
Testing of an automatically generated compiler

Review of retargetable testing system

 Ludek Dolihal
Department of Information systems

Faculty of information technology, Brno University of
Technology

Brno, Czech Republic
idolihal@fit.vutbr.cz

 Tomáš Hruška, Karel Masařík
Department of Information systems

Faculty of information technology, Brno University of
Technology

Brno, Czech Republic
{hruska, masarik}@fit.vutbr.cz

Abstract— for testing automatically generated C compiler for
embedded systems on simulator, it is necessary to have
corresponding support in the simulator itself. Testing programs
written in C very often use I/O operations. This functionality can
not be achieved without support of the C library. Hence the
simulator must provide the interface for calling the functions of
the operation system it runs on. In this paper, we provide a
method that enables running of programs, which use functions
from the standard C library. After the implementati on of this
approach we are able to use the function provided by the C
library with limitations given by the hardware. Mor eover we add
the overview of the testing system, which is used in our project.
The system allows testing hardware and also software part of the
project.

Keywords - Porting of a library, C library, compiler testing,
simulation, hardware/software codesign, Codasip.

I. INTRODUCTION

This article is closely related to the paper [1] published at
the ICCGI 2011. It will discuss the problematic of testing of
the automatically generated compiler more closely, will focus
on all major stages of compiler generation and on testing of the
stages. As the main aim of the Lissom project [2]
(commercialized under the registrated mark Codasip -
www.codasip.com) is hardware software codesign we have to
test not just the software part but also the hardware part.

 One goal of our research group is an automatic generation
of C compilers for various architectures. Currently we are
working on Microprocessor without Interlocked Pipeline
Stages (MIPS). To minimize the number of errors in the
automatically generated compilers, it is necessary to put the
generated compilers under test. Because the whole process of
the compiler generation is highly automatic and we do not
have all the platforms, for which we develop, available for
testing, we use simulators for compiler testing instead of the
chips or development kits. In order to test the C compiler
within any simulator, it is necessary to add the support for the
C library functions into the simulator, which is used for the
testing. The C programming language is still one of the most
used languages for programming of embedded systems. Hence
it is important to provide the reliable C compiler to the
developers.

The support of the library is crucial in our project. We
need to use tests written in C for the compiler testing and the
tests commonly use I/O functions, functions for memory
management etc. This paper presents the idea of fitting the
simulator, where the testing is performed, with support of the
C library and later on the implementation of this method.

The paper is organized in the following way. Second
section provides the position of the testing in the Lissom
project. After that we sketch the concept of retargetable testing
system. Overview of the current stage of the testing is provided
in section four. Then the short overview of related work is
given, section six discusses the reasons for choosing the
library. Sections seven and eight discuss theoretical and
practical side of adding the library support into the simulator.
Section nine describes the process of testing. Section ten
presents the results obtained from commercial testsuite and
finally section eleven concludes the paper.

II. RELATED WORK

As the core of the paper is dedicated to the testing of the
compiler in the simulator we will focus mainly on related work
in this area.

Simulators in general are one of the most popular solutions
as far as embedded systems development is concerned. They
are very often used for testing. We tried to pick up several
examples that are connected to embedded systems
development, and were published in a form of article. The
Unisim project is not aimed at embedded systems but provides
interesting idea.

Paper [6] presents a system that is very similar to the one
that is developed within our project. It is called Upfast. The
article describes system that generates different tools from a
description file such as we do. The article mentions that C
libraries were developed, but no closer information is given. It
seems that in the simulator of the Unisim project the support
for C language library have been right from the beginning.
Unfortunately this is not our case. Porting of the library is
critical for us, because without the support it is very difficult to
test and evaluate the results of any tests.

Another interesting system including simulator is described
in [7]. The project is called Rsim and is focused on simulation

15

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of shared memory multiprocessors. The Rsim project works
under Solaris. The Rsim simulator can not use standard system
libraries. Unfortunately it is not explained why. Instead the
Rsim provides commonly used libraries and functions. The
Rsim simulator was tested for support of C library. All system
calls in the Rsim are only emulated, no simulation is
performed. In our system we will simulate the calls when
necessary. The Rsim does not support dynamically linked
libraries and our system also does not consider dynamic
linking at the current state. Unfortunately in this article is not
mentioned how the support for C library functions was added
into the simulator.

 Unisim project [8] was developed as an open simulation
environment, which should deal with several crucial problems
of today simulators. One of the problems is a lack of
interoperability. This could be solved, according to the article,
by a library of compatible modules and also by the ability to
inter-operate with other simulators by wrapping them into
modules. Though this may seem to be a little out of our
concern the idea of the interface within the simulator that
allows adding any library is quite interesting. In our case we
will have the possibility to add or remove modules from the
library in a simple way. But the idea from the Unisim project
would make the import of any other library far easier than it is
now.

The articles above are all related to simulations. The C
programming language is not a new one and it is not possible
to list all the articles that are in any way related to any library
of C language. The different ways of compiler testing of any
language are listed in [13]. The simulator is either created in a
way that it already contains the library or it has at least some
interface, which makes it easier to import the library in case it
is wrapped in a module. Unfortunately our simulator does not
contain such interface.

III. POSITION IN LISSOM PROJECT

In the Lissom project we focus mainly on hardware
software codesign. In order to deliver the best possible
services we want to provide the C compiler for a given
platform as the C language is one of the main development
languages for embedded systems. The C compiler is
automatically generated from the description file. Besides the
C compiler there are a lot of tools that are also generated from
the description file. The tools include mainly:

• simulators,

• assembler,

• disassembler,

• profiler,

• hardware description.

 The simulators can be generated either from a cycle
accurate or an instruction accurate model. The profiler was
thoroughly described in [3].

 The description file is written in ISAC [4] language. The
ISAC language is an architecture description language (ADL).
It falls into the category of mixed ADL.

We would like to produce the whole integrated
development environment for hardware software co-design.
This IDE should provide all the necessary tools for developers
when designing embedded systems from the scratch. The
simulator is part of the IDE and C library support is part of the
simulators (in the IDE can be more that one simulator).

The tool for generating compilers is called backendgen and
is also embedded in the IDE. The quality of a compiler is
crucial for the quality of software that is compiled by
compiler. Hence it is very important to test the compiler that is
generated by the backendgen. Via locating errors in the
compiler itself we can afterwards identify and fix problems in
the generation tools and in the whole process of development.

The backendgen closely cooperates with the semantic
extractor. The semantic extractor as the title suggests, extracts
the semantics of the instructions specified in the ISAC file and
after that the backendgen creates backend of the compiler that
recognizes given instructions. Both these phases of the
compiler generation will be discussed later on.

The primary role of the C library is to enlarge the range of
constructions that can be used during the process of testing.
Testing of basic constructions such as if-statement, loops or
function calls is important. On the other hand it is highly
desirable to have a possibility of printing outputs or exiting
program with different exit values and this can not be done
without a C library support. The exit values are the basic
notification of program evaluation and debugging dumps are
also one of the core methods of debugging. Note that all the
tests are designed for the given embedded system, and the tests
are run on the simulator. The tests are aimed mainly on
robustness of the system.

Secondary role of the library in the whole process of
development is providing additional functions for writing
programs. One of the most used functions is a group of
functions used for allocating memory, string comparison and
parsing, input/output methods etc.

As it is possible to generate several types of simulators in
the Lissom project, it will be necessary to add the library
support into all types of simulators. It should not include any
substantial changes to the process of generation.

IV. CONCEPT OF THE RETARGETABLE TESTING SYSTEM

Forget about the technical details for a while and let us
have a closer look at the concept of the testing system. We
should define the goals we would like to achieve with our
testing system. The Lissom project should have a robust
system of testing that is built modularly. As the system should
support hardware as well as software testing it should be
composed of two main modules.

The very first question that should be answered is what
parts of the project we need to test. The main aim and focus of
this article is on the testing of the compiler backend. But there

16

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

are also other parts of the project that should be tested. The
hardware realization of the chip, that was mentioned above is
one of them. Also important is testing of tools that are not
directly connected to the compilation toolchain, for example
disassembler. This leads us to dividing the software module
into two separate modules.

The testing system should be multiplatform and highly
modular and also highly configurable. The addition of the new
platform that should undergo the tests should be trivial. The
microprocessors that we are going to test can vary in many
ways. We need to support all these features of the
microprocessors.

The task, for which the embedded system is going to be
developed varies widely. On the other hand the tools that will
be used for the development will stay more or less the same in
all circumstances. This leads us also to the idea of the core
system and many modules that should be optionally connected
into the process of testing via interfaces.

As it was mentioned in the section 2 we can have either
cycle or instruction accurate model. For the full testing we
should have both of them. Full testing here means testing
hardware as well as software part. Unfortunately it is not
always possible. The testing system must reflect this and be
able to adjust the testing to the actual conditions.

As far as the software testing is concerned we should take
into account the different levels of compiler optimalization as
certain errors can be sensitive to this.

It is crucial to work with the most up to date tools so
interface to any version system is a must. There should be also
other interfaces, mainly the output ones. The system should be
able to automatically inform a user about the result of the
testing. There should be the email interface to send the result
of testing to the person that performs it. We can also argue
about interface to a bug tracking system such as Bugzilla or
Trac. Though this interface would allow us to report the bugs
automatically there is a risk of flood of false reports (the
situation that one problem triggers others). Another issue is
connected with the information that should be filled when the
bug is created.

This problem could be solved by addition of a database
between the testing system and the bug reporting tool. In the
database we could keep records about the bugs that are
currently reported and not yet fixed, hence we could avoid the
redundancy of the bugs. Once the bug is fixed we could
invalidate the database entry and if the same problem occurs
again it could be reported again.

The notice about most up to date tools used for the testing
leads to one module. The core module should responsible for
creation of all possible tools but not for testing of any kind. It
should just verify that all the source code is valid and that tools
can be created. Between the phase of creation of the tools and
the testing of the tools is clearly defined interface. These two
parts can be run separately.

Right from the beginning we should take into account that
all our tools can be used under both UNIX and Windows

operation system. This is not a problem as far as the high
programming languages are concerned (such as C or Java) for
the programming of the devices. However the testing, which is
the same in this case as running the testsuite should also be
possible on both operation systems. And as the testsuite is
created in Bash we must provide the basic support of the
UNIX tools also under Windows. The solution here can be
either MinGW or some other support such as Cygwin.

This brings us to the choice implementation language for
the testing system. Unfortunately, the high level programming
is not suitable for this kind of project. The testing involves an
editing of various files, creating (make-ing the tools) control of
return values and so on. Mainly for this reason, we chose the
scripting in Bash as the best possibility. This brought us some
difficulties as we will see later.

Our users will also use a different operation system and
also different distributions of the UNIX systems. So from the
beginning we must consider this. Not only different operation
systems and also different releases must be taken into account
as the there might be different versions of the GCC compilers
for example. The only way, we can sufficiently handle this is
virtualization of the machines where the testing system will
run.

At least some of the components of the testing system
should be usable separately. It would be without all doubts
useful to run just testing without the prior build of the tools.
The tools can be built via the graphical interface for example.
Dually, we can encounter a situation when the build of tools is
sufficient and no testing should be performed. Arguably, the
likelihood of the first case is higher. It is also given by the fact
that there are several ways of building development tools.

Hence the module for the testing itself should stand alone
and should have the clearly defined interface. For the thorough
testing we should have as many tests as possible.
Unfortunately, this goes against the principle of embedded
systems. The microcontrollers often have very reduced
instruction set, so the chips are not capable of executing the
tests. Therefore, we need a system of the test selection that will
ensure that just the clearly defined subset of tests will be
compiled and executed for the given platform.

Hand in hand with the selection of the tests goes their
evaluation. The selection of the tests should be centralized as
much as possible. On the contrary, the evaluation of the tests
can not be centralized thanks to the different testsuites we use
in our project. They have different formats of the output and
also exit codes differ in the meaning.

Together with the results and evaluation goes an issue
connected with the reporting of the errors. Once we encounter
an error and we want to report it we should know who is
responsible for the error (or which tool generated the error).
This could be determined via testing the tools separately. In
case of testing all the tools together, we can rely just on error
messages and on temporary files that could be created. By the
temporary files we mean the files that are output of one tool
and input of the very next tool.

17

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. OVERVIEW OF THE TESTING SYSTEM IN LISSOM

PROJECT

At this point, I would like to give an overview of the
testing system in the Lissom project. It should give the reader
more precise information about the whole system and how the
library fits into the whole. Our testing system is written in the
Bash language. It consists of set of scripts. The testing system
was originally developed for the UNIX systems. Should it also
work under the Windows, it is necessary to support in the form
of the MinGW. This approach brings on problems such as
different paths on various systems or different settings of
environment variables that have to be dealt with.

The testing system or testsuite as it is called in our project
performs four basic tasks:

• testing of the tools for the development,

• testing of the backend of the C compiler,

• hardware testing,

• creation of the releases and packages of the models.

Now let us have a closer look at the parts of the project one
by one.

A. Tools for the development

As far as the testing of the tools for the development is
concerned it consists of several phases, which should be
performed in given order.

As we always need to work with the most up to date tools
the first thing that must be performed is the download of all
necessary source code from repository.

The first phase is a build of all the tools. Even though the
advanced IDE are used during the development very often
happened that the source code can not be compiled.

Once the tools are created, the testing phase begins. We
perform the testing of each tool and also testing of the
toolchain to make sure that the cooperation is guaranteed.

Some of the tools such as assembler or simulator are
platform dependent. So we have to keep in the repository the
source codes for the testing for each platform. For the
architecture independent tools this costs can be saved. The
same problem occurs for the reference output. Certain tools
can also have different levels of optimization and/or
generation of information for profiling. Thanks to this fact the
number of reference results grows rapidly. Currently, we are
working on the new version of the testing system, and one of
the tasks is to lower the number of reference outputs. Another
weakness is that we do need the reference output. It is usually
gained manually.

As mentioned earlier, we have different kinds of
simulators. We perform testing on all kinds of simulators with
all possible levels of generation of profiling information. The
amount of generation of profiling information can be specified
during the simulator generation. This is in contrast with testing

of the compiler backend, where we use just one simulator and
generate minimal amount of profiling information.

Figure 1. The scheme of testing of the development tools

We also perform tests that ensure the integrity of the whole
system and a compatibility of the tools. In other words, we
must ensure that if we add some new features into one of the
tools the rest of them will be able to cope with these changes.

Typically, we bring some testing input written in an
assembly language to the assembler and go through all the
phases. In the end we should gain the executable file and be
able to run it in the simulators with the correct return value.
We also try to disassemble the executable. The code we
receive should have the same functionality as the source one.

It may seem that both mentioned approaches are the same.
However, the crucial difference is that while in the first case
the tested component can go through the testing process
without errors, there can be some issues connected with the
file formats and interfaces between the tools. The first way of
testing is on the other hand used for experiments with new
features of particular components that are not supported by the
whole toolchain yet. Figure one shows the process of testing of
development tools. We have a simple program in C usually.
This program goes through the whole toolchain. It is
assembled, linked, simulated and in the end disassembled.
After each stage we compare the result and referential value.

The hardware testing is also performed in this module.
However we automatically perform just the tests of the
syntactic correctness. No workbenches are executed.

B. C compiler backend

As far as testing of the compiler is concerned we first need
to create the compiler and compiler driver. After that we can
start testing. Here we will describe the process of the compiler
generation and creation of compiler driver. The testing process
itself will be thoroughly described later.

Assembly Build of tools

Linking
Referential

values

Disassembly

Simulation

18

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The LLVM project [10] is used by our research group as a
base we build on. LLVM stands for low level virtual machine.
It is a project focused on creation of modular compiler that
provides aggressive optimalization. In fact, the frontend and
the middlend part of the compiler are used without massive
changes. The part that is crucial from our point of view is the
compiler backend.

The backend part is responsible for printing the assembler.
This part is generated automatically by backendgen. As we use
certain parts of the LLVM with no or small modifications we
added the Lissom target into the LLVM project. This way we
build programs that are later used for compilation of source
code. Namely we create Clang this way. Clang is a frontend of
the compiler provided by the LLVM project.

Given that we have built the LLVM project, we can start
with the creation of compiler backend. This phase begins with
the semantic extraction. As mentioned before the input of the
whole process is file written in ISAC language. From the file
that represents instruction accurate model of a microcontroller
we extract semantics. After this phase, we get file that captures
meaning of the instructions. More precise information about
the semantic extraction phase can be found in the article [5].

The file with the extracted semantics is one of the inputs of
the backend generator. The backendgen generates source files
mainly in the C language that are later on compiled by
ordinary C compiler (ie. gcc). As it is generated from the
model it is clear that compiler backend is platform dependent.
The semantic extractor and backend generator very closely
cooperate. After the successful generation of the compiler
backend we can create the compiler driver. The other tools that
are required for the translation process are generated from the
model before the backend is created. The brief overview of the
backend generation can be found in here [5].

While the generation of all the tools is a must for the test
compilation, it is not compulsory to build the compiler driver,
but it simplifies the translation process considerably. The gcc
compiler is in fact also compiler driver. We use compiler
driver provided by the LLVM project. It is called llvmc. The
tools that are used, parameters that are accepted by the tools
and also the order of execution are described by the given
syntax. The llvmc description has three parts. The first part is
the description of the tools that are going to be used. In the
second part, one must provide the languages (and its suffixes)
that are the input and the output of each tool. Finally, we
specify the relations between the tools. We can think of it as a
graph. The tools became the nodes and we can think of the
relations as of edges. The input and output languages are
properties of the nodes.

We also use compiler-rt project of the LLVM. The
compiler-rt project provides implementations of the low-level
code generator support routines. This routines and calls are
generated when a target does not have a short sequence of
native instructions to implement a core IR operation. In fact,
when the compiler does not know how to achieve certain
behavior with the given instruction set it has a look at the
compiler-rt library whether there is a call that could be used.

The main part of the library is composed around the
floating point arithmetic. The functions have single float
precision (which is denoted by the sf in the name of the
function) and also double float precision (denoted by the df in
the name of the function). As our processors do not usually
have its own instructions for floating point arithmetic we very
often use this library to provide the floating point emulation.

Figure 2. Scheme of testing of the compiler backend

The second figure shows in what order are the phases of
backend testing executed. The libraries are not integral part of
testing. It is possible to run the testing system without them.

The compiler-rt is for us just another library. We link it
statically during the test compilation together with newlib for
example. One of the issues is that this library is aimed at 32-
bit systems. We would like to use it in simulators that simulate
behavior of 16-bit processors. This has not been tested yet.

C. Packaging and releases

This module is a part of the testing system from the
beginning. It was originally created for the building of the
packages. As we currently support rpm distributions as well as
deb distributions and also the Windows, the packaging system
must reflect that.

The packaging system automatically creates the packages
for the currently supported platforms. The package includes all
the tools that are needed for the development on a given
platform. Currently we support Ubuntu and Debian releases,
Fedora, CentOS, OpenSUSE and Windows 7. For the majority
of the UNIX distributions, we maintain the current release and
previous one. All this systems run as virtual servers. The

LLVM build

Build of tools

Semantic

extraction

Backend

generation

Build of

compiler

driver

Testing

Build and

installation

of Newlib

19

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

created packages are automatically uploaded at our web pages,
where can be downloaded by our co-developers and users.

Later also the packaging of the models and the model
documentation were added. These are also available from the
web pages. We have also started with nightly builds to ensure,
that the committed changes do not affect the build in a
negative way. Yet another advantage of nightly builds is that if
any package is needed with the changes that were made within
the last 24 hours the package was already created overnight
and we do not have to wait for it to build. We can be uploaded
it at the server where it is available to the customers.

D. Stability of the system

For a long time, we had problems with the stability of the
whole testing system. As it is composed purely of the Bash
scripts, we very often faced the problem, that one part of the
testing system broke down according to an error but the build
went on and the error was lost deep in the logs. This was
typical situation during the night build, when the system is
unobserved. In the morning we realized, that the packages
were not created and started to look for the reasons. As our
system creates a lot of logging information it was not always
easy to identify the reason.

To solve this problem we decided to create simple wrapper
and wrap all the commands except the calls of our procedures
and functions. The wrapper performs the command that is
given to it as a parameter and controls various variables.
Clearly one of the most important is the return value of the
command. If the return value is out of range we simply call
system exit and the whole process stops with the clearly
specified error message.

Even more important is the fact that we know the exact
place where the error occurred. Unfortunately, this is not true
in case we apply parallel build. But the wrapper is applied on
the Bash commands so we at least know the command where
the error occurred hence we can narrow the area and focus on
the command more precisely. After the application of the
wrapper the stability of the whole system improved.

VI. CHOOSING THE LIBRARY

As we are focused mainly on embedded systems and we
design the whole process of compiler development for them
we dedicated quite a lot of time to choosing the correct library.
It was clear right from the beginning that glibc is needlessly
large and therefore not suitable for use in embedded systems.
We need library that satisfies following criteria:

• minimalism,

• support for porting on different architectures,

• well-documented,

• new release at least once a year,

• compatibility with glibc,

• modularity.

All these conditions were satisfied by few libraries.
Amongst those we chose Newlib [9]. This library is largely
minimalistic. It does not contain certain modules, because,
according to the authors, it would be against the minimalism.
In certain areas it sacrifices better performance in favor of
minimalism. For example functions for I/O could be optimized
for different platforms, but there is just one version for all
platforms written in portable C that is optimized for space.

As far as the new releases are concerned, it can be said that
the library is alive. New version is released at least once a
year. This is very important because we need to keep pace with
the up to date versions of glibc. There are other minimalistic
libraries compatible with glibc, but quite a lot of them are not
maintained sufficiently.

Another reason for choosing the newlib is the
documentation that is provided with the library. Whole process
of porting the library to different platform is well-documented
and thanks to the wide use of the library it is not difficult to
find help.

The most important reason for choosing the newlib is the
fact, that it has already been ported to several platforms. One
document is dedicated to the process of porting and even
though we do not port the library to new architecture it can
provide us with very useful information. During the process of
porting we will perform steps that are similar to porting the
library to any new architecture.

Unfortunately this library is dependent on kernel header
files. But during the porting we will get rid of these
dependencies. We will need to use this library under UNIX
systems as well as under Windows.

VII. THEORY OF PORTING

The main reason for porting the library into simulator is the
fact that we need to add the support for C functions into the
simulator itself. To be precise, we want to use the libc
functions such as printf, malloc, free etc. in the programs that
will be used for testing of the compiler. And because we do
not possess the development kits for all the platforms we use
simulators instead.

If one does not grant libc library support in the simulated
environment, the number of constructions we can use and test
is very limited.

Consider the following simple example written in C:

int main(int argc, char **argv)

{

 if(strcmp(“alpha”,”beta”)==0)

{ return 1;}

 else

{ return 0;}

}

20

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Even this simple program can not be executed, because it
uses function strcmp that is part of the C library. This program
can not be compiled unless the inclusion of string.h and
possibly some other header files is included.

On the contrary the main aim of testing is to cover as wide
area as possible and also try as many different combinations of
functions as we can. However, this goes against the idea of
embedded solutions. And because we focus especially on
embedded systems, we do not even try to cover all the
functions provided by glibc or in our case newlib. In fact we
will use and hence test only functions that can run under the
simulated environment and are useful for the programs that
will be executed on the given platform. Moreover embedded
systems are not designed for use of vast number of
constructions that programming languages offer. Typically
there is just one task, usually quite complicated, that is
launched repeatedly. As we will see the functions that we will
use form just small part of newlib. The functions that are not
important to us can be easily removed via configuration
interface or it is possible to remove them manually. Following
categories are examples of unimportant functions:

• threads, we assume that in simple programs for
embedded systems one will not use threads,

• locales, all the locales were removed from the library,

• math functions for computing sin, cos etc.

• inet module, even though networking plays important
part in modern embedded systems whole module was
removed,

• files and operations with files, our application do not
need interface for working with files.

 Now we come to the important parts of the library. Simply
spoken all that really has to remain from the library are the
sysdeps, this is the core of the whole system (how to allocate
more memory etc.), then important modules such as stdio (for
outputs, inputs) and other modules we wish to preserve. In our
case we wished to preserve following parts of the newlib
library:

• stdio, this was the main reason for porting the library,
to get in human readable form output from the simulator,

• module for working with strings and memory, in our
applications we would like to use functions such as memcpy,
strcpy, strcat etc.,

• memory functions, for example malloc, free, realloc,

• abort, exit,

• support for wchar, but without support of different
encodings.

Some parts of the library could not be removed because of
the dependencies. According to our estimations nearly 40
percent of the library was disabled or removed measured by
the size of the library.

There are several ways of building the library and also
different methods of using it. There is a possibility of building
a position independent code. Even though this is an interesting
solution we decided against it. Instead of PIC (position
independent code) we are going to compile the library into
single object and then link it to the program statically. The
position of library in the whole process of testing is shown in
the figure 3. The library is linked to the program and after that
the program is loaded into the simulator.

Figure 3. Scheme of calling printf function

Now return to the functions that remain in the library. They
can be divided into two groups. First group consists of
functions that are completely serviced within the simulated
environment. For example function strcmp falls into this
category. This function and its declaration remains unchanged
within the simulator if it is written in portable C. These
functions are not tied with kernel header files so there is no
need to change them.

The second group of functions consists of functions that are
translated to the call of system function. Function printf can
be used as an example of this group of functions. The call of
printf function can be divided into three phrases that are
illustrated at the following picture.

In the beginning the call of printf function is translated on
the call of system function, with the highest probability it is
going to be the call of function Write. Write, being the POSIX
function, is offered by the operation system. But as we want to
use the simulator on UNIX platform as well as on Windows
systems we have to remove these dependencies. To do so we
will use the special instruction principle.

A. Use of ported library of UNIX and Windows systems

Before we get to the principle of special instruction method
we should explain why we need to use this method. The main
reason why we should remove the dependencies on the kernel
header files is the fact, that we must be able to use the library

Program Newlib

Simulator

Operation System

Hardware

21

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

under UNIX systems and also under Windows like operation
systems.

As long as we use the library under UNIX systems
everything should be all right. Though even on UNIX systems
there might be differences amongst the different versions of
the header files. But once we use the Windows based system
we can not use header file functions any more. It would almost
certainly result in a crash of the system.

In our project we currently support several UNIX
distributions as well as Windows. Use of other operating
systems is not considered.

B. Special instruction principle

The special instruction principle means, that we will use
instruction with the opcode that is not used within the
instruction set for the special purpose. So far all architectures
that were modeled within the Lissom project had several free
opcodes. It is typical that the instruction sets do not use all
operation codes that are provided. But in case of no free
opcode this method can not be used. The special instruction
principle will be used for ousting the dependencies on kernel
header files.

Functions provided by operation system are called by the
syscall mechanism. The system calls can be quite easily
detected. Each library should have defined the syscall
mechanism in special source file. This syscall mechanism
differs, as they usually are platform dependent. So i386
architecture will have different syscall mechanism than arm.

Syscalls together with other code that is platform
dependent are kept in a specific folder. When the library is
compiled, the platform dependent code is kept in a special
archive and is separated from the platform independent code.
Figure 4 shows this situation. We must link two different
archives to the program we wish to execute. The C library and
the archive containing syscalls and other platform dependent
code such as runtime etc.

We wish to preserve the mechanism. The syscalls will
remain in the library, but with different meaning. The file
containing syscall will be changed in the following way: in the
beginning the parameters of the syscall will be placed at the
given addresses in the memory and we will also define where
the syscall return value will be placed. Afterwards the call of
the chosen instruction will be performed. It is also possible to
put the parameters into registers, but some platforms have
limited number of registers, hence this method could cause
problems.

Figure 4. Scheme of calling the simulator via newlib layer

The syscall mechanism is in fact a wrapper of the system
call. The call will be passed to the simulator that will do the
call and return the result.

C. Simulators

As was mentioned before, all the simulators are generated
automatically. In the beginning all the source files are
generated by specialized tools. When the generation phase is
finished the simulator is build by a Makefile. It will be
necessary to add into this process following information:

• information about which instruction (opcode) calls
the system function,

• the simulator will have to know the convention for
storing parameters,

• the simulator will have to recognize which system
function is going to be called,

• the simulator will have to perform the call of the
correct system function.

 First three points will be solved within the model of an
instruction set. The instruction with the opcode that is not used
will be declared. The instruction behavior will be defined in
the following way: according to the parameters it will call the
given system function. The simulator will have to recognize
the system it runs under and call the correct function. For
example on UNIX system it will be function write and in
Windows WriteFile. This should be solved by the libc library
of the given platform. The following figure demonstrates the
call of special instruction.

Program Newlib

syscalls

Simulator

22

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Calling sequence of specialized instruction

When the special instruction is called, we need to identify,
which system function we need to execute. This information
must be passed out of the simulator.

The parameters that were placed at the given position at the
simulated memory can remain unchanged. They will be later
passed to the specific system call.

One important issue is connected with the simulated
memory. As we would like to correctly simulate the operations
with memory such as malloc, realloc etc. we need to tell the
simulator how many memory it can simulate. This will be
done by the special file that will be passed to the linker. This
file will contain symbols that will declare how much memory
can be used.

We also considered completely different attitude to this
problem. Instead of monitoring calls of system function we
could monitor memory accesses. But it would slow down
whole process of simulation.

VIII. PROCESS OF PORTING

Before the whole process of porting begins we need to
download the newlib. There are two possibilities. It is possible
to download only the library or there is a whole toolchain for
development of embedded system for given architecture, so
called buildroot.

The main advantage of downloading the whole buildroot is
that once it is built you get whole set of development tools
including various compilers, linkers, debugers, strip programs
etc. You also get the build of newlib. These tools are quite
useful in the beginning when you remove unwanted modules
from the library, because they can be used for rebuilding the
library.

One of the problems we faced is that we need to have the
compiler for the architecture we are developing for. In other
words if we want to create a library for testing C compiler on a
given platform we need a compiler for the same platform that
is already created. The compiler will be used for building the
newlib. Moreover the compiler must have exactly the same

instruction set. In the future we would like to use the generated
compiler for building the library. This requires high quality of
backendgen and generated backend.

Because we are going to use the library in the simulator
and the simulator can handle only instructions of the specified
instruction set, then the library must be translated to the
instruction set that is recognized by the simulator. For building
the simulator we can use common gcc for Windows or UNIX,
because it runs under common system.

This may be the first big problem in the whole process of
porting. It is not hard to find a compiler for given platform.
Nowadays there are specialized compilers for nearly all
architectures used in embedded systems. The buildroot for
newlib contains more than dozen of different architectures
such as MIPS, arm, mipsel, sparc etc. There are even different
versions of the mircoarchitectures in case of MIPS for
example.

Problem is that thanks to the aim of the whole Lissom
project, there we usually use specialized instruction sets or we
use some generic instruction set and add certain specialized
instructions. After this customization it is usually impossible to
use generic compiler for building the library.

We could use for building the library the compiler that we
want to test but currently it is not stable enough for building
large programs. The best solution of this problem is usually
building a specialized toolchain including GNU binutils and
GNU compiler collection. As was mentioned once the
generated backend is stable enough it will be used for building
the library.

Several issues we faced during the process were closely
related to the buildsystem of the library. The library contains a
system of makefiles. This system is hierarchical and usually
the makefiles from the upper levels are included. So if for
example we would like to compile any test examples that are
included in the newlib we switch to the given directory and
call make. This will call all the makefiles from the above
directory. This is very effective, because only the makefile in
the root directory contains variables defining which compiler,
assembler, linker will be used. On the other hand it is very
difficult to modify this system in case we want to build the
different parts of the library using different tools.

Currently we are using for the development the set of our
tools containing archiver, linker, asembler and compiler. The
currently used compiler is called mips-elf-gcc. It is not
generated automatically but was created especially for this
purpose as our generated compiler is not yet stable enough.
Linker and archiver are not generated automatically but were
developed in Lissom project.

Our tools are not compatible with the tools that were
originally used for building the library. Our tools do not
support so wide variety of parameters so some of them had to
be erased from the configuration files and some were just
changed to suit our needs.

Call of Special Instruction

Identify the System Function

Call the System Function

Windows Unix

23

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Currently we use set of scripts, which preprocess the flags.
In the scripts we erase the flags we do not need and do
necessary substitutions.

The buildsystem of the library starts by parsing the
configuration file and accord to the content of the file are set
different macros and variables. When doing manual changes to
the buildsystem we have basically two possibilities:

• change the configuration file or,

• do the changes later in the Makefiles.

The first possibility is cleaner but the Makefiles often
check if the option is present in the configuration file and ends
with error in case the option is missing. Hence it is more
convenient to do the necessary changes in the Makefiles.
Thanks to the hierarchical structure it is in most cases
sufficient to do the change in just one place.

We also use different formats of the output files. Output of
our assembler is an object file .obj that is not compatible with
.o that is the usual output of gcc compiler. Currently we use
mips-elf-gcc just for compilation from C to assembler. After
this phase we use automatically generated assembler to
compile the files from assembly language to object files that
are later used by the archiver.

In the theoretical part we mentioned the need to link
special file containing information how much memory can be
used. The file will contain symbols defining the beginning and
the end of memory space that can be used. It will have the
following syntax:

#file defining memory boundaries

define start 256

define stop 768

Given that the numbers are in kB the simulator can
simulate up to 512 kB of memory. Character # denotes
comment.

As far as the convention for storing parameters is
concerned, we have chosen following approach: first
parameter says, which system function is going to be called. In
the newlib it is a list of system functions for UNIX systems.
The rest of the parameters (2-7) are passed to the function call.
The parameters remain unchanged. They are passed to the
system function in the exactly same state, in which were saved
in the memory before calling the special instruction. The
special instruction itself has no parameters. When the
instruction is called, all the parameters have to be stored in the
memory at given addresses.

A Automation of the porting process

As for the first time all the steps were performed manually.
In the future we would like to automatize this process as much
as possible. Without doubts we could remove the needless
parts of the library automatically. The needless parts would be
identified by the configuration file and also the special
instruction principle could be highly automatic. If we have
spare instruction we will choose it and compose it into the

simulator. Unfortunately there are steps that need to be
performed manually. For example we need to provide the
runtime for the simulators and the corresponding sections
needs to be specified in the ISAC file.

Runtime is also one of the files that are written by hand in
assembler. There are also other files written in assembly
language and hence are platform dependent. In case of MIPS
platform there were 8 files that contained assembly language.
For example syscalls or memcpy functions are ale
implemented in assembler. In order to minimize number of
files written by hand we decided to provide as much files
written in portable C as possible. We managed to replace all
but two files by C implementations. All that have to be
provided is the runtime and syscall mechanism.

IX. PROCESS OF TESTING

Now when we have thoroughly gone through the library
porting, we can have a look at the test selection issues.

A. Test selection phase

As we have a large amount of tests from the different
sources (gcc-testsuite, llvm-testsuite, etc.), we need a universal
approach that will define, which tests are suitable for the
compilation and execution on a given platform.

We have created a system of files that restricts the number
of the tests that can be compiled on a given platform according
to the libraries that are available. The libraries are just one of
the test selection criteria; also other characteristics are taken
into account for example the size of the registers or the size of
stack.

The naming convention for these files is very simple. The
file bears same name as the test does but have suffix .x instead
of .c. The system is hierarchical. We can have the hierarchy
because we support a nesting of the directories and we keep .x
files not just for the tests, but also for the directories. In case of
the directory the .x file has the same name as the directory with
the .x suffix.

These files have minimal functionality. We try to keep
their size as small as possible. Their typical functionality is
that according to some state of the flags the test is excluded
from testing, because implicitly all the directories and all the
tests are selected for the testing. So, if we want to exclude the
tests or whole directories from testing we have to indicate this.

As the size of the files is kept minimal the functionality and
flag settings must be done elsewhere. This is performed
centrally in the main testing module. The functions that check
the current state of the flags and control what libraries are
accessible for linking to the given platform are declared here.
The centralization in this case has purely practical base. The
typical usage of the .x files is that we disable testing of the
whole directories according to the libraries that are accessible.
The .x files can also bear other functionality. We can for
example set different variables. We can specify flags that
should be added to the compilation or add some files to the
linker as in the following example.

24

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

if ["$C_LIB" == "0"]; then
 FILE_DEPS+=crt0.o
fi

On the level of files we most often use the .x files for the
filtering the test that depend on the compiler-rt library for a
given platform. As usually only few tests of any directory
depend on the compiler-rt and the dependence does not have
to be same for all platforms, the best solution is to condition
the test execution by the platform and the compiler-rt
presence. This is demonstrated in the following example.

is_arch "mips_basic" $1
 if ["$?" == "0"]; then
 if ["$RUNTIME_LIB" == "0"]; then
 RUN_TEST=0
 fi
 fi

The presence of certain libraries can be also criteria for
testing because some tests have library dependencies. The
biggest advantage of this approach and also the main reason
for introduction of this system is its universality. We employ
the tests from the LLVM testsuite, the gcc testsuite, the
Mibench [11] set of tests and we also have tests that were
created within our project. The system of the .x files can be
used for all these sources as long as we use just the tests
without the testing infrastructure that is provided in several
cases.

The only set of tests that we use together with the
infrastructure that is provided together with the tests is the
Perennial testsuite [12].

B. Test compilation and execution

The compilation of the tests is performed in the central
module. As we have the system of the .x files we enter only
those directories that are suitable for the testing on the given
platform. So before entering the directory with tests we check
the .x file for a given source and consult the restrictions that
are defined by the .x file and set all the variables denoted by
the file.

If the directory is feasible for testing we cycle through the
tests in an order denoted by the test list. The .x file is always
checked first, and if nothing blocks the test it is compiled. The
presence of the .x files is not compulsory. As mentioned earlier
the default setting is to go through all directories and execute
all tests. But if the file is present it will be checked.

If there are any problems during the test compilation they
are logged. We keep the list of the tests that were not compiled
successfully together with the output of the compiler. The logs
are kept for every platform that is tested to avoid an
overwriting. It is also possible to create unique log not just for
each platform but for every run of the testing system. These
logs could be in the future stored in the database to keep
precise testing history. The tests are compiled and executed
several times with different levels of compiler optimalization.
Currently we support levels from 0 up to 4.

C. Logging information and test evaluation

The test evaluation is kept decentralized. As we deploy
tests from different sources we need to keep the test evaluation
together with the tests. For some tests we evaluate on the basis
of exit code, but there are the tests that produce for example
text output and we have to compare the output with the
referential values (this is where the library comes to use).

The decentralization in this case means that we keep for
every directory a shell script that takes care of test execution
and evaluation.

As in case of test compilation we keep detailed logging
information. We keep the output of the simulator and after the
test evaluation we list it into the list of passed tests or failed
tests according to the result of evaluation. The logs are created
for every tested platform and can bear time reference.

X. RESULTS OF PERENNIAL TESTSUITE

For having a comparison with commercial compilers we
tested our automatically generated compiler with commercial
Perennial testsuite. The results described here were gained
from the generated MIPS compiler.

 The testing was performed on our complete toolchain.
The tests were compiled by our generated compiler and
afterwards executed the tests on our simulator that was also
automatically generated.

We have only part of the Perennial testsuite. We used only
the tests that examine the core of the compiler. We excluded
some of the tests that can not be compiled due to the header
files dependencies we do not support. The tests in the testsuite
are divided into groups according to the chapter of the
standard that is tested. We use tests for the clauses 5 and 6. We
have mainly tests for the standard C90 and several tests for
C99 standard. Currently wa have no tests for C11 standard.

The final number of tests that we execute is 796. From
796 tests are 794 tests compiled and executed correctly. Only
two tests fail either during the compilation or return incorrect
value. The results are summarized in the following table.

Table 1: Results of the Perennial testsuite

Compiler All
tests

Pass
tests

Fail
tests

Not
compiled

Not
executed

Lissom 796 794 2 2 0
Gcc 796 796 0 0 0

As the table shows, just 2 tests do not succeed. After

closer look we realised that this two tests use trigraphs, that are
not supported in the llvm frontend. This tests can not be
compiled by the current version of the llvm. The tests were
compiler with O2 optimalization.

The table also provides comparison with gcc compiler for
i386 platform. The gcc compiler in version 4.6.3. compiles all
the tests and the programs are executed correctly. We were
also interested in how much time does the program spend by
syscall execution. We compiled for our platform a program
that accomplished MPEG decoding. The input and output

25

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

streams of the program were redirected into the files. The
profiling of the MPEG decoder showed, that execution of
syscalls took less than 2% of time.

XI. CONCLUSION

In this paper, we gave the overview of the testing system in
our project and sketched the idea of adding the support for the
C library into the simulator. The motivation is quite clear: to
be able to use the library functions in the tests that are run on
the simulator of the given microcontroller. The special
instruction principle was proposed, which enables us to
forward the call of system function. It also allows us to
identify, which system function is called. This principle is
quite universal and can be used for the majority of platforms.
After implementation of this method, we are able to run all the
functions that are commonly used such as I/O functions,
memory management and string functions, etc. Moreover, we
can adjust the library according to our needs. Thanks to the
modularity we can enable or disable any module. This may
turn to be an advantage, because the complete library occupies
tens of megabytes and the compilation and linking such a
library can be time consuming.

We also tested our generated compilers with the
commercial Perennial testsuite. We had only chosen a subset
of tests that should validate the core of the compiler. The
compiler was tested against the C90 and C99 standard with
good results when we take into account the fact, that the
compiler is generated automatically. The fact that we can
easily compose new testing systems into our own together with
the results we gained is encouraging.

 ACKWNOWLEDGEMENTS

This research was supported by doctoral grant GA CR
102/09/H042, by the grants of MPO Czech Republic FR-
TI1/038, by the grant FIT-S-11-2 and by the research plans
MSMT no. MSM0021630528. This work was also supported
by the IT4Innovations Centre of Excellence Project
CZ.1.05/1.1.00/02.0070 and by the Artemis EU Project
SMECY.

REFERENCES
[1] L Dolihal and T. Hruska,, “Porting of C library, Testing of
generated compiler”, In proceedings of ICCGI 2011, Jun. 2011, pp.125-130,

[2] Lissom Project. http://www.fit.vutbr.cz/research/groups/lissom
[online, accessed: 18.6.2012]

[3] Z. Přikryl, K. Masařík, T. Hruška, and A. Husár, “Generated
cycle-accurate profiler for C language”, 13th EUROMICRO Conference on
Digital System Design, DSD'2010, Lille, France, pp. 263—268.

[4] K. Masarik, T. Hruska, and D. Kolar, “Language and
development environment for microprocessor design of embedded systems”,
In proceedings of IFAC workshop of programmable devices and embedded
systems PDeS 2006, pp. 120-125, Faculty of electrical engineering and
communication BUT, 2006

[5] A. Husar, M. Trmac, J. Hranac, T. Hruska, and K. Masarik,
“Automatic C Compiler Generation from Architecture Description Language
ISAC”, Sixth Doctoral Workshop on Mathematical and Engineering Methods
in Computer Science (MEMICS'10) -- Selected Papers, pp. 47-53.

[6] S. Onder and R. Gupta,, "Automatic generation of
microarchitecture simulators," Computer Languages, 1998. Proceedings.
1998 International Conference on , vol., no., pp.80-89, 14-16 May 1998

[7] C.J. Hughes, V.S. Pai, P. Ranganathan, and S.V. Adve,, "Rsim:
simulating shared-memory multiprocessors with ILP processors ," Computer ,
vol.35, no.2, pp.40-49, Feb 2002,

[8] D. August, J. Chang, S. Girbal, D. Gracia-Perez, G. Mouchard,
D. Penry, O. Temam, and N. Vachharajani, "UNISIM: An Open Simulation
Environment and Library for Complex Architecture Design and Collaborative
Development," Computer Architecture Letters , vol.6, no.2, pp.45-48, Feb.
2007

[9] newlib. http://sourceware.org/newlib/ [online, accessed:
18.6.2012]

[10] C. Lattner and S.V. Adve, ” LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation”, Proceedings of the 2004
International Symposium on Code Generation and Optimization (CGO'04),
Palo Alto, California, Mar. 2004

[11] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T.
Mudge, and R.B. Brown, “MiBench: A free, commercially representative
embedded benchmark suite”, Workload Characterization, Dec. 2001, pp.3-
14, doi:10.1109/WWC.2001.990739

[12] Perennial testsuite, http://www.peren.com/ [online, accessed:
18.6.2012]

[13] A.S. Kossatchev and M.A. Posypkin, “Survey of compiler testing
methods”, Programming and Computer Software, Jan. 2005, pp.10-19, doi:
10.1007/s11086-005-0008-6

26

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

