
An Adaptive Computational Intelligence Algorithm
for Simulation-driven Optimization Problems

Yoel Tenne
Formerly with the Department
of Mechanical Engineering and

Science,
Faculty of Engineering,

Kyoto University,
Kyoto, Japan

email: ytennex-e04@yahoo.com

Kazuhiro Izui
Department of Mechanical
Engineering and Science,
Faculty of Engineering,

Kyoto University,
Kyoto, Japan

email: izui@prec.kyoto-u.ac.jp

Shinji Nishiwaki
Department of Mechanical
Engineering and Science,
Faculty of Engineering,

Kyoto University,
Kyoto, Japan

email: shinji@prec.kyoto-u.ac.jp

Abstract—Modern engineering design optimization often eval-
uates candidate designs with computer simulations. In this setup,
there will often exist candidate designs which cause the simulation
to fail and would have no objective value assigned to them. This,
in turn, can degrade the effectiveness of the design optimization
process and lead to a poor final result. To address this issue, this
paper proposes a new computational intelligence optimization
algorithm which incorporates a classifier into the optimization
process. The latter predicts which candidate designs are expected
to cause a simulation failure, and its prediction is used to bias
the search towards candidate designs for which the simulation is
expected to succeed. However, the effectiveness of this approach
depends on the classifier being used, but it is typically not
known a-priori which classifier best suits the problem being
solved. To address this issue, the proposed algorithm employs
a statistically rigorous procedure to autonomously select the
classifier type, and to adjust the classifier selection procedure with
the goal of improving its accuracy. A performance analysis with a
simulation-driven design problem demonstrates the effectiveness
of the proposed algorithm.

Index Terms—expensive optimization problems; computational
intelligence; modelling; classification; model selection.

I. I NTRODUCTION

Nowadays engineers often usecomputer simulationsto eval-
uate candidate designs, with the goal of reducing the duration
and cost of the product design process. Such simulations,
which must be properly validated with laboratory experiments,
transform the design process into an optimization problem
having three distinct features [2]:

• The simulation acts as the objective function, namely, it
assigns candidate designs their corresponding objective
values. However, the simulation is often a legacy code
or a commercial software whose inner workings are
inaccessible to the user, and so an analytic expression for
this function is unavailable. Such ablack-box function
precludes the use of optimizers which require an analytic
function.

• Each simulation run iscomputationally expensive, that
is, it requires considerable computer resources, and this
severely restricts the number of candidate designs which
can be evaluated.

• Both the real-world physics being modelled, and the
numerical simulation process, may result in an objec-
tive function having a complicated nonconvex landscape,
which makes it difficult to locate an optimum.

Accordingly, such optimization scenarios are commonly
termed in literature asexpensive black-box optimization prob-
lems [2].

A framework which has proven effective in such chal-
lenging problems is that ofmetamodel-assisted computational
intelligence(CI) algorithms. It combines ametamodelwhich
approximates the expensive black-box function and provides
predicted objective values at a much lower computational
cost, with aCI optimizer which seeks an optimum of the
metamodel. Due to its explorative nature, a CI optimizer often
performs well in challenging nonconvex landscapes.

While the above optimization framework has proven ef-
fective, simulation-driven optimization problems often present
another challenge, namely, some candidate designs will cause
the simulation to fail, and would therefore not provide the ex-
pected objective value. We refer to such designs assimulator-
infeasible(SI), while those for which the simulation completes
successfully are termedsimulator-feasible(SF). SI designs
have two main implications on the optimization search:

• Since they do not have a corresponding objective value,
the objective function becomes discontinuous, and this
exacerbates the difficulty of the optimization search.

and

• Such designs can consume a large portion of the allotted
computational resources without providing any objective
values, and can therefore degrade the search effectiveness
and lead to a poor final result.

A fundamental assumption in this study is that the simulation
failures are caused by an unknown limitation of the simulation
code, and that they are not random. This implies that repeated
evaluations of a SF candidate solution will consistently suc-
ceed, while repeated evaluations of a SI candidate solution
will consistently fail. Limitations of the simulation codecan
be attributed to a variety of reasons, for example, the inability

131

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to handle complex geometries, or an attempt to simulate
physical conditions which are not supported by the numerical
approximations employed in the simulation.

Based on the description so far, we summarize the under-
lying settings and core assumptions on which this paper is
based:

• The optimization problem involves a black-box objective
function which is computationally expensive to evaluate.

• The black-box objective function may have a complicated
nonconvex landscape which exacerbates the optimization
difficulty.

• Some candidate solutions will cause the simulation to fail,
namely it will return no objective value. Such failures are
nonrandom, but their cause is unknown.

Numerous studies have referred to such simulation failures
and the difficulties they introduce into the optimization search,
for example, Büche et al. [3], Okabe [4], and Poloni et al. [5].
The multitude of such references indicates that SI candidate
designs are common in real-world applications, and therefore
that it is important to effectively handle them. Two main strate-
gies for handling SI vectors include discarding such vectors
altogether, or assigning them a penalized objective value and
then incorporating them into the metamodel. However, both
of these strategies have significant demerits, for example,they
discard information which can be beneficial to the search,
or they result in a metamodel whose landscape is severely
deformed.

In these settings, this study proposes a new approach
in which a metamodel-assisted CI algorithm incorporates a
classifierinto the optimization search. The role of the classifier
is to predict if a candidate design is SI or not, and its prediction
is then used to bias the search towards candidate designs
predicted to be SF. However, the effectiveness of this approach
depends on the type of classifier being used. Typically, it is
not known prior to the optimization search which classifier
best suits the problem being solved, while an unsuitable
classifier can degrade the search effectiveness. To circumvent
this, this study employs a procedure which autonomously
selects the most suitable classifier type during the search,
based on the statistical procedure ofcross-validation(CV). To
further enhance this procedure, the proposed algorithm also
calibrates during the search thesplit ratio parameter related to
this procedure.

To the best of our knowledge, such a computational in-
telligence algorithm which incorporates a metamodel and
a classifier, and which autonomously selects the classifier
type and calibrates the CV procedure, is new. To evaluate
its effectiveness, the proposed algorithm was tested using
a representative simulation-driven problem of airfoil shape
optimization. Analysis of the test results demonstrates the
effectiveness of the proposed algorithm, and the contribution
of the proposed classifier selection procedure.

The remainder of this paper is as follows: Section II
provides the pertinent background information, Section III
describes in detail the proposed algorithm, and Section IV

provides an extensive performance analysis. Lastly, Section V
concludes this paper.

II. BACKGROUND

This section provides background information on expensive
optimization problems, SI vectors in optimization, and statis-
tical accuracy estimation.

A. Expensive optimization problems

As mentioned in Section I, expensive optimization problems
are common in engineering, and Figure 1 shows the layout of
such problems in which the simulation is viewed as a black-
box function, namely, it assigns objective values to candidate
designs, while its analytic expression is unknown. In this setup,
the candidate designs are represented as vectors of design
variables, and are provided as inputs to the simulation. Overall,
such optimization problems arise in domains ranging from the
design of electronic devices to the design of aircraft, and a
representative problem is described in Section IV-A.

Also as mentioned, the resultant objective function often has
a complicated, nonconvex landscape, which can lead gradient-
based optimizers to converge to a poor final result. This has
motivated the use of CI optimizers in such problems, as they
tend to be more explorative, and hence often perform better in
complicated nonconvex objective landscapes. Such optimizers
typically employ a population of candidate solutions and
manipulate them using a variety of operators. One such widely
used CI optimizer, which is also employed in this study, is the
evolutionary algorithm(EA), whose mechanics are inspired
by the paradigms of adaptation and survival of the fittest. A
baseline EA applies the following operators [6]:

• Selection: The candidate solutions (vectors) with the best
objective value are selected asparents.

• Recombination: Two parents are selected, and their vec-
tors are combined to yield an offspring. This is repeated
several times to generate a population of offspring.

• Mutation: Offspring are selected at random, and some of
their vector components are randomly changed.

The offspring population is then evaluated, and the fittest
candidate solutions, namely, those with the best objective
values, are taken to be the population of the next ‘generation’.
The process then repeats until a termination criterion is met,
for example, if the maximum number of generations has been
reached. Through these operators, the EA drives the population
to adapt to the function landscape, and to converge to an
optimum. While the above description is representative of
many EAs in literature, other variants have been proposed
which may employ different operators. Algorithm 1 gives a
pseudocode of a baseline EA.

Since CI optimizers directly evaluate candidate solutions
and do not use gradient information, they often require many
thousands of function evaluations to yield a satisfactory solu-
tion. This is a major obstacle in applying them to expensive
optimization problems, where the objective function can be
evaluated only a small number of times. As mentioned in
Section I, an established framework to circumvent this is to

132

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

optimizer simulation

candidate solution

objective value

‘black-box’ function

Fig. 1. The layout of an expensive black-box optimization problem. The
optimizer generates candidate solutions, and these are evaluated by the
simulation to obtain their corresponding objective values.The optimizer views
the simulation as a black-box function, that is, having no analytic expression.

Algorithm 1: A baseline evolutionary algorithm (EA)

initialize a population of candidate solutions;
evaluate each candidate solution in the population;
/* main loop */

repeat
select a group of candidate solutions and designate
them asparents;
recombine the parents to createoffspring;
mutate some of the offspring;
evaluate the offspring;
select the candidate solutions which will comprise
the population of the next generation;

until convergence, or maximum number of generations
reached;

employ a metamodel which approximates the true expensive
function and provides the optimizer with predicted objective
values at a much lower computational cost. Metamodels are
typically interpolants trained with previously evaluatedvec-
tors, and variants include artificial neural networks, Kriging,
polynomials, and radial basis functions (RBF) [7]. Numerous
metamodel-assisted CI algorithms have proposed, and exam-
ples include the Kriging assisted EA by Ratle [8] which is
also described in Section IV-C, and Booker et al. [9] which
coupled a pattern search optimizer with quadratic metamodels.
Later examples include Emmerich et al. [10] which used an
evolutionary strategies (ES) optimizer coupled with a Kriging
metamodel, and Liang et al. [11] which coupled an EA with
a least-square fit polynomial metamodel. Poloni et al. [5] and
Muyl et al. [12] studied algorithms coupled with an artificial
neural networks (ANN). Later, Büche et al. [3] studied an ES
optimizer assisted with a Kriging metamodel, and employed
an elaborate sampling scheme which sought solutions based
on different trade-offs of exploration-exploitation, as described
in Section IV-C. More recent examples include Tenne and
Armfield [13], Neri et al. [14] and Zhou et al. [15]. Given the
established effectiveness of the metamodelling framework, it
is also employed in this study.

While metamodels address the issue of computationally
expensive evaluations, they introduce the challenge ofpredic-
tion inaccuracy. Specifically, due to the restricted number of
expensive function evaluations, only a small number of vectors
will be available to train the metamodel, which degrades its
accuracy. In severe cases, the optimizer may even converge

to a false optimum, namely, an optimum of the metamodel
which is a not an optimum of the true expensive function
[16], and it is therefore necessary to safeguard the metamodel
accuracy to ensure the progress of the optimization search.
The proposed algorithm accomplishes this by leveraging on
the trust-region(TR) approach which originated in the field
of nonlinear programming [17], where initially atrial step is
performed to seek an optimum of the metamodel in the TR,
namely, the region where the metamodel is assumed to be
accurate. Next, the TR and metamodel are updated based on
the optimum found, and the process repeats until a termination
condition is met. A merit of the TR approach is that it ensures
asymptotic convergence to an optimum of the true expensive
function [17]. Section III gives a detailed description of the
TR approach implemented in this study.

B. Simulator-infeasible vectors

As mentioned in Section I, this study focuses on expensive
optimization problems with simulator-infeasible (SI) vectors,
namely, which cause the simulation to fail. A multitude of
studies have referred to such vectors and to the difficulties
they introduce into the optimization search. For example,
Poloni et al. [5] described an optimization problem which
involved a computational fluid dynamics analysis, and noted
that some candidate designs caused “failure of the simulation
code”. In another study, Booker et al. [9] described a rotor
blade structural optimization problem in which “attempts to
evaluate the objective function failed”. Similarly, Bücheet al.
[3] described an aerodynamics shape optimization problem
in which “evaluation of all points fails”. Additional pertinent
studies include Liang et al. [11], Conn et al. [18] and Okabe
[4].

Several techniques have been explored in an effort to handle
SI vectors. For example, Rasheed et al. [19] described an
aircraft design optimization problem in which an EA directly
called the expensive simulation, and no metamodels were
employed. A classifier was used to screen candidate design
prior to the simulation call, and those predicted to be SI
were assigned a ‘death penalty’, namely, a fictitious and
highly penalized objective value, to quickly eliminate them
from the population, but no metamodels were employed. In
another related study, Emmerich et al. [10] also used the
penalty approach, but incorporated the penalized vectors into
the metamodel in an attempt to bias the search towards SF
vectors. In contrast, Büche et al. [3] discarded the SI vectors
altogether, so that the metamodel was trained using only the
SF vectors.

These strategies, and similar ones, have several demerits in
the context of expensive optimization problems: a) assigning
SI vectors a penalized objective value and then incorporating
them into the metamodel can severely deform the metamodel
landscape and degrade its accuracy, while b) discarding SI
vectors results in a loss of information which might have
been useful in enhancing the optimization search. As an
example, Figure 2 shows the effect of penalizing SI vectors
and incorporating them into a Kriging metamodel, which is

133

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

described in Section III. Figure 2(a) shows the metamodel
resulting from a sample of 30 SF vectors, while Figure 2(b)
shows the resultant metamodel when 20 SI vectors were added
to the baseline sample and were assigned the worst objective
value from the baseline sample. The metamodel landscape was
severely deformed and consequently locating an optimum of
the true objective function became more difficult.

Such issues have motivated exploring alternative approaches
for handling SI vectors. For example, Tenne and Armfield
[20] proposed an approach which employed two metamodels,
where one was used for approximating the objective function
and another for generating a penalty which was based on the
distance of a new candidate solution to previously encountered
SI ones. Other studies have examined using classifiers for
constrained non-linear programming, though unrelated to SI
vectors [21]. Further exploring the use of classifiers, Tenne
et al. [22] obtained preliminary results with a classifier-assisted
algorithm for handling SI vectors. However, the algorithm used
a single type of classifier, and it did not attempt to select the
classifier during the search. Recently, Tenne et al. [1] presented
a preliminary investigation on a framework which adapts
the classifier type based on the problem being solved. The
present study leverages on the latter framework and extends
it by proposing to also adapt the CV split ratio used in the
classifier selection step. The present study also provides amore
extensive performance analysis.

C. Accuracy estimation

As mentioned in Section I, the proposed algorithm employs
a classifier to predict which candidate designs will cause the
simulation to fail, and to improve the effectiveness of this
approach, it selects the classifier deemed most accurate outof
a family of candidates.

Accuracy estimation is rigorously addressed in the general
statistical framework ofmodel selection, in which a model
refers to any functional relation which is used to explain an
inputs–outputs relation [23]. In the model selection procedure,
several candidate models are prescribed and their accuracyis
estimated, after which the model deemed as the most accurate
is selected as the optimal one. An established procedure for
estimating the model accuracy is that ofcross-validation(CV),
in which the sample of vectors is split into atraining sample
and atesting sample. A candidate model is trained using the
former, and its predictions for the testing vectors are compared
to their already known exact function values.

The CV procedure relies on thesplit ratioparameter, which
determines which portion of data set will be designated as the
training sample and which as the testing sample. This suggests
that the accuracy of the procedure will be affected by the
split ratio used. To verify this, the CV procedure was used to
estimate the accuracy of two candidate classifiers, namely,k
nearest neighbours(kNN) andsupport vector machine(SVM),
whose details are given in Appendix A, and the tests were
performed using the two well-established data setsiris and
yeast provided by Frank and Asuncion [24]. The accuracy
measure used was the total classification error, namely, the

−10
−5 0

5
10−10

0

10
0

0.5

1

·106

(a)

−10
−5 0

5
10−10

0

10

0

5

·106

(b)

Fig. 2. An example of the effect of SI vectors on the metamodel. The
objective function was Rosenbrock, whose optimum is at (1, 1). (a) shows a
Kriging metamodel trained using a sample of 30 SF vectors, and (b) shows
the resultant metamodel when 20 SI vectors were added to the sample and
were assigned the worst objective value of the sample in (a). The landscape
of the resultant metamodel was severely deformed, and the optimum of the
true objective function was masked.

number of items in the testing sample to which the classifier
assigned an incorrect class. To check the effect of different
split ratios, the full data set was initially split in a 80–
20 training-testing ratio, and the accuracy of each classifier
was estimated. The accuracy estimates from this step are
considered as the reference results, since they employed the
full data set. Next, the training sample was used as the baseline
sample, and the accuracy of each classifier was estimated by
using each of the following training-testing split ratios in turn:
0.8–0.2, 0.5–0.5, and 0.2–0.8 . Table I shows the test results
and the rankings of the two classifiers. It follows that the
rankings corresponding to the 0.5–0.5 and 0.2–0.8 split ratios
matched those obtained with the full sample, while those of
the 0.8–0.2 split ratio differed. This in turn verifies the above
assumption, namely, that the split ratio affected the accuracy
of the CV procedure.

Since the optimal split ratio is unknown prior to the ac-
curacy estimation step, it is possible that an unsuitable value
would be used, which in turn would degrade the accuracy of

134

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the CV procedure. To circumvent this, the proposed algorithm
employs a procedure to autonomously select a suitable split
ratio, as described in Section III.

III. PROPOSED ALGORITHM

This section describes the proposed algorithm in detail,
and explains how it addresses the optimization challenges
discussed in Sections I and II. The algorithm leverages on
three paradigms:

• Classification of candidate vectors: Each candidate vector
is treated as having two attributes, namely, itsobjective
value, which is predicted by a metamodel, and itsclass,
namely, if it is SI or SF, which is predicted by a classifier.

• Selection of the classifier type: Typically, it is not known
prior to the optimization search which classifier type is
most suitable to the problem being solved. To circumvent
this, during the optimization search the proposed algo-
rithm uses the CV procedure to autonomously select the
most suitable type of classifier. To further improve the
accuracy of this approach, the proposed algorithm also
continuously selects during the search the most suitable
split ratio value.

• Trust-region (TR) optimization: Given the inherent meta-
model inaccuracy, a TR framework is employed to ensure
convergence to an optimum of the true expensive func-
tion.

The proposed algorithm operates in five main steps: ini-
tialization, training a metamodel, selecting the classifier type
and training a corresponding classifier, performing a TR trial
step to seek an optimum, and performing the TR updates. The
details of these steps are as follows:

Step 1) Initialization: The proposed algorithm begins by gen-
erating an initial sample of vectors using a Latin
hypercube (LH) design of experiments [25]. This is a
statistically oriented sampling method which ensures
that the sample is space-filling, namely, that the vec-
tors are distributed throughout the search space, which
improves the accuracy of the resultant metamodel.
A sample ofs vectors is generated as follows. The
range of each variable is split intos equally sized
intervals, and one point is sampled at random in
each interval. Next, a sample point is selected at
random and without replacement for each variable,
and these samples are combined to produce a vector.
This sequence is repeated fors times to create the

TABLE I
CLASSIFIER ACCURACY RANKINGS BY DIFFERENTCV SPLIT RATIOS

Split ratio Error Rank Error Rank

Full 2 1 3 2

0.8 1 2 0 1
0.5 1 1 2 2
0.2 5 1 7 2

Highlighted lines have the same ranks as those ob-
tained with the full sample.

complete sample, which is then evaluated with the
expensive simulation and is stored in memory. After
this step, the main optimization loop begins.

Step 2) Metamodel training: In this step, the proposed algo-
rithm trains a metamodel by using the SF vectors
stored in memory and ignores the SI vectors. In this
study a Kriging metamodel was employed, based on
its prevalence in literature [3, 26, 27]. This metamodel
is statistically-oriented and combines two compo-
nents: a ‘drift’ function, which is a global coarse
approximation of the true expensive function, and a
local correction based on the correlation between the
interpolation vectors. Given a set of evaluated vectors,
xxxi ∈R

d , i = 1. . .n , the Kriging metamodel is trained
such that it exactly interpolates the observed values,
that is, m(xxxi) = f (xxxi) , wherem(xxx) and f (xxx) are the
metamodel and true objective function, respectively.
Using a constant drift function [28] gives the Kriging
metamodel

m(xxx) = β +κ(xxx) , (1)

with the drift functionβ and local correctionκ(xxx) .
The latter is defined by a stationary Gaussian process
with mean zero and covariance

Cov[κ(xxx)κ(yyy)] = σ2c(θ ,xxx,yyy) , (2)

wherec(θ ,xxx,yyy) is a user-prescribed correlation func-
tion. A common choice for the latter is the Gaussian
correlation function [28], defined as

c(θ ,xxx,yyy) = Πd
i=1exp

(

−θ (xi − yi)
2) , (3)

and combining it with the constant drift function
transforms the metamodel from (1) into the following
form

m(xxx) = β̂ + rrr(xxx)TRRR−1(fff −111β̂) . (4)

Here, β̂ is the estimated drift coefficient,RRR is the
symmetric matrix of correlations between all inter-
polation vectors,fff is the vector of objective values,
and 111 is a vector with all elements equal to 1.rrrT is
the correlation vector between a new vectorxxx and the
sample vectors, namely,

rrrT = [c(θ ,xxx , xxx1), . . . ,c(θ ,xxx , xxxn)] . (5)

The estimated drift coefficient̂β and varianceσ̂2 are
obtained from

β̂ =
(

111TRRR−1111
)−1

111TRRR−1 fff , (6a)

σ̂2 =
1
n

[

(fff −111β̂)TRRR−1(fff −111β̂)
]

. (6b)

Fully defining the metamodel requires the correlation
parameterθ , whose optimal value,θ ⋆ , is typically
taken as the maximizer of the metamodel likelihood.
In practise, the latter is obtained by minimizing the
negative log-likelihood, namely

θ ⋆ : min−
(

n log(σ̂2)+ log(|RRR|)
)

. (7)

135

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

While a different correlation parameter can be used
for each variable, this study follows the practise
prevalent in literature in which the metamodel em-
ploys a single correlation parameter. This results in a
univariate likelihood function, which is relatively easy
to optimize.

Step 3) Classifier selection and training: In the next step, the
proposed algorithm trains a classifier to predict if a
vector is SF or SI. To further improve this technique,
the proposed algorithm employs the CV to select
during the search a classifier deemed as most suitable
out of a family of candidates. To further enhance the
accuracy of this procedure, the proposed algorithm
employs an additional step to identify a suitable split
ratio for the CV procedure, out of a prescribed set of
candidate ratios. The details of the procedure are as
follows:

3.1) The set of vectors stored in memory is split into
sample A and sample B in a 80–20 split ratio.

3.2) Using only sample A, the proposed algorithm
loops over the prescribed set of candidate split
ratios,si, i = 1. . .ns , wherens is the number of
candidate of ratios, and for each it performs the
following steps:

3.2.1) It generates a training sample and a test-
ing sample based on sample A.

3.2.2) For each candidate type of classifier, the
proposed algorithm trains a correspond-
ing classifier using the training sample,
and then estimates the classifier’s accu-
racy by using the testing sample, where
the accuracy measure is thetotal classifi-
cation error, defined as

e =
l

∑
i=1

(

ĉ(xxxi) 6= F(xxxi)
)

, (8)

wherexxxi , i = 1. . . l , are the vectors in the
testing sample, ˆc(xxx) is the prediction of
the classifier which was trained using the
training sample, andF(xxxi) is the true and
known class of the testing vectors. For the
latter,F(xxxi) = 1 was used for a SF vector,
andF(xxxi) =−1 for a SI vector.

3.2.3) The candidate classifiers are ranked based
on their obtained total classification er-
rors, which yields a vector of ranksrrri ,
where i is the index of the current split
ratio being considered.

3.3) After completing the above procedure for all
candidate split ratios, the proposed algorithm
loops over the set of candidate classifier types,
and using the samples A and B obtained in step
3.1, it trains a classifier using sample A, and es-
timates the classifier’s accuracy using sample B.
The classifier types are ranked based on their

estimated accuracies, which yields a vector of
ranksrrr0 .

3.4) The proposed algorithm selects as the optimal
split ratio (s∗) the one whose corresponding
ranks vectorrrri is most similar to the reference
ranks vectorrrr0 . This similarity is measured by
the l1 norm, namely

s∗ = si∗ , i∗ : min
i=1...ns

‖rrri − rrr0‖1 , (9)

wherei∗ is the index of the optimal split ratio.
The basis for this procedure is that the most
suitable split ratio should yield a ranks prediction
which is relatively insensitive to the sample
size. Therefore, the ranks vectors obtained in
step 3.2.3, namely,rrri , i = 1. . .ns , which were
obtained based on the training sample derived
from sample A, are compared to the ranks vector
from step 3.4, namely,rrr0 , which was obtained
based on the full set of vectors stored in memory.

3.5) After identifying the most suitable split ratio,
the proposed algorithm selects the classifier type
which had the lowest prediction error in the
selected split ratio, and trains a classifier, des-
ignated asc(xxx) , using all the vectors stored
in memory. This classifier is then used in the
optimization search performed in step 4.

In this study the proposed algorithm selected between
three classifiers types:k nearest neighbours(kNN),
linear discriminant analysis(LDA), andsupport vector
machine (SVM), whose details are given in Ap-
pendix A. The candidate values for the training-testing
split ratios were 0.8–0.2, 0.5–0.5, and 0.2–0.8 .

Step 4) TR trial step: The best vector in the memory storage
is taken as the TR centre (xxxb), and a TR trial-step is
performed, namely, an optimizer is invoked to find an
optimum in the bounded region

T = {xxx : ‖xxx− xxxb‖2 6 ∆} , (10)

where ∆ is the TR radius. The optimizer used is
the real-coded EA of Chipperfield et al. [29], which
follows the setup described in Section II-A, namely, it
begins by selecting a set of parents, recombines them
to produce offspring, mutates some of the offspring,
and selects the population of the next generation
from the union of the offspring and the best parents.
Table II gives the complete parameter settings of this
EA, which are based on those suggested in literature
[29, 30].
During the trial step, the EA uses the followingmodi-
fied objective functionwhich combines the prediction
of the metamodel from Step 2 and the classifier from
Step 3, as follows

m̂(xxx) =

{

m(xxx) if c(xxx) is SF

p if c(xxx) is SI
(11)

136

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II
INTERNAL PARAMETERS OF THEEA UTILIZED IN THIS STUDY [29]

Population size 100
Generations 100
Selection Stochastic universal selection (SUS)
Recombination Intermediate, applied with probabilityp = 0.7
Mutation Breeder Genetic Algorithm (BGA) mutation, applied

with probability p = 0.1
Elitism 10%

namely, the EA receives the objective value predicted
by the metamodelm(xxx) if the classifier predicts a
vector is SF, but it receives the penalized objective
value p otherwise. The latter is taken as the worst
objective value in the initial LH sample.
This formulation enhances the optimization search in
two main aspects. First, the classifier accumulates the
information about the SI vectors encountered during
the search and uses it to predict the distribution of
such vectors in the search space, so this potentially
beneficial information is not discarded. Second, the
classifier’s prediction is used to bias the search but
without affecting the metamodel landscape, and this
avoids the issues discussed in Section II-B. To visu-
alize the effect of this setup, and to demonstrate the
predictions of the metamodel, the classifier, and how
they are combined into a single modified objective
function, Figure 3 gives a synthetic example with
the Rosenbrock function. The plots show that the
landscape predicted by the modified objective func-
tion closely follows that of the baseline metamodel,
and embeds the knowledge on the location of the SI
vectors, but it is only minimally deformed.

Step 5) TR updates: The optimum found by the EA,xxx⋆ , is
evaluated with the true expensive function, which
yields the exact objective valuef (xxx⋆) . Following the
classical TR framework [17], the proposed algorithm
performs the following updates:

• If f (xxx⋆)< f (xxxb): The trial step was successful since
the predicted optimum is indeed better than the
current best solution, namely,xxxb . Accordingly, the
TR is centred at the new optimum, and the TR is
enlarged by doubling its radius.

• If f (xxx⋆)> f (xxxb) andthere are sufficient SF vectors
inside the TR: The search was unsuccessful since
the predicted optimum is not better than the current
best vector. However, since there are sufficient SF
vectors in the TR, the metamodel is deemed as
being sufficiently accurate to justify contracting the
TR. Accordingly, the TR is contracted by halving
its radius.

• If f (xxx⋆) > f (xxxb) and there are insufficient SF
vectors inside the TR: The search was unsuccessful,
but this may be since the metamodel is inaccurate
due to an insufficient number of SF vectors in the
TR. Therefore, the algorithm samples new vectors
(xxxn) inside the TR, as explained below.

-10 0 10
-10

0

10

Objective function and sample vectors

SF
SI

Kriging

Metamodel
prediction

KNN LDA
SVM

SF
SI

Classifiers
prediction

-10 0 10
-10

0

10

Modified objective function

Fig. 3. An example showing how the proposed algorithm generated the
modified objective function. The objective function was Rosenbrock, and the
sample was comprised of 26 SF vectors and 9 SI vectors. The proposed
algorithm trained a Kriging metamodel using the SF vectors, and trained the
classifiers using the entire sample. ThekNN classifier was deemed as the
most accurate, and therefore its prediction was used in the modified objective
function. The landscape of the latter was modified based on thepredictions
regarding SI vectors, but it was only minimally deformed.

As a change from the classical TR framework, the
proposed algorithm contracts the TR only if it con-
tains a sufficient number of SF vectors, to avoid a
too rapid TR contraction and premature convergence
[17]. To select a suitable threshold value (q) for the
number of these vectors, numerical experiments have
been performed and are described in Section IV-B.
Another change from the classical TR framework is
the sampling of new vectors to improve the accuracy
of the metamodel in the TR. There are two con-
siderations in selecting these vectors: i) they should
improve the metamodel accuracy locally around the
current optimum, and alternatively ii) they should
improve the metamodel accuracy over the entire TR,
and particularly in regions sparse with vectors [31].
Since these are typically two opposing considerations,
the proposed algorithm generates several new vectors
which correspond to different trade-offs between these
considerations. The vectors are taken as the minimiz-
ers of the following objective function

h(xxx) = wh1(xxx)+(1−w)h2(xxx) , (12)

137

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

where the minimization is performed by the real-
coded EA described earlier. Here,h1(xxx) is therankof
the vectorxxx based on its objective value, such that the
best vector in the EA population is assigned a rank of
1, the following one a rank of two, and so on. Also,
h2(xxx) is therankof the vectorxxx based on its distance
from existing vectors in the TR, where the vector in
the EA population which is farthest is given a rank
of one, the vector having the 2nd largest distance
is given a rank of two, and so on. The weightw
defines the trade-off between the two considerations,
wherew = 1 implies a vector is searched based only
on its objective value, which will result in the new
vector being in the vicinity of the TR centre, while
w = 0 implies a vector is searched based only on
its distance to existing vectors in the TR, which will
result in a vector being away from existing vectors.
Equation (12) uses a rank based approach to make
the search more consistent across different objective
functions. To identify suitable weights, numerical
experiments have been performed and are described
in Section IV-B.
To complete the algorithm description, several addi-
tional points are noted:

• While in the description above the proposed algo-
rithm used a Kriging metamodel and selected be-
tween akNN, linear discriminant analysis (LDA),
and SVM classifiers, other types of metamodels and
classifiers can be readily used.

• To avoid a numerical breakdown of the metamodel
training process, the proposed algorithm evaluates
a new vector and adds it to the memory storage
only if it differs from those already stored.

• There is some computational overhead introduced
by the proposed algorithm due to the classifier
selection step. However, since no expensive eval-
uations are involved in this step, and since the
classifiers’ training phase is computationally cheap,
the overhead is minimal.

To complete the description of the proposed algo-
rithm, Figure 4 gives a schematic layout of its op-
timization iteration, and Algorithm 2 gives its pseu-
docode.

train a
metamodel

perform a TR
trial step using
the modified

function

perform
TR updates

select a
split ratio

select and train
a classifier

Fig. 4. The layout of an optimization iteration of the proposed algorithm. The
iteration begins by training a metamodel and classifier, including selection of
the classifier type and CV split ratio. This is followed by a TRtrial step to
locate an optimum of the modified objective function, and lastly updates of
the TR to ensure the progress of the search.

Algorithm 2: Proposed optimization algorithm

/* initialization */
generate an initial LH sample;
evaluate the sample vectors and store in memory;
/* main optimization loop */
repeat

/* train a metamodel */
use the SF vectors stored in memory to train a
metamodel;
/* select and train a classifier */
split the vectors stored in memory into a sample A
and a sample B;
for each candidate split ratiodo

split sample A into a training sample and testing
sample using the candidate split ratio;
for each candidate classifier typedo

train a classifier using the training sample;
estimate the classifier accuracy using the
testing sample;

rank the classifiers based on their accuracies;

for each candidate classifier typedo
train a classifier using sample A;
estimate the classifier accuracy using sample B;

rank the classifiers based on their accuracies to
obtain a ranks vectorrrr0;
select the split ratios∗ whose corresponding ranks
vector is most similar torrr0;
select the classifier type which produced the lowest
prediction error whens∗ was used, and train a
classifier using all vectors stored in memory;
/* perform a TR trial step */
set the TR centre to the best vector stored in memory;
use a real-coded EA to find an optimum of the
modified objective function in the TR;
/* perform TR updates */
evaluate the predicted optimum with the true
expensive function;
if the new optimum is better than the best vector in
memory then

double the TR radius
else if the new optimum is not better than the best
vector in memoryandthere are sufficient vectors in the
TR then

halve the TR radius;

else if the new optimum is not better than the best
vector in memoryandthere are insufficient vectors in
the TR then

add new vectors in the TR to improve the
metamodel accuracy;

add to the memory storage all the new vectors
evaluated with the true expensive function;

until maximum number of analyses completed;

138

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. N UMERICAL EXPERIMENTS

This section describes the numerical experiments used to
evaluate the performance of the proposed algorithm. It begins
by describing the test problem employed, it then describes a
parameter sensitivity analysis which was used to select suitable
settings for the algorithm parameters, and lastly it describes
and analyzes a set of benchmark tests.

A. Problem description

The test problem employed was that of airfoil shape op-
timization, as it is both simulation-driven and contains SI
vectors, as explained below. The formulation of the problemis
as follows. During flight, an aircraft generateslift , namely, the
force which counters the aircraft weight and keeps it airborne,
and drag, which is an aerodynamic friction force obstructing
the aircraft movement. Both the lift and drag result from the
flow of air around the aircraft wing whose cross-section is
the airfoil. The optimization goal is then to identify an airfoil
shape which maximizes the lift and minimizes the drag. In
practise, the design requirements for airfoils are specified in
terms of the nondimensional lift and drag coefficients,cl and
cd , respectively, defined as

cl =
L

1
2ρV 2S

(13a)

cd =
D

1
2ρV 2S

(13b)

whereL andD are the lift and drag forces, respectively,ρ is
the air density,V is the aircraft speed, andS is a reference
area, such as the wing area. Also important is theangle of
attack(AOA), which is the angle between the aircraft velocity
and the airfoilchord line, defined as the straight line joining
the leading and trailing edges of the airfoil. Figure 5 givesa
schematic layout of the airfoil problem.

Candidate airfoils were represented with the Hicks-Henne
parameterization [32], in which the profile of a candidate
airfoil is defined as

y = yb +
h

∑
i=1

αibi(x) , (14)

whereyb is a baseline airfoil profile, taken as the NACA0012
symmetric airfoil,bi are basis functions, which following [33],
are defined as

bi(x) =

[

sin

(

πx
log(0.5)

log(i/(h+1))

)]4

, (15)

andαi ∈ [−0.01,0.01] are coefficients, which are the problem’s
design variables. Ten basis functions were used for the upper
and lower airfoil profile, respectively, resulting in 20 design
variables overall. Figure 5 shows the layout of the airfoil
problem and the Hicks-Henne parametrization. The lift and
drag coefficients of candidate airfoils were obtained by using
XFoil, a computational fluid dynamics simulation for analysis
airfoils operating in the subsonic regime [34]. Each airfoil
evaluation required up to 30 seconds on a desktop computer.
To ensure structural integrity, the thickness of an airfoil(t)

AOA

x

z

Chord line

Velocity

Lift

Drag

0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

+

x

z

Baseline airfoil: NACA0012

0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

x

z Basis functions

Fig. 5. A schematic layout of the airfoil problem showing the physical
quantities involved, and the Hicks-Henne parameterizationsetup.

between 0.2 to 0.8 of its chord length had to be equal to or
larger than a critical valuet⋆ = 0.1 .

The airfoil shape optimization problem is a pertinent test
case since it contains SI vectors, and their prevalence is
strongly affected by the angle of attack (AOA) defined earlier.
Specifically, since the turbulence of the flow field increases
with the AOA, at higher angle values it will be more difficult
to complete the aerodynamics analysis, which will result in
more simulation failures, and therefore, more SI trial designs.
To verify this, 30 different airfoils were sampled and evaluated
in identical flight conditions, except for the AOA which was
increased from 20◦ to 50◦ . Figure 6 shows the obtained results,
where, as expected, the number of failed analyses increased
with the AOA. Therefore, by changing the AOA we could
change the density of SI vectors in the search space, and
hence the relative difficulty of the tests. In view of these
results, the numerical experiments included three optimization
scenarios, namely, with AOA= 20◦ ,30◦ , and 40◦ , which
following Figure 6, correspond to a low, medium and high
density of SI vectors in the search space, respectively.

B. Parameter sensitivity analysis

As described in Section III, the proposed algorithm relies
on two main parameters, namely:

• q : The minimum number of vectors in TR to invoke a
TR contraction.

and

• wi : The weights used for generating new vectors to
improve the metamodel accuracy (xxxn).

139

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 10 20 30 40

0

10

20

30

40

Angle of attack (degrees)

A
n

al
ys

is
fa

ilu
re

s
(%

)

Fig. 6. Simulation failures as a function of the angle of attack (AOA).

To identify suitable values for these parameters, in turn,
each parameter was assigned one of three candidate values,
and ten optimization runs were repeated with the AOA= 30◦

setting.
Table III shows the obtained results, where the best mean

statistic is emphasized. It follows that suitable parameter
settings are a threshold value ofq = 20 , and a set of weights
w = {0.8,0.5,0.2} , resulting in three new vectors being added
in the TR to improve the metamodel accuracy. Accordingly,
these settings were used in the benchmark tests described in
the next section.

C. Benchmark tests: Results and analysis

For a comprehensive evaluation, the proposed algorithm
was benchmarked against two representative algorithms from
literature:

• EA with Periodic Sampling(EA–PS) [35]: The algo-
rithm safeguards the metamodel accuracy by periodi-
cally evaluating a small subset of the population with

TABLE III
TEST STATISTICS FOR THE PARAMETER SENSITIVITY ANALYSIS

(a) q : Number of vectors in the TR needed to contract the TR

2 (=0.1d) 10 (=0.5d) 20 (=d)

Mean 9.794e-01 8.772e-01 8.568e-01
SD 5.631e-02 6.540e-02 7.462e-02
Median 9.984e-01 8.674e-01 8.434e-01
Min(best) 8.409e-01 7.875e-01 7.527e-01
Max(worst) 1.028e+00 1.001e+00 1.005e+00

d : Dimension of objective function.

(b) w : Weights used for generating new vectors in the TR

{0.8,0.2} {0.8,0.5,0.2} {0.8,0.6,0.4,0.2}

Mean 9.126e-01 8.741e-01 8.772e-01
SD 6.099e-02 7.245e-02 6.540e-02
Median 9.400e-01 8.847e-01 8.674e-01
Min(best) 7.880e-01 7.175e-01 7.875e-01
Max(worst) 9.661e-01 9.947e-01 1.001e+00

the true objective function, and incorporating them into
the metamodel. The algorithm begins by generating an
initial sample of vectors (candidate solutions), evaluating
them with the expensive function, and training a Kriging
metamodel. It then uses a real-coded EA to seek an
optimum of the metamodel, where the EA is run for
10 generations. The ten best members of the resultant
population are then evaluated with the true expensive
function, and are incorporated into the metamodel. This
process repeats until the maximum number of expensive
function evaluations is reached. In the benchmark tests,
the EA was identical to the one used by the proposed
algorithm and used the same parameters given in Table II.

• Expected Improvement with a Covariance Matrix Adapta-
tion Evolutionary Strategies optimizer(EI–CMA-ES) [3]:
The algorithm combines a covariance matrix adaptation
evolutionary strategy (CMA-ES) optimizer [36] with a
Kriging metamodel, and updates the latter based on the
expected improvement framework [37]. The algorithm
begins by generating an initial sample of vectors, and
evaluates them with the true function. Its main loop
then begins, where at each generation it trains a Kriging
metamodel by using both the recently evaluated vectors
and those stored in memory which are nearest to the
best solution. A CMA-ES optimizer is then invoked to
locate an optimum of the metamodel in a bounded region
defined by the metamodel training sample. In the spirit of
the expected improvement framework [37], the function
being minimized is

f̂ (xxx) = m(xxx)−ρζ (xxx) , (16)

wherem(xxx) is the Kriging metamodel prediction,ρ is a
prescribed coefficient, andζ (xxx) is the estimated Kriging
prediction error, which is zero at sampled vectors since
there the true objective value is known. The search is
repeated forρ = 0,1,2, and 4 , to obtain four solutions
corresponding to different search profiles, namely, rang-
ing from a local search (ρ = 0) to a more explorative
one (ρ = 4). All non-duplicate solutions found are eval-
uated with the true expensive function, and are stored
in memory. In case no new solutions were evaluated,
for example, because they already match those stored
in memory, a new solution is generated by perturbing
the current best one. Following Büche et al. [3], the
algorithm used a training set of 100 vectors comprising
of the 50 most recently evaluated ones and 50 nearest-
neighbours, and the CMA-ES used the default settings
given in Reference [36].

To also study the contribution of the proposed procedure
of selecting the classifier type and calibrating the CV split
ratio during the search, the benchmark tests also included the
following two variants of the proposed algorithm which were
identical to it in operation, except that they used a fixed type of
classifier, and therefore did not use the procedures in question:
variant i) VK : a variant which used akNN classifier, and
variant ii) VS : a variant which used an SVM classifier.

140

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For all algorithms the limit of simulation calls was set to
200, and their initial sample was generated by a LH procedure
and consisted of 20 candidate solutions. To support a valid
statistical analysis, 30 runs were repeated for each algorithm
at each test case. This was done only for the benchmarking
purpose, and is not required in an ordinary optimization search.

For a thorough evaluation, three performance measures
were analyzed: i) the final objective value obtained by each
algorithm, ii) the number of SI vectors generated by each
algorithm during its optimization search, and iii) the classifier
type and split ratio which were selected by the proposed
algorithm during its optimization search. The details of these
analyses are as follows:

• Final objective value: To compare the effectiveness of the
algorithms, Table IV gives the test statistics of mean,
standard deviation (SD), median, best, and worst final
objective values obtained by each algorithm in each
optimization scenario, with the best mean and median
statistics emphasized. The table also gives the signifi-
cance level (α) at which results of the proposed algorithm
were better than those achieved by the other algorithms,
where the significance levels considered were 0.01, 0.05,
or an empty entry otherwise. Statistical significance was
determined using the Mann–Whitney nonparametric test
[38, p.423–432].
It follows that the proposed algorithm consistently per-
formed well, as indicated by its mean and median statis-
tics. Also, statistical significance comparisons show that
it outperformed the two reference algorithms from litera-
ture, namely, EA–PS and EI–CMA-ES in the AOA=20◦

case, and outperformed the EA–PS algorithm in the
AOA=30◦ and 40◦ cases. In contrast, the EA–PS algo-
rithm typically achieved either the worst or second worst
mean statistic, which highlights the demerit of the penalty
approach it employs, namely, that incorporating penalized
vectors into the training sample can result in deformation
of the metamodel landscape and consequently degrade the
search effectiveness. It is noted that the performance gains
achieved by the proposed algorithm varied depending on
the problem setting (the AOA), and were more modest in
the high AOA settings where the high prevalence of SI
vectors exacerbated the optimization difficultly. However,
even modest performance gains can be significant, which
justifies the minor added computational overhead incurred
by the proposed algorithm.
Lastly, test statistics also show the contribution of the
procedure for selecting the classifier type and split ratio,
as indicated by the comparisons to the two variants VK
and VS. This indicates that adapting the optimization
algorithm to the problem being solved improved the
search effectiveness.

• Number of SI vectors encountered during the search:
Table V gives the resultant test statistics for the number
of SI vectors generated by each algorithm in the three op-
timization scenarios. These statistics are important since

they indicate the efficiency of each algorithm, namely, the
extent of computer resources wasted during its search.
Results show that the EA–PS algorithm consistently
obtained the best mean statistic, which indicates that it
typically generated the least amount of SI vectors. This
is attributed to the penalty approach it employs which
deforms the metamodel landscape and consequently bi-
ases the optimization search away from the vicinity of
previously encountered SI vectors. However, this setup
also resulted in poor final objective values, as indicated
by the test statistics in Table IV.
In contrast, the optimization search of the proposed
algorithm resulted in a higher number of SI vectors in
all scenarios, which suggests that in this test problem
locating good candidate solutions required exploring SI
candidate solutions.

• Variation of the classifier type and split ratio during the
search: The goal of this analysis was to study the
contribution of the procedure for selecting the classifier
type and split ratio, namely, if predominantly a single
classifier type and split ratio were selected during the
search, which would imply the procedure was redundant,
or if the selected types were varied frequently.
Figure 7 shows representative results from a test run
with AOA=20◦ , and from another run with AOA=40◦ .
It follows that in both runs, the classifier type and the
split ratio were frequently updated during the search.
In the AOA=20◦ case, the SVM andkNN classifiers
were selected a similar number of times, while LDA
was selected less frequently, which indicates that it was
deemed as less accurate. With the split ratio, all settings
were selected during the search, with the 0.8 setting being
selected more frequently than the 0.5 and 0.2 settings.
In the AOA=40◦ case, the SVM andkNN classifiers were
both frequently selected. However, the LDA classifier was
not selected during the run, which indicates that it was
consistently deemed as the least accurate. With respect
to the split ratio, and similarly to the AOA=20◦ case,
all settings were selected during the search, with the 0.8
setting being used more frequently.
Overall, these results, coupled with the test statistics in
Table IV indicate that: a) the optimal classifier type and
split ratio varied not only between different optimization
scenarios, but also during the optimization search itself,
and b) adapting the optimization algorithm during the
search improved the search effectiveness.

V. CONCLUSION AND FUTURE WORK

In modern engineering, computer simulations are often
used to evaluate candidate designs. This setup yields an op-
timization problem of a computationally expensive black-box
function, namely, whose analytic expression is unknown and
which can be evaluated only a small number of times. Often,
such problems will also involve candidate designs which cause
the simulation to fail. Therefore, such designs would not have

141

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV
STATISTICS FOR THE BEST SOLUTION FOUND

Algorithm

AOA Proposed VK VS EA–PS EI–CMA-ES

20

Mean 3.737e-01 3.890e-01 3.885e-01 4.418e-01 5.675e-01
SD 7.018e-03 2.845e-02 3.926e-02 5.773e-02 2.102e-01
Median 3.717e-01 3.857e-01 3.718e-01 4.333e-01 5.052e-01
Min(best) 3.649e-01 3.603e-01 3.626e-01 3.674e-01 3.584e-01
Max(worst)3.902e-01 4.392e-01 4.911e-01 5.686e-01 9.638e-01
α 0.01 0.05

30

Mean 9.273e-01 9.475e-01 9.616e-01 9.842e-01 9.322e-01
SD 7.314e-02 8.652e-02 4.662e-02 1.237e-01 8.289e-02
Median 9.388e-01 9.495e-01 9.521e-01 1.026e+00 9.180e-01
Min(best) 7.989e-01 7.836e-01 8.832e-01 7.113e-01 8.197e-01
Max(worst)1.003e+00 1.081e+00 1.022e+00 1.099e+00 1.205e+00
α 0.05

40

Mean 1.023e+00 1.027e+00 1.032e+00 1.112e+00 1.044e+00
SD 3.888e-02 4.637e-02 4.319e-02 4.635e-02 4.347e-02
Mmedian 1.015e+00 1.029e+00 1.045e+00 1.116e+00 1.034e+00
Min(best) 9.490e-01 9.505e-01 9.675e-01 1.006e+00 9.746e-01
Max(worst)1.088e+00 1.111e+00 1.090e+00 1.204e+00 1.154e+00
α 0.01

TABLE V
STATISTICS FOR THE NUMBER OFSI VECTORS ENCOUNTERED DURING

THE SEARCH

Algorithm

AOA Proposed VK VS EA–PS EI–CMA-ES

20

Mean 1.610e+01 4.800e+00 1.280e+01 4.267e+00 9.033e+00
SD 3.242e+01 4.894e+00 1.561e+01 2.477e+00 1.785e+01
Median 4.500e+00 4.000e+00 5.000e+00 4.500e+00 2.000e+00
Min(best) 1.000e+00 0.000e+00 0.000e+00 1.000e+00 0.000e+00
Max(worst)1.070e+02 1.400e+01 4.900e+01 9.000e+00 8.100e+01

30

Mean 3.330e+01 3.970e+01 2.630e+01 9.967e+00 2.467e+01
SD 1.532e+01 2.445e+01 1.778e+01 4.846e+00 1.489e+01
Median 3.350e+01 3.700e+01 2.000e+01 1.050e+01 2.200e+01
Min(best) 1.200e+01 1.400e+01 9.000e+00 1.000e+00 9.000e+00
Max(worst)5.500e+01 8.100e+01 6.500e+01 1.900e+01 8.700e+01

40

Mean 6.290e+01 4.790e+01 5.720e+01 2.267e+01 4.743e+01
SD 2.429e+01 1.795e+01 2.296e+01 8.515e+00 1.618e+01
Median 6.500e+01 4.700e+01 5.600e+01 2.100e+01 4.850e+01
Min(best) 2.100e+01 2.200e+01 1.700e+01 1.300e+01 2.100e+01
Max(worst)9.600e+01 7.800e+01 9.900e+01 4.300e+01 8.400e+01

an objective value assigned to them, and consequently they
can degrade the effectiveness of the optimization search.

Existing approaches for handling such candidate designs in-
clude assigning them a penalized objective value or discarding
them altogether, but both of these approaches have significant
demerits, as discussed in Section II. In these settings, this study
has proposed a new computational intelligence optimization
algorithm which incorporates a classifier into the optimiza-
tion search. The latter predicts which candidate designs are
expected to cause the simulation to fail, and this prediction is
used to bias the search towards candidate designs for which the
simulation is expected to succeed. However, the effectiveness
of this setup depends on the type of classifier being used, but
typically it is not known prior to the optimization search which
classifier type is most suitable to the problem being solved.
To address this, the proposed algorithm autonomously selects
during the search an optimal classifier type out of a family
of candidates, based on the CV procedure. To further enhance
the accuracy of this approach, it also selects during the search

kNN

LDA

SVM

C
la

ss
ifi

er

50 100 150 200
0.2

0.5

0.8

Function evaluations

S
p

lit
ra

tio

(a) AOA=20◦

kNN

LDA

SVM

C
la

ss
ifi

er

50 100 150 200
0.2

0.5

0.8

Function evaluations

S
p

lit
ra

tio

(b) AOA=40◦

Fig. 7. The classifier type and split ratio selected by the proposed algorithm
during two test runs.

the split ratio of the CV procedure.
The effectiveness of the proposed algorithm was evalu-

ated with a simulation-driven test problem of airfoil shape
optimization which is representative of real-world problems.
Analysis of the experiments results shows that:

• Incorporating a classifier into the optimization search was
an effective approach to handle SI vectors, as indicated
by the test statistics of the final function value.

• Penalizing SI vectors and incorporating them into the
metamodel training sample reduced the number of failed
evaluations, but also yielded a poorer final result. In con-
trast, the proposed algorithm typically evaluated a larger
number of SI vectors, which indicates that obtaining a
good SF solution may require exploring a multitude of
SI ones.

• The optimal classifier type and split ratio varied not

142

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

only between optimization scenarios, but also during the
optimization search itself. Also, adapting the optimiza-
tion algorithm during the search improved the search
effectiveness, as indicated by the comparisons to the two
variants of the proposed algorithm which did not employ
this procedure.

Overall, the proposed algorithm effectively performed an opti-
mization of a computationally expensive black-box function in
the presence of SI candidate designs. Prospective future work
includes improving the algorithm’s effectiveness in problems
with a high prevalence of SI vectors, and dynamic optimization
problems, namely, which vary with time.

APPENDIX A
CANDIDATE CLASSIFIERS

Classifiers originated in the domain on machine learning
with the goal of class prediction. Mathematically, given a set
of vectorsxxxi ∈R

d , i = 1. . .n , which are grouped into several
classes such that each vector has a corresponding class label
F(xxxi) ∈ I, for example,I = {−1,+1} , a classifier performs
the mapping

c(xxx) : Rd → I , (17)

wherec(xxx) is the class assigned by the classifier.
In this study, the proposed algorithm selects from three

established classifier variants [39]:

• k Nearest Neighbours(KNN): The classifier assigns the
new vector the class of its closest training vector, namely:

c(xxx) = F(xxxNN) : d(xxx,xxxNN) = min d
(

xxx,xxxi
)

, i = 1. . .n ,
(18)

whered(xxx,yyy) is a distance measure such as thel2 norm.
An extension of this technique is to assign the class most
frequent among thek > 1 nearest neighbours (kNN). In
this study the classifier usedk = 3 .

• Linear Discriminant Analysis(LDA): In a two-class prob-
lem, where the class labels areF(xxxi)∈ I= {−1,+1} , the
classifier attempts to model the conditional probability
density functions of a vector belonging to each class,
where the latter functions are assumed to be normally dis-
tributed. The classifier considers the separation between
classes as the ratio of: a) the variance between classes,
and b) the variance within the classes, and obtains a
vector www which maximizes this ratio. The vectorwww is
such that it is orthogonal to the hyperplane separating
the two classes. A new vectorxxx is classified based on its
projection with respect to the separating hyperplane, that
is,

c(xxx) = sign(www · xxx) . (19)

• Support Vector Machines(SVM): The classifier projects
the data into a high-dimensional space where it can be
more easily separated into disjoint classes. In a two-
class problem, and assuming class labelsF(xxxi) ∈ I =
{−1,+1} , an SVM classifier tries to find the best clas-
sification function for the training data. For a linearly
separable training set, a linear classification function is

the separating hyperplane passing through the middle of
the two classes. Once this hyperplane has been fixed,
new vectors are classified based on their relative position
to this hyperplane, that is, whether they are “above”
or “below” it. Since there are many possible separat-
ing hyperplanes, an SVM classifier adds the condition
that the hyperplane should maximize its distance to the
nearest vectors from each class. This is accomplished by
maximizing the Lagrangian

LP =
1
2
‖www‖−

n

∑
i=1

αiF(xxxi)(www · xxxi +b)+
n

∑
i=1

αi , (20)

where n is the number of samples (training vectors),
F(xxxi) is the class of theith training vector, andαi > 0 ,
i = 1. . .n , are the Lagrange multipliers, such that the
derivatives ofLP with respect toαi are zero. The vector
www and scalarb define the hyperplane.

REFERENCES

[1] Y. Tenne, K. Izui, and S. Nishiwaki, “A computational
intelligence algorithm for simulation-driven optimiza-
tion problems,” inProceedings of the Third International
Conference on Future Computational Technologies and
Applications, Future Computing 2011, Rome, Italy, In-
ternational Academy, Research, and Industry Association
(IARIA). IARIA XPS Press, 2011, pp. 127–134.

[2] Y. Tenne and C. K. Goh, Eds.,Computational Intelli-
gence in Expensive Optimization Problems, ser. Evolu-
tionary Learning and Optimization. Springer, 2010,
vol. 2.

[3] D. Büche, N. N. Schraudolph, and P. Koumoutsakos,
“Accelerating evolutionary algorithms with Gaussian pro-
cess fitness function models,”IEEE Transactions on Sys-
tems, Man, and Cybernetics–Part C, vol. 35, no. 2, pp.
183–194, 2005.

[4] T. Okabe, “Stabilizing parallel computation for evolu-
tionary algorithms on real-world applications,” inPro-
ceedings of the 7th International Conference on Optimiza-
tion Techniques and Applications–ICOTA 7. Tokyo:
Universal Academy Press, 2007, pp. 131–132.

[5] C. Poloni, A. Giurgevich, L. Onseti, and V. Pediroda,
“Hybridization of a multi-objective genetic algorithm, a
neural network and a classical optimizer for a complex
design problem in fluid dynamics,”Computer Methods in
Applied Mechanics and Engineering, vol. 186, no. 2–4,
pp. 403–420, 2000.

[6] K. A. de Jong, Evolutionary Computation:A Unified
Approach. MIT Press, Cambridge, Mass. 2006.

[7] T. W. Simpson, J. D. Poplinski, P. N. Koch, and J. K.
Allen, “Metamodels for computer-based engineering de-
sign: Survey and recommendations,”Engineering with
Computers, vol. 17, pp. 129–150, 2001.

[8] A. Ratle, “Accelerating the convergence of evolutionary
algorithms by fitness landscape approximations,” inPro-
ceedings of the 5th International Conference on Parallel
Problem Solving from Nature–PPSN V, A. E. Eiben,

143

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

T. Bäck, and H.-P. Schwefel, Eds. Berlin: Springer,
1998, pp. 87–96.

[9] A. J. Booker, J. E. Dennis, P. D. Frank, D. B. Serafini,
V. Torczon, and M. W. Trosset, “A rigorous framework
for optimization of expensive functions by surrogates,”
Structural Optimization, vol. 17, no. 1, pp. 1–13, 1999.

[10] M. T. M. Emmerich, A. Giotis, M. Özedmir, T. Bäck,
and K. C. Giannakoglou, “Metamodel-assisted evolution
strategies,” inThe 7th International Conference on Paral-
lel Problem Solving from Nature–PPSN VII, ser. Lecture
Notes in Computer Science, J. J. Merelo Guervós, Ed.,
no. 2439. Berlin: Springer, 2002, pp. 361–370.

[11] K.-H. Liang, X. Yao, and C. Newton, “Evolutionary
search of approximated N-dimensional landscapes,”In-
ternational Journal of Knowledge-Based Intelligent Engi-
neering Systems, vol. 4, no. 3, pp. 172–183, 2000.

[12] F. Muyl, L. Dumas, and V. Herbert, “Hybrid method for
aerodynamic shape optimization in automotive industry,”
Computers and Fluids, vol. 33, no. 5–6, pp. 849–858,
2004.

[13] Y. Tenne and S. W. Armfield, “A framework for memetic
optimization using variable global and local surrogate
models,” Journal of Soft Computing, vol. 13, no. 8, pp.
781–793, 2009.

[14] F. Neri, X. del Toro Garcia, G. L. Cascella, and N. Sal-
vatore, “Surrogate assisted local search on PMSM drive
design,”International Journal for Computation and Math-
ematics in Electrical and Electronic Engineering, vol. 27,
no. 3, pp. 573–592, 2008.

[15] Z. Zhou, Y.-S. Ong, P. B. Nair, A. J. Keane, and K. Y.
Lum, “Combining global and local surrogate models to
accelerate evolutionary optimization,”IEEE Transactions
on Systems, Man, and Cybernetics–Part C, vol. 37, no. 1,
pp. 66–76, 2007.

[16] Y. Jin, M. Olhofer, and B. Sendhoff, “A framework for
evolutionary optimization with approximate fitness func-
tions,” IEEE Transactions on evolutionary computation,
vol. 6, no. 5, pp. 481–494, 2002.

[17] A. R. Conn, K. Scheinberg, and P. L. Toint, “On the
convergence of derivative-free methods for unconstrained
optimization,” in Approximation Theory and Optimiza-
tion: Tributes to M.J.D. Powell, A. Iserles and M. D.
Buhmann, Eds. Cambridge; New York: Cambridge
University Press, 1997, pp. 83–108.

[18] ——, “A derivative free optimization algorithm
in practice,” in Proceedings of the Seventh
AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization. Reston,
Virginia: American Institute of Aeronautics and
Astronautics, 1998, AIAA paper number AIAA-1998-
4718.

[19] K. Rasheed, H. Hirsh, and A. Gelsey, “A genetic al-
gorithm for continuous design space search,”Artificial
Intelligence in Engineering, vol. 11, pp. 295–305, 1997.

[20] Y. Tenne and S. W. Armfield, “A versatile surrogate-
assisted memetic algorithm for optimization of computa-

tionally expensive functions and its engineering appli-
cations,” in Success in Evolutionary Computation, ser.
Studies in Computational Intelligence, A. Yang, Y. Shan,
and L. Thu Bui, Eds. Berlin; Heidelberg: Springer-
Verlag, 2008, vol. 92, pp. 43–72.

[21] S. Handoko, C. K. Kwoh, and Y.-S. Ong, “Feasibility
structure modeling: An effective chaperon for constrained
memetic algorithms,”IEEE Transactions on Evolutionary
Computation, vol. 14, no. 5, pp. 740–758, 2010.

[22] Y. Tenne, K. Izui, and S. Nishiwaki, “Handling undefined
vectors in expensive optimization problems,” inProceed-
ings of the 2010 EvoStar Conference, ser. Lecture Notes
in Computer Science, C. Di Chio, Ed., vol. 6024/2010.
Berlin: Springer, 2010, pp. 582–591.

[23] K. P. Burnham and D. R. Anderson,Model Selection and
Inference: A Practical Information-theoretic Approach.
New York: Springer, 2002.

[24] A. Frank and A. Asuncion, “UCI Machine Learning
Repository,” 2010. [Online]. Available: http://archive.
ics.uci.edu/ml

[25] M. D. McKay, R. J. Beckman, and W. J. Conover, “A
comparison of three methods for selecting values of input
variables in the analysis of output from a computer code,”
Technometrics, vol. 21, no. 2, pp. 239–245, 1979.

[26] K. S. Won and T. Ray, “Performance of Kriging and
Cokriging based surrogate models within the unified
framework for surrogate assisted optimization,” inThe
2004 IEEE Congress on Evolutionary Computation–CEC
2004. Piscataway, NJ: IEEE, 2004, pp. 1577–1585.

[27] H. You, M. Yang, D. Wang, and X. Jia, “Kriging model
combined with Latin hypercube sampling for surrogate
modeling of analog integrated circuit performance,” in
Proceedings of the Tenth International Symposium on
Quality Electronic Design–ISQED 2009. Piscataway,
NJ: IEEE, 2009, pp. 554–558.

[28] J. R. Koehler and A. B. Owen, “Computer experiments,”
in Handbook of Statistics, S. Ghosh, C. R. Rao, and P. R.
Krishnaiah, Eds. Amsterdam: Elsevier, 1996, pp. 261–
308.

[29] A. Chipperfield, P. Fleming, H. Pohlheim, and C. Fon-
seca,Genetic Algorithm TOOLBOX For Use with MAT-
LAB, Version 1.2, Department of Automatic Control and
Systems Engineering, University of Sheffield, Sheffield,
1994.

[30] K. A. de Jong and W. M. Spears, “An analysis of the
interacting roles of population size and crossover in
genetic algorithms,” inProceedings of the 1st Workshop
on Parallel Problem Solving from Nature–PPSN I, H.-P.
Schwefel and R. Männer, Eds. Berlin: Springer, 1990,
pp. 38–47.

[31] W. R. Madych, “Miscellaneous error bounds for multi-
quadric and related interpolators,”Computers and Math-
ematics with Applications, vol. 24, no. 12, pp. 121–138,
1992.

[32] R. M. Hicks and P. A. Henne, “Wing design by numerical
optimization,”Journal of Aircraft, vol. 15, no. 7, pp. 407–

144

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

412, 1978.
[33] H.-Y. Wu, S. Yang, F. Liu, and H.-M. Tsai, “Comparison

of three geometric representations of airfoils for aerody-
namic optimization,” inProceedings of the 16th AIAA
Computational Fluid Dynamics Conference. American
Institute of Aeronautics and Astronautics, 2003, AIAA
2003-4095.

[34] M. Drela and H. Youngren,XFOIL 6.9 User Primer, De-
partment of Aeronautics and Astronautics, Massachusetts
Institute of Technology, Cambridge, MA, 2001.

[35] A. Ratle, “Optimal sampling strategies for learning a
fitness model,” inThe 1999 IEEE Congress on Evolution-
ary Computation–CEC 1999. Piscataway, New Jersey:
IEEE, 1999, pp. 2078–2085.

[36] N. Hansen and A. Ostermeier, “Completely derandom-
ized self-adaptation in evolution strategies,”Evolutionary
Computation, vol. 9, no. 2, pp. 159–195, 2001.

[37] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient
global optimization of expensive black-box functions,”
Journal of Global Optimization, vol. 13, pp. 455–492,
1998.

[38] D. J. Sheskin,Handbook of Parametric and Nonparamet-
ric Statistical Procedures, 4th ed. Boca Raton, Florida:
Chapman and Hall, 2007.

[39] X. Wu, V. Kumar, R. J. Quinlan, J. Ghosh, Q. Yang,
H. Motoda, G. J. McLachlan, A. Ng, B. Liu, P. S. Yu,
Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg,
“Top 10 algorithms in data mining,”Knowledge and
Information Systems, vol. 14, pp. 1–37, 2008.

145

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

