcurr value.  

Two other message types complete the algorithm: 
UP_RESV and RL_RESV. UP_RESV is sent from the 
transmitting host to attempt a resource allocation upgrade for a 
flow currently active. Their handling is similar to the one for 
RESV messages. RL_RESV is used to release the allocated 

1) {“RESV”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 8, PLEN = 0, HOPS = 1, RRV = NULL }

2) {“RESV”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 8, PLEN = 0, HOPS = 2, RRV = [ADDRR1]  }

3) {“RESV”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 7, PLEN = 0, HOPS = 3, RRV = [ADDRR1, ADDRR2]}

4) {“RESV”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 7, PLEN = 0, HOPS = 4, RRV = [ADDRR1, ADDRR2 , ADDRR3]}

5) {“RESV_ACK”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 7, PLEN = 4, HOPS = 0, RRV = [ADDRR1, ADDRR2 , ADDRR3 , ADDRR4]}

6) {“KPALV”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 7, PLEN = 4, HOPS = 1, RRV = [ADDRR1, ADDRR2 , ADDRR3 , ADDRR4]}

7) {“KPALV”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 7, PLEN = 4, HOPS = 2, RRV = [ADDRR1, ADDRR2 , ADDRR3 , ADDRR4]}

8) {“KPALV”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 7, PLEN = 4, HOPS = 3, RRV = [ADDRR1, ADDRR2 , ADDRR3 , ADDRR4]}

9) {“KPALV”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 7, PLEN = 4, HOPS = 4, RRV = [ADDRR1, ADDRR2 , ADDRR3 , ADDRR4]}

A

R1

R2

R3

R4

B

1

6 3
2

7

8

9

5

4

IN, 
OUT

Rrel = 8PPOS = 1 Age = T1Rreq = 8
Rmin = 4 
Rcurr = 8

FLOWID IN, 
OUT

Rrel = 8PPOS = 1 Age = T1Rreq = 8
Rmin = 4 
Rcurr = 8

FLOWID

IN, 
OUT

Rrel = 8PPOS = 2 Age = T2Rreq = 8
Rmin = 4 
Rcurr = 7

FLOWID IN, 
OUT

Rrel = 8PPOS = 2 Age = T2Rreq = 8
Rmin = 4 
Rcurr = 7

FLOWID

RAT|R1,T=1

IN, 
OUT

Rrel = 8PPOS = 1 Age = T6Rreq = 8
Rmin = 4 
Rcurr = 7

FLOWID IN, 
OUT

Rrel = 8PPOS = 1 Age = T6Rreq = 8
Rmin = 4 
Rcurr = 7

FLOWID

RAT|R1,T=6

less resources than requested are available

RAT|R3,T=2

 
Figure 3. Resource Reservation. 
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resources under normal circumstances, that is, when the 
transmitting host terminates the connection and explicitly 
requires the resource release along the path.   

E. Multicast 
In order to support multicast flows, reservation and 

keepalive messages must be replicated at the multicast tree 
forks. Slightly different procedures in respect of the ones 
described above shall be called when a received REBOOK 
message is encapsulated in a network layer packet containing 
a multicast destination address. Obviously, the REBOOK 
engine must access (or receive) the multicast routing 
information, but this happens only during the resource 
reservation setup phase, as the output ports and other useful 
information will be stored in the Multicast Resource 
Allocation Table (MRAT) table. Unlike the RAT, in the 
MRAT a multicast flow is represented by a linked list of 
entries, each one related to a branch toward the destinations. 
Some fields are common to all the linked entries and an 
optimized implementation may collapse them into a single 
record: Flow Id, Rreq, Rmin, Path Position, Age, IN. The 
remaining fields are branch-dependent; in particular, keeping 
apart the Rmin information allows each branch to reserve a 
different amount of resource without affecting the other 
branches. This is useful for multimedia flows featuring 
progressive or scalable encoding, provided that the router is 
able to forward the multicast packets according to the contents 
and to the required speed on each branch. To keep up to date 
the MRAT entries, in each router the keepalive messages are 
replicated, partially rewritten and sent along each branch.  

The easiest way to setup resource reservation in a multicast 
environment is making each router at a multicast tree fork act 
as both a source (toward the subsequent nodes) and a 
destination (toward the preceding nodes) for REBOOK setup 
messages. The reservation should be driven by a signaling 
protocol, like RSVP [3] (next section will discuss the relations 
between REBOOK and RSVP). This way, the reservation 
request is receiver-initiated, as usual for multicast services, 
and REBOOK may anticipate the pointers collection using a 
backward pointers collection. When the first REBOOK packet 
sent by the receiver of the data flow reaches the sender, it 
contains the pointers referring to the traversed routers in 
reverse order. Like in RSVP, the actual reservation starts in 
the next step, when resource reservation messages are sent by 
the sender of the data flow to the receiver(s). 

Dynamic joining and removal of hosts to and from the 
multicast services will be handled by the REBOOK agent 
active in each router. 

V. IMPLEMENTATION ISSUES 
Designing a REBOOK implementation integrated in 

industry-level routers requires choices depending on 
economical and technical constraints coming from hardware 
manufacturers and is therefore beyond the purpose of this 
paper. However, some general considerations can be drawn. 

A. Impact on switching architectures 
REBOOK does not require any dedicated hardware 

solution, even though it can be partially or fully implemented 
in hardware. The REBOOK management engine is required to 
handle reservation request/release and keepalive messages 
only, whose rate is orders of magnitude slower than the data 
traffic. The only mandatory constraint is the presence of an 
ingress filter to identify REBOOK messages: they must be 
delivered to the management process and are sent back to the 
switching fabric for forwarding. Depending on the 
architecture, this may require an additional internal buffer.  

The switching architecture should not be affected by 
REBOOK at all. The REBOOK engine will contain 
parameters and rules stating the switch capabilities (port-to-
port bandwidth, buffers length, etc.) and will continuously 
keep track of the amount of resources still available, in order 
to acknowledge or not the reservation requests. If all the data 
traffic was REBOOK compliant, resource would never be 
overloaded (e.g., buffer overflow) and no data packet would 
be lost, simply because the sender would not be allowed to 
transmit (or would be allowed to talk slower). In the more 
realistic scenario where only part of the traffic could be 
REBOOK compliant, priority tags or Type of Service fields 
could be used to identify REBOOK flows; packets belonging 
to such flows can be handled by separated queues and buffers 
to isolate them from the non-REBOOK traffic and to fulfil the 
resource reservation for REBOOK traffic. It is worthwhile to 
notice that REBOOK aims at reporting to the sender the 
maximum transfer rate allowed along the path to the receiver; 
as long as the sender respects this boundary, best-effort routers 
provide a QoS-like service. 

B. RSVP and other hosting protocols 

REBOOK can be implemented as a standalone control 
protocol and/or can be integrated in existing protocols, e.g., 
RSVP or TCP.  

REBOOK can be used to improve RSVP by efficiently 
handling its resource reservation requests and by providing a 
deterministic tracking of the amount of reserved and available 
resources. As discussed above, the main adjustment required 
in respect of the algorithm described in Section IV is that the 
pointers collection may start during the RSVP receiver-
initiated reservation request, instead of being activated by the 
sender. However, reservation setup and final confirmation of 
pre-allocated resource amounts are sender-driven: the sender 
knows the data flow bandwidth constraints, and the 
reservation messages are always processed in the same 
direction, thus working with symmetrical and asymmetrical 
routing as well. 

To support multicast flows, REBOOK can work within 
RSVP provided that in intermediate nodes of the distribution 
tree the same RSVP process that merges reservation requests 
for multicast flows manage the entries in the MRAT described 
in Section IV. 

Many multimedia streaming applications use TCP 
connections to control UDP data flows. REBOOK can be 
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integrated in TCP packets thus drastically reducing the need of 
additional packets for keepalive messages. 

Anyhow, the easiest implementation is designing an ad hoc 
protocol around the REBOOK messages. This is the way 
followed for the experiments presented in the next section.  

C. Deployment 
We foresee several, non-exclusive ways to make REBOOK 

available at the application layer. The first and the most 
obvious one consists in including the REBOOK algorithm 
within clients and servers software for QoS-critical 
applications. It is quite easy to implement REBOOK as an 
add-on for already existing applications and let it negotiate the 
bandwidth required for the specific application. REBOOK 
could be implemented as a browser plug-in embedded within 
web pages of multimedia services. In this trail we are 
following the development of a plug-in module for the 
widespread multimedia application VLC.  

An alternative that reduces the implementation effort is the 
deployment of REBOOK-aware agents at the boundary 
between each network and the Internet (Figure 4).  

 

data

REBOOK

the Internet

Border device with an 
embedded REBOOK agent

data

Figure 4. REBOOK agent at network edge. 

Such agents will autonomously negotiate the required 
bandwidth with outer REBOOK aware routers on the basis of 
the traversed traffic, managing the QoS needs of the whole 
network. An agent of this kind could be easily integrated 
within firewalls that perform stateful packet inspection (some 
examples can be found in the web site of the major producers 
[22] [23] [24]). For a stateful firewall already keeping track of 
each traversed flow it is straightforward to handle REBOOK 
messages. Moreover, agents could be installed within 
boundary routers too, especially if they are software routers. A 
natural extension of this approach is the integration of 
REBOOK agents within border routers and traffic shaping 
appliances. In fact, flows that require resource reservation are 
typically characterized by an almost constant bit rate and thus 
they are easily identifiable and manageable by automatic 
resource reservation. This can be applicable even for networks 
invested by billions of flows per second thanks to the many 
algorithms for elephant flow identification present in literature 
[25] [26] [27]. This way the traffic shaping router will became 
an integrated bandwidth manager for the network; it is 
responsible of classifying flows, automatically issuing 
reservation requests only for flows that really need it, assuring 
fairness in bandwidth sharing and finally assuring that flows 
will not exceed the bandwidth reserved to each of them. 

Moreover, it is worthwhile to notice that REBOOK agents 
would prevent possible Denial-of-Service attacks based on 
REBOOK messages, as no reservation request could be 
accepted if coming directly from end nodes. 

A key feature of the REBOOK algorithm is that REBOOK-
aware devices and hosts may be deployed progressively. 
Obviously, it is impossible to deploy REBOOK or any other 
new protocol at the same moment throughout the entire 
Internet. Indeed, REBOOK might never be deployed 
everywhere. However, since REBOOK does not interfere with 
routing, unaware routers are transparently traversed by 
REBOOK messages. Only REBOOK-aware nodes handle the 
messages as described and guarantee the resource reservation. 
Nevertheless, as will be discussed below, REBOOK may 
improve network performances even in partially deployed 
networks. 

Intermediate clouds that do not support REBOOK are not 
capable of performing resource reservations, so strict service 
guarantee cannot be made. However, if such clouds have 
sufficient excess capacity, they can provide acceptable and 
useful real-time services. The problem is now shifted to 
estimation of the service provided by that cloud. Depending 
on the real framework, this problem has different solutions 
(Figure 5).  

A

B

C

Cloudwith SLA

Cloudwithout SLA

data + REBOOK

data + REBOOK

Capacity and Bandwidth
estimation alg.

 

Figure 5. REBOOK and SLA support. 

In the first case (A-B) the owner of the REBOOK-aware 
network uses the cloud to perform tunneling and has some 
kind of SLA with the owner of the cloud. The straightforward 
solution is to assign to each flow routed through the cloud a 
reservation compatible with that SLA. If there is no agreement 
between the owners (case A-C), the resource reservation 
control may be driven by the end systems (that monitor the 
data flow) instead of intermediate systems (that should 
communicate the available resource amounts). Non-
REBOOK-aware nodes traversed by a data flow may drop 
packets if congested; the packet loss or keepalive messages 
missing rate may be monitored by the receiver; when these 
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events overcome a predefined threshold, PRL_ACK 
REBOOK messages may be generated by the receiver itself in 
order to reduce the reserved bandwidth and, therefore, the 
maximum sender’s transmission rate. In extremely congested 
situations, when entire sequences of keepalive messages are 
missing, the reservation (and the flow) may be dropped. 
However, more complex strategies can be adopted: REBOOK-
aware routers that communicate through a non-REBOOK 
cloud could monitor the state of the route traversing the cloud 
by means of one of the many bandwidth or capacity estimation 
algorithms (e.g., [28][29][30]) and consequently make an 
estimation of the resource amount available for reservation.  

Additionally, it is worth noting that even if a complete 
Internet coverage is not possible, whole REBOOK-aware 
networks are absolutely plausible. In fact, multi-content 
providers that supply a wide range of services like IP 
television, Internet access and telephony are becoming 
popular. These providers usually manage entire networks with 
the need for QoS guarantees for their services. Such closed, 
single-owner networks could easily deploy REBOOK-aware 
devices. 

Another situation that is gaining importance nowadays is 
the QoS management within overlay-networks. There is an 
increasing interest in their use to deliver multimedia content 
like video on demand, video telephony and so on. Integrating 
REBOOK in them is easier than interfacing a real router since 
these architectures are software-based and run on general-
purpose servers. 

D. Security 
Cooperation between intermediate systems and end systems 

requires trust. Just like the TCP congestion-control 
mechanism, REBOOK works as soon as all the participating 
nodes behave as expected. As described at the beginning of 
Section IV, there is no advantage for an unfaithful node that 
stores or communicates invalid pointers. However, a security 
issue may come from DoS (Denial of Service) attacks, in two 
directions: invalid pointers and over-reservation requests.  

REBOOK provide an intrinsic robust solution to the invalid 
pointers problem. The consistency check prevents the use of 
invalid information, but a key feature of REBOOK is that each 
pointer is never used by agents other than the router that stored 
it in a previous phase of the algorithm: pointers are not 
communicated to others, but only stored in a distributed data 
structure. Therefore, they can be encrypted and signed with 
symmetrical cryptography, without the need of key exchange. 

The over-reservation problem may come from tampered 
software in end nodes. But the sender-driven reservation 
model makes the server and the service provider, and not the 
end user, responsible for correct reservation. Moreover, 
several possible applications are related to specific highly 
controlled environment such as video-on-demand distribution, 
where the end nodes are proprietary set-top boxes or web 
browsers plug-in. Lastly, nodes and REBOOK applications 
may be required to authenticate before starting the reservation, 
using some of the existing protocols and data encryption 
mechanisms already available. 

More detailed studies will be required after the applications 
have been designed, but this is beyond the scope of this paper. 

E. Software architecture 
The REBOOK engine has been fully implemented. For the 

experiments, a standalone connectionless UDP-based 
signaling protocol has been designed and used to exchange 
REBOOK messages. 

REBOOK implementation consists in three portable 
modules written in C language: router, sender and receiver. 
Each module, or a combination of two or all of them, can be 
attached to software router kernels, server programs and client 
applications. Thanks to several preprocessor directives a 
Dynamic Link Library or a linkable object code can be 
produced; moreover, a pure C single agent or multiple 
instances of C++ classes can be generated, allowing the same 
to be included in real routers and in simulators as well. 

Figures 6, 7 and 8 show the interactions between the 
REBOOK modules and the host and router software. 

 

handle REBOOK message

get currently available resource

notify available resource increase

notify available resource reduction

send rebook message 

ROUTER REBOOK ENGINE

 
Figure 6. Router module software interface. 

 

reservation request

reservation upgrade request

reservation removal request

handle rebook message

notify reservation ACK

notify reduction ACK

notify reset

send rebook message 

SENDER REBOOK ENGINE

 
Figure 7. Sender module software interface. 

 

handle rebook message

send rebook message 

RECEIVER REBOOK ENGINE

 
 

Figure 8. Receiver module software interface. 
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VI. EXPERIMENTAL RESULTS 
Several experiments have been designed and run to 

demonstrate the REBOOK robustness, performance and 
scalability in a real distributed environment. In order to make 
the experimental framework as close as possible to real, 
complex and possibly overloaded networks, a router emulation 
environment has been developed, allowing us to use computer 
lab Personal Computers as routers. This way, we could 
emulate a network with several routers actually running 
asynchronously, where packets can be really dropped and 
route changes happen asynchronously as well. 

Five kinds of nodes have been developed. 
Sender host: it can transmit several UDP flows towards one 

or more destinations; for each flow REBOOK control packets 
are handled to book resources along the path, and the flow 
transmission packet rate is modulated according with the 
granted bandwidth. 

Receiver host: it receives and handle REBOOK messages as 
described in previous sections. Data packets contain a counter 
used by the receiver for signaling when packets are lost. 

REBOOK-aware router: it is the key module, running the 
resource booking procedures. A periodically activated thread 

performs the RAT “cleanup” procedure, i.e., removes the 
entries expired due to repeated missing keepalive messages. 
Each router is assigned a maximum capacity (total number of 
packets per second that can be forwarded). If the traffic 
exceeds this value in a given time window, packets are 
dropped (both data packets and REBOOK messages, of 
course).  

REBOOK-unaware router: REBOOK has been tested even 
in mixed environments where only some routers are 
REBOOK-aware. This kind of router treats REBOOK 
messages as normal data packets and drops packets exceeding 
its capacity. 

Routing Control Center: this is the module that sends the 
routing tables to the routers. Each routing table update is 
acknowledge by the router and becomes immediately 
operative. Therefore, during route changes rules can become 
temporarily incoherent and packet routing errors are possible. 

 
Figure 9 shows a 7-routers network where 40 data flows are 

exchanged between 4 sender-receiver pairs. Before and after 
the route change the network capacity is large enough to 
accept all the flows at full speed. When the link between 
routers 2 and 6 is dropped, flows from senders 1 and 7 start 
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Figure 9. Congestion prevention during route change 
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competing for bandwidth in routers 3, 4 and 5. It is interesting 
to notice that the flows Snd3-Rcv5 and Snd5-Rcv3 are not 
affected by the route change and their booking is maintained 
(γ). Instead, flows Snd1-Rcv7 and Snd7-Rcv1 are dropped and 
when the senders start sending new reservation requests the 
routers signal to the already active senders the need of partial 
resource release. As soon as this happens (δ), new flows can 
be accepted and the system finds a new stability (ε). When the 
link between routers 2 and 6 is restored new reservations are 
made for flows Snd1-Rcv7 and Snd7-Rcv1 obtaining 
permission to send at full speed again. 

 
Figure 10 shows the result of an experiment that 

demonstrates how REBOOK can be useful even in partially 
REBOOK-aware networks to limit the packet loss by 
controlling the sender’s transmission rate on the basis of the 
packet loss rate measured at the receiver side.  
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Figure 10. Packets drop control in partially REBOOK-unaware network 

In the experiment, one router along the path does not 
support REBOOK and, in addition, it is a bottleneck due to 
insufficient capacity in respect of the number of active flows. 
The REBOOK-unaware router is transparent to REBOOK 
messages (the hop counter field in keepalive messages is 
updated by REBOOK-aware routers only). Keepalive 
messages and data packets are monitored by the receiver; 
when the number of lost packets exceeds a given threshold, 
the receiver autonomously generates a PR_ACK message to 
the sender, just like when a resource release request comes 
from a router. The graph of Figure 9 reports the number of 
dropped packet in the REBOOK-unaware router. Periodically, 
the sender attempts to increase the resource reservation, 
REBOOK-aware routers acknowledge the requests, the 
REBOOK-unaware router restarts dropping packets and the 
receiver asks the sender to reduce the transmission rate again. 
 

Since REBOOK requires control messages in addition to 
data packets, a possible issue regards the traffic overhead. The 
experiments showed an increase in traffic load less than 1.8% 
with neglectable keepalive messages processing time. More 
precisely, on the congested network of Figure 9 we measured 
an increase of 5% for the seven routers total CPU time in the 
REBOOK-enabled run. However, since about 15% of the 
packets have been lost during the run without REBOOK, the 
average CPU time per delivered packet has been indeed 
reduced by 9%. 

 
Routers must periodically remove obsolete entries in the 

RAT to free resources belonging to rerouted or dead flows. In 
our implementation the RAT is an array whose used and 
unused elements are linked in two list. To measure the actual 

management cost the RAT has been populated with 
10.000.000 entries representing data flows with expiration 
times randomly distributed over 100 cleanup process 
scheduled activations. On a Pentium 4, 2.80 GHz, 512 MB 
RAM computer running Windows XP each cleanup run 
required, in average, approximately 100 ms CPU time. 

VII. CONCLUSION AND FUTURE WORK 
This paper presented an innovative algorithm for robust and 

deterministic resource reservation, based on a Distributed 
Linked Data Structure that provides direct access to flow 
information within the routers. This makes the algoritm 
computational cost constant, regardless the number of active 
flows. 

Several options are available to implement the algorithm. 
REBOOK has been fully implemented as a standalone 
protocol in a software-based router emulator and has been 
extensively tested on heavily loaded networks with 
dynamically changing topologies. It demonstrated to be 
scalable and robust. 

Many research directions can bee foreseen starting from 
REBOOK: investigating the integration in existing protocols, 
with special focus on multicast-oriented protocols and 
applications; REBOOK engine hardware implementation for 
high performance routers; REBOOK-aware firewalls, proxy 
servers and traffic shaping routers design; fair resource release 
request strategy within REBOOK-aware routers; extension to 
other fields like High Performance Computing (HPC) and 
Wireless Sensor Networks (WSN). 
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