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Abstract—Basically, MIDOVA (Multidimensional Interaction 
Differential of Variability) lists the relevant combinations of K 
boolean variables in a datatable, giving rise to an appropriate 
expansion of the original set of variables, and well-fitted to a 
number of data mining tasks. MIDOVA takes into account the 
presence as well as the absence of items. The building of level-k 
itemsets starting from level-k-1 ones relies on the concept of 
residue, which entails the potential of an itemset to create 
higher-order non-trivial associations – unlike Apriori method, 
bound to count the sole presence of itemsets and exposed to the 
combinatorial explosion. We assess the value of our 
representation by presenting an application to three well-
known classification tasks: the resulting success proves that 
our objective of extracting the relevant interactions hidden in 
the data, and only these ones, has been hit. 

Keywords-symbolic discrimination; variable interaction; 
machine  learning; classification; non-linear discrimination;  
user comprehensibility; feature construction; feature selection; 
itemset extraction 

I. INTRODUCTION 
We introduce here a novel representation of an 

observation  × variable datatable with binary modalities. This 
representation aims at enlightening the interactions between 
variables hidden in the data. It takes into account the 
negative as well as positive modalities of the variables, and 
eliminates redundancy, since it lists the only itemsets 
necessary and sufficient for reconstituting the data.  

In order to assess the validity and usability of such a 
representation, we present an application of it to 
classification tasks on a few well-known test datasets. It must 
be clear that the main subject of this paper is not another 
classification method, which should be systematically 
assessed against the best existing ones on a broad variety of 
datasets: our success on a small number of classification 
tasks is nothing but a sufficient clue for arguing that the 
proposed representation is useful in many data mining 
applications, whether supervised (e.g., classification) or not 
(e.g., data-driven modeling). 

We depart here from the two main research lines in data 
mining: 

- the statistical line relies on correlations, covariances or 
contingency tables for assessing the two-by-two relations 
between variables, and generally ignores the interactions of 
rank three or more. 

- the symbolic line (knowledge discovery) is bound to 
extract frequent itemsets or association rules in sparse 
datatables, which restrains it in practice to enlighten the sole 
interactions between positive modalities of the variables, and 
results in an excessive accumulation of logical conjunctions 
needing empirical frequency thresholds. 

In contrast, our method 1) takes into account the 2N 
facets of each order-N relation, including negative modalities 
when necessary, 2) self-limits the number and nature of the 
extracted relations to the ones necessary and sufficient for 
reconstituting the whole datatable, up to a permutation of the 
observations. 

The assessment of a new data representation is far from 
being trivial: it is widely agreed that unsupervised data 
representations are difficult to assess. In our case an extra 
difficulty lies in the fact that few people use and interpret 
order-3 and higher interactions discovered in an 
unsupervised framework. Using a supervised one is thus a 
way for us to circumvent this limitation. This is why we have 
decided to feed a classic and well-known machine learning 
method (Naïve Bayes) with extra data issued from our 
MIDOVA representation of the datatable as is now exposed. 

The illustrative objective of this paper is to present a 
proof-of-concept solution for a problem of ever-growing 
importance for software industry: in the framework of 
discrimination tasks, when facing massive and mostly 
qualitative data as it becomes common now, there is a 
growing need to explicit the reasons underlying a given 
discrimination, i.e., to uncover the variables or combination 
of variables intervening in the discrimination function.  

The core principle of Support Vector Machines is that 
classification performance is increased by increasing the 
dimensionality of the representation space in which the 
discrimination task has to be performed, and not by reducing 
it. This paradox is explained by the concept of interaction: 
two (or more) variables may not have the same effect as each 
one separately. In particular the combination of two (or 
more) variables may impact the target variable, while none 
of these variables would do that individually. This principle 
inspired us for setting up an enlarged data-space in 
classification problems involving binary variables, for the 
time being: our aim is to detect all the order-k interactions, 
so as to select those involving the target variable. We will 
show below that the number of combinations to consider is 
tractable: 1) this number is intrinsically limited by the 

1

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



number of described entities (or “cases”, “individuals”, 
“observations”)  in the data, 2) at the k-th level, it is far 
below the number of theoretical combinations – as k 
increases, it decreases abruptly after its initial growth phase. 
Our solution has been briefly exposed yet in DBKDA 2010 
[1]. As subtle combinatorics considerations are to be 
developed, we will take more pages here, and thoroughly 
examine all the facets of our solution considering a single toy 
example. Let us turn now to our main topic.  

For supervised classification tasks, the main criterion is 
the overall classification performance, i.e., best generalizing 
power. In this regard, it is widely admitted that kernel 
Support Vector Machines [2] have outperformed their 
competitors. But in many application areas, the explicitness 
of the discrimination function is also a major criterion: 
kernel SVMs are blackboxes not akin to “explain” their 
decisions. The “kernel trick” is a powerful by-pass for 
computation costs, but at the expense of turning the decision 
process blind. This is a big concern in domains with life-
threatening issues, such as medical or military ones. It is 
impossible to let a machine take (or suggest) such decisions 
of vital importance without explaining why, i.e., without 
clarifying what variables or combination of variables are 
involved in each specific decision-making.  

In this respect, many other classification methods, 
whether linear as Naïve Bayes [3] or Fisher discrimination 
[2], or non-linear, such as Rule-based Classifiers [4] or 
Learning Classifier Systems [5], are explicit: they display (or 
may display) the (possibly weighted) list of variables or 
combinations of them leading to their classification decision. 

Our objective is to meet both criteria of explicitness and 
performance, restricted here to the case of Boolean variables 
(i.e., qualitative variables with two modalities, True and 
False, noted by a and ā for the variable a). The solution we 
propose consists of expanding the original variables with 
Boolean conjunctions of these ones. This idea has yet been 
worked out [6] in the framework of the Apriori method for 
extracting frequent itemsets [7]. Let us recall that an 
“itemset” as defined in Apriori is an unordered list of 
variables, its “support” is the number of co-occurrences of 
these variables in the dataset, and if the support exceeds a 
given threshold, the itemset is said “frequent”. In this paper, 
we will deepen the presentation of our MIDOVA method, 
first described in French in [8], then in English in DBKDA 
2010 [1]. As it is an unsupervised information extraction 
method, we will assess its performance applying it to 
supervised machine learning tasks, and comparing its results 
to the best published ones. The excellent classification 
performance obtained is mainly due to the conjunction of its 
original features, among which: it takes into account 
negative modalities as well as positive ones, it replaces the 
straightforward support criterion of Apriori-like methods by 
our “residue” criterion, detailed below.  

First we will present the MIDOVA representation of a 
datatable: its context and motivation, its general and core 
principles, and an overview of the algorithm and its pseudo-
code expression. Then we will detail the whole MIDOVA 
process on a toy dataset. At last the experimental section will 
present the application of MIDOVA expansion to the most 

basic discrimination problem: 2 classes and qualitative data, 
taken out of the UCI repository.  Conclusions will be drawn, 
as well as perspectives. 

II. MIDOVA REPRESENTATION 
After some generalities on MIDOVA, the reader will be 

presented a small example illustrating the essential concepts 
of component of an itemset, degree of freedom, support, 
residue and gain. We will insist on the concept of variation 
interval and illustrate it by Venn diagrams. We will confirm 
that MIDOVA uncovers the two clusters we had placed in 
our dataset. At the end we will develop some quantitative 
assessments of MIDOVA, especially in comparison to 
Apriori. 

A. Context of the MIDOVA representation 
We consider the case of a relation R between two sets, a 

set S of n individuals (or instances) si (1≤i≤n), and a set V of 
p binary variables (or variables) vj (1≤j≤p). For example the 
individuals are patients in a hospital, and the (dichotomous) 
variables are the symptoms they experience, or not. Or the 
individuals are clients of a supermarket, and the variables are 
the products they are akin to buy, or not. 

A first way to represent these data is as a list of lists: the 
lists of symptoms experienced by each patient, or the lists of 
commodities bought by each client, i.e., a set of sales slips. 
The second representation is more appropriate for reasoning: 
a Boolean matrix with n rows and p columns, and value 1 at 
the crossing of row i and column j if the individual 
experiences the symptom, or else the value 0. It is well 
known that these two representations are equivalent, the first 
one being a generally compact form of the second (as it gets 
rid of the zero values). The datasets illustrating our method 
are formatted as Boolean matrices.  

We will propose a third representation, which is a set of 
itemsets. This representation is rooted in the extension of the 
statistical concept of contingency table between two 
variables a and b, to the concept of “contingency hyper-
table” between more than two variables. The classic 
contingency table includes values in the four cells describing 
how the total number n of individuals distributes respectively 
along the four crossings of a and b (i.e., the counts of 
individuals who simultaneously satisfy a and b, a and , a 
and , and ). Note that the first count is the support of 
itemset ab. In the same way, the three-way contingency table 
(between three variables) will be a cube with eight cells, and 
the appending of one more variable doubles the number of 
cells where the individuals distribute. As the sum of these 
cells is n, their content is smaller and smaller, and empty 
cells are more and more common. We call components of 
our k-itemsets (itemsets of length k, i.e with k variables) the 
cells of the k-way contingency table. Note that our definition 
of an itemset is more general than the one generally 
accepted, in that it includes all the cells of the contingency 
table, and not the sole “True, True, ...True” one. Note also 
that we have started from the 2-way contingency table, 
which is the most common one, by increasing the dimension, 
but for the sake of generality we also define the 1-way 
contingency tables for the 1-itemsets, i.e., with only one 
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variable and the empty itemset of 2V, which we will admit 
being satisfied for all the individuals.  

B. Principles for building the MIDOVA representation 
The core principle of MIDOVA is based on the 

properties of contingency tables, which can be extended to 
hyper-tables. They are expressed in terms of marginal totals 
and degrees of freedom. 

 

1) Marginal totals and degrees of freedom 
The sums of all the counts corresponding to a variable, 

e.g., a, in a k-way contingency table are the exact counts of 
the (k-1)-way contingency tables with all variables except a. 
For example, in Figure 2, Row 2, the first 2-way contingency 
table corresponds to variables a and b, with four counts (3 
individuals who verify a and b, 4 who verify a but not b, 2 
who verify b and not a, 6 who verify nor a nor b). In its right-
hand column, marginal totals are the two counts of a (7 
individuals who verify a, 8 who do not verify a), the same as 
those written in the 1-way table of a (Figure 2, Row 1). In 
the bottom row of this 2-way table, the marginal totals are 
the two counts of b (5, 10) also written in the 1-way table b. 
In other words, the marginal sums are forcing the counts in 
the cells of the table, restraining the “freedom” of their 
contents.  
The concept of “degrees of freedom” embeds the number of 
cells whose content may be fixed independently from the 
others – within limits we will express below.  In our case of 
Boolean variables, the degree of freedom of each hyper-
table is equal to one because all counts can be written as an 
algebraic expression of x (where x is the count of some 
fixed cell),and of the marginal values (see Figure 1 and 
Figure 2, and details of calculations in Section C).  
 
 

2) MIDOVA indicators 
In the previous paragraph, we have seen that the values 

of the cells of a K-way contingency table (i.e., the 
components of a K-itemset), are all linked to the value x of a 
single cell (i.e., to a single component) and to marginal 
values (i.e., to components of its sub-itemsets) by means of 
simple algebraic expressions. At step k-1, the x value is 
unknown, but it is possible to obtain its variation interval, 
i.e., its different values. For example, for itemset ab in Figure 
1, the variation interval of x is [2 ; 7], and for itemset abc in 
Figure 2, the variation interval of x is [1 ; 2] (for details of 
calculations, see Section C; for an interpretation of the 
variation interval see Section F 4). 

Three useful properties of itemsets are ensuing (their 
proofs are in [8].) 

 The variation intervals of the all components of a k-
itemset are entirely determined by the components of 
its (k-1)-itemsets.  

 The components of a k-itemset all have the same 
amplitude noted L, “liberty”.  

  L is a non-increasing function of k. 
We define two parameters: 1) Mr, the “MIDOVA-

residue”, equal to 2k-1e, where e is the gap (i.e., absolute 
difference) between the support and the closest bound of its 

variation interval, 2) Mg, the “MIDOVA-gain”, which is 
proportional to the difference between the support s and the 
center c of its variation interval, Mg=2k-1(s-c). Let us recall 
that the support is the content of the “True True...True” cell 
corresponding to the case of values of variables all equal to 
1.  

Mr is a non-negative integer, which cannot exceed the 
value n/2 where n is the total number of subjects When the 
residue Mr of a k-itemset is zero, it remains no more liberties 
(L=0) for the k’-itemsets (where k’>k) including the same 
variables. This frozen situation stops their computation. This 
k-itemset is interesting in that it corresponds to an exact 
relation between all its variables. Its sub-itemsets may be 
also interesting: they correspond to relations between fewer 
variables, thus more general, but these relations are not 
exact, and have a number of counter-examples which 
increases with Mr. 

Mg is an integer that takes values between –n/2 and n/2. 
If the gain Mg of a k-itemset is zero, the relation between the 
k variables can be rigorously deduced from the lower-level 
relations between k-1 variables. In the opposite case, the 
greater the absolute value of Mg, the larger the 
unexpectedness in this relation, and the more interesting it is. 
If its value is positive, the appended variable increases the 
relation between the previous variables, and decreases it 
otherwise.  

C. Illustration of the MIDOVA principles 
At the left of Figure 1, we have represented the 0-way 

contingency table corresponding to the 0-itemset, with 0 
variable, always true, and the 1-way contingency tables 
respectively corresponding to the 1-itemsets a (true for 7 
subjects) and b (true for 5 subjects), with the total n in the 
marginal cell.  The 2-way contingency table corresponding 
to the 2-itemset ab is displayed at the right-hand part of the 
Figure 1. The components of itemset a are in the marginal 
column and the component of itemset b in the marginal row, 
and among the four cells of the table, only one cell can be 
affected independently of the other cells. We have chosen the 
cell corresponding of the number of individuals who satisfy a 
but not b, and the unknown number x is written in this cell.  

 

Figure 1.  Expression of the 4 components of itemset ab given a, b and the 
total n 

The other counts of the table are relative to x and the four 
marginal sums, their algebraic expression can be easily 
derived. For example, as the sum of the two cells in the first 
line is 7 (in blue, in the marginal column of the 2-way table, 
and in the first column of the 1-way table of 1-itemset a, 
which indicates that 7 subjects verify a), the number of 
subjects who verify a and b is 7-x. In the same way, as 
Column 2 contains two cells, which total is 10 (in red, in the 
marginal row of the 2-way table, and in the second column 
of the 1-way table of 1-itemset b), and as the cell in the first 

3

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



row contains x, the second cell contains 10-x. And the value 
of the last cell derives by difference between the total of 
Row 2 (8, bold and blue) and the content (10-x) of the other 
cell of Row 2.  

 

 

Figure 2.  Expression of the 8 components of itemset abc given ab, ac, bc, 
a, b, c and n (a=v2, b=v4, c=v3 from Table 1) 

 
.The value of x can vary between 2 and 7 because the 

four counts of the 2-way table (7-x, x, x-2 and 10-x) must be 
non negative. It follows that the liberty of the ab itemset is 
L=7-2=5. In Figure 2, we have the same items a and b, the ab 
itemset has been fixed (x=4), and a new item c has been 
added, with ac and bc itemsets, which are all known through 
their tables. The abc itemset is unknown, but the eight counts 
of the 3-way table in the third row depend on the value of x 
and on the marginal sums.  It may be observed that the value 
of x is between 1 (as x-1, which is the count of individuals 
satisfying b and c but not a, cannot be negative) and 2 (as 2-
x, which is the count of individuals satisfying a but neither b 
nor c, may not be negative), and so is L=2-1=1 for the abc 
itemset. For the sequence of itemsets a, ab, abc, the 
corresponding sequence of the L values of liberty is 15, 5, 1.  

The computation of Mr and Mg for the abc itemset is 
developed in Section F.4: in the case of x=1, the three 
variables a, b, c are equivalent to the variables v2, v4, v3 of 
the Table I 

D. Representation of a MIDOVA sequence 
When one knows the count of a unique cell per each 

contingency table (there are 2p such tables), it is enough for 
reconstructing the whole relation R. To this special role we 
will assign by convention the cell where all variables are set 
to 1, corresponding to the support of the itemset. For 
example in Figure 2 the relation between a, b, c is wholly 
defined, if x=1, by: Ø(15), a(7), b(5), c(7), ab(3), ac(5), 
bc(2), abc(2). 

Generally (and fortunately), not all itemsets appear in the 
MIDOVA representation. As soon as an itemset is frozen 
(Mr=0), no following itemset is set up (i.e if abc is frozen, no 
abcd, abce, abcde, …, itemset will ensue). When the grand 
total n distributes among the 2k cells of a k-way contingency 
table and n<2k, then one cell at least is empty, and no more-
than-k-dimensional table will be created. The maximum 
order of a component of R will be log2(n)+1. 

E. MIDOVA algorithm 
The MIDOVA algorithm is a levelwise algorithm, 

derived from the Apriori one [7]. The major difference 
between our algorithm and the Apriori one is our criterion of 
positive Mr allowing to enlarge a k-itemset into a k+1-
itemset, instead of a support exceeding a threshold. In our 
algorithm, we have added (through the function 
“conditions”) the possibility of saving the only itemsets with 
a support, and/or a gain and/or a residue greater than given 
thresholds. The description of MIDOVA algorithm 
comprises 3 parts: the variables, the functions and the main 
procedure. 
 

1) Variables 
 

- V : list of the variable headings in lexicographic order 
- M : boolean matrix of the relation R 
- L0 : empty list 
- e : element of a list 
- it1 : k-association, i.e., list of k variable headings in lexicographic order 

with their 2k components (number of individuals in each cell) 
- it2 : the same as it1, with lenqth k+1 
- it0 : empty association 
- k : lenqth of the associations at the current step 
- I : global list of the Midova-oriented representation, accompanied for 

each association with its heading and other measures computes from its 
components  

- L1 : list of associations built at step k  
- L2 : sub-list of associations saved for the k+1 step 
- Mr : Midova residue  
- Possible_follow_up is a boolean variable, true if it is possible to extract 

in L2 an association built upon association it1  
 

2) Functions 
 

conditions(it) : boolean function ; true if association it checks up the 
conditions specified by the user, for example thresholds of support, 
gain and/or residue, computed starting from the components of the 
association. 

append(I, it) adds the it association to I, keeping just the heading and 
the sole part of information issued from the components wanted by the 
application designer, e.g., support, gain, residue. 

parc_L2(it, k, j) boolean function ; true if the heading of the jth 
association in the L2 list next to it has the same (k-1) first elements as 
the it heading. 

create_it(M, i) builds an association starting from its heading and its 
list of components computed from M. 

succ(L2, it1, j) identifies the successor of it1 located j slots further in 
the L2 list. 

extract(it2) extracts the (k-1)-subassociations in the heading of it2 
except the two fisrt ; e.g : extract(“abdf”) yields the list [“adf”, “bdf”] 

rech_co_L2(M, it1, k, j) tests the grouping of the k- association it1 
with the k-association it3 positioned j slots further in the L2 list. It 
yields the it2 heading by appending the last variable of it3 heading to 
the list of variables of the it1 heading. It checks then whether any sub-
association included in it2 exists in L2. If not, the computed 
association is void. Else it creates the it2 association appending to its 
heading the values of its 2k components computed from M.  
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Pseudo-code for rech_co_L2 function 

rech_co_L2(M, it1, k, j) 

it3=succ(L2, it1, j)    
it2=concat(intit(it2),intit(it3)[k]) 
succeed=True 
list_itextract(it2) 
it3=succ(L2, it3,1) 
for it in liste_it do 

while not(it3=it0) and (it3<it) do 
it3=succ(L2, it3,1) 

end 
if not(it=it4) then  

succeed=False 
return it0 

end 
end 
it2create_it(M, it2) 
return it2 

 
3) Main procedure 

 
Pseudo-code for generating the MIDOVA representation 
#Initialisation : 
K  1 ; I  L0 ; L1  L0 ; L2  L0  
for e in V do 

it  create_it(M, e) 
L1  L1 + it 

end 
for e in L1 do 

If conditions(e) then append(I, e) end 
If Mr(e)>0 then L2  L2 + e end 

end 
 
#further steps 
while not ( L2 = L0) do  

k  k+1, L1  L0 
for it1 in L2 do 

 j1 
 Possible_follow_up  parc_L2(it1, k, j) 
 while Possible_follow_up do 

it2 rech_co_L2(M, it1, k, j) 
if   not(it2=it0) then L1  L1 + it2 End 
jj+1 
Possible_follow_up  parc_L2(it1, k, j) 

 end 
end 
L2  L0   
for e in L1 do 

If conditions(e) then append (I, e) end 
If Mr(e)>0 then L2  L2 + e end 

end 
end 

 

F. Running MIDOVA on a toy dataset  
We illustrate here the whole MIDOVA operation line on 

a small example of dataset, extending from the raw matrix 
representation, to the interpretation of the final MIDOVA 
results. For the sake of clarity, we take a simpler example 
than the partial one presented in the above subsection. Table 
1 displays our artificial dataset, showing the Boolean values 
of 15 subjects s1, s2, …, s15 for 10 variables v1, v2,…, v10. 
One may read, for example, that for the subject s2, 5 
variables upon 10, i.e., v1, v2, v3, v4 and v9, are true; or that 
the variable v6 is true for 4 subjects upon 15, i.e., s10, s12, 
s14 and s15.  

TABLE I.  BOOLEAN TABLE OF 15 SUBJECTS (E.G.,.PATIENTS)AND 10 
VARIABLES (E.G., SYMPTOMS) 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 
s1 1 1 1 1 1 0 0 0 0 0 
s2 1 1 1 1 0 0 0 0 1 0 
s3 1 1 1 0 1 0 0 0 0 0 
s4 1 1 0 1 1 0 0 0 0 0 
s5 1 1 0 0 1 0 1 0 0 0 
s6 1 1 1 0 0 0 0 0 0 0 
s7 1 0 1 0 1 0 0 0 0 0 
s8 1 1 1 0 0 0 0 1 0 0 
s9 1 0 0 1 1 0 0 0 0 0 
s10 1 0 0 0 0 1 1 0 0 0 
s11 1 0 1 0 0 0 0 1 1 0 
s12 1 0 0 0 0 1 1 0 0 0 
s13 1 0 0 1 0 0 1 1 1 0 
s14 1 0 0 0 0 1 1 0 1 0 
s15 1 0 0 0 0 1 1 1 1 0 

 
 

1) Scrutinizing a few 2-itemsets 
The link between two variables is akin to be more or less 

pronounced, spanning from a complete opposition to a 
complete similarity through a complete unrelatedness. We 
exemplify below these three situations of respectively: 1) 
opposition, or contradiction, 2) linkage, or attraction 3) 
independence, or lack of connectedness.  
The itemset A={v4 ; v6}  
- includes two variables, thus its length k is 2.  
- As the variable v4 is true for the five subjects s1, s2, s4, s9 

and s13, it appears that no subject satisfying v6 belongs to 
this list, thus the support of A is zero. 

- Its support could have been 1, 2, 3 or 4, but not further, 
depending on the possible number or common subjects.  
The variation interval of the support of A is therefore [0 ; 
4], with a lower bound binf=0 and an upper bound bsup=4. 

- As seen above, its residue is a function of the gap 
(absolute value of the difference) between its actual 
support and the closest bound; in this case, Mr=2k-1(s-binf) 
and its value is zero since s= binf =0.  

- Its gain is a function of the difference between its actual 
support and the center of the variation interval (c=2), 
Mg=2k-1(s-c), i.e., -4.  

This itemset is interesting in that it sheds light on an 
opposition between v4 and v6: the subjects who satisfy v4 do 
not satisfy v6, and vice-versa. This is precisely the type of 
knowledge we try to mine out of the data. But its super-
itemsets {v1, v4, v6}, {v2, v4, v6}, …, {v10, v4, v6} are 
uninteresting: no need to return to Table 1 to conclude that 
their supports are zero, this conclusion proceeds from the 
zero support of A. We call A a frozen itemset for it does not 
generate super-itemsets carrying an extra knowledge, out of 
its own contribution. The zero value of the residue points at 
this frozen situation. 

The itemset  B={v6, v7} is true for 4 subjects, those who 
satisfy v6; v7 is true for these 4 subjects and two other ones, 
s5 and s13. Its support is 4 and its variation interval is [0; 4] 
as above. As the support equals the lower bound, the residue 
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Mr of B appears to be zero and the gain Mg is 4. B bears 
interesting information, i.e., all the subjects for which v6 is 
true satisfy also v7. This can be also expressed by the 
association rule v6v7 whose confidence is 100%. Its 
super-itemsets are uninteresting: no need to return to Table 1 
for delineating the subjects who satisfy the 3-itemset {v6; v7; 
v9}, they are exactly those satisfying {v6; v9}. The itemset 
B is frozen, as pointed out by its zero residue.  

The itemset  C={v6, v9} is true for 2 subjects, s14 and 
s15, sharing  both variables, while v6 and v9 are respectively 
true for 4 and 5 subjects. The variation interval of this 
itemset is again [0; 4], but the support s=2 of C is now 
central in the interval, which corresponds to a residue of 
value 4 and a gain of 0. This zero gain shows that the relation 
between v6 and v9 is uninteresting. Conversely, as Mr is 
greater than zero, this itemset is not frozen, and one has to 
consider its derived and possibly interesting super-itemsets.  

 
2) MIDOVA selection of the k-itemsets 

The MIDOVA algorithm works level-wise, which means 
that once established, the level-k itemsets are combined for 
deriving the level-(k+1) ones. A level-(k+1) itemset needs  
k+1 level-k itemsets. In this way the 3-itemset {v2, v3, v4} 
derives from the three 2-itemsets {v2, v3}, {v2, v4} and {v3, 
v4}. 

- Level 1: the 1-itemsets, made of a single variable, 
are generated ; there are ten of them.  

- Level 2: the 1-itemsets are combined by twos for 
creating the 2-itemsets. For generating the sole 
knowledge-carrying 2-itemsets, the 1-itemsets with 
non-zero residues are selected, which eliminates  
the two variables v1, true for all the subjects,  and 
v10, true for none of them (their residues are zero, 
and their respective gains are 7.5 and -7.5). In this 
way 28 2-itemsets are to be processed instead of the 
45 ones when keeping v1 and v10. Considering 
these 28 itemsets, 8 are frozen (Mr=0), among 
which 7 have zero support and gains between -6 
and -4, and one has support and gain values of 4. 
They won’t contribute to build the upper levels, but 
as their gain values are important, they are left apart 
for the final interpretation step. The 20 remaining 
2-itemsets are kept for building the next levels. 
Four of them have a zero gain, the others spread 
from -4 to 3.  

- Level 3: The 20 2-itemsets with Mr≠0 are 
combined by threes for building the 3-itemsets, 
yielding 22 of them, among which only three have a 
non-zero residue; therefore, this sole number 
prevents building any 4-itemsets. Their gain values 
are zero. Among the remaining 19 with a zero 
residue, two only have a non-zero gain, i.e., {v2, 
v3, v4} with a support of 2 and a gain value of 2, 
and {v2, v3, v5} with a support of 2 and a gain 
value of -2. 

In this way we have built the wholeness of the k-itemsets 
akin to provide pieces of information about the dataset. 
Throughout three steps, 10, 28 and 22 itemsets respectively 
have been considered, summing up to 60 (see Annex). 

Among these ones, those taken into account for building the 
ones at the next k+1 level amounts to respectively 8, 20 and 
3; those with non-zero gain have been 10, 24 and 2, 
establishing in this way a total of 26 interesting relations 
between variables (out of the trivial 1-itemsets).    

 
3) Differences between MIDOVA algorithm and Apriori-

like ones 
In Table II, the wholeness of the 1023 k-itemsets (k>0) 
potentially built starting from the data are split up and 
counted in reference to the zero value, or not, of their 
residues and gains. They yield from the MIDOVA process  
parameterized without any residue threshold instead of the 
threshold value 1 assigned above. There are then as many 
k-itemsets as combinations of variables, i.e., 1024=210. The 
first itemset is the void one, which includes no variable, and 
is true for 15 subjects – it has been taken out from the 
itemset list as a trivial and uninteresting one. The last one is 
the « full » itemset which includes all the variables, but is 
true for no subject. The 26 interesting itemsets are 
emphasized in boldface, so as to point out the efficiency of 
our algorithm compared to a brute force one who would 
examine the 1023 itemsets. It is noticeable that, in the scope 
of a fair comparison between the Apriori algorithm and ours, 
Apriori should be considered as such: its efficiency follows 
from the sole principle of applying a threshold to the 
supports, an option we have discarded in order to retain the 
itemsets with zero supports, as these ones mostly points to 
interesting opposition relations. Moreover,  7 itemsets out of 
the selected 26 ones have a zero support.  
 

TABLE II.  HOW THE 1023 ITEMSETS EXHAUSTIVELY ISSUED FROM 
TABLE 1 DISTRIBUTE AS REGARDS TO THE VALUE ZERO OR NOT OF THEIR 

MR AND MG INDICES. 

 Number of k-itemsets 

 k 1 2 3 4 5 6 7 8 9 10 Total 

Mg=0   17 115 210 252 210 120 45 10 1 980 Mr=0 
  Mg≠0 2 8 2        12 

 Total  2 25 117 210 252 210 120 45 10 1 992 

Mg=0   4 3               7 Mr>0 
  Mg≠0 8 16         24 

 Total  8 20 3               31 

Total   10 45 120 210 252 210 120 45 10 1 1023 
 
Going on with the subject line of enlightening the 

differences between our principles and Apriori’s, we have 
shown in Figures 3 an 4 how do interesting itemsets rise or 
not in both methods, starting from the exhaustive 1023 
itemsets:  
- The 623 firsts, lexically ranked for each increasing value 

of k (1<k<6: 45 2-itemsets, 120 3-itemsets, 210 4-itemsets, 
252 5-itemsets). 

- The remaining ones (k>=6) have zero-valued supports, 
residues and gains.  
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In both figures, the x axis indicates the rank of the 
itemset according to the above-mentioned ordering, and the 
dotted line visually recalls the number k. 
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Figure 3.  Residues of all k-itemsets of Table I. 

In Figure 3, the y axis specifically stands for the 
MIDOVA residues, in order to enlighten how soon our 
algorithm locates the « no-future » value of k, thus how soon 
the algorithm is stopped.  
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Figure 4.  Interesting k-itemsets of Table 1, mined with MIDOVA or 

Apriori (with threshold 0) 

In Figure 4, the y axis stands for the support and gains of 
the successive itemsets. It visually jumps out that 1) gain and 
support measure totally different phenomena, 2) MIDOVA 
does detect the strong gain values that clearly stands out as 
grouped for the small values of k. These two features explain 
both the good performance of MIDOVA, able to detect the 
wholeness of the interesting itemsets, and only these ones, 
including those with zero support, and its relative efficiency, 
compared to Apriori parameterized with a zero support 
threshold.  

More precisely, one may read in Table III that among the 
627-528=99 k-itemsets extracted by MIDOVA or Apriori 
with zero threshold, only 19 of them (17 2-itemsets and 2 
3-itemsets) are simultaneously selected by the two methods – 
and the number of common items would still decrease using 
Apriori with a threshold. This confirms that the 26 inter-
variable relations mined out from the Table I are different by 
nature from those issued from the Apriori family algorithms.  

 

TABLE III.  HOW THE 627 K-ITEMSETS (1<K<6) ISSUED FROM TABLE 1 
DISTRIBUTE, ACCORDING TO ZERO OR NON-ZERO VALUES OF SUPPORTS AND 

GAINS 

supp>s |gain|>g0 2 3 4 5 Total 

Mg=0 9 82 189 248 528 support=0 
  Mg≠0 7    7 

Mg=0 12 36 21 4 73 support≠0 
  Mg≠0 17 2   19 

  Total 45 120 210 252 627 
 
As we have already interpreted the meaning of three 

examples of 2-itemsets, we now interpret the only two 
interesting relations between 3 variables. 

 
4) Interpreting the 3-itemsets with non-zero gain 

Let us examine first the itemset D={v2, v3, v4}. In 
Figure 5 a Venn diagram shows how the 15 subjects 
distribute among the three variables v2, v3 and v4. In this 
ensemblist layout, the subjects are splitted in 8 parts 
according to their values of the three considered variables. 
For example s7 and s11 are in the segment of v3 exterior to 
v2 and v4, as their values for v3 are 1, whereas they are zero 
for v2 and v4. In the same way the s1 and s2 subjects lie in 
the central part common to the three variables, as their values 
are 1 for all of them. Thus the support of the itemset D is 2.  

 

 
Figure 5.    Venn diagram of the {v2, v3, v4} itemset. 

 
The variation interval of the support can be found by 

trying to modify the support of D without modifying the 
supports of its component 2-itemsets. This can be done by 
moving the subjects from one area to another one: the only 
possible configuration is shown in Figure 6. 

 

 
Figure 6.  Transfer of 4 subjects of the {v2, v3, v4} itemset: the 

movements are drawn in the left-hand figure, resulting in the right-hand 
configuration.  

 
In the left part of Figure 6, blue arrows indicate the 

authorized movements of the subjects (starting from a yellow 
area, where the number of negative variables is even, to a 
white one). As far as each support of the 2- and 1-itemsets 
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includes as much yellow areas as white ones (one each for 
the 2-itemsets and two for the 1-itemsets), their values are 
kept unchanged. For example the sub-itemset {v2, v3}, 
which included at the left a white area with 3 subjects and a 
yellow one with 2, now includes at the right a white area of 4 
and a yellow one of 1, while its support stays the same 
(5=3+2=4+1) – obeying a kind of conservation principle, so 
to speak. The sub-itemset {v2}, which included two white 
areas with 1 and 3 subjects, and two yellow ones with 1 and 
2 subjects, now includes two white ones with 2 and 4, and 
two yellow ones with with 0 and 1, whereas its support keeps 
constant (7=(1+3)+(1+2)=(2+4)+(0+1)). Implementing these 
changes of the variation interval can be done by just 
modifying the four values in the datatable. This can be done 
in different ways, one of which is displayed in Figure 7. In 
the left-hand part of the table the values of Figure 1 are 
reproduced, and the values to be changed for decreasing the 
support of D from 2 to 1 are highlighted in yellow; at the 
right-hand part of the table, these values have been modified.  

Figure 6 shows the only possibility for the variation of 
the D itemset subjected to the stability conditions of the 
supports of its sub-itemsets. It follows that the variation 
interval of its support is [1; 2], of center 1.5 and gain 
Mg=2k-1(s-c)= 22(2-1.5)=2, which points out a tight relation 
between v2, v3 and v4, relatively to the three underlying 2-
relations, i.e., (v2 and v3, v2 and v4, v3 and v4). 

 

 
Figure 7.  An example of modification of 4 subjects of the {v2, v3, v4} 

itemset for implementing the changes in Figure 6.  

 
The second 3-itemset with non-zero gain is E={v2, v3, 

v5}, which Venn diagram is shown in Figure 8. 
 

 
Figure 8.    Venn diagram of the {v2, v3, v5} itemset. 

 

In the same way Figure 9 shows the only way to move 
subjects in order to modify the support of E without 
modifying the supports of its component 2-itemsets, which 
yields a variation interval [2; 3] for the support, and thus a 
gain of -2 expressing a loosening of the link between the 3 
variables v2, v3 and v5. 

 

 
 
Figure 9.  Transfer of 4 subjects of the {v2, v3, v5} itemset: the 

movements are drawn in the left-hand figure, resulting in the right-hand 
configuration.  

 
5) Global interpretation 

The reader may probably have observed that our example 
data had a special structure: apart from v1, always true, and 
v2, never true, the variables v2 to v5 mainly characterize the 
subjects s1 to s9, and so do the variables v6 to v9 for the 
subjects s10 to s15. This fact explains why the k-itemsets 
with non-zero gain extracted by MIDOVA are quasi-
exclusively of order 2, because the dominant structure in the 
table is an opposition between two subject clusters. In this 
framework, the 2-itemsets that link the variables 
characterizing one cluster are mainly endowed with a high 
positive gain, whereas those linking two variables from 
different clusters tend to have highly negative gains, while 
being mostly characterized by a zero support. We can 
conclude that MIDOVA has uncovered the knowledge that 
had been incorporated in the data, i.e., the existence of two 
contrasting clusters, a bit blurred with some noise. 

 

G. Performance assessment of MiDOVA vs. Apriori  

TABLE IV.  NUMBER OF ITEMSETS AS A FONCTION OF 1) THEIR 
LENGTH, 2) THE ALGORITHM (WBC DATASET, FROM UCI REPOSITORY) 

    
MIDOVA with all 

variables 
MIDOVA with 
class: benign 

k Apriori Mr=0 Mr>0 Total Mr=0 Mr>0 Total 

2 4095 1652 2443 4095 23 66 89 
3 121485 23750 7931 31681 1119 368 1487 
4 2672670 12134 1174 13308 762 83 845 
5 46504458 186 0 186 18 0 18 
6 666563898 0 0 0 0 0 0 
7 8,09 E+9            

… …           

Tot. 2,48 E+27 37722 11548 49270 1922 517 2439 
 
As an example, we have performed MIDOVA and 

Apriori on the UCI test-data Wisconsin Breast Cancer 
(WBC) [9; 10]. This test set comprises ten categorical 
variables, among which the target variable with the Benign / 
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Malignant modalities, 8 with ten modalities and 1 with 9 
modalities; all these were translated into 91 dichotomous 
variables, observed for 699 individuals. In Table IV the 
length of itemsets is in the first column; in the second and 
third ones are displayed the number of itemsets obtained 
with Apriori and MIDOVA respectively, with threshold 0, 
separating those with zero residue, the others, and those who 
include the target variable with value = Benign.  

The Apriori algorithm yields 4095 2-itemsets (see 
Table IV), which are all the possible combinations of these 
91 variables 2 by 2; MIDOVA too because none of these 91 
variables could be eliminated, by default of zero residue 
value. However more than a third of these 4095 itemsets 
(1652) have a zero residue, and are thus eliminated from the 
list of itemsets grounding the building of 3-itemsets. At next 
step (k=3) the number of itemsets grows significantly 
(31 681, ie. 7.7 times more than at step 2), but much lesser 
than with Apriori (29.7 times more than at step 2). Among 
the 3-itemsets generated by MIDOVA, a large proportion has 
a zero residue (23 750, i.e., more than 70%). From step 3 to 
step 4 the number of itemsets is multiplied by 22 with 
Apriori, 0.42 with MIDOVA (see Figure 10). At step 5, 186 
itemsets are kept by MIDOVA, all of them with a zero 
residue, which explains that no itemset of length>5 exists, at 
the same time when the number of itemsets keeps growing 
exponentially in Apriori. At last, 1922 itemsets have been 
kept as candidate variables (“expansion” of the original ones) 
for predicting the benign target modality. 
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Figure 10.  Multipliers for the number of itemsets – an Apriori and 
MIDOVA comparison (WBC dataset, from UCI repository)  

 
In this way, only a minor part of the 49 270 components 

of the MIDOVA decomposition is used for the classification 
task, i.e., the most relevant itemsets in this respect: the ones 
with Mr=0, Mg≠0 and including the label variable C, thus 
expressing the tightest relationship with this variable. We 
will take advantage of this observation in next section III. 

H. Effectiveness of MIDOVA 
When no threshold support is applied, the maximum 

complexity at level 2 is O(Ns, Nv2), where Ns and Nv are the 

number of subjects and variables respectively. The 
complexity at the further levels depends heavily on the 
presence or not of interactions, and their distribution along 
the successive levels. For example, a structure of simple 
clusters, i.e., “blocks”, mainly results in 2-itemsets, with few 
higher-order ones. It is the case in our toy example in 
subsection F, where the only two order-three itemsets may 
be considered as random noise. 

We are aware that many enhancements of the Apriori 
algorithm have been published since [7]. However these 
variants do not change, to our knowledge, the basic 
principles at work, and could also be applied for increasing 
the efficiency of MIDOVA – this prospect is one of our 
current interests. 

III. NAÏVE BAYES CLASSIFICATION OF THE EXPANDED 
DATATABLE 

We address now the application of MIDOVA to the 
classification problem. For the sake of simplicity we will 
tackle the 2-class problem. The class variable C is thus a 
binary one, and its modality is known for each observation of 
the learning set. As MIDOVA gives a complete view of how 
any variable is related to the other ones, C included, we have 
applied it to the learning set and we have selected the only 
subset of k-itemsets involving C with 0-valued residue, and 
extracted their 0-valued components (corresponding to the 
cells of count 0 in the k-way contingency table). Each 
component results in a new variable, product of the values 0 
or 1 of its variables (except C). We call “MIDOVA 
expansion” the set of components and “MIDOVA-expanded 
datatable” the datatable with the new variables. 

For the sake of simplicity again we will use the most 
basic classification approach, i.e., the Naïve Bayes method 
This approach poses the hypothesis of independent variables, 
i.e., the log-odd for a data-vector to belong to class C is the 
sum of the contributions from priors and separate 
contributions from each of the variables. 

Which translates, in our specific case of two classes C 
and ¬C and binary components of data-vectors x={xi}: 

 
 For each variable i the contribution si writes: 

si = log(P(xi |C)) – log(P(xi |¬C)) 

 For a new data-vector  
Evidence(x) = log(P(C)) – log(P(¬C)) + <x,s> (1) 

where P(.) is a probability, and <.,.> is a dot product. 

Our parameter tuning heuristics for optimizing the 
generalization accuracy criterion, i.e., error percentage, (or 
F-score variant if necessary) is as follows: 

 
 0 – We start from the MIDOVA-expanded datatable, 

whose number of variables depends on our threshold 
parameters for the gain Mg and residue Mr indices, 
generally Mg>0, Mr=0.  

 1 – A first pass on the training set yields the ordered 
list of variables most contributing to the 
classification, sorted by decreasing si unsigned 
values. 
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 2 – A 5-fold (or 6-fold) cross-validation on the 
training set yields the “optimal cut” Iopt for the 
number of relevant variables. 

 3 – A last pass on the whole training set, with 
parameter Iopt, yields the optimal value for the 
evidence threshold Eopt. 

 4 – The test set is then classified with formula (1) 
and parameters Iopt and Eopt. 

IV. EXPERIMENTS 
To our knowledge, public access test sets fitting to our 

requirements of qualitative datasets - binary or categorical – 
with two classes are uncommon. We present here a 
benchmarking of our classification method on three UCI 
repository dataset, All records containing unknown values 
have been removed. [9, 10, 11]: Tic-Tac-Toe, Wisconsin 
Breast Cancer, and Monks-2 [12] (known to be the most 
difficult of the three Monks problems).  

As our aim in this paper consists in assessing the 
soundness of a novel data decomposition, and not in 
presenting a competitive learning algorithm, we have not 
tried to assess our MIDOVA application on the many other 
public access test sets with a k-class output variable (k>2),or 
with numerical attributes to discretize. This way we avoid 1) 
further uncertainties in the comparisons due to the 
discretization steps, and 2) reprogramming other reference, 
or highly successful, methods, in our present proof-of-
concept phase. 

A. Tic-Tac-Toe 
We have encoded the nine 3-category nominal variables 

(empty / cross / circle) into 27 binary variables, plus 2 binary 
variables for the class variable (“win/loose”). 638 instances 
are in the train set, 320 in the test set. The cross begins the 
game, and has to play when the given configuration instance 
appears. 

The MIDOVA expansion yields 102 components, each 
including C or ¬C (i.e., non C), with Mg>0 and Mr=0. 

After reordering these variables, the Naïve Bayes 
parameter tuning, with a 6-fold cross-validation, keeps the 
Iopt=32 most relevant ones, with threshold Eopt=.8716, 
resulting in the maximum, but yet attained, accuracy of 
100% on the test set. 

Note that a variant with 5-fold cross-validation results in 
2 test errors (Accuracy=99.37%), and another one with 
Iopt=100 results in 3 errors (Accuracy=99.06%). 

Our method allows us to interpret the ordered list of the 
relevant itemsets: for example, the 4 top ones, with a 
prominent gain index of 168, encode the four diagonal 
patterns (O,X,O) and (X,O,X) associated with “loose” (the 
latter configuration is included in 68 instances, 42 “loose” 
and 26 “win”); the next 6 ones, with a gain of 144, encodes 
the trivial cases of three circles aligned in a row or a column, 
also associated with “loose”, and so on… 

B. Wisconsin Breast cancer 
This dataset consists in 683 patients (train set: 455; test 

set: 228) described along 9 ordinal scales. Eight of the scales 
have ten values, and one has nine ones. 

For the sake of not losing the orderliness information, we 
have encoded each of the nine variables as follows: the ith 
value is encoded by i “1” and 10-i “0” (for example, V1-3 
results in {1 1 1 0 0 0 0 0 0 0}).  

The MIDOVA expansion on these 89 binary variables 
yields 1283 components, each including C or ¬C, with Mg>0 
and Mr=0. 

After reordering these variables, the Naïve Bayes 
parameter tuning, with a 5-fold cross-validation, keeps the 
Iopt=130 most relevant ones, with threshold Eopt=.3189, 
resulting in the maximum, not yet attained by explicit 
methods to the best of our knowledge, accuracy of 98.24% 
on the test set (4 errors). The recent reference [13] reports a 
99.63% accuracy using a blind method (Artificial 
Metaplasticity Multilayer Perceptron) 

Note that a variant with a standard binary coding scheme 
results in 5 errors (Accuracy=.9781). 

Like any rule-based method, ours allows a medical expert 
to interpret the ordered list of the relevant itemsets, which 
top elements are: 

Malignant←V2.5,V4.2 
Malignant←V2.5,V7.4 
Malignant←V2.5,V4.3 
Malignant←V6.4 ,V4.2 
Malignant←V2.6,V4.2 
Malignant←V6.8,V7.4 
Malignant←V2.5,V7.5 

Malignant←V3.5,V6.4,V7.4 
Malignant←V3.5,V7.5 
………………………… 
Benign←V2.5,V3.4 
………………………… 
Benign←V1.4,V6.4,V7.4 
………………………… 

C. Monks-2 
Monks2 is the harder of the three Monks problems: the 

solution cannot be described simply as a conjunction of 
disjunctions, it needs a method for pulling the concept of  
“exact number (n) of  variables with value 1 amongst m 
ones” out of sample data. 

We have encoded the six 3 nominal variables into 19 
binary variables, plus 2 binary variables for the class variable 
(“two features/else”). 169 instances are in the train set, 432 
in the test set.  

The MIDOVA expansion yields 99 components, each 
including C or ¬C, with Mg>0 and Mr=0. 

After reordering these variables, the Naïve Bayes 
parameter tuning, with a 5-fold cross-validation, keeps all of 
the Iopt=99 of them, with threshold Eopt=1.6994, resulting 
in the honorable accuracy of 71.5% on the test set: in the 
review [12], 9 symbolic learning techniques upon 24 result 
in a clearly better score. We are aware of only one SVM 
method [14] resulting in a better score (85.3%).. 

Our method is clearly adapted to detecting classification 
rules expressed as conjunctions of disjunctions, not to more 
sophisticated hypotheses.  But our experience is that this 
ability is enough for most of the real-life problems in the 
domain of supervised learning. 

V. RELATED METHODS 
Since the very beginning of this paper, we have 

continuously compared our method to Apriori: let us recall 
that our main objective here is to expose a novel 
representation of a 0/1 database, made of “salient” itemsets, 
close to the representation issued from Apriori, but with a 
very different definition of “salient”. 
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First, we will summarize the main similarities: 
- Both are levelwise methods, starting from order-1 

itemsets for building order-2, order-3, …ones. 
- Both aim at extracting the “local” information 

embedded in the interactions between two and more 
variables, resulting in a representation far from the global 
“datacloud” scheme of most of the data analysis methods. 

- Both use anti-monotone properties: as regards to 
Apriori, the support of an itemset never exceeds the support 
of its subsets; concerning MIDOVA, the residue of an 
itemset never exceeds the residue of its subsets. 

Then, the main differences are as follows: 
-An implicit hypothesis needed by Apriori for giving rise 

to tractable computations is that each instance has a 
description of a “pick-any” type: it consists of a small 
number of items picked among a large number of potential 
ones, as it is the case for “market basket” data or language 
data – hence itemsets never include absent items in real-life 
applications. On the contrary MIDOVA is well-fit for any 
type of boolean data, whether pick-any or not, for it takes 
symmetrically into account both presence or absence of an 
item. 

- The general principle of both methods are different: 
Apriori operates by counting the occurrences of 
combinations of the items, while MIDOVA condenses the 2K 
facets of the huge K-way contingency table implicitly 
defined by any N × K boolean datatable into a list of its 
essential facets, where essential means “necessary and 
sufficient for rebuilding the datatable”. 

- Both aim at minimizing the number of extracted 
itemsets, but Apriori uses frequency thresholds, while 
MIDOVA uses other criteria, preserving the cases where 
interesting itemsets may be unfrequent, if not absent (it is the 
case of the XOR function, and more generally of situations 
of exclusiveness – in a medical context, to characterize 
health may be as important as characterizing illness; see the 
benign/malignant example above). 

- As a stopping criterion, Apriori uses support thresholds, 
while MIDOVA uses “residue”, a rigorous measure of the 
association potential of a considered itemset. 

As regard to the illustrative part of our paper, which 
concerns the classification problem, we will review a few 
families of methods close to our classification scheme:  

- The principles of the Association Rule-based Classifiers 
are as follows: 1) they start, as we do, from a Boolean matrix 
including the target variable, 2) they mine all the high-
confidence association rules with a single variable in the 
right part – we use our novel MIDOVA process instead,  3) 
they filter the only rules implying the target variable, as we 
do, 4) they implement a rule-ordering strategy, generally 
based on support and confidence, instead of our Naïve 
Bayes-based expansion/selection process. The Large Bayes 
method of [6] is a salient reference in the 90’s. The 
references [15] and [4] report maximal accuracy rates of 
respectively 93.95% and 95.1% on WBC data, 92.6% and 
98.2% on Tic-Tac-Toe, and no results on the Monks 
problems. Harmony [16] has taken over in the 2000’s. It uses 
an instance-centric rule generation framework where the 
ordering of local rule lists is based on confidence, entropy or 

correlation criteria. At the end of the process and for each 
class, these lists are merged and sorted by the chosen 
criterion: when an unknown test instance is presented, the 
sums of the criterion for the k first relevant rules in each 
class are computed and compared, determining then the 
presumed class label. The recent reference [17] reports a 
95.85% Harmony score for WBC data, and 97.98 for TTT. It 
presents a general scheme close to ours: the authors first 
create new features (based on frequency criteria, unlike ours) 
for expanding the data, then they use classic learning 
methods, among which Naïve Bayes, for the classification 
task. Their results with and without their “Feature Creation” 
(FC) expansion are reported in the recapitulative Table V. 

Learning Classifier Systems (LCS) [5] are not as close to 
our method as it could seem at first glance: these incremental 
data-streaming algorithms use genetic optimization for the 
selection of best-fitted classification rules. This problem 
being harder than our batch-processing objective, no surprise 
that a 95,5% accuracy has been reported on WBC data [18]. 

 

TABLE V.  REPORTED ACCURACIES FORWISCONSIN BREAST 

CANCER, TICTACTOE AND MONKS2 DATASETS (
a
: REPORTED IN [17]) 

  WBC TTT Monks2 
Method    

Naïve Bayes 97.88
a
 68.47

 a
 67.0 

Naïve Bayes + FC 96.59
 a

 79.72
 a

 n.a. 

Harmony 95.85
 a

 97.98
 a

 n.a. 
(CBA (Classification Based on 

Associations) 93.95 92.6 n.a. 
GARC (Gain based Association Rule 

Classification) 94.8 100.0 n.a. 
LCS (Learning Classifier System) 95.5 n.a.  n.a. 

Naïve Bayes + MIDOVA 98.24  100.0 71.5 
Maximum reported performance with 

blind methods 99.58 100.0 85.3 
 
 

VI. CONCLUSIONS AND PERSPECTIVES 
We have presented in this text a novel representation 

scheme for qualitative data sets: a list of frequent and 
infrequent itemsets condensing all the noticeable, non-trivial 
information embedded in the interactions between Boolean 
variables. We have shown that this list is far less prone to the 
combinatorial explosion than the one resulting from the 
Apriori algorithm and that the maximum order of the 
interesting itemsets is limited to log2N+1, N being the 
number of instances in the database. 

For proving the quality of this representation, we have 
decided to put it into practice in a supervised framework, in 
which a quantitative assessment is possible, specifically in 
the framework of the two-class discrimination problem. For 
this purpose, we have selected the subset of itemsets related 
to the class variable, resulting in an expanded datatable. We 
have chosen the Naïve Bayes classification method for 
providing the explicit discrimination criterion we wished and 
assess the quality of our data expansion. 
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The results on three open-access test datasets are 
satisfactory:we have proven on two test datasets (WBC and 
Tic-Tac-Toe) that, as a matter of accuracy performance, our 
derived classification method could compete with SVMs, 
while reaching the same human readability of the results as 
Learning Classifier Systems or Classification Association 
Rules. Honorable results were obtained on the Monks2 
problem, which is an artificial test bench for general artificial 
intelligence.  

Apart from developing non-supervised applications of 
our representation method, such as data-driven modeling, our 
middle-term prospects are many in the machine learning 
domain: 

 Classify more than two classes and include splits on 
numerical variables, which could multiply our 
possible test benches, and outline more precisely the 
qualities and limits of our approach; we already 
know that on the Monks-2 dataset, our performance 
is good, but not excellent. 

 Scale-up the implementation of our algorithm, for 
tackling real-life problems. 

 Use another selection and classification method as 
Naïve Bayes, if necessary. 

 Increase our theoretical understanding of the 
method, and bridge the gap with statistical learning 
approaches. 
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ANNEX 
 

For the sake of comparability with other methods: K-itemsets extracted by MIDOVA out of the data in Table 1 
 

k: #_items k-itemset Support Gain Residue Frozen ? Interesting ? Interaction sign 

1 {v01} 15 7.5 0 *   
1 {v02} 7 -0.5 7    
1 {v03} 7 -0.5 7    
1 {v04} 5 -2.5 5    
1 {v05} 6 -1.5 6    
1 {v06} 4 -3.5 4    
1 {v07} 6 -1.5 6    

1 {v08} 4 -3.5 4    
1 {v09} 5 -2.5 5    
1 {v10} 0 -7.5 0 *   

2 {v02; v03} 5 3 4  * + 
2 {v02; v04} 3 1 4  * + 
2 {v02; v05} 4 2 4  * + 
2 {v02; v06} 0 -4 0 * * - 

2 {v02; v07} 1 -4 2  * - 
2 {v02; v08} 1 -2 2  * - 
2 {v02; v09} 1 -3 2  * - 
2 {v03; v04} 2 -1 4  * - 
2 {v03; v05} 3 0 6    
2 {v03; v06} 0 -4 0 * * - 
2 {v03; v07} 0 -6 0 * * - 
2 {v03; v08} 2 0 4    

2 {v03; v09} 2 -1 4  * - 
2 {v04; v05} 3 1 4  * + 
2 {v04; v06} 0 -4 0 * * - 
2 {v04; v07} 1 -3 2  * - 
2 {v04; v08} 1 -2 2  * - 
2 {v04; v09} 2 -1 4  * - 
2 {v05; v06} 0 -4 0 * * - 
2 {v05; v07} 1 -4 2  * - 
2 {v05; v08} 0 -4 0 * * - 
2 {v05; v09} 0 -5 0 * * - 
2 {v06; v07} 4 4 0 * * + 
2 {v06; v08} 1 -2 2  * - 
2 {v06; v09} 2 0 4    
2 {v07; v08} 2 0 4    
2 {v07; v09} 3 1 4  * + 
2 {v08; v09} 3 2 2  * + 

3 {v02; v03; v04} 2 2 0 * * + 
3 {v02; v03; v05} 2 -2 0 * * - 
3 {v02; v03; v08} 1 0 0 *   
3 {v02; v03; v09} 1 0 0 *   
3 {v02; v04; v05} 2 0 4    
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3 {v02; v04; v07} 0 0 0 *   
3 {v02; v04; v08} 0 0 0 *   
3 {v02; v04; v09} 1 0 0 *   
3 {v02; v05; v07} 1 0 0 *   
3 {v02; v07; v08} 0 0 0 *   
3 {v02; v07; v09} 0 0 0 *   
3 {v02; v08; v09} 0 0 0 *   
3 {v03; v04; v05} 1 0 4    
3 {v03; v04; v08} 0 0 0 *   
3 {v03; v04; v09} 1 0 4    
3 {v03; v08; v09} 1 0 0 *   
3 {v04; v05; v07} 0 0 0 *   

3 {v04; v07; v08} 1 0 0 *   
3 {v04; v07; v09} 1 0 0 *   
3 {v04; v08; v09} 1 0 0 *   
3 {v06; v08; v09} 1 0 0 *   
3 {v07; v08; v09} 2 0 0 *   
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