International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

131

An Adaptive Computational Intelligence Algorithm
for Simulation-driven Optimization Problems

Yoel Tenne Kazuhiro lzui Shinji Nishiwaki
Formerly with the Department Department of Mechanical Department of Mechanical
of Mechanical Engineering and Engineering and Science, Engineering and Science,

Science, Faculty of Engineering, Faculty of Engineering,
Faculty of Engineering, Kyoto University, Kyoto University,
Kyoto University, Kyoto, Japan Kyoto, Japan

Kyoto, Japan email: izui@prec.kyoto-u.ac.jp email: shinji@prec.kyoto-u.ac.jp

email: ytennex-e04@yahoo.com

Abstract—Modern engineering design optimization often eval- « Both the real-world physics being modelled, and the
uates candidate designs with computer simulations. In this setup, numerical simulation process, may result in an objec-

there will often exist candidate designs which cause the simulation tive function having a complicated nonconvex landscape
to fail and would have no objective value assigned to them. This, . o e . !
which makes it difficult to locate an optimum.

in turn, can degrade the effectiveness of the design optimization) R)
process and lead to a poor final result. To address this issue, this Accordingly, such optimization scenarios are commonly

paper proposes a new computational intelligence optimization termed in literature asxpensive black-box optimization prob-
algorithm which incorporates a classifier into the optimization lems|[2].

process. The latter predicts which candidate designs are expedte : . . }
to cause a simulation failure, and its prediction is used to bias A_framework W_hwh has proven efl‘ec_tlve in such (?hal
the search towards candidate designs for which the simulation is /€nNging problems is that ahetamodel-assisted computational

expected to succeed. However, the effectiveness of this apach intelligence(Cl) algorithms It combines ametamodeivhich
depends on the classifier being used, but it is typically not approximates the expensive black-box function and pravide
known a-priori which classifier best suits the problem being predicted objective values at a much lower computational

solved. To address this issue, the proposed algorithm employs . . : :
a statistically rigorous procedure to autonomously select the cost, with aCl optimizer which seeks an optimum of the

classifier type, and to adjust the classifier selection procedure wit Metamodel. Due to its explorative nature, a Cl optimizeermft
the goal of improving its accuracy. A performance analysis with a performs well in challenging nonconvex landscapes.
simulation-driven design problem demonstrates the effectiverss While the above optimization framework has proven ef-
of the proposed algorithm. _ fective, simulation-driven optimization problems ofteregent
_Index Terms—expensive optimization problems; computationalypqiher challenge, namely, some candidate designs wilecau
intelligence; modelling; classification; model selection. . . " ’ .
the simulation to fail, and would therefore not provide tixe e

pected objective value. We refer to such designsiemilator-
))) infeasiblg(Sl), while those for which the simulation completes

Nowadays engineers often usemputer simulation® eval- syccessfully are termedimulator-feasiblgSF). S| designs
uate candidate designs, with the goal of reducing the duratinhgyve two main implications on the optimization search:
and cost of the product design process. Such simulations, gjqce they do not have a corresponding objective value,
which must be properly validated with laboratory experitsen

X - ey the objective function becomes discontinuous, and this
tran_sform the _d§5|gn process into an optimization problem exacerbates the difficulty of the optimization search.
having three distinct features [2]:

« The simulation acts as the objective function, namely, "f\nd
assigns candidate designs their corresponding objectives Such designs can consume a large portion of the allotted
values. However, the simulation is often a legacy code computational resources without providing any objective
or a commercial software whose inner workings are Vvalues, and can therefore degrade the search effectiveness
inaccessible to the user, and so an analytic expression for and lead to a poor final resuilt.
this function is unavailable. Such llack-box function A fundamental assumption in this study is that the simutatio
precludes the use of optimizers which require an analyfigilures are caused by an unknown limitation of the simatfati
function. code, and that they are not random. This implies that refeate
« Each simulation run iscomputationally expensiyghat evaluations of a SF candidate solution will consistentlg-su
is, it requires considerable computer resources, and thised, while repeated evaluations of a Sl candidate solution
severely restricts the number of candidate designs whialil consistently fail. Limitations of the simulation codman
can be evaluated. be attributed to a variety of reasons, for example, the litabi

I. INTRODUCTION

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

132

to handle complex geometries, or an attempt to simulgdeovides an extensive performance analysis. Lastly, @@
physical conditions which are not supported by the numkricgoncludes this paper.
approximations employed in the simulation.

Based on the description so far, we summarize the under-

based: optimization problems, Sl vectors in optimization, andista

o . . tical accuracy estimation.
« The optimization problem involves a black-box objective y

function which is computationally expensive to evaluatéd. Expensive optimization problems
« The black-box objective function may have a complicated As mentioned in Section I, expensive optimization problems
nonconvex landscape which exacerbates the optimizatiges common in engineering, and Figure 1 shows the layout of
difficulty. such problems in which the simulation is viewed as a black-
« Some candidate solutions will cause the simulation to fajjox function, namely, it assigns objective values to caagid
namely it will return no objective value. Such failures argesigns, while its analytic expression is unknown. In teisis,
nonrandom, but their cause is unknown. the candidate designs are represented as vectors of design
Numerous studies have referred to such simulation failuregriables, and are provided as inputs to the simulationradye
and the difficulties they introduce into the optimizatiomuss, Such optimization problems arise in domains ranging froen th
for example, Biiche et al. [3], Okabe [4], and Poloni et al. [5flesign of electronic devices to the design of aircraft, and a
The multitude of such references indicates that S| caneliddepresentative problem is described in Section IV-A.
designs are common in real-world applications, and thezefo Also as mentioned, the resultant objective function oftas h
that it is important to effectively handle them. Two mairagtr a complicated, nonconvex landscape, which can lead griadien
gies for handling Sl vectors include discarding such vectobased optimizers to converge to a poor final result. This has
altogether, or assigning them a penalized objective vahee amotivated the use of Cl optimizers in such problems, as they
then incorporating them into the metamodel. However, botand to be more explorative, and hence often perform better i
of these strategies have significant demerits, for exartiphy, complicated nonconvex objective landscapes. Such opisiz
discard information which can be beneficial to the searctypically employ a population of candidate solutions and
or they result in a metamodel whose landscape is severgignipulate them using a variety of operators. One such widel
deformed. used CI optimizer, which is also employed in this study, & th
In these settings, this study proposes a new approa@¥plutionary algorithm(EA), whose mechanics are inspired
in which a metamodel-assisted CI algorithm incorporatesby the paradigms of adaptation and survival of the fittest. A
classifiefinto the optimization search. The role of the classifidtaseline EA applies the following operators [6]:
is to predict if a candidate design is Sl or not, and its pitéatic « Selection: The candidate solutions (vectors) with the best
is then used to bias the search towards candidate designs objective value are selected parents
predicted to be SF. However, the effectiveness of this aggiro « Recombination: Two parents are selected, and their vec-
depends on the type of classifier being used. Typically, it is tors are combined to yield an offspring. This is repeated
not known prior to the optimization search which classifier several times to generate a population of offspring.
best suits the problem being solved, while an unsuitable « Mutation: Offspring are selected at random, and some of
classifier can degrade the search effectiveness. To cienimyv their vector components are randomly changed.
this, this study employs a procedure which autonomousthe offspring population is then evaluated, and the fittest
selects the most suitable classifier type during the searglndidate solutions, namely, those with the best objective
based on the statistical procedurecobss-validatio{CV). To values, are taken to be the population of the next ‘generatio
further enhance this procedure, the proposed algorithm aishe process then repeats until a termination criterion i§ me
calibrates during the search tkplit ratioparameter related to for example, if the maximum number of generations has been
this procedure. reached. Through these operators, the EA drives the pigulat
To the best of our knowledge, such a computational ime adapt to the function landscape, and to converge to an
telligence algorithm which incorporates a metamodel amghtimum. While the above description is representative of
a classifier, and which autonomously selects the classifiaftany EAs in literature, other variants have been proposed
type and calibrates the CV procedure, is new. To evaluagich may employ different operators. Algorithm 1 gives a
its effectiveness, the proposed algorithm was tested usifgeudocode of a baseline EA.
a representative simulation-driven problem of airfoil pha Since Cl optimizers directly evaluate candidate solutions
optimization. Analysis of the test results demonstrates thnd do not use gradient information, they often require many
effectiveness of the proposed algorithm, and the contdhbut thousands of function evaluations to yield a satisfactaty-s
of the proposed classifier selection procedure. tion. This is a major obstacle in applying them to expensive
The remainder of this paper is as follows: Section lbptimization problems, where the objective function can be
provides the pertinent background information, Sectidn levaluated only a small number of times. As mentioned in
describes in detail the proposed algorithm, and Section Béction I, an established framework to circumvent this is to

Il. BACKGROUND

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

133

candidate solution- - . _ to a false optimum namely, an optimum of the metamodel
= which is a not an optimum of the true expensive function
n) ‘black-box’ function [16], and it is therefore necessary to safeguard the metaimod
o accuracy to ensure the progress of the optimization search.
The proposed algorithm accomplishes this by leveraging on

Fo 1 The | ¢ of e black b imizationbieen, Th the trust-region(TR) approach which originated in the field

1g. 1. € layout of an expensive black-boxX optimization m. e : . e : .

optimizer generates candidate solutions, and these areia¢ed| by the of nonlinear pmgrammlng [17], where initially @ial ;tepls
simulation to obtain their corresponding objective valiie optimizer views performed to seek an optimum of the metamodel in the TR,

the simulation as a black-box function, that is, having ndyditaexpression. namely, the region where the metamodel is assumed to be

accurate. Next, the TR and metamodel are updated based on

Algorithm 1: A baseline evolutionary algorithm (EA) the optimum found, and the process repeats until a termimati
condition is met. A merit of the TR approach is that it ensures
asymptotic convergence to an optimum of the true expensive

function [17]. Section Il gives a detailed description bt

TR approach implemented in this study.

objective valoe- -~~~

initialize a population of candidate solutions;

evaluate each candidate solution in the population;

/* main | oop */
repeat

select a group of candidate solutions and designate

them asparents
recombine the parents to creatfspring As mentioned in Section |, this study focuses on expensive

mutate some of the offspring: optimization problems with simulator-infeasible (SI) ters,
’ namely, which cause the simulation to fail. A multitude of
studies have referred to such vectors and to the difficulties

B. Smulator-infeasible vectors

evaluate the offspring;
select the candidate solutions which will comprise

the population of the next generation: they introduce into the optimization search. For example,
until convergence, or maximum number of generations Poloni et al. [5] described an optimization problem which
reached involved a computational fluid dynamics analysis, and noted

that some candidate designs caused “failure of the sinoulati
code”. In another study, Booker et al. [9] described a rotor
blade structural optimization problem in which “attempts t
employ a metamodel which approximates the true expensivealuate the objective function failed”. Similarly, Buchkeal.
function and provides the optimizer with predicted objeeti [3] described an aerodynamics shape optimization problem
values at a much lower computational cost. Metamodels arewhich “evaluation of all points fails”. Additional pertent
typically interpolants trained with previously evaluatedc- studies include Liang et al. [11], Conn et al. [18] and Okabe
tors, and variants include artificial neural networks, Krgg [4].
polynomials, and radial basis functions (RBF) [7]. Numeyou Several techniques have been explored in an effort to handle
metamodel-assisted CI algorithms have proposed, and ex&h-vectors. For example, Rasheed et al. [19] described an
ples include the Kriging assisted EA by Ratle [8] which isircraft design optimization problem in which an EA dirgctl
also described in Section IV-C, and Booker et al. [9] whicbhalled the expensive simulation, and no metamodels were
coupled a pattern search optimizer with quadratic metafsodeemployed. A classifier was used to screen candidate design
Later examples include Emmerich et al. [10] which used giior to the simulation call, and those predicted to be SI
evolutionary strategies (ES) optimizer coupled with a Kig were assigned a ‘death penalty’, namely, a fictitious and
metamodel, and Liang et al. [11] which coupled an EA withighly penalized objective value, to quickly eliminate rie
a least-square fit polynomial metamodel. Poloni et al. [%] arfrom the population, but no metamodels were employed. In
Muyl et al. [12] studied algorithms coupled with an artificiaanother related study, Emmerich et al. [10] also used the
neural networks (ANN). Later, Bliche et al. [3] studied an Efenalty approach, but incorporated the penalized vectdes i
optimizer assisted with a Kriging metamodel, and employatle metamodel in an attempt to bias the search towards SF
an elaborate sampling scheme which sought solutions basedtors. In contrast, Bliche et al. [3] discarded the Sl vecto
on different trade-offs of exploration-exploitation, assdribed altogether, so that the metamodel was trained using only the
in Section IV-C. More recent examples include Tenne ar8F vectors.
Armfield [13], Neri et al. [14] and Zhou et al. [15]. Given the These strategies, and similar ones, have several demerits i
established effectiveness of the metamodelling framewibrk the context of expensive optimization problems: a) assigni
is also employed in this study. Sl vectors a penalized objective value and then incorpayati
While metamodels address the issue of computationatlyem into the metamodel can severely deform the metamodel
expensive evaluations, they introduce the challengpreflic- landscape and degrade its accuracy, while b) discarding Sl
tion inaccuracy Specifically, due to the restricted number ofiectors results in a loss of information which might have
expensive function evaluations, only a small number ofaesct been useful in enhancing the optimization search. As an
will be available to train the metamodel, which degrades iesxample, Figure 2 shows the effect of penalizing Sl vectors
accuracy. In severe cases, the optimizer may even conveagel incorporating them into a Kriging metamodel, which is

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

134

described in Section Ill. Figure 2(a) shows the metamodel
resulting from a sample of 30 SF vectors, while Figure 2(b)
shows the resultant metamodel when 20 Sl vectors were added
to the baseline sample and were assigned the worst objective
value from the baseline sample. The metamodel landscape was
severely deformed and consequently locating an optimum of
the true objective function became more difficult.

Such issues have motivated exploring alternative appesach
for handling SI vectors. For example, Tenne and Armfield
[20] proposed an approach which employed two metamodels,
where one was used for approximating the objective function
and another for generating a penalty which was based on the
distance of a new candidate solution to previously encoadte
Sl ones. Other studies have examined using classifiers for
constrained non-linear programming, though unrelatedlito S
vectors [21]. Further exploring the use of classifiers, Eenn
et al. [22] obtained preliminary results with a classifiesiated
algorithm for handling Sl vectors. However, the algorithsed
a single type of classifier, and it did not attempt to seleet th
classifier during the search. Recently, Tenne et al. [1]qoresl
a preliminary investigation on a framework which adapts
the classifier type based on the problem being solved. The
present study leverages on the latter framework and extends
it by proposing to also adapt the CV split ratio used in the
classifier selection step. The present study also providesra
extensive performance analysis.

C. Accuracy estimation 10_10

As mentioned in Section |, the proposed algorithm employs (b)
a classifier to predict which candidate designs will cauge th N e of the effect of SI vect " amodeb Th
.Fig. 2. n example of the effect o vectors on the metamode
simulation _tO fail, and to 'mP_rove the effectiveness of thlgbjective function was Rosenbrock, whose optimum is at (1(al))shows a
approach, it selects the classifier deemed most accuratef OUkriging metamodel trained using a sample of 30 SF vectors, anghtws

a family of candidates. the resultant metamodel when 20 Sl vectors were added to thelesamqb

. - — . re assigned the worst objective value of the sample in (#.l&ndscape
Accuracy estimation is ”gorOUSIy addressed in the genegﬁthe resultant metamodel was severely deformed, and the aptiofithe

statistical framework ofmodel selectionin which a model true objective function was masked.
refers to any functional relation which is used to explain an
inputs—outputs relation [23]. In the model selection pchoe,
several candidate models are prescribed and their accigacgumber of items in the testing sample to which the classifier
estimated, after which the model deemed as the most accumssigned an incorrect class. To check the effect of difteren
is selected as the optimal one. An established procedure $pfit ratios, the full data set was initially split in a 80—
estimating the model accuracy is thatasbss-validatiofCV), 20 training-testing ratio, and the accuracy of each cl&ssifi
in which the sample of vectors is split intotaining sample was estimated. The accuracy estimates from this step are
and atesting sampleA candidate model is trained using theconsidered as the reference results, since they employed th
former, and its predictions for the testing vectors are camag full data set. Next, the training sample was used as theibasel
to their already known exact function values. sample, and the accuracy of each classifier was estimated by
The CV procedure relies on tteplit ratioparameter, which using each of the following training-testing split ratiosturn:
determines which portion of data set will be designated as t8.8—-0.2, 0.5-0.5, and 0.2-0.8. Table | shows the test sesult
training sample and which as the testing sample. This stggeand the rankings of the two classifiers. It follows that the
that the accuracy of the procedure will be affected by thrankings corresponding to the 0.5-0.5 and 0.2-0.8 spligat
split ratio used. To verify this, the CV procedure was used toatched those obtained with the full sample, while those of
estimate the accuracy of two candidate classifiers, narkelythe 0.8—0.2 split ratio differed. This in turn verifies theoabd
nearest neighbouf&NN) and support vector machingVM), assumption, namely, that the split ratio affected the amgur
whose details are given in Appendix A, and the tests weod the CV procedure.
performed using the two well-established data $etss and Since the optimal split ratio is unknown prior to the ac-
yeast provided by Frank and Asuncion [24]. The accuracguracy estimation step, it is possible that an unsuitableeva
measure used was the total classification error, namely, theuld be used, which in turn would degrade the accuracy of

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

the CV procedure. To circumvent this, the proposed algarith
employs a procedure to autonomously select a suitable split
ratio, as described in Section IIl.

IIl. PROPOSED ALGORITHM

This section describes the proposed algorithm in detail,
and explains how it addresses the optimization challenges
discussed in Sections | and Il. The algorithm leverages on
three paradigms:

« Classification of candidate vectors: Each candidate vector
is treated as having two attributes, namely, atgective
value which is predicted by a metamodel, and dfass
namely, if it is Sl or SF, which is predicted by a classifier.

« Selection of the classifier type: Typically, it is not known
prior to the optimization search which classifier type is
most suitable to the problem being solved. To circumvent
this, during the optimization search the proposed algo-
rithm uses the CV procedure to autonomously select the
most suitable type of classifier. To further improve the
accuracy of this approach, the proposed algorithm also
continuously selects during the search the most suitable
split ratio value.

« Trust-region (TR) optimization: Given the inherent meta-
model inaccuracy, a TR framework is employed to ensure
convergence to an optimum of the true expensive func-
tion.

The proposed algorithm operates in five main steps: ini-
tialization, training a metamodel, selecting the classifipe
and training a corresponding classifier, performing a TRl tri
step to seek an optimum, and performing the TR updates. The
details of these steps are as follows:

Step 1) Initializatior. The proposed algorithm begins by gen-
erating an initial sample of vectors using a Latin
hypercube (LH) design of experiments [25]. This is a
statistically oriented sampling method which ensures
that the sample is space-filling, namely, that the vec-
tors are distributed throughout the search space, which
improves the accuracy of the resultant metamodel.
A sample ofs vectors is generated as follows. The
range of each variable is split int® equally sized
intervals, and one point is sampled at random in
each interval. Next, a sample point is selected at
random and without replacement for each variable,
and these samples are combined to produce a vector.
This sequence is repeated fertimes to create the

TABLE |
CLASSIFIER ACCURACY RANKINGS BY DIFFERENTCV SPLIT RATIOS

Split ratio Error Rank Error Rank
Fall 2 1 3 2
0.8 1 2 0 1
0.5 1 1 2 2
0.2 5] 1 7 2

Highlighted lines have the same ranks as those ob-
tained with the full sample.

135

complete sample, which is then evaluated with the
expensive simulation and is stored in memory. After
this step, the main optimization loop begins.

Step 2) Metamodel trainingn this step, the proposed algo-

rithm trains a metamodel by using the SF vectors
stored in memory and ignores the Sl vectors. In this
study a Kriging metamodel was employed, based on
its prevalence in literature [3, 26, 27]. This metamodel
is statistically-oriented and combines two compo-
nents: a ‘drift’ function, which is a global coarse
approximation of the true expensive function, and a
local correction based on the correlation between the
interpolation vectors. Given a set of evaluated vectors,
X, € RY,i=1...n, the Kriging metamodel is trained
such that it exactly interpolates the observed values,
that is,m(x;) = f(x;), wherem(x) and f(x) are the
metamodel and true objective function, respectively.
Using a constant drift function [28] gives the Kriging
metamodel

m(x) = B +k(X), @)

with the drift function 8 and local correctiork(X) .
The latter is defined by a stationary Gaussian process
with mean zero and covariance

COV[K(X)K<y)] = GZC(Q) X, y) ’ 2

wherec(0,x,y) is a user-prescribed correlation func-
tion. A common choice for the latter is the Gaussian
correlation function [28], defined as

c(0,xy) =N exp(-0(x—v)?), (3

and combining it with the constant drift function
transforms the metamodel from (1) into the following
form R R

m(x) = B+r(x)"R(f-1p0). 4)

Here,[? is the estimated drift coefficienR is the
symmetric matrix of correlations between all inter-
polation vectors,f is the vector of objective values,
and 1 is a vector with all elements equal to . is
the correlation vector between a new vect@and the
sample vectors, namely,

r"=1[c(68,X,X1),...,c(0,X, X)]. (5)

The estimated drift coeﬁicierﬁ and variances? are
obtained from

(1"R11) 'R, (62)

52— % (1-1p"RY1-13)] . (ob)

Fully defining the metamodel requires the correlation
parameter8, whose optimal valueg*, is typically
taken as the maximizer of the metamodel likelihood.
In practise, the latter is obtained by minimizing the
negative log-likelihood, namely

6* : min— (nlog(6?) +log(|R))) -)

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

While a different correlation parameter can be used
for each variable, this study follows the practise
prevalent in literature in which the metamodel em-
ploys a single correlation parameter. This results in a
univariate likelihood function, which is relatively easy

to optimize.

Step 3) Classifier selection and trainingn the next step, the

proposed algorithm trains a classifier to predict if a
vector is SF or Sl. To further improve this technique,
the proposed algorithm employs the CV to select
during the search a classifier deemed as most suitable
out of a family of candidates. To further enhance the
accuracy of this procedure, the proposed algorithm
employs an additional step to identify a suitable split
ratio for the CV procedure, out of a prescribed set of
candidate ratios. The details of the procedure are as
follows:

3.1) The set of vectors stored in memory is split into
sample A and sample B in a 80-20 split ratio.

3.2) Using only sample A, the proposed algorithm
loops over the prescribed set of candidate split
ratios,s, i = 1...ns, whereng is the number of
candidate of ratios, and for each it performs the
following steps:

3.2.1) It generates a training sample and a test-
ing sample based on sample A.

3.2.2) For each candidate type of classifier, the
proposed algorithm trains a correspond-
ing classifier using the training sample,
and then estimates the classifier's accu-
racy by using the testing sample, where
the accuracy measure is thatal classifi-
cation error defined as

G—Z (X)) # F (%)) 8)

wherex;,i=1...1, are the vectors in the
testing samplec(X) is the prediction of
the classifier which was trained using the
training sample, an&(x) is the true and
known class of the testing vectors. For the
latter,F (x;) = 1 was used for a SF vector,
andF(x) = —1 for a Sl vector.

3.2.3) The candidate classifiers are ranked based
on their obtained total classification er-
rors, which yields a vector of ranks,
wherei is the index of the current split
ratio being considered.

3.3) After completing the above procedure for all
candidate split ratios, the proposed algorithm
loops over the set of candidate classifier types,
and using the samples A and B obtained in step
3.1, it trains a classifier using sample A, and es-
timates the classifier's accuracy using sample B.
The classifier types are ranked based on their

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

136

estimated accuracies, which yields a vector of
ranksrg.

3.4) The proposed algorithm selects as the optimal
split ratio §*) the one whose corresponding
ranks vectorr; is most similar to the reference
ranks vectorrg. This similarity is measured by
thel1 norm, namely

s =g+, i": min|ri—ro|1, 9)
i=1..ng
wherei* is the index of the optimal split ratio.
The basis for this procedure is that the most
suitable split ratio should yield a ranks prediction
which is relatively insensitive to the sample
size. Therefore, the ranks vectors obtained in
step 3.2.3, namelyj, i = 1...ns, which were
obtained based on the training sample derived
from sample A, are compared to the ranks vector
from step 3.4, namelyy, which was obtained
based on the full set of vectors stored in memory.
3.5) After identifying the most suitable split ratio,
the proposed algorithm selects the classifier type
which had the lowest prediction error in the
selected split ratio, and trains a classifier, des-
ignated asc(x), using all the vectors stored
in memory. This classifier is then used in the
optimization search performed in step 4.
In this study the proposed algorithm selected between
three classifiers typesk nearest neighbourkNN),
linear discriminant analysig. DA), and support vector
machine (SVM), whose details are given in Ap-
pendix A. The candidate values for the training-testing
split ratios were 0.8-0.2, 0.5-0.5, and 0.2-0.8.

Step 4) TR trial step The best vector in the memory storage

is taken as the TR centra), and a TR trial-step is
performed, namely, an optimizer is invoked to find an
optimum in the bounded region

T ={X:||Xx—Xp|]2 <A}, (10)

where A is the TR radius. The optimizer used is
the real-coded EA of Chipperfield et al. [29], which
follows the setup described in Section II-A, namely, it
begins by selecting a set of parents, recombines them
to produce offspring, mutates some of the offspring,
and selects the population of the next generation
from the union of the offspring and the best parents.
Table Il gives the complete parameter settings of this
EA, which are based on those suggested in literature
[29, 30].

During the trial step, the EA uses the followingodi-

fied objective functiorwhich combines the prediction

of the metamodel from Step 2 and the classifier from
Step 3, as follows

() {m(x) if c(x) is SF

p if c(x) is Sl (1)

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

TABLE Il
INTERNAL PARAMETERS OF THEEA UTILIZED IN THIS STUDY [29]
Population size 100
Generations 100
Selection Stochastic universal selection (SUS)

Recombination

Mutation

Elitism

Intermediate, applied with probabilty= 0.7

Breeder Genetic Algorithm (BGA) mutation, applied
with probability p= 0.1
10%

Step 5) TR updates The optimum found by the EAX*, is

namely, the EA receives the objective value predicted
by the metamodem(x) if the classifier predicts a
vector is SF, but it receives the penalized objective
value p otherwise. The latter is taken as the worst
objective value in the initial LH sample.

This formulation enhances the optimization search in
two main aspects. First, the classifier accumulates the
information about the Sl vectors encountered during
the search and uses it to predict the distribution of
such vectors in the search space, so this potentially
beneficial information is not discarded. Second, the
classifier’'s prediction is used to bias the search but
without affecting the metamodel landscape, and this
avoids the issues discussed in Section II-B. To visu-
alize the effect of this setup, and to demonstrate the
predictions of the metamodel, the classifier, and how
they are combined into a single modified objective
function, Figure 3 gives a synthetic example with
the Rosenbrock function. The plots show that th

Fig. 3.
%odified objective function. The objective function was Rdseck, and the

137

Objective function and sample vectors

OSF
ASI

Metamodel
prediction

Classifiers
prediction

oSk
m S|

O oP W i,

Modified objective function
10
- |
O l s 1
-10
0 10

-10

An example showing how the proposed algorithm geadrabe

landscape predicted by the modified objective fun@ample was comprised of 26 SF vectors and 9 Sl vectors. The sEdpo
tion closely follows that of the baseline metamodek!gorithm trained a Kriging metamode! using the SF vectors, teined the

andembeds the knowledge on the location of the ﬂl
vectors, but it is only minimally deformed.

evaluated with the true expensive function, which
yields the exact objective valuf(x*) . Following the
classical TR framework [17], the proposed algorithm
performs the following updates:

o If f(x*) < f(Xp): The trial step was successful since
the predicted optimum is indeed better than the
current best solution, namely, . Accordingly, the
TR is centred at the new optimum, and the TR is
enlarged by doubling its radius.

o If f(X*) > f(Xy) andthere are sufficient SF vectors
inside the TR: The search was unsuccessful since
the predicted optimum is not better than the current
best vector. However, since there are sufficient SF
vectors in the TR, the metamodel is deemed as
being sufficiently accurate to justify contracting the
TR. Accordingly, the TR is contracted by halving
its radius.

o If f(x*) > f(xp) and there are insufficient SF
vectors inside the TR: The search was unsuccessful,
but this may be since the metamodel is inaccurate
due to an insufficient number of SF vectors in the
TR. Therefore, the algorithm samples new vectors
(Xn) inside the TR, as explained below.

assifiers using the entire sample. TkEN classifier was deemed as the
ost accurate, and therefore its prediction was used in théfiebdbjective
function. The landscape of the latter was modified based ormitbéictions
regarding Sl vectors, but it was only minimally deformed.

As a change from the classical TR framework, the
proposed algorithm contracts the TR only if it con-
tains a sufficient number of SF vectors, to avoid a
too rapid TR contraction and premature convergence
[17]. To select a suitable threshold valug for the
number of these vectors, numerical experiments have
been performed and are described in Section IV-B.
Another change from the classical TR framework is
the sampling of new vectors to improve the accuracy
of the metamodel in the TR. There are two con-
siderations in selecting these vectors: i) they should
improve the metamodel accuracy locally around the
current optimum, and alternatively ii) they should
improve the metamodel accuracy over the entire TR,
and particularly in regions sparse with vectors [31].
Since these are typically two opposing considerations,
the proposed algorithm generates several new vectors
which correspond to different trade-offs between these
considerations. The vectors are taken as the minimiz-
ers of the following objective function

h(x) = why (%) + (1 = w)hz(x), (12)

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

where the minimization is performed by the real-

coded EA described earlier. Heltg,(X) is the rankof

the vectorx based on its objective value, such that the
best vector in the EA population is assigned a rank of
1, the following one a rank of two, and so on. Also,
hy(X) is the rankof the vectorx based on its distance
from existing vectors in the TR, where the vector in
the EA population which is farthest is given a rank
of one, the vector having then@ largest distance

is given a rank of two, and so on. The weight
defines the trade-off between the two considerations,
wherew =1 implies a vector is searched based only
on its objective value, which will result in the new
vector being in the vicinity of the TR centre, while
w = 0 implies a vector is searched based only on
its distance to existing vectors in the TR, which will
result in a vector being away from existing vectors.

Equation (12) uses a rank based approach to make
the search more consistent across different objective

functions. To identify suitable weights, numerical

experiments have been performed and are described

in Section IV-B.
To complete the algorithm description, several addi-
tional points are noted:

While in the description above the proposed algo-
rithm used a Kriging metamodel and selected be-
tween akNN, linear discriminant analysis (LDA),
and SVM classifiers, other types of metamodels and
classifiers can be readily used.

To avoid a numerical breakdown of the metamodel
training process, the proposed algorithm evaluates
a new vector and adds it to the memory storage
only if it differs from those already stored.

There is some computational overhead introduced
by the proposed algorithm due to the classifier
selection step. However, since no expensive eval-
uations are involved in this step, and since the
classifiers’ training phase is computationally cheap,
the overhead is minimal.

To complete the description of the proposed algo-
rithm, Figure 4 gives a schematic layout of its op-
timization iteration, and Algorithm 2 gives its pseu-
docode.

train a
metamodel

perform a TR
trial step using
the modified
function

perform
TR updates

select a
split ratio

select and trai
a classifier

i

Fig. 4. The layout of an optimization iteration of the propbsdgorithm. The
iteration begins by training a metamodel and classifier, thioly selection of
the classifier type and CV split ratio. This is followed by a Tl step to

138

Algorithm 2: Proposed optimization algorithm
[+ initialization */
generate an initial LH sample;
evaluate the sample vectors and store in memory;
/* main optinzation |oop */
repeat

/* train a netanodel */

use the SF vectors stored in memory to train a

metamodel;

/+ select and train a classifier * [

split the vectors stored in memory into a sample A
and a sample B;

for each candidate split ratido
split sample A into a training sample and testing

sample using the candidate split ratio;

for each candidate classifier tye
train a classifier using the training sample;
estimate the classifier accuracy using the
testing sample;

rank the classifiers based on their accuracies;

for each candidate classifier ty®
train a classifier using sample A;
estimate the classifier accuracy using sample B;

rank the classifiers based on their accuracies to
obtain a ranks vectarg;

select the split ratic* whose corresponding ranks
vector is most similar tag;

select the classifier type which produced the lowest
prediction error whers* was used, and train a
classifier using all vectors stored in memory;
/+ performa TR trial step * [

set the TR centre to the best vector stored in memory;
use a real-coded EA to find an optimum of the
modified objective function in the TR;
/* perform TR updat es

evaluate the predicted optimum with the true
expensive function;

if the new optimum is better than the best vector in
memorythen

L double the TR radius
else if the new optimum is not better than the best
vector in memoryandthere are sufficient vectors in the
TR then

| halve the TR radius;

else if the new optimum is not better than the best
vector in memonandthere are insufficient vectors in
the TR then

add new vectors in the TR to improve the
L metamodel accuracy;

add to the memory storage all the new vectors
evaluated with the true expensive function;
until maximum number of analyses completed

*/

locate an optimum of the modified objective function, and Jasthdates of
the TR to ensure the progress of the search.

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

139

IV. NUMERICAL EXPERIMENTS Lift

Chord line
This section describes the numerical experiments used to :
evaluate the performance of the proposed algorithm. Itfisegi Aop™T ™~ << !
by describing the test problem employed, it then describes a :

parameter sensitivity analysis which was used to selettsei Velocity Z\ Drag
settings for the algorithm parameters, and lastly it dbssri b%
and analyzes a set of benchmark tests. 7

0.2
A. Problem description Baseline airfoil: NACA0012
- 0.1
The test problem employed was that of airfoil shape op-
+ + t t X

timization, as it is both simulation-driven and contains Sl
vectors, as explained below. The formulation of the probiem
as follows. During flight, an aircraft generatéf, namely, the
force which counters the aircraft weight and keeps it ambor
and drag which is an aerodynamic friction force obstructing
the aircraft movement. Both the lift and drag result from the
flow of air around the aircraft wing whose cross-section is
the airfoil. The optimization goal is then to identify anfaif
shape which maximizes the lift and minimizes the drag. In
practise, the design requirements for airfoils are spetifie
terms of the nondimensional lift and drag coefficiemgsand
Cq, respectively, defined as

Fig. 5. A schematic layout of the airfoil problem showing thieygical

c = L (13a) quantities involved, and the Hicks-Henne parameterizegietp.
ipvas
D
Cd = ipvzs (135) petween 0.2 to 0.8 of its chord length had to be equal to or

larger than a critical valug =0.1.
The airfoil shape optimization problem is a pertinent test
case since it contains Sl vectors, and their prevalence is

a;;aa,ksAugA as :}hehv_virlﬂ areai Atl)S(tJ impotrrt1ant.is d’f'?/eIOf.t strongly affected by the angle of attack (AOA) defined earlie
attack(), which is the angle between the aircraft veloci ySpecifically, since the turbulence of the flow field increases

and the airfoilchord ling defined as the straight line joining, i o AOA, at higher angle values it will be more difficult

the leading and trailing edges of the airfoil. Figure 5 IS 19 complete the aerodynamics analysis, which will result in

schemapc Iayqut Qf the airfoll problem. . . more simulation failures, and therefore, more Sl trial gesi
Candidate airfoils were represented with the H|cks-Hein% verify this, 30 different airfoils were sampled and ewdéd

parameterization [32], in which the profile of a candldatfn identical flight conditions, except for the AOA which was
airfoll is defined as increased from 20to 50° . Figure 6 shows the obtained results,
_ h b 14 where, as expected, the number of failed analyses increased
y—yb+i;a. (9, (14) with the AOA. Therefore, by changing the AOA we could
- hange the density of S| vectors in the search space, and
ence the relative difficulty of the tests. In view of these
results, the numerical experiments included three opétitn
4 scenarios, namely, with AOA= 20°,30°, and 40, which
bi(x) = [sin (méi’ﬁ&iiﬁ»)} 7 (15) following Figure 6, correspond to a low, medium and high

whereL andD are the lift and drag forces, respectivetyis
the air densityV is the aircraft speed, anfl is a reference

whereyy, is a baseline airfoil profile, taken as the NACAOOl%
symmetric airfoil,b; are basis functions, which following [33],
are defined as

density of Sl vectors in the search space, respectively.

anda; € [—0.01,0.01] are coefficients, which are the problem’
design variables. Ten basis functions were used for theruppée
and lower airfoil profile, respectively, resulting in 20 dgs As described in Section lll, the proposed algorithm relies
variables overall. Figure 5 shows the layout of the airfodhn two main parameters, namely:

problem and the Hicks-Henne parametrization. The lift and , 4: The minimum number of vectors in TR to invoke a
drag coefficients of candidate airfoils were obtained bygsi TR contraction.

XFoil, a computational fluid dynamics simulation for analysis

airfoils operating in the subsonic regime [34]. Each airfofnd

evaluation required up to 30 seconds on a desktop computers w;: The weights used for generating new vectors to
To ensure structural integrity, the thickness of an air{ojl improve the metamodel accuracg,).

Parameter sensitivity analysis

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

40

30

20

10 2

Analysis failures (%)

| |
0 10 20 30 40
Angle of attack (degrees)

Fig. 6. Simulation failures as a function of the angle of &te&0A).

To identify suitable values for these parameters, in turn,

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

140

the true objective function, and incorporating them into
the metamodel. The algorithm begins by generating an
initial sample of vectors (candidate solutions), evahzti
them with the expensive function, and training a Kriging
metamodel. It then uses a real-coded EA to seek an
optimum of the metamodel, where the EA is run for
10 generations. The ten best members of the resultant
population are then evaluated with the true expensive
function, and are incorporated into the metamodel. This
process repeats until the maximum number of expensive
function evaluations is reached. In the benchmark tests,
the EA was identical to the one used by the proposed
algorithm and used the same parameters given in Table II.
« Expected Improvement with a Covariance Matrix Adapta-
tion Evolutionary Strategies optimiz€El-CMA-ES) [3]:
The algorithm combines a covariance matrix adaptation
evolutionary strategy (CMA-ES) optimizer [36] with a
Kriging metamodel, and updates the latter based on the
expected improvement framework [37]. The algorithm

each parameter was assigned one of three candidate values, pegins by generating an initial sample of vectors, and

and ten optimization runs were repeated with the AOBQ°
setting.

evaluates them with the true function. Its main loop
then begins, where at each generation it trains a Kriging

Table IIl shows the obtained results, where the best mean metamodel by using both the recently evaluated vectors

statistic is emphasized. It follows that suitable paramete
settings are a threshold value @& 20, and a set of weights

w={0.8,0.5,0.2} , resulting in three new vectors being added
in the TR to improve the metamodel accuracy. Accordingly,

and those stored in memory which are nearest to the
best solution. A CMA-ES optimizer is then invoked to

locate an optimum of the metamodel in a bounded region
defined by the metamodel training sample. In the spirit of

these settings were used in the benchmark tests described in the expected improvement framework [37], the function

the next section.

C. Benchmark tests: Results and analysis

For a comprehensive evaluation, the proposed algorithm
was benchmarked against two representative algorithnms fro
literature:

o EA with Periodic Sampling(EA-PS) [35]: The algo-

rithm safeguards the metamodel accuracy by periodi-
cally evaluating a small subset of the population with

TABLE Il
TEST STATISTICS FOR THE PARAMETER SENSITIVITY ANALYSIS

(a) q: Number of vectors in the TR needed to contract the TR

2 (=0.1d) 10 (=0.9) 20 (=d)
Mean 9.794e-01 8.772e-01 8.568e-01
SD 5. 631e-02 6. 540e- 02 7.462e-02
Median 9. 984e-01 8. 674e-01 8. 434e-01
Min(best) 8. 409e- 01 7.875e-01 7.527e-01
Max(worst) 1. 028e+00 1.001e+00 1. 005e+00

d: Dimension of objective function.

being minimized is
f(x) =m(x) - p(x), (16)

wherem(x) is the Kriging metamodel predictiom is a
prescribed coefficient, and(x) is the estimated Kriging
prediction error, which is zero at sampled vectors since
there the true objective value is known. The search is
repeated forp = 0,1,2, and 4, to obtain four solutions
corresponding to different search profiles, namely, rang-
ing from a local searchp(= 0) to a more explorative
one (= 4). All non-duplicate solutions found are eval-
uated with the true expensive function, and are stored
in memory. In case no new solutions were evaluated,
for example, because they already match those stored
in memory, a new solution is generated by perturbing
the current best one. Following Biche et al. [3], the
algorithm used a training set of 100 vectors comprising
of the 50 most recently evaluated ones and 50 nearest-
neighbours, and the CMA-ES used the default settings
given in Reference [36].

(b) w: Weights used for generating new vectors in the TR

{0.8,0.2} {0.8,0.5,0.2} {0.8,0.6,0.4,0.2}
Mean 9. 126e-01 8. 741e-01 8.772e-01
SD 6. 099e- 02 7.245e-02 6. 540e- 02
Median 9. 400e- 01 8.847e-01 8. 674e-01
Min(best) 7.880e-01 7.175e-01 7.875e-01
Max(worst) 9. 661e-01 9.947e-01 1. 001e+00

To also study the contribution of the proposed procedure
of selecting the classifier type and calibrating the CV split
ratio during the search, the benchmark tests also incluged t
following two variants of the proposed algorithm which were
identical to it in operation, except that they used a fixee:tgp
classifier, and therefore did not use the procedures in iguest
variant i) VK : a variant which used &NN classifier, and
variant ii) VS: a variant which used an SVM classifier.

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

141

For all algorithms the limit of simulation calls was set to
200, and their initial sample was generated by a LH procedure
and consisted of 20 candidate solutions. To support a valid
statistical analysis, 30 runs were repeated for each #hgori
at each test case. This was done only for the benchmarking
purpose, and is not required in an ordinary optimizatiomcea

For a thorough evaluation, three performance measures
were analyzed: i) the final objective value obtained by each
algorithm, ii) the number of SI vectors generated by each

they indicate the efficiency of each algorithm, namely, the
extent of computer resources wasted during its search.
Results show that the EA-PS algorithm consistently
obtained the best mean statistic, which indicates that it
typically generated the least amount of S| vectors. This
is attributed to the penalty approach it employs which
deforms the metamodel landscape and consequently bi-
ases the optimization search away from the vicinity of
previously encountered Sl vectors. However, this setup

algorithm during its optimization search, and iii) the dlifier

type and split ratio which were selected by the proposed

algorithm during its optimization search. The details cfg@
analyses are as follows:

« Final objective valueTo compare the effectiveness of the
algorithms, Table IV gives the test statistics of mean,

standard deviation (SD), median, best, and worst final «

objective values obtained by each algorithm in each
optimization scenario, with the best mean and median
statistics emphasized. The table also gives the signifi-
cance level §) at which results of the proposed algorithm
were better than those achieved by the other algorithms,
where the significance levels considered were 0.01, 0.05,
or an empty entry otherwise. Statistical significance was
determined using the Mann-Whitney nonparametric test
[38, p.423-432].

It follows that the proposed algorithm consistently per-
formed well, as indicated by its mean and median statis-
tics. Also, statistical significance comparisons show that
it outperformed the two reference algorithms from litera-
ture, namely, EA-PS and EI-CMA-ES in the AOA=20
case, and outperformed the EA-PS algorithm in the
AOA=30° and 40 cases. In contrast, the EA-PS algo-
rithm typically achieved either the worst or second worst
mean statistic, which highlights the demerit of the penalty
approach it employs, namely, that incorporating penalized
vectors into the training sample can result in deformation

of the metamodel landscape and consequently degrade the

search effectiveness. It is noted that the performancesgain
achieved by the proposed algorithm varied depending on
the problem setting (the AOA), and were more modest in
the high AOA settings where the high prevalence of SI
vectors exacerbated the optimization difficultly. However
even modest performance gains can be significant, which
justifies the minor added computational overhead incurred
by the proposed algorithm.

Lastly, test statistics also show the contribution of the
procedure for selecting the classifier type and split ratio,
as indicated by the comparisons to the two variants VK

also resulted in poor final objective values, as indicated
by the test statistics in Table IV.

In contrast, the optimization search of the proposed
algorithm resulted in a higher number of SI vectors in
all scenarios, which suggests that in this test problem
locating good candidate solutions required exploring S
candidate solutions.

Variation of the classifier type and split ratio during the
search The goal of this analysis was to study the
contribution of the procedure for selecting the classifier
type and split ratio, namely, if predominantly a single
classifier type and split ratio were selected during the
search, which would imply the procedure was redundant,
or if the selected types were varied frequently.

Figure 7 shows representative results from a test run
with AOA=20°, and from another run with AOA=40

It follows that in both runs, the classifier type and the
split ratio were frequently updated during the search.
In the AOA=20 case, the SVM and&NN classifiers
were selected a similar number of times, while LDA
was selected less frequently, which indicates that it was
deemed as less accurate. With the split ratio, all settings
were selected during the search, with the 0.8 setting being
selected more frequently than the 0.5 and 0.2 settings.
In the AOA=40 case, the SVM anlNN classifiers were
both frequently selected. However, the LDA classifier was
not selected during the run, which indicates that it was
consistently deemed as the least accurate. With respect
to the split ratio, and similarly to the AOA=20case,

all settings were selected during the search, with the 0.8
setting being used more frequently.

Overall, these results, coupled with the test statistics in
Table IV indicate that: a) the optimal classifier type and
split ratio varied not only between different optimization
scenarios, but also during the optimization search itself,
and b) adapting the optimization algorithm during the
search improved the search effectiveness.

V. CONCLUSION AND FUTURE WORK

and VS. This indicates that adapting the optimization In modern engineering, computer simulations are often
algorithm to the problem being solved improved thesed to evaluate candidate designs. This setup yields an op-

search effectiveness.

timization problem of a computationally expensive bladkb

« Number of Sl vectors encountered during the seardunction, namely, whose analytic expression is unknown and
Table V gives the resultant test statistics for the numbwhich can be evaluated only a small number of times. Often,
of Sl vectors generated by each algorithm in the three oguch problems will also involve candidate designs whiclseau
timization scenarios. These statistics are importantesinthe simulation to fail. Therefore, such designs would natcha

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

142
TABLE IV SVM e
STATISTICS FOR THE BEST SOLUTION FOUND
ks
Algorithm "'U:_)
AOA Proposed VK VS EA-PS EI-CMA-ES 9 LDA |- ——, = -t
Mean 3.737e-01 3.890e-01 3.885e-01 4.418e-01 5.675e-01 O
SD 7.018e- 03 2. 845e-02 3. 926e- 02 5. 773e-02 2. 102e- 01
5o Median 3.717e-01 3.857e-01 3.718e-01 4. 333e- 01 5. 052e- 01 KNN|' = sm o sssmss =2 = == |
Min(best) 3. 649e-01 3. 603e- 01 3. 626e- 01 3. 674e-01 3. 584e-01 : : : :
Max(worst)3. 902e- 01 4. 392e- 01 4. 911e- 01 5. 686e-01 9. 638e- 01 08 wmm == ———--
a 0.01 0.05
o
Mean 9.273e-01 9.475e-01 9. 616e-01 9. 842e-01 9. 322e-01 %
SD 7.314e-02 8. 652e-02 4. 662e- 02 1. 237e-01 8. 289e- 02 =
40 Median 9.388e-01 9.495e-01 9. 521e-01 1.026e+00 9. 180e- 01 = 05 wm sn m = = . |
Min(best) 7.989e-01 7. 836e-01 8. 832e-01 7.113e-01 8. 197e-01 8—
Max(worst)1. 003e+00 1.081e+00 1.022e+00 1.099e+00 1. 205e+00
o 0. 05
02+ = " man I B
Mean 1.023e+00 1.027e+00 1.032e+00 1.112e+00 1.044e+00 . ‘ : .
SD 3.888e- 02 4. 637e-02 4. 319e- 02 4. 635e- 02 4. 347e- 02 50 100 150 200
40 Mmedian 1.015e+00 1.029e+00 1.045e+00 1.116€+00 1.034e+00 = . luati
Min(best) 9.490e-01 9. 505e-01 9. 675e-01 1. 006e+00 9. 746e- 01 unction evaluations
Max(worst)1. 088e+00 1. 111e+00 1.090e+00 1.204e+00 1. 154e+00
Max(uors) e (a) AOA=20°
TABLE V SVM - == S & EmEE e — |
STATISTICS FOR THE NUMBER OFS| VECTORS ENCOUNTERED DURING h
THE SEARCH 2
LDA| |
Algorithm 8
AOA Proposed VK VS EA-PS EI-CMA-ES
Mean 1. 610e+01 4. 800e+00 1.280e+01 4. 267e+00 9. 033e+00 KNN| = == | —— . -
SD 3.242e+01 4. 894e+00 1.561e+01 2.477e+00 1. 785e+01 \ \ \ \
20 Median 4.500e+00 4. 000e+00 5. 000e+00 4. 500e+00 2. 000e+00 0.8 mmum—————————
Min(best) 1.000e+00 0. 000e+00 0. 000e+00 1. 000e+00 0. 000e+00
Max(worst)1. 070e+02 1. 400e+01 4. 900e+01 9. 000e+00 8. 100e+01 2
©
Mean 3.330e+01 3. 970e+01 2. 630e+01 9. 967e+00 2. 467e+01 = 05| == " = . - = |
SD 1.532e+01 2. 445e+01 1. 778e+01 4. 846e+00 1. 489e+01 =
30 Median 3. 350e+01 3.700e+01 2. 000e+01 1.050e+01 2. 200e+01 (%
Min(best) 1.200e+01 1.400e+01 9. 000e+00 1. 000e+00 9. 000e+00
Max(worst)5. 500e+01 8. 100e+01 6. 500e+01 1. 900e+01 8. 700e+01
0.2+ m = mmom ‘ s
Mean 6.290e+01 4. 790e+01 5. 720e+01 2. 267e+01 4. 743e+01
sD 2.429e+01 1. 795e+01 2. 296e+01 8. 515e+00 1. 618e+01 50 100 150 200
40 Median 6.500e+01 4. 700e+01 5. 600e+01 2. 100e+01 4. 850e+01 . :
Min(best) 2.100e+01 2. 200e+01 1. 700e+01 1. 300e+01 2. 100e+01 Function evaluations
Max(worst)9. 600e+01 7. 800e+01 9. 900e+01 4. 300e+01 8. 400e+01 (b) AOA=4C°

Fig. 7. The classifier type and split ratio selected by theppsed algorithm

_— . during two test runs.
an objective value assigned to them, and consequently thé’{/mg o festruns

can degrade the effectiveness of the optimization search.
Existing approaches for handling such candidate designs | . .
clude assigning them a penalized objective value or digogrd tﬂe split rat|o. of the CV procedure. .
them altogether, but both of these approaches have sigttifica 1he €ffectiveness of the proposed algorithm was evalu-
demerits, as discussed in Section Il. In these settingssthdy ateq W'th, a S|mulat'|on-dr|ven tes_t problem of airfoil shape
has proposed a new computational intelligence optimimatigPtimization which is representative of real-world probte
algorithm which incorporates a classifier into the optimize*Nalysis of the experiments results shows that:
tion search. The latter predicts which candidate desigas ar « Incorporating a classifier into the optimization search was
expected to cause the simulation to fail, and this prediciso an effective approach to handle Sl vectors, as indicated
used to bias the search towards candidate designs for widgcht by the test statistics of the final function value.
simulation is expected to succeed. However, the effeatsen « Penalizing S| vectors and incorporating them into the
of this setup depends on the type of classifier being used, but metamodel training sample reduced the number of failed
typically it is not known prior to the optimization search iain evaluations, but also yielded a poorer final result. In con-
classifier type is most suitable to the problem being solved. trast, the proposed algorithm typically evaluated a larger
To address this, the proposed algorithm autonomouslytselec number of Sl vectors, which indicates that obtaining a
during the search an optimal classifier type out of a family good SF solution may require exploring a multitude of
of candidates, based on the CV procedure. To further enhance Sl ones.
the accuracy of this approach, it also selects during theekea « The optimal classifier type and split ratio varied not

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

only between optimization scenarios, but also during the
optimization search itself. Also, adapting the optimiza-

tion algorithm during the search improved the search
effectiveness, as indicated by the comparisons to the two

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

143

the separating hyperplane passing through the middle of
the two classes. Once this hyperplane has been fixed,
new vectors are classified based on their relative position
to this hyperplane, that is, whether they are “above”

variants of the proposed algorithm which did not employ

this procedure.
Overall, the proposed algorithm effectively performed ati-o
mization of a computationally expensive black-box functio
the presence of Sl candidate designs. Prospective future wo
includes improving the algorithm’s effectiveness in peoshk 1 n n
with a high prevalence of S vectors, and dynamic optimarati Le = lwl - ZUiF(Xi)(W' X +b) + Z\ai :
problems, namely, which vary with time. = =
where n is the number of samples (training vectors),
F(x) is the class of théth training vector, andxy; > 0,
i =1...n, are the Lagrange multipliers, such that the
derivatives ofLp with respect toa; are zero. The vector
w and scalab define the hyperplane.

or “below” it. Since there are many possible separat-

ing hyperplanes, an SVM classifier adds the condition

that the hyperplane should maximize its distance to the
nearest vectors from each class. This is accomplished by
maximizing the Lagrangian

(20)

APPENDIXA
CANDIDATE CLASSIFIERS

Classifiers originated in the domain on machine learning
with the goal of class prediction. Mathematically, givenea s
of vectorsx; € RY, i =1...n, which are grouped into several
classes such that each vector has a corresponding class labe
F(x) €1, for example,I = {—1,+1}, a classifier performs [1]
the mapping

REFERENCES

Y. Tenne, K. Izui, and S. Nishiwaki, “A computational
intelligence algorithm for simulation-driven optimiza-
tion problems,” inProceedings of the Third International
Conference on Future Computational Technologies and
Applications, Future Computing 201Rome, lItaly, In-
ternational Academy, Research, and Industry Association
(IARIA). 1ARIA XPS Press, 2011, pp. 127-134.

Y. Tenne and C. K. Goh, EdsComputational Intelli-
gence in Expensive Optimization Problenser. Evolu-
tionary Learning and Optimization. Springer, 2010,
vol. 2.

D. Buche, N. N. Schraudolph, and P. Koumoutsakos,
“Accelerating evolutionary algorithms with Gaussian pro-
cess fitness function modeldEEE Transactions on Sys-
tems, Man, and Cybernetics—Part ¥®l. 35, no. 2, pp.
183-194, 2005.

T. Okabe, “Stabilizing parallel computation for evolu-
tionary algorithms on real-world applications,” iro-
ceedings of theth International Conference on Optimiza-
tion Techniques and Applications—ICOTA 7 Tokyo:
Universal Academy Press, 2007, pp. 131-132.

C. Poloni, A. Giurgevich, L. Onseti, and V. Pediroda,
“Hybridization of a multi-objective genetic algorithm, a
neural network and a classical optimizer for a complex
design problem in fluid dynamicsComputer Methods in
Applied Mechanics and Engineeringol. 186, no. 2—4,
pp. 403-420, 2000.

K. A. de Jong, Evolutionary Computation:A Unified
Approach MIT Press, Cambridge, Mass. 2006.

T. W. Simpson, J. D. Poplinski, P. N. Koch, and J. K.
Allen, “Metamodels for computer-based engineering de-
sign: Survey and recommendation&hgineering with
Computersvol. 17, pp. 129-150, 2001.

A. Ratle, “Accelerating the convergence of evolutionar
algorithms by fitness landscape approximations,Pio-
ceedings of theth International Conference on Parallel
Problem Solving from Nature—PPSN, \A. E. Eiben,

c(x): RY -1, (17)

wherec(x) is the class assigned by the classifier.
In this study, the proposed algorithm selects from three
established classifier variants [39]:

« k Nearest Neighbour®kNN): The classifier assigns the [2]
new vector the class of its closest training vector, namely:

c(X) = F(xnn) : d(X,Xun) = mind(x,%;), i=1...n,
(18)
whered(x,y) is a distance measure such as thaorm. [3]
An extension of this technique is to assign the class most
frequent among th& > 1 nearest neighbour&NN). In
this study the classifier usdd= 3.

« Linear Discriminant Analysi€_DA): In a two-class prob-
lem, where the class labels &¢x) c 1={-1,+1}, the
classifier attempts to model the conditional probability
density functions of a vector belonging to each class,
where the latter functions are assumed to be normally dis-
tributed. The classifier considers the separation betwee
classes as the ratio of: a) the variance between cIasse{ré]
and b) the variance within the classes, and obtains a
vector w which maximizes this ratio. The vectaw is
such that it is orthogonal to the hyperplane separating
the two classes. A new vectaris classified based on its
projection with respect to the separating hyperplane, tha[%]
is,

[4]

c(X) = sign(w-X). (29)

[7]

« Support Vector Machine§SVM): The classifier projects
the data into a high-dimensional space where it can be
more easily separated into disjoint classes. In a two-
class problem, and assuming class labe() € T= [8]
{—1,4+1}, an SVM classifier tries to find the best clas-
sification function for the training data. For a linearly
separable training set, a linear classification function is

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

T. Back, and H.-P. Schwefel, Eds.
1998, pp. 87-96.

A. J. Booker, J. E. Dennis, P. D. Frank, D. B. Serafini,
V. Torczon, and M. W. Trosset, “A rigorous framework
for optimization of expensive functions by surrogates,”
Structural Optimizationvol. 17, no. 1, pp. 1-13, 1999. [21]
M. T. M. Emmerich, A. Giotis, M. Ozedmir, T. Back,
and K. C. Giannakoglou, “Metamodel-assisted evolution
strategies,” inThe Th International Conference on Paral-

lel Problem Solving from Nature—PPSN VHer. Lecture [22]
Notes in Computer Science, J. J. Merelo Guervos, Ed.,
no. 2439. Berlin: Springer, 2002, pp. 361-370.

K.-H. Liang, X. Yao, and C. Newton, “Evolutionary
search of approximated N-dimensional landscapks,’
ternational Journal of Knowledge-Based Intelligent Eng[23]
neering Systemsvol. 4, no. 3, pp. 172-183, 2000.

F. Muyl, L. Dumas, and V. Herbert, “Hybrid method for
aerodynamic shape optimization in automotive industryj24]
Computers and Fluigsvol. 33, no. 5-6, pp. 849-858,
2004.

Y. Tenne and S. W. Armfield, “A framework for memetic[25]
optimization using variable global and local surrogate
models,” Journal of Soft Computingvol. 13, no. 8, pp.
781-793, 2009.

F. Neri, X. del Toro Garcia, G. L. Cascella, and N. SalR26]
vatore, “Surrogate assisted local search on PMSM drive
design,” International Journal for Computation and Math-
ematics in Electrical and Electronic Engineetingl. 27,

no. 3, pp. 573-592, 2008.

Z. Zhou, Y.-S. Ong, P. B. Nair, A. J. Keane, and K. Y[27]
Lum, “Combining global and local surrogate models to
accelerate evolutionary optimizationEEE Transactions

on Systems, Man, and Cybernetics—Panvdl. 37, no. 1,

pp. 6676, 2007.

Y. Jin, M. Olhofer, and B. Sendhoff, “A framework for
evolutionary optimization with approximate fitness funcf28]
tions,” IEEE Transactions on evolutionary computation
vol. 6, no. 5, pp. 481-494, 2002.

A. R. Conn, K. Scheinberg, and P. L. Toint, “On the
convergence of derivative-free methods for unconstraingzb]
optimization,” in Approximation Theory and Optimiza-
tion: Tributes to M.J.D. PowellA. Iserles and M. D.
Buhmann, Eds. @ Cambridge; New York: Cambridge
University Press, 1997, pp. 83—-108.

——, “A derivative free optimization algorithm [30]
in practice,” in Proceedings of the Seventh
AIAA/USAF/NASA/ISSMO Symposium on
Muiltidisciplinary Analysis and Optimization Reston,
Virginia: American Institute of Aeronautics and
Astronautics, 1998, AIAA paper number AIAA-1998-
4718. [31]
K. Rasheed, H. Hirsh, and A. Gelsey, “A genetic al-
gorithm for continuous design space searchutificial
Intelligence in Engineeringvol. 11, pp. 295-305, 1997.

Y. Tenne and S. W. Armfield, “A versatile surrogate{32]
assisted memetic algorithm for optimization of computa-

Berlin: Springer,

144

tionally expensive functions and its engineering appli-
cations,” in Success in Evolutionary Computatjoser.
Studies in Computational Intelligence, A. Yang, Y. Shan,
and L. Thu Bui, Eds. Berlin; Heidelberg: Springer-
Verlag, 2008, vol. 92, pp. 43-72.

S. Handoko, C. K. Kwoh, and Y.-S. Ong, “Feasibility
structure modeling: An effective chaperon for constrained
memetic algorithms,]JEEE Transactions on Evolutionary
Computationvol. 14, no. 5, pp. 740-758, 2010.

Y. Tenne, K. Izui, and S. Nishiwaki, “Handling undefined
vectors in expensive optimization problems,”"Rnoceed-
ings of the 2010 EvoStar Conferencer. Lecture Notes

in Computer Science, C. Di Chio, Ed., vol. 6024/2010.
Berlin: Springer, 2010, pp. 582-591.

K. P. Burnham and D. R. AndersoModel Selection and
Inference: A Practical Information-theoretic Approach
New York: Springer, 2002.

A. Frank and A. Asuncion, “UCI Machine Learning
Repository,” 2010. [Online]. Available: http://archive.
ics.uci.edu/ml

M. D. McKay, R. J. Beckman, and W. J. Conover, “A
comparison of three methods for selecting values of input
variables in the analysis of output from a computer code,”
Technometricsvol. 21, no. 2, pp. 239-245, 1979.

K. S. Won and T. Ray, “Performance of Kriging and
Cokriging based surrogate models within the unified
framework for surrogate assisted optimization,” Tihe
2004 IEEE Congress on Evolutionary Computation—CEC
2004 Piscataway, NJ: IEEE, 2004, pp. 1577-1585.

H. You, M. Yang, D. Wang, and X. Jia, “Kriging model
combined with Latin hypercube sampling for surrogate
modeling of analog integrated circuit performance,” in
Proceedings of the Tenth International Symposium on
Quality Electronic Desigh—ISQED 2009 Piscataway,
NJ: IEEE, 2009, pp. 554-558.

J. R. Koehler and A. B. Owen, “Computer experiments,”
in Handbook of Statisti¢sS. Ghosh, C. R. Rao, and P. R.
Krishnaiah, Eds. Amsterdam: Elsevier, 1996, pp. 261—
308.

A. Chipperfield, P. Fleming, H. Pohlheim, and C. Fon-
seca,Genetic Algorithm TOOLBOX For Use with MAT-
LAB, Version 1.2 Department of Automatic Control and
Systems Engineering, University of Sheffield, Sheffield,
1994,

K. A. de Jong and W. M. Spears, “An analysis of the
interacting roles of population size and crossover in
genetic algorithms,” inProceedings of thestl Workshop

on Parallel Problem Solving from Nature—PPSNHI-P.
Schwefel and R. Manner, Eds. Berlin: Springer, 1990,
pp. 38-47.

W. R. Madych, “Miscellaneous error bounds for multi-
quadric and related interpolatorsZomputers and Math-
ematics with Applicationsvol. 24, no. 12, pp. 121-138,
1992,

R. M. Hicks and P. A. Henne, “Wing design by numerical
optimization,” Journal of Aircraftvol. 15, no. 7, pp. 407—

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

[33]

[34]

[35]

[36]

[37]

[38]

[39]

412, 1978.

H.-Y. Wu, S. Yang, F. Liu, and H.-M. Tsai, “Comparison
of three geometric representations of airfoils for aerody-
namic optimization,” inProceedings of the 1i6 AIAA
Computational Fluid Dynamics ConferenceAmerican
Institute of Aeronautics and Astronautics, 2003, AIAA
2003-4095.

M. Drela and H. YoungrenXFOIL 6.9 User PrimerDe-
partment of Aeronautics and Astronautics, Massachusetts
Institute of Technology, Cambridge, MA, 2001.

A. Ratle, “Optimal sampling strategies for learning a
fitness model,” inThe 1999 IEEE Congress on Evolution-
ary Computation—CEC 1999 Piscataway, New Jersey:
IEEE, 1999, pp. 2078-2085.

N. Hansen and A. Ostermeier, “Completely derandom-
ized self-adaptation in evolution strategieSyolutionary
Computationvol. 9, no. 2, pp. 159-195, 2001.

D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient
global optimization of expensive black-box functions,”
Journal of Global Optimizatignvol. 13, pp. 455-492,
1998.

D. J. SheskinHandbook of Parametric and Nonparamet-
ric Statistical Proceduredth ed. Boca Raton, Florida:
Chapman and Hall, 2007.

X. Wu, V. Kumar, R. J. Quinlan, J. Ghosh, Q. Yang,
H. Motoda, G. J. McLachlan, A. Ng, B. Liu, P. S. Yu,
Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg,
“Top 10 algorithms in data mining, ’Knowledge and
Information Systemsvol. 14, pp. 1-37, 2008.

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

145

