
Experiences with the Automatic Discovery of Violations to the Normalized Systems
Design Theorems

Kris Ven, Dieter Van Nuffel, Philip Huysmans, David Bellens, Herwig Mannaert
Department of Management Information Systems

University of Antwerp
Prinsstraat 13

2000 Antwerp, Belgium
{kris.ven,dieter.vannuffel,philip.huysmans,david.bellens,herwig.mannaert}@ua.ac.be

Abstract—Evolvability is an important concern for the design
and development of information systems. The Normalized
Systems theory has recently been proposed and aims to ensure
the high evolvability of information systems. The Normalized
Systems theory is based on the systems theoretic concept
of stability and proposes four design theorems that act as
constraints on the modular structure of software. In this paper,
we explore the feasibility of building a tool that is able to
automatically identify violations to these Normalized Systems
design theorems in the source code of applications. Such a
tool could help developers in identifying limitations to the
evolvability of their applications. We describe how a prototype
of such a tool was developed and report on the evaluation of this
tool consisting of the analysis of the source code of four open
source software applications. Our results demonstrate that it is
feasible to automatically identify violations to the Normalized
Systems design theorems. In addition, the results show that
there is considerable variety in how well the different theorems
are adhered to by various software applications. We also
identified some issues and limitations with the current version
of the tool and discuss how these issues can be addressed in a
future version.

Keywords-normalized systems; modularity; software archi-
tecture; quality

I. INTRODUCTION

Contemporary organizations are operating in increasingly
volatile environments and must be able to respond quickly to
changes in their environment in order to gain a competitive
advantage [2], [3]. Since organizations are becoming increas-
ingly dependent on information technology (IT) to support
their operations, the evolvability of the IT infrastructure
will determine to a large extent how quickly organizations
are able to adapt. It has indeed been shown that IT offers
opportunities to organizations to increase their agility and
flexibility [4]–[6]. Organizations therefore require increasing
levels of evolvability of their information systems. Unfortu-
nately, information systems struggle to provide the requested
levels of evolvability, often due to poorly designed software
architectures [7].

The Normalized Systems theory has recently been pro-
posed by Mannaert and Verelst [8] and aims to address
these evolvability issues. The Normalized Systems theory is

concerned with how information systems can be developed
based on the systems theoretic concept of stability [8]–
[10]. It argues that the main obstacle to evolvability is the
existence of so-called combinatorial effects. Combinatorial
effects occur when the effort to apply a specific change
increases as the system grows [8], [10]. The Normalized
Systems theory eliminates these combinatorial effects by
defining clear design theorems. These Normalized Systems
design theorems act as constraints on the modular structure
of software. Adhering to these theorems results in informa-
tion systems that exhibit stability.

Organizations currently have a large number of in-house
developed information systems in use. These information
systems are likely to contain combinatorial effects that
limit their evolvability. These combinatorial effects exist due
to violations to the Normalized Systems design theorems.
Organizations will therefore be looking towards ways to
identify these combinatorial effects in their code base and
to devise solutions to improve the evolvability of their infor-
mation systems. Manually inspecting the source code may
be a possibility, but is likely to be a very time-consuming
task. The automatic identification of combinatorial effects
therefore seems to be a very interesting alternative. In
this paper, we explore the feasibility of building a tool to
automatically identify violations to the Normalized Systems
design theorems in the source code of applications. Although
our main focus—similar to our previous research [9], [10]—
is on information systems, this tool could be used to perform
an evaluation of any type of software application. In this
paper, we describe the development and evaluation of a
prototype of such a tool. In our previous work, we already
described the evaluation of this prototype using a single
case [1]. Our current work further builds on this research
by analyzing the source code of four open source software
applications.

The rest of this paper is structured as follows. In Sec-
tion II, we describe the previous work related to this study
and focus on providing an introduction to the Normalized
Systems theory. The methodology of our study is described
in Section III. Section IV describes the development of our

46

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



tool. The evaluation of the tool is described in Section V.
The results from the evaluation are discussed in Section VI.
Finally, our conclusions are offered in Section VII.

II. PREVIOUS WORK

In this section, we provide an overview of the literature
related to our current study. We start with an introduction
to the topic of software evolvability. Next, we focus on
providing a background on the Normalized Systems theory.

A. Software Evolvability

It is a well-known problem in software engineering that
the structure of software degrades and becomes more com-
plex over time as changes are applied to it. One of the main
challenges with respect to the evolvability of information
systems is Lehman’s Law of Increasing Complexity which
states that: “As an evolving program is continually changed,
its complexity, reflecting deteriorating structure, increases
unless work is done to maintain or reduce it.” [11] This law
implies that over time, the structure of software will become
more complex—thereby requiring increasing effort to add
new functionality to an existing system—unless preventive
measures are taken [11]–[13]. This is clearly an important
concern for information systems development. There is
widespread belief that the software architecture determines
the evolvability of software to a large extent [14]. As a result,
a number of frameworks have appeared in literature that
attempt to evaluate software architectures based on a number
of quality attributes, including evolvability [15], [16]. Some
of the most well-known evaluation methods include the
Architecture Trade-off Analysis Method (ATAM) [17] and
the Software Architecture Analysis Method (SAAM) [18].
Unfortunately, it has been noted that a theoretical foundation
for studying software evolvability and evolution is largely
missing [19]. As a first step towards such a theoretical
foundation, Lehman derived a list of definitions, theorems
and axioms with respect to software evolution based on
a large empirical research project spanning multiple years
[19].

The approaches mentioned above typically define a set
of principles that should ensure the evolvability of software
systems. Unfortunately, some of these principles are defined
rather informally and leave considerable room for interpre-
tation. As a result, these approaches struggle to consistently
achieve evolvability in realistic software development envi-
ronments. This is frequently a consequence of the fact that
it is difficult to reach consensus among practitioners about
how a principle should exactly be applied in practice. For
example, when asked to evaluate alternative designs for a
software system based on a principle such as loose coupling,
practitioners frequently disagree on the best solution. Several
tools exist that calculate a set of metrics of a software
system in order to provide an idea of the evolvability of
the software system. However, such assessments require

a white-box approach. A statement that the software is
more or less evolvable based on such assessments therefore
have a limited meaning. The Normalized Systems theory is
similar to these previous approaches in taking evolvability
as the primary concern for developing software systems.
The main difference with these previous approaches is that
the Normalized Systems theory is based on the systems
theoretic concept of stability and aims to provide clear
principles on software evolvability. Such clear principles
avoid the situation in which developers or software architects
disagree on the exact interpretation of a principle. By stating
that a software system is compliant with the Normalized
Systems theory, a more black box assessment of evolvability
is therefore possible, since this defines to which anticipated
changes the software is stable.

B. Normalized Systems

In this section, we will provide a brief background on
the Normalized Systems theory. However, the aim of this
section is not to fully explain Normalized Systems, or to
elaborate on the theorems and their rationale. Instead, we
further build upon the previous work that is available in this
area. For more details, we refer the reader to our previous
work describing the Normalized Systems theory [8]–[10],
[20]–[22].

The basic assumption of the Normalized Systems ap-
proach is that information systems should be able to evolve
over time and should therefore be designed to accommodate
change. This implies that the software architecture should
not only satisfy the current requirements, but should also
support future requirements. The Normalized Systems ap-
proach uses the systems theoretic concept of stability as
the basis for developing information systems [8]–[10], [20].
In systems theory, stability refers to a system in which a
bounded input function results in bounded output values,
even as t → ∞ (with t representing time). When applied
to information systems, this means that applying a specific
change to the information system should always require
the same effort, irrespective of the size of the information
system or the point in time at which the change is applied.
The Normalized Systems approach further relies on the
assumption of unlimited systems evolution [8]–[10]. This
means that the system becomes ever larger in the sense
that the number of modules become infinite or unbounded
as t → ∞. This may seem an overstated assumption, but
actually, it is quite logical as even the introduction of a single
module or dependency every twenty years corresponds to an
infinite amount for an infinite time period.

Information systems exhibiting stability with respect to
a defined set of changes are called Normalized Systems
[8], [10]. In contrast, when changes do require increasing
effort as the system grows, combinatorial effects are said to
occur [8], [10]. In order to obtain stable information systems,
these combinatorial effects should be eliminated. In order to

47

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



identify and avoid most of these combinatorial effects, a set
of four design theorems was developed [8]–[10], [20]. It is
important to note that it has been formally proven that these
theorems contribute to achieving systems theoretic stability
in software [9]. We will now briefly describe each of these
theorems. More details are beyond the scope of this paper
and can be found in the literature [8]–[10], [20].

The first theorem, separation of concerns, requires that
every change driver or concern is separated from other con-
cerns. This theorem allows for the isolation of the impact of
each change driver. This principle was informally described
by Parnas already in 1972 as what was later called design
for change [23]. This theorem implies that each module can
contain only one submodular task (which is defined as a
change driver), but also that workflows should be separated
from functional submodular tasks. For instance, consider a
function F consisting of task A with a single version and a
second task B with N versions; thus leading to N versions
of function F . The introduction of a mandatory version
upgrade of task A will not only require the creation of the
additional task version of A, but also the insertion of this
new version in the N existing versions of function F . The
number N is clearly dependent on the size of the system,
and thus implies a combinatorial effect.

The second theorem, data version transparency, requires
that data is communicated in version transparent ways
between components. This requires that this data can be
changed (e.g., additional data can be sent between compo-
nents), without having an impact on the components and
their interfaces. For instance, consider a data structure D
that is passed to N versions of a function F . If an update
of the data structure is not version transparent, it will also
demand the adaptation of the code that accesses this data
structure. Therefore, it will require new versions of the N
existing processing functions F . The number N is clearly
dependent on the size of the system, and thus implies
a combinatorial effect. Data version transparency can, for
example, be accomplished by appropriate and systematic
use of web services instead of using binary transfer of
parameters. This also implies that most external APIs cannot
be used directly, since they use an enumeration of primitive
data types in their interface.

The third theorem, action version transparency, requires
that a component can be upgraded without impacting the
calling components. Consider, for instance, a processing
function P that is called by N other processing functions
F . If a version upgrade of the processing function P is
not version transparent, this will cause besides upgrading
P , the adaptation of the code that calls P in the various
functions F . Therefore, it will require new versions of the
N existing processing functions F . The number N is clearly
dependent on the size of the system, and thus implies a
combinatorial effect. Action version transparency can be
accomplished by appropriate and systematic use of, for

example, polymorphism or a facade pattern.
The fourth theorem, separation of states, requires that ac-

tions or steps in a workflow are separated from each other in
time by keeping state after every action or step. For instance,
consider a processing function P that is called by N other
processing functions F . Suppose the calling of the function
P does not exhibit state keeping. The introduction of a new
version of P , possibly with a new error state, would force
the N functions F to handle this error, and would therefore
lead to N distinct code changes. The number N is clearly
dependent on the size of the system, and thus implies a
combinatorial effect. This theorem suggests an asynchronous
and stateful way of calling other components. Synchronous
calls—resulting in pipelines of objects calling other objects
that are typical for object-oriented development—result in
combinatorial effects.

It must be noted that each of these theorems is not
completely new, and even relates to the heuristic knowledge
of developers. However, formulating this knowledge as
theorems that identify these combinatorial effects aids to
build information systems that contain a minimal number of
combinatorial effects. A remarkable aspect of these theorems
is that a violation of each one of these theorems, by any de-
veloper at any moment during development or maintenance,
results in a combinatorial effect. This suggests how difficult
it is to realize software without combinatorial effects [8],
[10].

The design theorems show that software constructs, such
as functions and classes, by themselves offer no mechanisms
to accommodate anticipated changes in a stable manner
[8], [10]. The Normalized Systems approach therefore pro-
poses to encapsulate software constructs in a set of five
higher-level software elements [8], [10]. These elements are
modular structures that adhere to these design theorems, in
order to provide the required stability with respect to the
anticipated changes [8], [10]. From the second and third
theorem it can straightforwardly be deduced that the basic
software constructs, i.e., data and actions, have to be encap-
sulated in their designated construct. As such, a data element
represents an encapsulated data construct with its get- and
set-methods to provide access to its information in a data
version transparent way. So-called cross-cutting concerns,
for instance access control and persistency, should be added
to the element in separate constructs. The second element,
action element, contains a core action representing a single
functional task or change driver. Four different implemen-
tations of an action element can be distinguished: standard
actions, manual actions, bridge actions and external actions
[24]. In a standard action, the actual task is programmed in
the action element and performed by the same information
system. In a manual action, a human act is required to fulfill
the task. The user then has to set the state of the life cycle
data element through a user interface after the completion
of the task. A process step can also require more complex

48

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



behavior. A single task in a workflow can be required to
take care of other aspects which are not the concern of that
particular flow [8], [10]. Therefore, a separate workflow will
be created to handle these concerns. Bridge actions create
these other data elements going through their designated
flow. When an existing, external application is already in use
to perform the required task, the action element would be
implemented as an external action. These actions call other
information systems and set their end state depending on the
external systems’ reported answer. Arguments and parame-
ters of an action element need to be encapsulated as separate
data elements, and cross-cutting concerns such as logging
and remote access should be added as separate constructs.
Based upon the first and fourth theorem, workflow has to
be separated from other action elements [8], [10]. These
action elements must be isolated by intermediate states, and
information systems have to react to states. To enable these
requirements, three additional elements are identified. A
third element is a workflow element containing the sequence
in which a number of action elements should be executed
in order to fulfill a flow. A consequence of the stateful
workflow elements is that state is required for every instance
of use of an action element, and that the state therefore
needs to be linked to or be part of the instance of the data
element serving as argument. A trigger element is a fourth
element that controls the states (both regular and error states)
and checks whether an action element has to be triggered.
Finally, the connector element ensures that external systems
can interact with data elements without allowing an action
element to be called in a stateless way [8], [10].

It is important to note that the basic underlying motivation
of the Normalized Systems theory is to strive towards
establishing an objective and scientific foundation to analyze
the evolvability characteristics of information systems. The
previous studies on this topic can be considered a first initial
step towards turning software engineering into a classical
engineering science that is based on laws and exhibits
predictability [9].

III. METHODOLOGY

Our research has been conducted using the design science
methodology. Our research goal is to develop a tool for
the automatic identification of violations to the Normalized
Systems design theorems in the source code of information
systems. The design science methodology is appropriate
in this case, since design science is primarily aimed at
solving problems by developing and testing artifacts, rather
than explaining them by developing and testing theoretical
hypotheses. The design science research tradition focuses on
tackling ill-structured problems in a systematic way [25].
Peffers et al. consider information systems to be an applied
research discipline, meaning that theory from disciplines
such as economics, computer science and social sciences
are frequently used to solve problems between information

technology and organizations [26]. In this research, we
will use the Normalized Systems theory as the basis to
develop a tool to identify potential issues with respect to
the evolvability of software. Hence, we start from a solid
theoretical foundation to develop a tool that has a large
potential to be used in practice.

March and Smith have developed a classification scheme
to position design science research efforts. This scheme
identifies 4 different research outputs (i.e., construct, model,
method and instantiation) and 4 different research activities
(i.e., build, evaluate, theorize and justify) [27]. Our research
is concerned with the build and evaluate phases of an
instantiation artifact. The instantiation refers in this case
to a tool to identify violations to the Normalized Systems
design theorems. If such a tool could be developed, it would
illustrate the feasibility of the automatic identification of
violations. The importance of building instantiations has
been emphasized by Newell and Simon, by writing: “Each
new program that is built is an experiment. It poses a
question to nature, and its behavior offers clues to the
answer” [28].

Consistent with the design science methodology, an it-
erative approach will be followed in this research [26],
[29], [30]. We started by first defining and motivating the
problem based on the literature on Normalized Systems.
Therefore, the research entry point is objective-centered, and
is concerned with developing a tool to identify violations to
the Normalized Systems design theorems [26]. Based on the
Normalized Systems design theorems, we derived a number
of violations that may occur in Java applications. In this
first iteration, it is not our aim to create an exhaustive list of
potential violations. Hence, we provide a lower bound for
the existence of such violations in information systems. This
constitutes a contribution towards the Normalized Systems
approach, since this provides insight into which concrete
violations to the Normalized Systems design theorems can
be found in practice. Next, we investigate the feasibility of
building a tool that can automatically identify manifestations
of these violations in the source code of information systems.

Finally, we conduct a first evaluation of the tool. Evalua-
tion is considered to be a key element in the design process
[31]. To this end, we evaluate the tool by applying it to a
set of Java applications, interpreting the resulting output and
verifying the violations in the source code. The correctly
identified violations confirm the utility of this tool. This
first version of the tool is an important milestone, as it will
give valuable feedback on the feasibility of the automatic
inspection of the source code with respect to violations to the
Normalized Systems design theorems. Furthermore, we will
use the lessons learned from this first evaluation to improve
the efficiency of our tool. In the following iterations, we will
further develop and refine our tool. Future improvements
include, for example, detecting a larger number of violations
to the Normalized Systems design theorems. These future

49

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



versions will be evaluated using other applications as a test
case. We seek to further evaluate the tool in the future by
applying it to larger and more complex applications.

IV. TOOL DEVELOPMENT

In the build phase of our research, we iteratively de-
veloped a tool prototype for the automatic identification
of violations to the Normalized Systems design theorems.
Before developing the tool, we first needed to determine for
which programming language we wanted to build the tool.
Since each programming language has its own constructs
and syntax, different violations are possible in different
programming languages. Therefore, separate parsers should
be developed for each programming language. We decided
to focus on the Java programming language. This choice
was motivated by a number of reasons. First, Java is a
popular programming language that is used by a large num-
ber of applications, including traditional GUI applications
and web-based applications. Second, Java EE is a popular
framework to build enterprise applications, making it very
relevant in an organizational context. Third, the reference
implementation for Normalized Systems was also built in
the Java EE environment [8], [10].

A graphical overview of the architecture of this tool is
shown in Figure 1. It shows that the tool consists of two main
components—NSTVdoclet and NSTVdetect—that have
to be run in succession. The former component is responsible
for parsing the source code, while the latter component
is responsible for actually analyzing the source code for
manifestations of violations to the Normalized Systems
design theorems. This approach allowed us to decouple the
parsing of the source code and the actual inspection of
the source code, which is consistent with the separation of
concerns theorem.

As shown in Figure 1, the first step of the analysis consists
of processing the Java source code by the NSTVdoclet
component. The NSTVdoclet component is written as a
custom doclet to javadoc. The javadoc tool is part of
the Java 2 SDK. By default, it generates documentation
in HTML format of the API of a Java application. The
javadoc tool is, however, easy to extend by creating cus-
tom doclets that provide output in an alternate format. The
NSTVdoclet component filters the information obtained
by javadoc since not all this information is required
by NSTVdetect. Next, the output is written away in
a temporary database. The information contained in this
database is an internal representation of the source code that
is to a large extent independent on a specific programming
language (e.g., in terms of classes that have methods that
take parameters of a certain type and that possibly throw an
exception). This method has three main advantages. First,
it allows us to reuse the source code parsing algorithm
of javadoc. This avoids having to write a custom Java
source code parser. In addition, the output provided by

javadoc is clearly documented at the API-level, making
it easy to parse and process this information. Second, most
Java applications ship with an ant build file that allows
the automatic compilation of Java source code. In most
cases, this ant build file includes a javadocs target that
generates the API-documentation for the application using
javadoc. If such a build target is available, it is quite easy
to specify in the build file that a custom javadoc doclet
must be used. This ensures that parsing the source code does
not require much effort, on the condition that the standard
javadoc documentation can be generated. In general, it is
sufficient to modify the javadoc task to indicate that a
custom doclet that must be used by specifying the doclet
and docletpath attributes (see also Figure 2).

In the second step of the analysis, the NSTVdetect
component processes the information in this database and
analyzes it to identify manifestations of violations to the
Normalized Systems design theorems. Consistent with the
separation of concerns theorem, the NSTVdetect com-
ponent delegates the responsibility of the actual detection
of these manifestations of violations to an extensible set of
modules. Each module analyzes the internal representation
of the source code for manifestations of a specific violation.
Each module writes its output to a separate report file.

An M−N relationship exists between these violations and
the Normalized Systems design theorems: a single design
theorem can be violated in several ways, while a single
violation can refer to more than one theorem. Our tool
currently supports the detection of manifestations of three
violations that may occur in Java applications. The identi-
fication of these violations is based upon—and consistent
with—previous work [8]–[10]. Although the current list of
violations is not exhaustive, it includes common violations
against the Normalized Systems design theorems and covers
all four design theorems. This list can be further expanded
in the future. As such, the current list represents a lower
bound of the violations to the Normalized Systems design
theorems that exist in Java applications. We will now discuss
these violations and how they are detected by each module
in more detail.

A. Import Multiple Concerns Violation

A first violation occurs when a class combines more than
one concern by using the import statements in Java. Such a
class violates the separation of concerns theorem and there-
fore results in combinatorial effects. Java classes can import
and use functionality from external technology environments
and packages by using the import instruction. This may
introduce dependencies on these external technologies in an
implicit way since each of these technologies can change
independently in the future. Consider a specific concern
that is combined with one or more other concerns in N
different classes. If this concern changes in the future (e.g.,
when it is decided to use an alternative external technology),

50

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 1. Tool Architecture

Original javadoc task for iText:

<javadoc
destdir="${itext.docs}"
author="true" maxmemory="128m"
private="true">

Modified javadoc task for iText:

<javadoc
destdir="${itext.docs}"
author="true" maxmemory="128m"
private="true"
doclet="ua.mis.NSTVdoclet.main.NSTVdoclet"
docletpath="nstvdoclet.jar">

Figure 2. Example of modification of ant build file

then this change has an impact on N different classes.
Since N becomes unbounded over time, the impact of this
change will increase over time as well, thereby resulting in
a combinatorial effect. The separation of concerns design
theorem requires that each change driver or concern is
isolated from other concerns, so that each concern can evolve
independently. This implies that each module should contain
only one change driver [8]–[10]. As a result, a class should
not combine two or more concerns.

The Import Multiple Concerns Violation module deter-
mines which concerns are used by each class based on
the imported libraries (using the import statements in
Java). We consider that the import statements in Java may
provide a rough, but useful indication of which external
technologies are used by a specific class, and therefore
which concerns are addressed in the class. Before running
the analysis, the researcher must define which concerns
are present in the application, as well as which libraries
fall under each concern. Depending on the application, one
concern could, for example, be the use of the Java Swing
packages for the graphical user interface, while a second
concern could be the use of the Java JDBC packages to
support database access. According to the separation of
concerns theorem, both concerns should not be combined
in a single class. This is consistent with the concept of
multi-tier architectures. Another concern could be the use

of another application, such as Cocoon to provide a web-
based user interface. Based on this definition of concerns, it
is determined how many different concerns are combined in
each class. The researcher must define these concerns with
care to ensure that the libraries correspond to the various
concerns in the application as much as possible, in order
to minimize the number of false positives identified by this
module.

B. Primitive in Interface Violation

The second violation occurs when the interface of a
method contains a primitive data type or a class of the type
java.lang.String. Such a method violates both the
data version transparency and action version transparency
theorem and therefore results in combinatorial effects. Con-
sider a method that is called by N other methods in the
application and that contains one or more primitive data
types or the java.lang.String class in its interface.
If the functionality of this method is extended in the future,
this extra functionality may require additional information to
be sent to the method. However, the data that is sent to this
method is not data version transparent. Since primitive data
types or the java.lang.String class can only contain
single values, it is not possible to send additional information
without having an impact on this data structure. The method
is not action version transparent either since the interface of
the method will need to change to accept this additional
information. It is therefore not possible to upgrade to a new
version of the method without having an impact on the rest
of the system. Hence, if additional data is needed by this
method, this will have an impact on the N methods that
call this method. In each of these N methods, the additional
data needs to be initialized and the method call has to be
adapted according to the modified interface of the method.
Since N becomes unbounded over time, the impact of this
change will increase over time as well, thereby resulting in
a combinatorial effect. To resolve this issue, it is better to
encapsulate the method parameters in a dedicated object with
a default constructor. This constructor assigns neutral values
to each of the parameters, which can be overwritten by
calling the appropriate set methods. Future changes would

51

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



then have no effect on methods calling the method [8]–[10].
We further illustrate this principle with a practical exam-

ple. Consider a method that allows the user to search for
a specific string in a set of files and that takes a single
parameter of the type java.lang.String that specifies
the text to search for. Next, assume that the developers want
to extend the search functionality in the future by allowing
users to make use of regular expressions. In other words,
the method should support searching based on normal text
as well as regular expressions. In that case, the interface of
the method should be extended with a boolean variable
to indicate whether the string is a regular expression. This
will, however, affect all other methods calling the search
method. The data is not data version transparent since its
structure does not allow to send additional data without any
additional changes to the system. In addition, the method
is not action version transparent since the interface of the
method will change, and it is not possible to upgrade to
a new version of the method without having an impact on
the rest of the system. One could argue that overloading
could be used in this case, by having one method with
as interface (java.lang.String) and another method
with as interface (java.lang.String, boolean).
However, this solution also has limitations with respect to
evolvability since this approach is only feasible when the
unique interface of the method can be guaranteed. If the
same method would be extended with the functionality to
make the search case-sensitive or not, another method with
as interface (java.lang.String, boolean) would
need to be added. However, this is impossible, since a
method with this signature has already been defined. To
resolve this issue, it is better to encapsulate the search
parameters in a new class SearchConfiguration that
can be extended with additional fields as new functionality
is added to the search method. The default constructor
of the SearchConfiguration object should assign a
neutral value to newly added parameters (e.g., to indicate
that a search string is not a regular expression). By calling
the appropriate set method, the default settings can be
overwritten. Future changes would then have no effect on
methods calling the search method. This solution would
be compliant with the data and action version transparency
theorems.

The Primitive in Interface Violation module therefore
inspects the interface of each non-private method and deter-
mines whether the interface includes one or more primitive
data types or the java.lang.String class.

C. Custom Exception Violation

The third violation occurs when a method throws a
custom exception (i.e., an exception that is not part of the
default Java environment). The Java programming language
provides the exception mechanism to handle errors that
occur during the execution of a method. If an exception is

thrown by a method, the calling method must process this
error, either by catching and handling the error internally,
or by throwing the exception further upward the stack. This
constitutes a violation to the separation of states theorem and
therefore results in combinatorial effects. Consider a method
that is called by N different methods in the application. If
the developer working on this method decides to introduce
a new error state by having the method to throw a new
exception, then this has an impact on the N methods that call
this method, since they are forced by the Java environment
to either catch or throw this exception further upward the
stack. Hence, the error handling takes place in N different
places. Since N becomes unbounded over time, the impact
of this change will increase over time, thereby resulting in a
combinatorial effect. Instead, the error state should be stored
and error handling should be performed by a separate and
dedicated module [8]–[10].

The Custom Exception Violation module therefore
determines how many custom exceptions are thrown
by all methods. We consider the use of standard
Java exceptions (e.g., java.lang.Exception and
java.io.IOException) to be acceptable, since they are
related to the background technology being used. Even in
this case, the use of these exceptions should be kept to a
minimum. The use of custom exceptions should be avoided
since such errors should be handled in a stateful way.

V. CASE STUDY

We now discuss the evaluation phase of the design
research process. In order to evaluate our tool, we ana-
lyzed the source code of a number of Java applications.
These applications needed to satisfy three criteria. First,
we focused on Java applications that are distributed under
an open source license since this provides us with free
access to the source code of these application. Second, the
applications should represent a moderate development effort.
Applications should not be too small to be disregarded as
a toy example, but should also not be too large and too
complex to complicate the evaluation of our tool. Third, we
preferred to select applications that are quite popular and
widely adopted to use applications that are used in real-life
settings, rather than laboratory applications.

Based on these criteria, we selected four applications: (1)
Apache Lucene, a fully-fledged text search engine; (2) jEdit,
a programmers’ text editor that supports a large number of
programming languages; (3) JabRef, a bibliography refer-
ence manager that is used to edit BibTeX files; and (4) iText,
a library that can be used by applications to facilitate the
creation and manipulation of PDF documents. Details on
the source code of these four open source software products
can be found in Table I.

It must be noted that these four programs represent rather
simple applications since they are written from scratch in
Java, use a limited number of external libraries, and are

52

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Table I
DETAILS OF SELECTED OPEN SOURCE SOFTWARE PRODUCTS

Name Version Classes Methods LOC
Apache Lucene 3.0.0 367 2,744 81,290
jEdit 4.3.1 477 1,980 163,015
JabRef 2.5 980 5,988 98,982
iText 5.0.5 583 5,663 140,883

not based on advanced frameworks. As a result, they do
not exhibit the complexity of contemporary information
systems, on which the Normalized Systems theory focuses.
However, our aim in this paper is on exploring the feasibility
of building a tool that is able to automatically identify
violations to these Normalized Systems design theorems
in the source code of applications. Our previous research
has shown that even small applications are likely to contain
several violations to the Normalized Systems theorems [1].
Therefore, applying our tool to analyze a complex informa-
tion system is likely to result in a very large set of violations.
Interpreting these results would complicate the evaluation of
our tool. As a result, the four applications selected above are
suitable for our purpose.

It is important to note that we do not want to make any
claims with respect to the quality of the four applications in
our case study. Instead, we want to perform an evaluation
of our tool and its ability to automatically identify mani-
festations of violations to the Normalized Systems design
theorems.

A. Import Multiple Concerns Violations

As mentioned in Section IV-A, we must first specify
which concerns are present in a given application before
running the analysis with NSTVdetect. To this end, we
developed a shell script to extract a list of the unique package
names that were imported by all classes of a given applica-
tion from the temporary database created by NSTVdoclet.
The task of the researcher is then to group these import
statements in a set of concerns. The concerns that were
identified for each of the four applications in our case
study—as well as the packages that relate to each concern—
are displayed in Table II. In this analysis, all packages
belonging to the application itself were not considered to
be a separate concern. In the case of jEdit, for example,
all packages belonging to the org.gjt.sp.jedit.*
package were considered part of the application itself, and
not a separate concern.

A summary of the output from the Import Multiple Con-
cerns Violations module is shown in Table III. According
to the separation of concerns theorem, a class should not
address more than one concern. The results from our analysis
show a relatively low to moderate number of manifestations
of this violation. The percentage of classes that are compliant
with the separation of concerns theorem is (in decreasing
order) 98.9% (363 out of 367 classes) for Lucene, 85.6%

(499 out of 583 classes) for iText, 82.8% (395 out of 477
classes) for jEdit, and 63.9% (626 out of 980 classes) for
JabRef. Lucene therefore performs very well, although it
must be noted that only three concerns were identified for
this application. JabRef has the highest number of violations
with 36.1% of its classes, but also has the largest number of
concerns. It therefore appears that there may be a relation-
ship between the number of concerns that are identified for
an application and the number of violations to the separation
of concerns theorem. Overall, we can conclude that the
separation of concerns theorem is rather to very well adhered
to in all four applications.

A more detailed analysis showed that in those classes in
which more than two concerns are combined, the Java IO
concern is frequently combined with other concerns, such as
Java Swing (e.g., JabRef and jEdit) or Java Net (JabRef and
iText). Although most of these concerns are related to the
default Java SDK API, it does create dependencies on differ-
ent packages within the API. This data also suggests that file
system functions (Java IO and Java Net) are combined with
user interface functions (Java Swing). This may neglect the
concept of multi-tiers and would therefore require attention
in a further screening of the source code.

B. Primitive in Interface Violation

A summary of the output of the Primitive in Interface
module is shown in Table IV. It can be seen that the
percentage of methods that do not contain any manifestations
of this violation and that do not contain any primitive data
types or the java.lang.String class in their interface is
(in decreasing order) 69.6% (4170 out of 5988) for JabRef,
61.7% (1693 out of 2744) for Lucene, 57.1% (1130 out of
1980) for jEdit, and 55.6% (3146 out of 5663) for iText.
However, these percentages were calculated by including
those methods that do not take any parameters and therefore
require no input. If we exclude those methods from our
analysis, the percentage of valid methods is 46.7% (1592
out of 3410) for JabRef, 36.0% (591 out of 1642) for
Lucene, 31.8% (1172 out of 3689) for iText, and 30.6%
(374 out of 1224) for jEdit. As could be expected, this
lowers the proportion of valid methods considerably. Since
these numbers are rather small, it can be concluded that the
data and action version transparency theorems are not well
adhered to in all four products.

C. Custom Exception Violation

A summary of the output of the Custom Exception
Violation module is shown in Table V. As already men-
tioned in Section IV-C, we considered the use of stan-
dard Java exceptions to be acceptable, since they repre-
sent the background technology being used. This means
that methods throwing java.lang.Exception and
java.io.IOException exceptions were not considered
a violation. The results show that the percentage of methods

53

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Table II
LIST OF CONCERNS IDENTIFIED IN THE SELECTED APPLICATIONS

Application Concern Description
Lucene Java IO java.io.*

Java Net java.net.*
Java Security java.security.*

jEdit Java Swing java.awt.*, javax.swing.*
Java Beans java.beans.*
Java IO java.io.*, java.nio.*
Java Net java.net.*
Java Security java.security.*
Java XML org.xml.sax.*
Microstar com.microstar.*

JabRef Java Swing java.awt.*, javax.swing.*
Java Beans java.beans.*
Java IO java.io.*, java.nio.*
Java Net java.net.*
Java SQL java.sql.*
Java XML javax.xml.*, org.w3c.dom.*, org.xml.sax.*
Java Plugin org.java.plugin.*
antlr antlr.*, org.antlr.*
glazedlists ca.odell.glazedlists.*
jgoodies com.jgoodies.*
ritopt gnu.dtools.ritopt.*
microba com.michaelbaranov.microba.*
jempbox org.jempbox.*
pdfbox org.pdfbox.*

iText Java Swing java.awt.*, javax.swing.*
Java IO java.io.*, java.nio.*
Java Net java.net.*
Java Security java.security.*
Bouncy Castle org.bouncycastle.*
dom4j org.dom4j.*, org.w3c.dom.*, org.xml.sax.*

Table III
IMPORT MULTIPLE CONCERNS VIOLATIONS

Number of
Application Concerns Classes Percentage
Lucene 0 110 30.0%

1 253 68.9%
2 4 1.1%

Total: 367 100.0%
jEdit 0 174 36.5%

1 221 46.3%
2 59 12.4%
3 12 2.5%
4 11 2.3%

Total: 477 100.0%
JabRef 0 306 31.2%

1 320 32.7%
2 228 23.3%
3 86 8.8%
4 34 3.5%
5 6 0.6%

Total: 980 100.0%
iText 0 273 46.8%

1 226 38.8%
2 74 12.7%
3 7 1.2%
4 3 0.5%

Total: 583 100.0%

that do not throw any custom exceptions is (in decreasing
order) 97.3% (5828 out of 5988) for JabRef, 95.4% (5401
out of 5663) for iText, 94.8% (2600 out of 2744) for Lucene,

and 92.1% (1823 out of 1980) for jEdit. Interestingly, if
we only consider those methods that throw at least one
exception, it shows that the percentage of valid methods is
81.2% (621 out of 765) for Lucene, 69.5% (364 out of 524)
for JabRef, 61.2% (414 out of 676) for iText, and 32.9% (77
out of 234) for jEdit. As could be expected, this lowers the
percentage of valid methods. This decrease is most notable
for jEdit which appears to make quite extensive use of
custom exceptions. Overall, a rather mixed image therefore
emerges with respect to the adherence to the separation of
states theorem.

VI. DISCUSSION

Although the tool to automatically detect violations to the
Normalized Systems design theorems is still a prototype,
our evaluation has shown that there is much potential for
such automated analysis. Compared to our original study [1],
we evaluated our tool by analyzing the source code of four
applications, instead of a single application. This provides
more trust in the fact that the tool can be applied to a large
set of software programs. Our evaluation has also shown
that our NSTVdoclet tool can be easily integrated with
javadoc, and offers sufficient information for identifying
manifestations of violations to the Normalized Systems
design theorems. Much information about the structure of
software can already be derived from the API information
obtained by javadoc. Focusing on the API-level has

54

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Table IV
PRIMITIVE IN INTERFACE VIOLATIONS

All methods Methods with parameters
Violationsa Method Method

Application per Method Count Percentage Count Percentage
Lucene 0 1693 61.7% 591 36.0%

1 719 26.2% 719 43.8%
2 167 6.1% 167 10.2%
3 103 3.8% 103 6.3%
4 39 1.4% 39 2.4%
5 12 0.4% 12 0.7%
6 3 0.1% 3 0.2%
7 7 0.3% 7 0.4%
8 1 0.0% 1 0.1%

Total: 2744 100.0% 1642 100.0%
jEdit 0 1130 57.1% 374 30.6%

1 535 27.0% 535 43.7%
2 187 9.4% 187 15.3%
3 60 3.0% 60 4.9%
4 50 2.5% 50 4.1%
5 9 0.5% 9 0.7%
6 7 0.4% 7 0.6%
7 2 0.1% 2 0.2%

Total: 1980 100.0% 1224 100.0%
JabRef 0 4170 69.6% 1592 46.7%

1 1334 22.3% 1334 39.1%
2 294 4.9% 294 8.6%
3 132 2.2% 132 3.9%
4 34 0.6% 34 1.0%
5 18 0.3% 18 0.5%
6 6 0.1% 6 0.2%

Total: 5988 100.0% 3410 100.0%
iText 0 3146 55.6% 1172 31.8%

1 1622 28.6% 1622 44.0%
2 452 8.0% 452 12.3%
3 157 2.8% 157 4.3%
4 150 2.6% 150 4.1%
5 52 0.9% 52 1.4%
6 56 1.0% 56 1.5%
7 14 0.2% 14 0.4%
8 11 0.2% 11 0.3%
9 3 0.1% 3 0.1%

Total: 5663 100.0% 3689 100.0%
a Number of primitive and java.lang.String data types used in

interface

several advantages. First, the Normalized Systems approach
is concerned with the modular structure of software. Hence,
inspecting the structure of classes and the interface of
methods is consistent with this view. Second, the API-level
represents a medium-level view on the modular structure of
software. The package level can considered to be too high-
level, as much information is abstracted away on this level.
Conversely, considering the actual source code level may be
too low-level.

By applying our tool to four different open source soft-
ware applications, we were also able to determine how these
applications differ in their adherence to the Normalized
Systems design theorems. The results show that there is
considerable variety in how well the different theorems are
adhered to. Our data showed that the separation of concerns
theorem—a well-accepted principle by practitioners—was
rather well to very well adhered to by all four applications.

The data and action version transparency theorems were,
however, not well adhered to by the four applications since
many methods made use of primitive data types in their in-
terface. A rather mixed view was present with the separation
of states theorem, where some applications made relatively
little use of custom exceptions (e.g., Lucene), while other
applications made rather intensive use of them (e.g., jEdit).
Such violations are not fatal, but identify potential sources
for combinatorial effects that limit the evolvability of the
software. Given some limitations of the tool, we do not
intend our results to be an assessment of the evolvability of
the four applications. Instead, the aforementioned analysis
was meant to be an evaluation of the tool.

The identification of violations by our tool was based on
the Normalized Systems theory. The Normalized Systems
theory states that in order to guarantee evolvability, all com-
binatorial effects must be eliminated from the source code of

55

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Table V
CUSTOM EXCEPTION VIOLATIONS

All methods Methods with exceptions
Violationsa Method Method

Application per Method Count Percentage Count Percentage
Lucene 0 2600 94.8% 621 81.2%

1 134 4.9% 134 17.5%
2 5 0.2% 5 0.7%
3 5 0.2% 5 0.7%

Total: 2744 100.0% 765 100.0%
jEdit 0 1823 92.1% 77 32.9%

1 154 7.8% 154 65.8%
2 3 0.2% 3 1.3%

Total: 1980 100.0% 234 100.0%
JabRef 0 5828 97.3% 364 69.5%

1 124 2.1% 124 23.7%
2 16 0.3% 16 3.1%
3 20 0.3% 20 3.8%

Total: 5988 100.0% 524 100.0%
iText 0 5401 95.4% 414 61.2%

1 248 4.4% 248 36.7%
2 13 0.2% 13 1.9%
3 1 0.0% 1 0.1%

Total: 5663 100.0% 676 100.0%
a Number of custom exceptions thrown

applications. To realize this, the Normalized Systems theory
posits four theorems that must be adhered to. The violations
detected by our tool are based on these four theorems. As a
result, the violations identified by our tool represent potential
issues with respect to the evolvability of the application. The
seriousness of these violations depends on the changes that
will be applied to the software in the future. If a violation
is present in a certain part of the application that will not
change in the future, then the violation will have no impact
on the evolvability of the software. For instance, when an
interface of a method contains a primitive data type, but the
interface will remain constant over time, then this violation
does not impact the evolvability of the software. However,
when the interface does change, it will require a modification
in all parts of the software that call this method. In that case,
a combinatorial effect is present that impacts the evolvability
of the software. For a detailed discussion of the impact of
a violation to the Normalized Systems theory, we refer the
reader to earlier work [9], [10].

Given the considerable amount—and nature—of viola-
tions to the Normalized Systems theory identified in our
case study, it seems likely that it would require much work
to resolve these issues. Given the limited availability of
resources, it is very unlikely that resolving all violations
is feasible. Instead, developers could use the output of
this tool to identify parts in the application that require
specific attention. They could then attempt to normalize
specific parts of the application, so that these parts in
themselves become stable for the future. Within each part,
however, combinatorial effects would still be allowed and
not all violations would be addressed. These results therefore
provide further empirical support for the statement that

building information systems without combinatorial effects
is extremely difficult, and that constructs of traditional
programming languages offer no protection against violating
the Normalized Systems theorems [10]. It seems unlikely
that it is feasible to fully normalize an existing application
given the limitations in time and budget available in practice.
However, the Normalized Systems approach further provides
a set of five software elements that are proven to be free
of combinatorial effects and that can be used a building
blocks for new applications [8], [10]. With those elements,
it is possible to build applications that are largely free of
combinatorial effects. As illustrated in previous work, a set
of seven complex real-life applications have been developed
in the process of refining the Normalized Systems theory
[10]. In addition, independent applications that are compliant
with the Normalized Systems theory are currently being
built by several external organizations in Belgium and The
Netherlands.

A. Lessons Learned
Based on the case study, several lessons can be learned

about the feasibility of automatically detecting violations
to the Normalized Systems design theorems. These lessons
may be useful for future versions of the tool.

First, by separating the parsing of the source code by
NSTVdoclet and the analysis by the NSTVdetect tool
in two components, it may be relatively easy to add sup-
port for additional programming languages in the future.
Evidently, other programming languages would require a
different implementation of the NSTVdoclet component
to parse the source code. The output of this component is
currently largely language-independent: information about
the source code is stored in terms of classes, methods,

56

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



and parameters. These concepts apply to all object-oriented
programming languages. The only concept that is not sup-
ported by all object-oriented programming languages is the
Java exception. Hence, the database format should provide
the possibility to support language-specific extensions. The
NSTVdetect tool can be extended with additional modules
that provide support for other programming languages. Some
existing modules, such as the Primitive in Interface Violation
module also applies for programming languages such as
C++ or C#. Other modules may only apply to a specific
set of programming languages. In that case, each module
must specify to which programming language(s) it applies,
so that the NSTVdetect component can decide whether
the module should be invoked when performing a specific
analysis.

Second, the output obtained by the tool provides us with
feedback on the current implementation of the modules
that test for manifestations of violations to the Normalized
Systems design theorems. Concerning the Import Multiple
Concerns Violation module, we have observed that appli-
cations frequently combined the Java Swing concern with
the Java IO and/or Java Net concerns. This may suggest
that input/output instructions are combined with the user
interface. However, a closer inspection of the source code
showed that this was a false positive. For example, in order
to provide icons in toolbars in the user interface, Java
Swing provides the ImageIcon class. It is common to
initialize a new object of this class by using the constructor
taking a java.net.URL object as parameter. This, for
example, allows the icon file to be part of the jar file that
contains the application. This explicitly couples the Java
Swing and Java Net concerns. To avoid this, one of the other
constructors provided by the ImageIcon class should be
used instead, for example, by sending the raw image data
as a byte array. Similar violations may occur when objects
of the class java.io.File are passed as a parameter
to a method. In future research, we may try to find ways
to automatically identify and report such instances to avoid
manual inspection.

The output also allows us to consider whether the use of
import statements is a good basis to identify concerns in an
application. On the one hand, we believe this is indeed a
quick and convenient way to identify the primary concerns
that are present in an application. The Normalized Systems
theory states that the use of an external technology always
implies a different concern that should be separated [10].
Since external technologies must be made available in Java
application through the import statement, this provides
a good way to identify concerns. On the other hand, this
method may neglect the internal structure of the application
to some extent (when different concerns are present within
the application itself), and it also leaves some room for de-
ciding on which concerns are present within the application.
This may result in false positives or false negatives in the

detection process. It may therefore be worthwhile to consider
other methods for identifying concerns within an application.

Concerning the Primitive in Interface Violation module,
we identified a large number of methods that include one or
more primitives in their interface. It appears that a manual
inspection is required to investigate whether it is worthwhile
to resolve these issues by making the data and methods
version transparent. In case the interface can be expected to
remain stable, it may not be worth the effort to encapsulate
the parameters in their own dedicated object. Neverthe-
less, developers should remain aware that not addressing
this issue can mean that additional methods may call this
method in the future, thereby leading to an increase in
combinatorial effects. It is theoretically possible that some
of the methods that include primitive data types have a
corresponding wrapper method that is version transparent
and that should be called instead of the underlying method.
In other words, it is possible that the source code includes
both a version non-transparent method and an additional
version transparent method. Our tool is currently not able to
detect such instances. However, given the large number of
manifestations of this violation found in all four applications,
it can be expected that this is not done very often. Moreover,
any non-version transparent public method can be called
by additional methods in the future, thereby leading to an
increase in combinatorial effects.

With respect to the Custom Exception Violation module,
we can easily identify those methods that throw a custom ex-
ception. Further investigation of the source code of the four
applications with respect to this issue showed that in several
cases the calling method did not do anything when a method
throws an exception, except for logging the error. However,
since this external method throws an exception, the class
that contains the calling method must import the package
containing the exception. For example, if an external method
throws the java.io.IOException, it must be imported
by the class containing the calling method. Interestingly,
this may further contribute to the Import Multiple Concerns
Violation, if that class also imports other concerns. We have
indeed noticed that several user interface classes import
the java.io.IOException class since they must be
able to react to exceptions thrown by methods of other
classes. Although we considered the use of the default Java
exceptions to be acceptable, the same reasoning applies to
custom exceptions or exceptions from external technologies.
This further emphasizes the M−N relationship between the
design theorems and violations (see Section IV).

B. Limitations

Since this tool is still a prototype, we acknowledge several
limitations with respect to our findings.

A first important limitation is that the tool currently
provides a lower bound of manifestations of violations to the
Normalized Systems design theorems. The results therefore

57

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



provide a first-cut and rough assessment of violations to
the Normalized Systems design theorems at the API-level.
This assessment can increase sensibilisation about—and give
a first impression of—the code quality of an application
with respect to evolvability. Currently, we have distin-
guished between three violations against the Normalized
Systems design theorems in Java applications. Each module
of NSTVdetect checks for manifestations of a specific
violation. All modules share a common interface and receive
an internal representation of the source code as input. The
tool can be extended in the future with new modules that
check for additional violations to the Normalized Systems
design theorems in order to detect a larger number of
violations to the Normalized Systems design theorems.

A second limitation is that there is a risk for the existence
of false positives reported by the tool. Although our experi-
ences suggest that it is feasible to automatically detect sev-
eral violations to the Normalized Systems design theorems,
it still remains necessary to perform a manual inspection of
the source code afterwards. This manual inspection provides
more insight into the seriousness of the issues identified
in the analysis. This is especially the case for the import
multiple concerns violation since the choice of how libraries
are grouped into concerns is to some extent arbitrary. For
example, the Java API can considered to be rather stable.
Hence, importing packages from several parts of the Java
API may not constitute a very large risk with respect
to combinatorial effects. A manual inspection is therefore
required to investigate whether some issues reported by the
tool are false positives. Notwithstanding the fact that some
manual work is still required, our tool significantly reduces
the effort compared to manually inspecting the code base
for violations. In addition, the tool can quickly highlight
potentially problematic parts in the source code that should
be analyzed manually with priority.

A third limitation is that the definition of which concerns
are present in the application is still to some extent arbitrary,
since the researcher must first define which concerns are
present in the application based on the import statements
that are used in the application. This approach first rises the
question as to whether the use of a library is an appropriate
indication of a concern. A concern is considered to be a
separate change driver or, in other words, a technology that
can change independently from the background technology.
The use of an external library represents the use of an
external technology and therefore always represents a differ-
ent change driver or concern. Although there may be other
concerns that do not correspond to the use of a library, our
tool is therefore able to provide at least a lower bound of the
concerns present in a given application. A second question
with respect to this approach is whether all concerns are
correctly identified. In this case study, we probably did not
select the best concerns to evaluate the evolvability of the
four applications. For example, since Java is the background

technology, it would make sense not to identify Java as
a separate concern. In the case study, we only considered
the java.lang.* and java.util.* packages to be
part of the background technology in order to identify a
larger number of concerns that would allow us to better
evaluate our tool. In case the tool would be used to assess
the evolvability of a software product, it would make sense
to only identify external technologies as a separate concern.
In addition, we have assumed that all packages related to
the application itself are part of the background technology.
For example, in the case of JabRef, all packages below
net.sf.jabref.* were ignored when creating the list
of concerns. Depending on the application being assessed,
it may be interesting to further distinguish between multiple
concerns in the application itself, to allow different parts of
the application to evolve independently.

A final issue concerns the question of how far software
developers should go in adhering to the Normalized Sys-
tems theorems. We are aware that some of these theorems,
their implications, and the violations identified by this
tool may seem rather radical at first sight. As mentioned
in Section II-B, the Normalized Systems theory uses the
assumption of unlimited systems evolution [8]–[10]. This
means that the code base of the application will continue
to increase over time. The aim of the Normalized Systems
design theorems is to eliminate all combinatorial effects.
Since combinatorial effects are very easily introduced into
the source code, very strict and clear design theorems are
required to eliminate them [8]–[10]. In this respect, the Nor-
malized Systems theory encourages software developers to
strive towards applying these theorems to the greatest extent
possible [9], [10]. In practice, some trade-off is likely to take
place to judge whether the additional effort of containing
combinatorial effects is warranted by the likelihood that
a future change would manifest itself. For example, it is
possible that it is reasonable to use primitive data types
in the interface of some methods that are not exposed to
outside applications and that can be expected not to require
additional data in the future (i.e., to have a stable interface).
Similarly, the use of custom exceptions may be appropriate
in cases when the method is unlikely to be called by other
parts of the application. However, such decisions should be
carefully considered. Developers should also be aware that
not adhering to the Normalized Systems design theorems
may have a negative impact on the future evolvability of
the software. In order to fully comply with the Normalized
Systems design theorems, at least all the violations identified
in the source code should be addressed.

Notwithstanding these limitations, we feel that this tool
can be very useful to investigate the quality of an application
at the API-level with respect to evolvability using the
Normalized Systems design theorems.

58

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



VII. CONCLUSION AND FUTURE WORK

In this paper, we have explored the feasibility to au-
tomatically identify violations to the Normalized Systems
design theorems. To this end, we developed a prototype of
a tool that is able to detect violations in Java applications
at the API-level. A case study was performed to evaluate
the tool by analyzing the source code of four open source
Java applications. A first contribution of our study is that we
have shown that it is indeed possible to detect violations to
the Normalized Systems design theorems in an automated
manner. A manual inspection should, however, still provide
more insight into the seriousness of the issues identified in
the analysis and to identify any possible false positives. A
second contribution is that we have performed an analysis
of the source code of four software applications. The results
showed that the tool can be applied to a range of software
applications and that there is considerable variety in how
well the different theorems are adhered to by various soft-
ware applications. Our results show that all four applications
adhere rather well to the separation of concerns theorem.
However, we identified a larger number of violations to
the data and action version transparency theorems. With
respect to the separation of states theorem, a rather mixed
picture emerged. It can therefore be expected that the output
of this tool will be useful to assess the current design of
applications and to identify potential limitations to their
evolvability. However, given the current limitations of our
tool, we do not want to make any claims with respect
to the quality of the four applications in our case study.
Instead, this case study provided valuable feedback that will
be used to further improve our tool. A third contribution is
that we have distinguished between three violations to the
Normalized Systems design theorems that may occur in Java
applications. Although this list is not exhaustive, our results
already show that quite a large number of manifestations
of these violations can be found in the source code of
Java applications. One of the limitations of our tool is that
it currently provides a lower bound for the existence of
violations, and is not able to detect all possible violations to
the Normalized Systems design theorems.

In future research, we intend to further develop this tool to
improve its ability to automatically detect violations to the
Normalized Systems design theorems. Our current research
efforts focus on two different topics.

First, we are are extending our list of violations to identify
a larger proportion of violations to the Normalized Systems
design theorems. Instead of the top-down approach used in
this paper (i.e., by starting from the Normalized Systems
design theorems and deriving which violations could be
found in the source code of applications), we are currently
using a bottom-up approach. This approach consists of re-
viewing the source code of a number of open source software
applications with the aim of identifying fragments of the

source code that represent manifestations of violations to one
or more of the Normalized Systems design theorems. Based
on these observations, different violations will be identified.
This approach therefore has an empirical foundation, instead
of the theoretical approach followed in this paper. For each
new violation, an additional module can be added to the
NSTVdetect tool.

Second, we are further developing the architecture under-
lying our tool. One focus area is the intermediate format
of the database that is used to save the structure of the
source code. We are currently investigating if a suitable
ontology exists that can be used to store this information
in a language-independent format, while still allowing for
language-specific features to be added. This would facilitate
the support of different programming languages by the tool.
Another area is to evaluate whether the information obtained
by javadoc is sufficient to identify the new violations that
are being discovered in our work on the previous topic.

As the tool further evolves, we will also apply our tool
to evaluate more complex information systems that incorpo-
rate various frameworks (e.g., software component models,
user-interface frameworks, and communication frameworks).
This would allow us to assess how many violations to the
Normalized Systems theory are detected in typical informa-
tion systems, compared to the rather simple projects included
in our case study.

This work should greatly facilitate the automatic identi-
fication of combinatorial effects in large-scale, real-life in-
formation systems. This tool could be used by organizations
to analyze their information systems for the manifestation
of violations to the Normalized Systems design theorems.
Based on the output of this tool, organizations can take
measures to improve the evolvability of their information
systems.

REFERENCES

[1] K. Ven, D. Van Nuffel, D. Bellens, and P. Huysmans, “The
automatic discovery of violations to the normalized systems
design theorems: A feasibility study,” in Proceedings of
the 5th International Conference on Software Engineering
Advances (ICSEA 2010), August 22–27, 2010, Nice, France,
J. G. Hall, H. K. Kaindl, L. Lavazza, G. Buchgeher, and O. T.
Takaki, Eds. Los Alamitos, CA: IEEE Computer Society,
2010, pp. 38–43.

[2] D. J. Teece, G. Pisano, and A. Shuen, “Dynamic capabilities
and strategic management,” Strategic Management Journal,
vol. 18, no. 7, pp. 509–533, 1997.

[3] K. M. Eisenhardt and J. A. Martin, “Dynamic capabilities:
What are they?” Strategic Management Journal, vol. 21, no.
10/11, pp. 1105–1121, 2000.

[4] S. Neumann and L. Fink, “Gaining agility through IT per-
sonnel capabilities: The mediating role of IT infrastructure
capabilities,” Journal of the Association for Information Sys-
tems, vol. 8, no. 8, pp. 440–462, 2007.

59

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[5] V. Sambamurthy, A. Bharadwaj, and V. Grover, “Shaping
agility through digital options: Reconceptualizing the role of
information technology in contemporary firms,” MIS Quar-
terly, vol. 27, no. 2, pp. 237–263, jun 2003.

[6] L. Fink and S. Neumann, “Exploring the perceived business
value of the flexibility enabled by information technology
infrastructure,” Information & Management, vol. 46, no. 2,
pp. 90–99, mar 2009.

[7] J. L. Zhao, M. Tanniru, and L.-J. Zhang, “Services computing
as the foundation of enterprise agility: Overview of recent
advances and introduction to the special issue,” Information
Systems Frontiers, vol. 9, no. 1, pp. 1–8, 2007.

[8] H. Mannaert and J. Verelst, Normalized Systems—Re-creating
Information Technology Based on Laws for Software Evolv-
ability. Kermt, Belgium: Koppa, 2009.

[9] H. Mannaert, J. Verelst, and K. Ven, “The transformation of
requirements into software primitives: Studying evolvability
based on systems theoretic stability,” Science of Computer
Programming, in press. DOI: 10.1016/j.scico.2010.11.009.

[10] ——, “Towards evolvable software architectures based on
systems theoretic stability,” Software: Practice and Experi-
ence, in press. DOI: 10.1002/spe.1051.

[11] M. Lehman, “Programs, life cycles, and laws of software
evolution,” Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–
1076, Sept. 1980.

[12] L. Belady and M. M. Lehman, “A model of large program
development,” IBM Systems Journal, vol. 15, no. 3, pp. 225–
252, 1976.

[13] M. Lehman and J. Ramil, “Rules and tools for software
evolution planning and management,” Annals of Software
Engineering, vol. 11, pp. 15–44, 2001.

[14] D. Garlan and D. E. Perry, “Introduction to the special issue
on software architecture,” IEEE Transactions on Software
Engineering, vol. 21, no. 4, pp. 269–274, 1995.

[15] R. Bahsoon and W. Emmerich, “Evaluating software architec-
tures: Development, stability, and evolution,” in Proceedings
of ACS/IEEE International Conference on Computer Systems
and Applications, 2003.

[16] M. Ali Babar, L. Zhu, and R. Jeffery, “A framework for
classifying and comparing software architecture evaluation,”
in Proceedings Australian Software Engineering Conference
(ASWEC), 2004, pp. 309–318.

[17] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson,
and J. Carriere, “The architecture tradeoff analysis method,”
in Proceedings of the Fourth IEEE International Conference
on Engineering Complex Computer Systems (ICECCS’98),
1998.

[18] R. Kazman, G. Abowd, L. Bass, and M. Webb, “SAAM:
A method for analyzing the properties of software architec-
tures,” in Proceedings of the 16th International Conference
on Software Engineering, 1994, pp. 81–90.

[19] M. M. Lehman, “Approach to a theory of software process
and software evolution: Position paper,” in FEAST 2000
Workshop, Imperial College, London, July 10–12, 2000, 2000.

[20] H. Mannaert, J. Verelst, and K. Ven, “Exploring the concept
of systems theoretic stability as a starting point for a unified
theory on software engineering,” in Proceedings of the Third
International Conference on Software Engineering Advances
(ICSEA 2008), Sliema, Malta, October 26-31, 2008, H. Man-
naert, T. Ohta, C. Dini, and R. Pellerin, Eds. Los Alamitos,
CA: IEEE CS Press, 2008, pp. 360–366.

[21] ——, “Exploring concepts for deterministic software engi-
neering: Service interfaces, pattern expansion, and stability,”
in International Conference on Software Engineering Ad-
vances, Cap Esterel, France, Aug. 25–31, 2007.

[22] ——, “Towards rules and laws for software factories and
evolvability: A case-driven approach,” in International Con-
ference on Software Engineering Advances, Tahiti, French
Polynesia, Nov. 1–2, 2006.

[23] D. L. Parnas, “On the criteria to be used in decomposing
systems into modules,” Communications of the ACM, vol. 15,
no. 12, pp. 1053–1058, 1972.

[24] D. Van Nuffel, H. Mannaert, C. De Backer, and J. Verelst,
“Towards a deterministic business process modelling method
based on normalized systems theory,” International Journal
on Advances in Software, vol. 3, no. 1/2, pp. 54–69, 2010.

[25] J. Holmström, M. Ketokivi, and A.-P. Hameri, “Bridging
practice and theory: A design science approach,” Decision
Sciences, vol. 40, no. 1, pp. 65–87, February 2009.

[26] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatter-
jee, “A design science research methodology for information
systems research,” Journal of Management Information Sys-
tems, vol. 24, no. 3, pp. 45–77, 2007.

[27] S. T. March and G. F. Smith, “Design and natural science
research on information technology,” Decision Support Sys-
tems, vol. 15, no. 4, pp. 251–266, 1995.

[28] A. Newell and H. Simon, Human Problem Solving. Engle-
wood Cliffs, NJ: Prentice-Hall, 1972.

[29] H. A. Simon, The Sciences of the Artificial, 3rd ed. Cam-
bridge, Massachusetts: MIT Press, 1996.

[30] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design
science in information systems research,” MIS Quarterly,
vol. 28, no. 1, pp. 75–105, 2004.

[31] A. Hevner and S. Chatterjee, Design Research in Informa-
tion Systems: Theory and Practice, ser. Integrated Series in
Information Systems. Springer, 2010, vol. 22.

60

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


