
401

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Proposal of a New Compression Scheme of Medium-Sparse Bitmaps

Andreas Schmidt∗†, Daniel Kimmig∗, and Mirko Beine†
∗ Institute for Applied Computer Science
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
Email: {andreas.schmidt, daniel.kimmig}@kit.edu

† Department of Informatics and Business Information Systems,
Karlsruhe University of Applied Sciences

Karlsruhe, Germany
Email: andreas.schmidt@hs-karlsruhe.de, bemi0029@hs-karlsruhe.de

Abstract—In this paper, we present an extension of the
WAH algorithm which is currently considered to be one of the
fastest and most CPU-efficient bitmap compression algorithms
available. The algorithm is based on run-length encoding (RLE)
and its encoding/decoding units are chunks of the processor’s
word size. The fact that the algorithm works on a blocking
factor which is a multiple of the CPU word size makes the
algorithm extremely fast, but also leads to a bad compression
ratio in the case of medium-sparse bitmaps (1% - 10%), which
is what we are mainly interested in. A recent extension of the
WAH algorithm is the PLWAH algorithm that has a better
compression ratio due to piggybacking trailing words, looking
“similar” to the previous fill-block. The interesting point here
is that the algorithm is also described to be faster than the
original WAH version under most circumstances, even though
the compression algorithm is more complex. Based on this
observation, we extended the concept of the PLWAH algorithm
to allow so-called “polluted blocks” to appear not only at
the end of a fill-block, but also multiple times inside. This
leads to much longer fills and, as a consequence, to a smaller
memory footprint, which again is expected to reduce the overall
processing time of the algorithm when performing operations
on compressed bitmaps.

Keywords – Compressed bitmaps; WAH algorithm; RLE;
CPU memory gap

I. INTRODUCTION

One of the main reasons for the work reported here is
the increase of the CPU memory gap [1] over the last
years. In the context of database applications, processors
nowadays are able to process data much faster than the data
can be delivered from the main memory to the processor.
In many database applications this leads to a situation
where the processor(s) spend(s) considerable time waiting
for processable data. For this reason, modern processors are
equipped with additional cache memory hierarchies which
are placed on the processor itself to allow for a much faster
access to memory. Accessing a data item that is present
in the first-level cache is up to two orders of magnitudes
faster than accessing a data item residing in main memory
only. Techniques like cache-conscious algorithms [2], [3] or
special memory layouts like in column store databases allow

for further optimisations to minimise the waste of processor
time.

A. Column Stores

In a database system, relations (rows in a database table)
are typically stored together physically. This is illustrated
in Figure 1 at the bottom left. This storage organisation
is called a row store. A column store database system by
contrast stores all values of a specific column sequentially.
This storage organisation is visualised on the lower right of
Figure 1. The information which column value corresponds
to which relation is handled by a tuple identifier (TID). The
TID could be stored explicitly with the column values, but
is generally given implicitly by the position of the value in
the column.

The main advantage of a column store is that only data
values from columns that took part in a specific query are
loaded into the CPU cache and memory1, in contrast to a
row store, where also unnecessary attributes may be loaded,
which are irrelevent in the current context. A disadvantage
of column stores, on the other hand, is that in case of updates
of existing relations or insertions of new relations, lots of
write operations at different positions have to be done, which
is more expensive compared to writing data at only one
physical location.

Based on the splitting of the relations along their columns,
complex predicates have to be processed on a column basis
instead of row by row. The reason for this approach is the
prefetching behaviour of modern processors. If a dataset is
requested by the CPU, not only the requested data item,
but also the content of the following memory area is copied
into the CPU cache2. As a consequence of this behaviour,
the descision whether a complex condition is fulfilled by a

1From secondary storage to main memory and also from main memory
to the CPU-cache.

2With every access to the main memory, a full cache line (8-128 Bytes)
is loaded. This has the advantage that in case of further requests to the
main memory, the requested dataset may already be in the CPU cache.

402

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ID Name Firstname date-of-birth sex

31 Waits Tom 1949-12-07 M

45 Benigni Roberto 1952-10-27 M

65 Jarmusch Jim 1953-01-22 M

77 Ryder Winona 1971-10-29 F

81 Rowlands Gena 1930-06-19 F

82 Perez Rosa 1964-09-06 F

Ro
w-
St
or
e Column-Store

31 45 65 77 81 82 Waits Benigni Jarmusch

Tom Roberto Jim

1949-12-07 1952-10-27

M M M F

Ryder Rowlands Perez

Winona Gena Rosa

1953-01-22 1971-10-29 1964-09-06

F F

31 Waits Tom 1949-12-07 M 45 Benigni

65 Jarmusch Jim

81 Rowlands Gena 1930-06-19 F

Perez Rosa 1964-09-06 F

Roberto 1952-10-27 M

1953-01-22 M

82

77 Ryder Winona 1971-10-29

F

Figure 1. Comparison of memory layouts of a row store and a column store

relation must be delayed up to the examination of the last
column.

For this reason, we need an additional datastructure,
which remembers the intermediate status of every relation
processed so far. This datastructure is called a positionlist.
A positionlist stores the tuple-ids (TIDs) of the currently
qualified relations. The processing of a complex condition
generates a positionlist for every single predicate which
contains the TIDs of the qualified relations. Afterwards, the
positionlists must be combined with and - or or-semantics.
Figure 2 illustrates this behaviour for the following query:

select id, name
from person

where birthdate < ’1960-01-01’
and sex=’F’

First, the predicates birthdate <’1960-01-01’ and
sex =’F’ must be evaluated, which results in the position-
lists PL1 and PL2. These two evaluations could also be
done in parallel. Next, an and-operation must be performed
on these two positionlists, resulting in the positionlist PL3.
As we are interested in the names of the persons that fulfil
the query conditions, we have to perform another operation,
which finally returns the entries for a column, specified by
the positionlist PL3. Positionlists store the TIDs in ascending
order without duplicates. For this reason, the typical and/or
operations can be performed very fast. The complexity for
both operations is O(∥Pl1∥+∥Pl2∥). Furthermore, the two
most important operations and and or can be performed
as bitwise logical operations by utilizing the corresponding
primitive CPU commands. By exploiting bit-level paral-
lelism, these operations can be performed extremely fast;
with every CPU command, 32 or 64 TIDs (depending on the
processor architecture) can be processed. If the positionlists
are sparse (meaning we have only a small number of bits
set), the underlying bitmap could be compressed easily
using run-length encoding (RLE) [4]to further reduce the
memory that is required to store the data structure. The main

advantage of RLE is that compression and decompression
can be carried out very fast compared to other compression
methods. Furthermore, by using specialised algorithms, the
and- and or-operations can be performed directly on the
compressed lists, which improves the performance even
further.

name

Waits
Begnini

Jarmusch

Ryder

Rowlands

Perez

birthdate

1949-12-07

1952-10-27

1953-01-22

1971-10-29
1930-06-19

1964-09-06

sex

 M
 M

 M

 F

 F

 F

PL2

4

6

5

PL1

1

3

5

2

sex=’F’birthdate < ’1960-01-01’

PL3

5

and

name

Rowlands

Figure 2. Processing of a query with positionlists

B. Run-Length Encoding

The basic concept of RLE is that for consequtive, identical
data elements, only one data element is stored, along with

403

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the number of consecutive occurrences. Such a consecutive
sequence of identical data elements is called a run, and
the number of occurrences is called the run-length. RLE
is suitable, if many of such runs can be found in a stream
of data. Due to these simple basics, compression and de-
compression can be implemented rather easily compared
to more sophisticated techniques like LZ77 [5]. This is an
important advantage as because of this simplicity, bitwise
logical operations can be carried out without the need to
decompress the bitmaps participating in a query.

Figure 3 gives a short example of the application of RLE
to a character string.

The rest of the paper is organised as follows. In the
next section, we present related work that has been done
in the field of bitmap compression. Particularly, we describe
the main concepts of the well-known Word-Aligned Hybrid
(WAH) [6] algorithm and a recent extension of it, the
Position List Word-Aligned Hybrid algorithm [7]. In Section
III, we present a new compression scheme that is also based
on the WAH algorithm, but introduces a new fill type that is
capable of handling “polluted” runs of bits, i.e., runs that
contain mostly of identical bits. We explain our concept
using an example and discuss possible variations of our
scheme.

In Section IV, we discuss the results of different experi-
ments performed on synthetic bitmaps to analyse factors that
influence the behaviour of our compression scheme.

Our paper will be completed by a short summary and a list
of future work that will be tackled once the implementation
of our algorithm will be available.

II. RELATED WORK

Apart from their application in the context of positionlists,
bitmaps also play an important role in answering multi-
dimensional queries in huge datasets. The main idea here
is that you have a bitmap for every distinct value of a
column [8], [9], [10]. Similar to the example presented
earlier, a set bit at position n of a bitmap indicates that a
dataset has the specific value at this position. The result set
(the TIDs of the relations that match the query criteria) of a
multi-dimensional query is then the result of the appropriate
and or or operations on the bitmaps. In this case, the bitmaps
represent a special index structure for fast multi-dimensional
query processing. This is a very well-known scientific field
and a lot of literature as well as implementations of concrete
algorithms, i.e., [6] can be found.

The problem in finding a suitable representation form and
appropriate algorithms for our positionlist can be mapped
onto solutions for multi-dimensional query processing.

The currently fastest algorithm for bitmap operations
are based on the word-aligned hybrid (WAH) compression
algorithm [11]. The main characteristic of this algorithm is

that it is very CPU-efficient, but leads to a bad compression
factor in case of selectivities of 1% and above.

As the algorithm already is a few years old and the CPU
memory gap is still growing, a difference of up to two orders
of magnitude exist in accessing the CPU cache instead of the
main memory. Our goal is to develop a new algorithm which
does a better job in compressing bitmaps, with selectivities
between 0.01% and 10%, but is still IO-bound to further
benefit from the increasing CPU memory gap as times goes
on.

A. The Word-Aligned Hybrid Algorithm

The WAH algorithm is considered to be one of the fastest
bitmap compression algorithms when it comes to the perfor-
mance of bitwise logical operations on compressed bitmaps.
The main reasons for its efficiency are the simplicity of the
compression scheme and the word alignment requirement
[12]: the size of WAH data units is determined by the word
size of the underlying computer architecture, making WAH
very CPU-efficient.

The scheme distinguishes between two types of blocks:
literal words and fill words. A literal word stores a heteroge-
neous sequence of bits (i. e. a sequence that contains a mix
of set bits and unset bits). A fill word encodes consecutive,
homogeneous sequences of bits (i.e., where all bits have
the same value). The most significant bit (MSB) of a word
is used to distinguish between a fill word(1) and a literal
word(0). In case of a CPU word size of 32, a literal word can
thus store 31 bits (hereinafter, we will focus, without loss of
generality, on the 32-bit version of the algorithm). Fill words
can encode sequences of consecutive either set or unset bits,
so one more bit is needed to distinguish a 0-fill word from
a 1-fill word (also called the fill bit). This leaves 30 bits
to encode consecutive homogeneous sequences of bits. This
number is called the fill length. As WAH imposes the word
alignment requirement, the fill length does not describe the
total length of such a sequence in bits. Instead, the fill length
resembles a multiple of 31-bit-sized, consecutive groups that
have the same value. For example, a fill word with a fill
length of 2 represents two consecutive blocks, and each
block, when decompressed, has a size of 31 bits.

Figure 4 shows the compression of a bitmap of 217
bits (first box). First, the uncompressed bitmap is divided
into equidistant parts of 31 bits (second box). Each part is
classified as fill or literal (third box). Finally, consecutive
fills with the same bit value are combined to single fills
with a corresponding fill length (fourth box).

Figure 5 shows the binary representation of the com-
pressed bitmap from Figure 4. The MSB defines the block
type: a 1 (fill) at the beginning of the first, third, and fifth
word, and a 0 (literal) for all the other words. In case of a
fill, the second bit defines the proper fill type; as we have
0-fills only, all the second MSBs in the fill words are also set
to 0. The remaining bits of each fill word are used to encode

404

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

AAAAAAAAAA BBBBBBBB AAAA BBBBBBBBBBBBBBBBBBBB AAAAAAAAAAA

10A 8B 4A 20B 11A

Figure 3. Example of run-length-encoded compression

0..010..010..010..0
50 x 0 63 x 080 x 0

 217 bits

31 x 0 9 x 0

0..0 0..01 1
19 x 0

0..0
11 x 0

0..0
31 x 0

0..0
31 x 0

0..0
 7 x 0

0..0
23 x 0

0..0
31 x 0

0..0
21 x 0

0..0

21 x 0

1

literal literal literal0-fill 0-fill0-fill 0-fill

literal literal0-fill(1) 0-fill(2) 0-fill(1)literal

Figure 4. Bitmap compression with WAH

the fill length. Both the header bits and the fill lengths are
highlighted in grey.

0-fill(1): 10 000000 00000000 00000000 00000001

literal : 00 000000 00000000 00001000 00000000

0-fill(2): 10 000000 00000000 00000000 00000010

literal : 00 000000 10000000 00000000 00000000

literal : 00 000000 00100000 00000000 00000000

0-fill(1): 10 000000 00000000 00000000 00000001

Figure 5. Binary representation of the WAH example in Figure 4

The drawback of this algorithm is that in case of medium-
spare bitmaps, the fills are very short, as every single
“pollution”3 causes a running fill to terminate and thus leads
to a full literal block. The switch from a fill to a literal (and
back to a fill) block is an expensive job in terms of memory.

B. Position-List-Word-Aligned-Hybrid Algorithm
PLWAH is a modified WAH compression scheme that

exceeds over WAH in terms of both compression efficiency
and the performance of bitwise logical operations. It is based
on the observation that in many cases, most of the bits that
are available to encode the length of a fill are never needed.
PLWAH uses some of these otherwise wasted bits to hold
a positionlist4. This positionlist is then used to encode a

3pollutionn refers to a single wrong bit
4This positionlist must not be mixed up with the positionlists in column

stores. Here, the positionlist specifies places of skipped bits.

slightly polluted word that immediately follows a fill word.
So, for example to hold the information about a 32-bit

literal word that differs in only one 1 bit from a fill word,
5 bits are needed to describe the position of this wrong bit
(25 = 32)5.

0..010..010..010..0
50 x 0 63 x 080 x 0

 217 bits

31 x 0 9 x 0

0..0 0..01 1
19 x 0

0..0
11 x 0

0..0
31 x 0

0..0
31 x 0

0..0
 7 x 0

0..0
23 x 0

0..0
31 x 0

0..0
21 x 0

0..0

21 x 0

1

literal literal literal

0-fill(1,12): 10 011000 00000000 00000000 00000001

0-fill(2,24): 10 110000 00000000 00000000 00000010

0-fill(1,22): 10 101100 00000000 00000000 00000001

0-fill 0-fill0-fill 0-fill

0-fill(length=1, 0-fill(length=2, 0-fill(length=1,
 position=12) position=22) position=24)

Figure 6. Bitmap compression with PLWAH

Figure 6 shows the compression of the same bit stream
used in figure 4 with the PLWAH algorithm. Clearly, all three
literals can be piggybacked by the fills that precede them.
This leads to an improvement of the compression ratio by
about 66% compared to the original WAH algorithm.

With this trick, a reduction by a factor of two can achieved
for certain distributions of data. Otherwise, the maximum
length of a fill is reduced by a factor of 25 and may reach
a maximum of 225 instead of 230. This could lead to a
degradation of up to a factor of 5 for very sparse bitmaps6

compared to WAH.

III. CONCEPT

The main difference between WAH/PLWAH and our
concept is that we support the concept of draggled fills,

5for higher pollutions (i.e. 2, 3, . . . wrong bits) 10, 15, . . . bits are needed
to store the position of the wrong bits

6densities of 3 ∗ 10−8 and below

405

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

which allows for a small number of false bits inside each
word of a fill. The intention here is to obtain longer fills,
because the switch from a fill to a literal block and back to
a fill is an expensive act in terms of memory.

In contrast to this, our concept does not only allow for
one slightly polluted literal at the end of a fill, but it also
allows for slightly polluted literals to appear at each position
in the fill without reducing the overall length of a fill.

A. Draggled Fill

In addition to the basic WAH word types, our concept
requires the introduction of a new block type called draggled
fill, which can handle the polluted literals inside a fill.
In contrast to the other two block types literal and fill, a
draggled fill has a variable length depending on the number
of polluted words inside. Hence, three different types of
blocks (literal, fill, and draggled fill) must be distinguished.
We distinguish a fill from a draggled fill with the third
most significant bit, so that a 1-fill is identified by the bit
combination of 111, while a draggled-1-fill is identified by
110 (0-fill: 101, draggled-0-fill: 100). The indicator of a
literal remains identical to the WAH algorithm (a 0-bit at
the most significant bit), which still allows us to store 31
bits in each literal. To decide whether or not a literal can be
part of a draggled fill, we first have to define the maximum
number of polluting bits that are allowed to occur in such a
polluted word.

For a 32-bit version of the WAH algorithm, different
degrees of pollution can be defined, from one wrong bit
inside 32, 16, and 8 bits (called pollution factor), to 1, 2, or 4
segments containing wrong bits in a complete 32-bit word7.
Figure 7 presents examples of different pollution factors,
each with the maximum number of skipped bits.

00 00 0 0 00 0 0 0 10 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0

10 00 0 0 00 0 0 0 10 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0

10 00 0 0 00 0 0 0 00 0 1 0 0 0 000 0 0 0 0 1 1 0 0 0 0 0

pollution factor: 1

pollution factor: 2

pollution factor: 4

00 10 0 0 00 1 0 0 00 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0

Figure 7. Possible pollution factors for a block

Each polluted 32-bit word needs a fixed number of bits
for description. The value of needed bits is dependent on
the pollution factor and the maximum length of a fill. In

7To be exact, we do not have 32 bits, but only 31 bits as packing unit.
But for the sake of straightforwardness the concept is explained based on
32 bit throughout this paper. Keep in mind that, without loss of generality,
one bit can be ignored, i.e. the leftmost one.

Table I
MEMORY CONSUMPTION OF DIFFERENT POLLUTION FACTORS

Pollution factor Memory consumption
(in bit)

1 5
2 10
4 16

case of a pollution factor of 1, we only need to specify the
position of the wrong bit, which could be done with 5 bits
(25 = 32). With a pollution factor of 2, we need 4 bits to
specify the position of the wrong bit in the upper half of the
word (i.e., the first 16 bits), and another 4 bits to specify the
position of the wrong bit in the second half of the word. As
there is the possibility that only one of the halves contains a
polluting bit, a mask of another 2 bits is needed to specify in
which part(s) of the word the pollutions occur. Table I gives
an overview of the memory consumption for the remaining
pollution factors (pf). The formula for the pollution factor
is:

mem = log2(32/pf) +mem mask

with

mem mask =

{
0 if pf = 1
pf if pf > 1

Additional memory is needed to specify the position of
the polluted words. The size is dependent on the maximum
length of a fill. If for example the maximum value is
1024 (210), 10 additional bits are required to specify the
position for each pollutted 32-bit word in the most simple
implementation, where the position is specified by its index
inside the run. Later in Section III-C, we will discuss
different possibilities to identify the wrong words.

Position of polluted word Bitposition(s) inside polluted word

Pollution-factor m > 1: m-bit mask Bitposition 1 Bitposition n. . .

m-times

Draggled-Fill

length of fill number of polluted words

type info (3-bit)

poll.word 1 poll.word n. . .

head (fixed size) tail (flexible size)

Figure 8. Structure of a draggled fill header

Figure 8 shows the structure of a draggled fill. In contrast
to literal words and fill words, a draggled fill has a variable
size. The fixed-size head contains information about the
word type itself, followed by the overall draggled fill length

406

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and the number of polluted words encoded in the draggled
fill. The flexible length tail contains information about each
polluted word. The concrete size of a polluted word depends
on the allowed number of pollutions (as defined by the
pollution factor) and the maximum number of polluted
words that can be encoded in a single draggled fill. Each
polluted word is described by its position inside the draggled
fill and the position(s) of the polluting bit(s). In case of a
pollution factor > 1, an additional bitmask is required to
determine whether or not a bit is set in the specific part of
the word8. Having defined the layout of a draggled fill, it is
necessary in the next step to determine appropriate values
for the maximum length of a draggled fill, the maximum
number of polluted words, and the number of allowed
pollutions in each polluted word (pollution factor). For this
purpose, several experiments were conducted on synthetic
bitmaps with varying distributions and densities, as will be
reported in Section IV. However, to clarify the ideas behind
our concept, we will first demonstrate the function of the
algorithm by a simple example. In this example, we assume
a pollution factor of 2 and both a maximum fill length and
a maximum number of polluted words of 64, meaning that
a draggled fill could consist entirely of polluted words.

B. Example

After the introduction of the concept, the effect will now
be demonstrated using the example given in Figure 9. In
the middle part of the Figure, seven 32-bit blocks can be
seen. Except for the fourth and the sixth block, in which the
former contains two, while the latter contains one polluted
bit(s) (indicated in grey), all remaining blocks contain 0-
bits only. The two polluted blocks are shown in detail in the
upper and lower part of the figure. The pollution factor is set
to 2, meaning that we can accept one wrong bit in every 16-
bit of the block at the most. So both polluted words may be
incorporated in a draggled fill and the overall length of the
fill is 7 words. Besides the overall length, we have to provide
additional information for a draggled fill. This information
includes:

• The number of polluted blocks
• The positions of the polluted blocks inside the fill
• Position of the wrong bits inside a polluted block
The maximum number of polluted blocks depends on the

maximum length of a dragged fill and the number of bits
to specify the number. The same holds for the specification
of the position of the polluted blocks. In our example, we
choose, without loss of generality, a maximum length of a
draggled fill of 649 and a pollution factor of 2. This means
that we need 6 bits (26 = 64) to specify the size of the fill

8This extra bit could also be added to the bit position itself, using 0. . . 0
as a marker that no bit skip occurred in this part of the word.

9for this simple example a value of 8 would be enough - but this does
not seem to be a realistic number

00 00 0 0 01 0 0 0 00 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0

0...0 0...0 0...0 0x.x0 0...0 x...0 0...0

10 00 0 0 00 0 0 0 10 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0

}

32 bit

Figure 9. draggled fill with two polluted blocks

and another 6 bits to specify the number of polluted blocks
inside the fill.

For each polluted block, we also have to provide the
information on the position of the block inside the fill and
the wrong bits inside. Figure 10 shows a possible memory
layout for the above example in the upper part. The first
three bits are reserved for the block type, then 6 bits for the
fill length field, and another 6 bits for the field indicating
the number of polluted blocks.

In the lower 16 bits of the first word, the information
about the first polluted word inside the fill is contained. In
the defined layout (maximum length: 64, pollution factor:
2), we need exactly 16 bits to specify one polluted word.
The first two bits, labelled as “mask”, identify in which of
the two halves of the word pollutions occur. Possible values
are 01, 10, and 11. The next 6 bits specify the position of
the polluted word inside the fill. As a maximum of 1 wrong
bit can occur inside one 16-bit block, we need 4 more bits to
specify the position (0..15) of the wrong bit inside a single
block. As a pollution can occur in the upper 16 bits and/or
the lower 16 bits of a word, a total of 8 bits is needed to
encode the positions of the polluting bits. In each following
32-bit word, we can now store the information of two more
polluted words - one in the upper half, and one in the lower
half of the word.

In the lower part of Figure 10, the corresponding bit
values for the example in Figure 9 are presented. First, the
block type for a draggled-0-fill is specified, followed by the
information of a fill length of seven with two polluted words.
Then, the ’11’ mask indicates, that there are two skipped
bits in the polluted block at position 4 in the fill. The two
skipped bits can be found at bit position 9 (first 16-bit word)
and bit position 4 (second 16-bit word). In contrast to this,
the second polluted block only contains one wrong bit in the
first 16-bit word (mask ’10’), which can be found at position
15.

The total memory footprint is 64 bits, compared to 160
bits in the original WAH implementation10 and 128 bits in
the PLWAH implementation. Especially in cases of lower
selectivity, the proposed concept is superior with regard to

10160 bits = 32 bits (0-fill, length: 3) + 32 bits (literal word) + 32 bits
(0-fill. length: 1) + 32 bits (literal) + 32 bits (0-fill, length: 1)

407

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

type fill-length polluted Bitpos1 Bitpos2WordPos 1 Wordpos 2 Bitpos1 Bitpos2WordPos 3Bitpos1 Bitpos2

1 0 0 7 2 9 4 4 6 15

 Mask

1 1

Bit: 31 16 15 0 31 16 15 0

1 0

Figure 10. Memory layout of a draggled-0-fill with pollution factor 2

memory footprint. The high memory cost of switching from
a fill to a literal block and back can be avoided in many
cases. And even in the case where no fills can be found, there
is no drawback due to the fact that a literal block can handle
31 bits as in the original WAH-algorithm. However, one
small drawback exists in the case of a very high selectivity
leading to extremely long fills: because of the new block
type, the proposed concept needs one bit more to indicate a
fill block, and so a block can contain a maximum of 229∗31
bits instead of 230 ∗ 31.

C. Variants

In the above concept, we divided each 32-bit block into
equidistant parts, which can contain 1 wrong bit at the most.
This solution was chosen, because it is easy to implement
and also CPU-efficient.

Another, more general solution may be not to divide the
block into equidistant parts, but to allow a maximum of n-
skipped bits to appear inside a 32-bit block. In this case, the
memory consumption is a little bit higher, but it is a more
general model, which can lead to longer fills.

Instead of specifying the index position of a polluted
block, it is also possible to specify the gaps between polluted
blocks (incremental encoding [4]). This leads to a smaller
memory footprint for each polluted block, because a lower
number of bits can be used to specify the increments. In
case the next polluted block is too far away to code the
distance with the chosen number of bits, the fill has to
terminate. Figure 11 gives an example of this encoding. Each
gray square represents a 32-bit block (with unique values,
polluted and mixed). The full length of the fill is 21 blocks.
As you can see, the values of the increments remain small in
contrast to the index encoding in the last line, thus allowing
for a lower number of bits to encode the fill.

32 x 0-bit polluted block mixed block

fill length = 21

 Position: 2 8 11 14 18

 Increment: +2 +5 +2 +2 +3

 Bitmap blocks:

Legend:

Figure 11. Incremental encoding of “polluted blocks”

All of the above variants require a predefined fixed

number of bits to encode the position of the polluted blocks.
Another possible solution would be to use a Rice (Golomb)
coding [13]. The idea behind this coding scheme is to use
a flexible number of bits to encode arbitrarily long integer
numbers. Small, but frequently appearing numbers only need
a small number of bits, while unfrequent big numbers need
more bits as in a normal coding scheme.

Figure 12 and Figure 13 show a possible encoding of the
examples from Figure 4 (WAH) and 6 (PLWAH) for the
draggled fill WAH algorithm using incremental encoding of
the polluted blocks. As you can see in Figure 13, another
reduction of about 33% can be achieved, additionally leaving
some bits unused, which would be able to hold another
polluted word (if existent). The first three bits indicate
the header type (0-draggled-fill). The next six bits give
the overall length of the fill (7), followed by five bits
indicating the number of polluted words inside the fill (3).
Depending on the value (n) in this field, ⌈(n−1)/3⌉ words11

follow to hold the information about each polluted word.
The information about the first pollution can be stored in
the lower 16 bits of the draggled-fill-header. Here in our
example, the first polluted word follows after one 0-fill word
and has its pollution at bit 12. The first ten bits in the
second word (flexible part) hold the information that the
next polluted word follows after a gap of two 0-fill words
and the polluted position is bit 24. With this encoding (5
bits to store the gap), a maximum gap length between two
polluted words can be 32. The ’x’ characters indicate unused
bits.

0..010..010..010..0
50 x 0 63 x 080 x 0

 217 bits

31 x 0 9 x 0

0..0 0..01 1
19 x 0

0..0
11 x 0

0..0
31 x 0

0..0
31 x 0

0..0
 7 x 0

0..0
23 x 0

0..0
31 x 0

0..0
21 x 0

0..0

21 x 0

1

literal literal literal0-fill 0-fill0-fill 0-fill

0-draggled-fill(7, (1[12], 4[24], 6[22])

Figure 12. Bitmap compression with DFWAH

11⌈(3− 1)/3⌉ = 1

408

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

00010110 000000110 110xxxx xxxxxxxx 101 00011 1000011x 00001011 00xxxxxx

0-draggled-fill(7,3,1[12], 4[24], 6[22])

Figure 13. Binary representation of DFWAH from Figure 12

IV. EXPERIMENTS

As the size of a compressed bitmap is one of the most
critical factors and we need to define the concrete memory
layout for our draggled fill word.

As discussed before, we have some degree of freedom.
First of all, we can choose between different pollution
factors, we have to define how many bits we allocate to hold
the length information or the information for the maximum
numbers of pollutions inside a fill which both can restrict the
maximum length of a draggled fill. The maximum distance
of two pollutions in a fill (see Section III-C) also has a
direct impact on the size of a draggled fill.

To obtain a feeling for appropriate settings of these
values, we conducted a number of different experiments. In
these experiments, we generated long bitmaps with different
distributions.

Then, we took these bitmaps and ran our algorithm on
it. In contrast to a real implementation, we did not have a
maximum size of a fill, a maximum number of pollutions
inside a fill or a maximum gap distance between polluted
words and so on in this “ideal” implementation. We rather
tried to find appropriate values for these parameters.

Input parameters for the bitmap generation are the density
and different distributions (see below). The density is the
fraction of “1” bit inside a bitmap and can be between
zero and one. Our experiments focused on densities between
0.005 (0.5%) and 0.1 (10%), representing our medium-
sparse bitmaps.

In our experiments we distinguish between different dis-
tributions:

• Uniformly distributed bitmaps: In a uniform distribu-
tion, every possible value (0/1) occurs all the time with
the same probability, independently of previous values.
In this case, the density is the same as the probability
that a “1” value occurs. Such bitmaps can be generated
easily using the standard random function.

• Clustered bitmaps: In a clustered distribution, set bits
tend to occur in groups or clusters. Therefore, there
is a higher probability, that more consecutive set bits
occur than in uniformly distributed bitmaps. Clustered
bitmaps typically reflect application data better than
uniform distributions [6]. Bitmaps that follow a clus-
tered distribution can be generated easily with a simple
two-state Markov chain. Figure 14 shows such a finite
state machine with probabilities of p and q for changing
the state from the prior state. The density of such a

distribution can be calculated by d = p ∗ (p + q) [7].
Additionally, the cluster factor f is determined by
f = 1/q. Typically, the input for the generation of a
Markov chain-generated bitmap is the density d and the
clustering factor f . In this case, the probabilities p and
q are calculated by q = 1/f and p = q ∗ d/(1− d).

0 1

p

1-p

q

1-q

Figure 14. Two-state Markov-chain

A. Length of draggled fills

In a first series of experiments, we examined the potential
length of the draggled fills. Figure 15 shows the distribution
of draggled fill lengths for different densities between 0.5%
and 10% and a pollution factor of 2. As expected, the length
of a draggled fill strongly correlates with the density factor.
Additionally, an approximate linear correlation between den-
sity and average/maximum fill length can be observed. For
the interesting densities between 0.005 and 0.1, the average
size of a fill is below 20. In Figure 16, the coverage for the
different distributions in the previous figure is shown. So,
for a density of 0.01, with a maximum fill length of 255 (8
bit memory consumption), 95% of all possible draggled fills
discovered in our experiment are covered. Choosing 10 bits
for the length field, a coverage of 99.999% of all possible
fills can be achieved.

Figure 17 and Figure 18 show the same issue, but with
a Markov distribution and a clustering factor of 2. Here,
the distribution is more compact compared to the uniform
distribution shown before in Figure 15.

Next, we examine a Markov chain-based distribution with
higher clustering factors. A higher clustering factor leads to
a higher possibility of literal words, but also longer runs of
0 bits appear. Figure 19 shows the distribution for different
clustering factors for a distribution with a density 0.01.
Obviously, the length increases approximately linearly with
the clustering factor.

Resume: The longest runs result from uniformly dis-
tributed bitmaps with a low density. For the density range
we are interested in, a maximum length between 255 (8
bits) and 1024 (10 bits) for a fill seems to be an appropriate
value12. For the very small number of possible longer runs,
a second run has to be started. For densities of about 0.05
(5%) and above, even a maximum length of 32 (5 bits) is
ok.

12for a pollution factor of 2.

409

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0
 1 5 25 125 625

O
cc

ur
en

ce

Run Length

Density: 0.1
Density: 0.05
Density: 0.01
Density: 0.005

Figure 15. Distribution of draggled fill lengths with uniform distribution
(pollution factor 2)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 5 25 125 625

co
ve

ra
ge

fill length

Density: 0.1
Density: 0.05
Density: 0.01
Density: 0.005

Figure 16. Coverage for different maximum fill lengths from Figure 15

B. Influence of the pollution factor

The next series of experiments are performed to obtain
an idea of the influence of the different pollution factors.
For a density of 5% (uniform distribution), Figure 20 shows
the distribution of the length for different pollution factors.
As expected, the run-length increases with the increase of
the pollution factor. In all cases, the average number of
pollutions inside a fill is about 74%-77%, irrespedictive of
the pollution factor. In the case of 1% density (not shown),
the number of pollutions inside a run is between 24% and
26% of the overall fill length. A comparable behaviour can
be observed for the other densities of interest.

Figure 21 by contrast, shows the behaviour for the
Markov-chain distribution. As in the previous case, the be-
haviours for different pollution factors are shown. Compared
to the uniform distributions, the advantage of using a higher
pollution factor is smaller, due to the characteristic of the
distribution and the restriction of the positions of wrong bits
inside a polluted word (see Section III-A). As a consequence,
there is no advantage in using a pollution factor of 4,

 0
 1 5 25 125 625

O
cc

ur
en

ce

Run Length

Density: 0.1
Density: 0.05
Density: 0.01

Density: 0.005

Figure 17. Distribution of draggled fill lengths with a Markov distribution,
clustering factor 2 (pollution factor 2)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 5 25 125 625

co
ve

ra
ge

fill length

Density: 0.005
Density: 0.01
Density: 0.05
Density: 0.1

Figure 18. Coverage for different maximum fill lengths from Figure 17

compared to a pollution factor of 1 or 2 - even more so as the
handling is more CPU-intensive and the memory footprint
of a polluted word corresponds to about a factor of 1.6
compared to a pollution factor of 2. The average number
of pollutions inside a fill is between 45% and 47%. This
lower factor is derived from the fact that in the Markov
chain-based distribution used here the ’1’ bits are more
clustered and longer runs of ’0’ bits appear. An increasing
clustering factor for the Markov-chain distribution yields to
longer runs compared to lower values (see also the previous
experiment in Figure 19), but no further improvements for
higher pollution factors.

Resume: Choosing a higher pollution factor yields to
longer runs. Because of the restriction in the layout (see
Figure 7), a number higher than 4 for the pollution factor
does not seem to be meaningful. This is especially true
for the more clustered behaviour of Markov chain-generated
bitmaps. So the values determined in Section IV-A are still
valid for the different pollution factors.

410

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0
 50 100 150 200

O
cc

ur
en

ce

Run Length

Distribution: M2
Distribution: M3
Distribution: M5

Figure 19. Markov-chain distribution: comparison of the influence of
different clustering factors to the run-length (PF: 2, density: 0.01)

 0
 0 5 10 15 20 25 30

O
cc

ur
en

ce

Run Length

PF: 1
PF: 2
PF: 4

Figure 20. Distribution of run-length for different pollution factors
(uniform distribution, density 5%)

C. Distance between pollutions in a draggled fill

As explained in Section III-C, the position of a pollution
can not only be expressed by its position index inside the
fill, but also by the distance to the previous pollution. This
has the advantage, that with a growing size of a fill, the
memory consumption to express the next pollution position
is smaller.

Figure 22 shows the distribution of the gap width for
different densities (uniform distribution, pollution factor 2).
For the densities we are interested in, a maximum gap width
of 16 (covering 95% of all gaps for a 0.01 density) or
possibly 32 (covering 99.99%) is sufficient, which means
that we need 5 or 6 bits memory consumption for the length
field (the maximum gap width for Markov chain-distributed
bitmaps is slightly lower).

Figure 23 shows the coverage for different gap lengths
and different densities. So i.e., with a maximum gap length
of 32 and a density of 0.005, a coverage of 99% can be
achieved. For a density of 1%, this can already achieved

 0
 0 5 10 15 20 25 30 35 40

O
cc

ur
en

ce

Run Length

PF: 1
PF: 2
PF: 4

Figure 21. Distribution of run-length for different pollution factors
(Markov-chain distribution, clustering factor 2, density 5%, pollution fac-
tor 2)

 0
 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

O
cc

ur
en

ce

Gap wide

Density : 0.005
Density : 0.01
Density : 0.05
Density : 0.1

Figure 22. Distribution of gaps between pollutions in a draggled fill
(uniform distribution, pollution factor 2)

with a maximum gap length of 16.
More experiments and also some analytical examinations

concerning the size of the bitmaps can be found in [14].

V. CONCLUSION

We presented an extension of the WAH algorithm, which
is currently considered one of the fastest and most CPU-
efficient compression techniques for bitmaps. However, in
the case of a selectivity of 1% and more, the compression
behaviour of WAH is unsatisfying. The reason for this be-
haviour is the blocking factor of 32, which requires packing
of a minimum of 31 bits. Thus, even a single skipped bit
leads to a full literal block, which holds 31 uncompressed
bits.

Our contribution handles this problem by allowing so-
called polluted words to be part of a fill. A polluted word
is a block which has a limited number of wrong bits. The
idea is to describe the position of the polluted words in the
fill and the wrong bits inside it instead of storing the whole

411

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

O
cc

ur
en

ce

Gap wide

Density : 0.005
Density : 0.01
Density : 0.05
Density : 0.1

Figure 23. Coverage of gap width from the distribution in Figure 22

literal word, which takes less memory than ending a fill,
starting a new literal block, and after that starting a new fill.

After presenting the concept of our improved algorithm,
we ran a number of different experiments, to obtain a feeling
of the behaviour of our algorithm for different distributions
(uniform, Markov with different clustering factors), different
pollution factors, and different implementation variants.

VI. FUTURE WORK

Currently, final implementation of our concept is not
yet finished, but we already have a functional prototype
without any optimisations. Our next step will be to integrate
the algorithm in the WAH codebase. To do so, we will
completely rewrite of our functional prototype. Once we
have our implementation finished, we plan a number of
tests with different values for selectivity, reflecting both
synthetical and real world data in order to compare both the
compression ratio and the execution time of the different
operations. Depending on the results, we will eventually
implement different variants of our algorithm, which we
discussed in Section III-C.

REFERENCES

[1] A. Schmidt and M. Beine, “A Concept for a Compres-
sion Scheme of Medium-Sparse Bitmaps,” in DBKDA 2011,
Proceedings of the Third International Conference on Ad-
vances in Databases, Knowledge, and Data Applications, St.
Maarten, The Netherlands Antilles, 2011, pp. 192.–195.

[2] S. Manegold, P. A. Boncz, and M. L. Kersten, “Optimizing
database architecture for the new bottleneck: memory access,”
The VLDB Journal, vol. 9, no. 3, 2000, pp. 231–246.

[3] T. M. Chilimbi, B. Davidson, and J. R. Larus, “Cache-
conscious structure definition,” in PLDI ’99: Proceedings
of the ACM SIGPLAN 1999 conference on Programming
language design and implementation. New York, NY, USA:
ACM, 1999, pp. 13–24.

[4] I. H. Witten, A. Moffat, and T. C. Bell, Managing gigabytes
(2nd ed.): compressing and indexing documents and images.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1999.

[5] J. Ziv and A. Lempel, “A universal algorithm for sequential
data compression,” IEEE TRANSACTIONS ON INFORMA-
TION THEORY, vol. 23, no. 3, 1977, pp. 337–343.

[6] K. Wu, E. J. Otoo, and A. Shoshani, “Optimizing bitmap
indices with efficient compression,” ACM Trans. Database
Syst., vol. 31, no. 1, 2006, pp. 1–38.

[7] F. Deliège and T. B. Pedersen, “Position list word aligned
hybrid: optimizing space and performance for compressed
bitmaps,” in EDBT ’10: Proceedings of the 13th International
Conference on Extending Database Technology. New York,
NY, USA: ACM, 2010, pp. 228–239.

[8] P. O’Neil and E. O’Neil, Database: Principles, Programming,
Performance. San Francisco, CA: Morgan Kaufmann, 2001.

[9] J. W. Hector Garcia-Molina, Jeffrey D. Ullman, Database
System Implementation. Prentice-Hall, 2000.

[10] J. Wu, “Annotated references on bitmap
index.” [Online]. Available: http://www-
users.cs.umn.edu/ kewu/annotated.html, retrieved: december,
2011.

[11] K. Wu, E. J. Otoo, and A. Shoshani, “Compressing bitmap
indexes for faster search operations,” in SSDBM ’02: Pro-
ceedings of the 14th International Conference on Scientific
and Statistical Database Management. Washington, DC,
USA: IEEE Computer Society, 2002, pp. 99–108.

[12] K. Wu, E. J. Otoo, and A. Shoshani, “A performance
comparison of bitmap indexes,” in CIKM ’01: Proceedings
of the tenth international conference on Information and
knowledge management, ser. New York, NY, USA: ACM,
2001, pp. 559–561.

[13] S. W. Golomb, “Run-length encodings,” IEEE-IT, vol. IT-12,
1966, pp. 399–401.

[14] M. Beine, “Implementation and Evaluation of an Efficient
Compression Method for Medium-Sparse Bitmap Indexes,”
Bachelor Thesis, Department of Informatics and Business In-
formation Systems, Karlsruhe University of Applied Sciences,
Karlsruhe, Germany, 2011.

