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Abstract—Based on algorithmic differentiation, we present
a derivative code compiler capable of transforming implemen-
tations of multivariate vector functions into a program for
computing derivatives. Its unique reapplication feature allows
the generation of code of an arbitrary order of differentiation,
where resulting values are still accurate up to machine precision
compared to the common numerical approximation by finite
differences. The high memory load resulting from the adjoint
model of Algorithmic Differentiation is circumvented using
semi-automatic interprocedural checkpointing enabled bythe
joint reversal scheme implemented in our compiler. The entire
process is illustrated by a one dimensional implementation
of Burgers’ equation in a generic optimization setting using
for example Newton’s method. In this implementation, finite
differences are replaced by the computation of adjoints, thus
saving an order of magnitude in terms of computational
complexity.

Keywords-Algorithmic Differentiation; Source Transforma-
tion; Optimization; Numerical Simulation; Checkpointing

I. I NTRODUCTION

A typical problem in fluid dynamics is given by the
continuous Burgers equation [2]

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (1)

describing shock waves moving through gases.u denotes
the velocity field of the fluid with viscosityν. Similar
governing equations represent the core of many numerical
simulations. Such simulations are often subject to various
optimization techniques involving derivatives. Thus, Burg-
ers’ equation will serve as a case study for a compiler-based
approach to the accumulation of the required derivatives.

Suppose we solve the differential equation in (1) by
discretization using finite differences on an equidistant one-
dimensional grid withnx points. For given initial conditions
ui,0 with 0 < i ≤ nx we simulate a physical process by inte-
grating overnt time steps according to the leapfrog/DuFort-
Frankel scheme presented in [3]. At time stepj we compute

ui,j+1 for time stepj + 1 according to

ui,j+1 = ui,j−1 −
∆t

∆x
(ui,j (ui+1,j − ui−1,j))

+
2∆t

∆x2
(ui+1,j − (ui,j+1 + ui,j−1) + ui−1,j) ,

(2)

where ∆t is the time interval and∆x is the distance
between two grid points. In general, if the initial conditions
ui,0 cannot be accurately measured, they are essentially
replaced by approximated values. To improve their accuracy
additional observed valuesuob ∈ R

nx×nt are taken into
account. The discrepancy between observed valuesuob

i,j and
simulated valuesui,j are evaluated by the cost function

y =
1

2

nx∑

i=1

nt∑

j=1

(ui,j − uob
i,j)

2 , (3)

which allows us to obtain improved estimations for the initial
conditions by applying, for example, Newton’s method [4] to
solve the data assimilation problem with Burgers’ equation
as constraints [5]. The single Newton steps are repeated until
the residual costy undercuts a certain threshold.

In Section II, we introduce Algorithmic Differentiation
(AD) as implemented by our derivative code compilerdcc
covering both the tangent-linear as well as the adjoint model.
Section III provides a user’s perspective on the application
of dcc. Higher-order differentiation models are discussed
in Section IV. Finally, the results of our case study are
discussed in Section VII.

II. A LGORITHMIC DIFFERENTIATION

The minimization of the residual is implemented by
resorting to Newton’s second-order method for mini-
mization. In general, Newton’s method may be applied
to arbitrary differentiable multivariate vector functions
y = F (x) : Rn → R

m. This algorithm heavily depends on
the accurate and fast computation of Jacobian and Hessian
values, since one iterative stepxi → xi+1 is computed by

xi+1 = xi −∇2F (xi)
−1 · ∇F (xi) . (4)
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The easiest method of approximating partial derivatives
∇xi

F uses the finite difference quotient

∇xi
F (x) ≈

F (x+ h · ei)− F (x)

h
, (5)

for the Cartesian basis vectorei ∈ R
n and with x ∈ R

n,
h → 0. In order to accumulate the Jacobian of a multivari-
ate function the method is rerunn times to perturb each
component of the input vectorx. The main advantage of
this method resides in its straightforward implementation;
no additional changes to the code of the functionF are nec-
essary. However, the derivatives accumulated through finite
differences are only approximations. This represents a major
drawback for codes that simulate highly nonlinear systems,
resulting in truncation and cancellation errors or simply
providing wrong results. In particular by applying the Taylor
expansion to the second-order centered difference quotient
we derive a machine precision induced approximation error
of ǫ

h2 , with ǫ being the rounding error.
AD [6] solves this problem analytically, changing the un-

derlying code to compute derivatives by applying symbolic
differentiation rules to individual assignments and usingthe
chain rule to propagate derivatives along the flow of control.
The achieved accuracy only depends on the machine’s pre-
cisionǫ. There exist two distinct derivative models, differing
in the order of application of the associative chain rule. Let
∇F be the Jacobian ofF . The tangent-linearcode

F
(↓
x,y

↓

) dcc
−→ Ḟ

(↓
x,

↓

ẋ,y
↓
, ẏ
↓

)
,

where

ẏ = ∇F (x) · ẋ

and y = F (x) ,

(6)

of F computes the directional derivativėy of the outputsy
with respect to the inputsx for a given directionẋ ∈ R

n,
while arrows designate inputs and outputs. By iteratively set-
ting ẋ equal to each of then Cartesian basis vectors inRn,
we accumulate the entire Jacobian. This leads to a runtime
complexity identical to finite differences ofO(n) · cost(F ),
where cost(F ) denotes the computational cost of a single
function evaluation.

By exploiting the associativity of the chain rule, the
adjoint code

F
(↓
x,y

↓

) dcc
−→ F̄

(↓
x,

↓
x̄
↓
,y
↓
,
↓
ȳ
)

,

where

y = F (x)

and x̄ = x̄+∇F (x)
⊺
· ȳ ,

(7)

of F computesadjoints x̄ ∈ R
n of the inputsx for given

adjoints ȳ ∈ R
m of the outputs. To accumulate the entire

Jacobian we have to iteratively setȳ equal to each Cartesian
basis vector ofRm yielding a runtime complexity ofO(m) ·

cost(F ). Note that for scalar functions withm = 1 the
accumulation of the Jacobian amounts to the computation
of one gradient yielding a runtime cost ofO(1) · cost(F )
for the adjoint model compared toO(n) · cost(F ) for the
tangent-linear model. In this particular case, we are able to
compute gradients at a small constant multiple of the cost
of a single function evaluation. The reduction of this factor
down toward the theoretical minimum of three [6] is one
of the major challenges addressed by ongoing research and
development in the field of AD [7], [8].

The core idea of this paper is to develop a source
transformation tool or compiler that transforms a given C
code into its differentiated version. In general, this increases
the differentiation order fromd to d + 1. I.e., by taking
as an input a handwritten first-order code we end up with a
second-order code. Taking this insight a step further we want
that our tool accepts its output as an input. Thus, starting
from a given code, we are able to iteratively generate an
arbitrary order of differentiation code. This unique feature
is being presented in Section IV.

Furthermore our derivative code compiler is able to use
checkpointing techniques for the adjoint mode, by using
joint reversal as opposed to split reversal as a reveral
technique. This will be explained in Section V.

III. DCC - A DERIVATIVE CODE COMPILER

Numerical optimization problems are commonly
implemented as multivariate scalar functions
y = F (x) : Rn → R, describing some residualy of a
numerical model. We assume that the goal is to minimize a
norm of this residualy by adapting the inputsx. Therefore,
for better readability and without the loss of generality, in
this paper, we will only cover multivariate scalar functions.

The main link betweendcc and the mathematical models
of AD is the ability to decompose each function implemen-
tation into single assignment code (SAC) as follows:

for j = n, . . . , n+ p

vj = ϕj(vi)i≺j .
(8)

The entire program is regarded as a sequence ofp+ 1 ele-
mental statements. In each statement an elemental function
ϕj is applied to a set of variables(vi)i≺j yielding the unique
intermediatevariablevj with i ≺ j denoting a dependence
of vj on vi. The independentinputs are given byvi = xi

for i = 0, . . . , n− 1 while thedependentoutput ofF is the
final valuey = vn+p. Whendcc applies the tangent-linear
model to each of thep+ 1 assignments, we obtain

for j = n, . . . , n+ p

v̇j =
∑

i≺j

∂ϕj

∂vi
· v̇i

vj = ϕj(vi)i≺j .

(9)

Considering thej-th assignment in (9), the localk-th entry
of the gradient(∂ϕj

∂vk
)k≺j is provided in v̇j by setting v̇k
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to one and all(v̇i)k 6=i≺j to zero. The gradient component
( ∂y
∂xk

)k∈{0,...,n−1} is obtained by evaluating (9) and setting
ẋk to one and all other(ẋi)k 6=i∈{0,...,n−1} to zero. To get
the whole gradient we have to evaluate (9)n times letting
ẋ range over the Cartesian basis vectors inR

n. The adjoint
model is acquired by transforming (8) into:

for j = n, . . . , n+ p

vj = ϕj(vi)i≺j

for i ≺ j andj = n+ p, . . . , n

v̄i = v̄i +
∂ϕj

∂vi
(vk)k≺j · v̄j .

(10)

The first part consists of the original assignmentsj =
n, . . . , n + p and is calledforward section. The reverse
sectionfollows with the computation of the adjoint variables
in the orderj = n+p, . . . , n. Note the reversed order of the
assignments as well as the changed data flow of the left and
right-hand sides compared with the original assignments. To
compute the local gradient(∂ϕj

∂vk
)k≺j we have to initialize

(v̄i)i≺j with zero andv̄j with one. The initialization with
zero is mandatory because(v̄i)i≺j occurs in (10) on both
sides of the adjoint assignment. According to (7), the adjoint
variable v̄j is an input variable. Therefore it is initialized
with the Cartesian basis vector inR.

The important advantage of the adjoint model is that by
evaluating (10) only once we obtain the full gradient∂y

∂x

in x̄i = v̄i for i = 0, . . . , n − 1. To achieve this we have
to initialize (x̄i)i=0,...,n−1 with zero andȳ with one. As
mentioned abovēx must be zero because it occurs not only
on the left-hand side in (7) andy is initialized with the value
of the Cartesian basis vector inR.

In (8), we assumed that the input code is given as a
SAC. This is an oversimplification in terms of real codes.
The adjoint code has to deal with the fact that real code
variables are overwritten frequently. One way to simulate the
predicate of unique intermediate variables is to store certain
left-hand side variables on a stack during the augmented
forward section. Candidates for storing on the stack are
those variables that are being overwritten and are required
for later use during the computation of the local gradients
and associated adjoints. Before evaluating the corresponding
adjoint assignment in the reverse section the values are
restored from the stack.

For illustration purposes we consider Listing 1 show-
ing an implementation of the non-linear reduction
y(x) =

∏n−1

i=0
sin(xi). dcc parses only functions withvoid

as a return type (line 1). All inputs and return values are
passed through the arguments, which in turn only consist
of arrays (called by pointers) and scalar values (called by
reference). Additionally we may pass an arbitrary number of
integer arguments by value or by reference. We assume that
all differentiable functions are implemented using valuesof
type double. Therefore, only variables of typedouble are

1 void t 1 f ( i n t n , double∗ x , double∗ t1 x
2 , double& y , double& t1 y )
3 {
4 . . .
5 for ( i n t i =0; i<n ; i ++) {
6 y=y∗ s i n ( x [ i ] ) ;
7 t1 y=t1 y∗ s i n ( x [ i ] ) +y∗cos ( x [ i ] ) ∗ t1 x [ i ] ;
8 }
9 . . .

10 }

Listing 2: Tangent-linear version off as generated bydcc

1 for ( i n t i =0; i<n ; i ++) {
2 t1 x [ i ]=1 ;
3 t 1 f (n , x , t1 x , y , t1 y ) ;
4 g rad i en t [ i ]= t1 y ;
5 t1 x [ i ]=0 ;
6 }

Listing 3: Driver for t1 f

directly affected by the differentiation process.

1 void f ( i n t n , double ∗x , double &y )
2 {
3 i n t i =0;
4 y=0;
5 for ( i =0; i<n ; i ++) {
6 y=y∗ s i n ( x [ i ] ) ;
7 }
8 }

Listing 1: dcc input code.

Using the command linedcc f.c -t, we instruct the
compiler to use the tangent-linear (-t) mode in order to
generate the functiont1 f (tangent-linear,1st-order version
of f) presented in Listing 2. The original function arguments
x and y are augmented with their associated tangent-linear
variablest1 x andt1 y. Inside a driver program this code has
to be rerunn times letting the input vectort1 x range over
the Cartesian basis vectors inRn to accumulate the entire
gradient. Listing 3 shows how to use the generated code of
Listing 2 in a driver program. Lines 2 and 5 let input variable
t1 x range over the Cartesian basis vectors. By settingt1 x[ i ]

to 1 the functiont1 f (line 3) computes the partial derivative
of y with respect tox[ i ].

The command linedcc f.c -a tells dcc to apply
the adjoint mode (-a) to f.c. The result is the function
a1 f (adjoint, 1st-order version off) shown in Listing 4.
As in the tangent-linear case each function argument is
augmented by an associated adjoint component, herea1 x

and a1 y. As mentioned above we need a stack in the
adjoint code for storing data during the forward section.
The augmented forward sectionuses stacks to store values
that are being overwritten and to store the control flow. The
actual implementation of the stack is not under consideration
here; therefore we replaced the calls to the stacks with macro
definitions for better readability. By default,dcc generates
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code that uses static arrays, which ensures high runtime
performance. There are three different stacks used in the
adjoint code. The stack calledCS is for storing the control
flow, FDS takes floating point values andIDS keeps integer
values. The unique identifier of the two basic blocks [9] in
the forward section are stored in lines 6 and 9. For example,
after evaluating the augmented forward section of Listing 4,
the stackCS contains the following sequence

0, 1, . . . , 1
︸ ︷︷ ︸

n times

(11)

In line 10, variabley is stored onto the stack because it
is overwritten in each iteration although needed in line 21.
Hence, we restore the value ofy in line 20. For the same
reason we store and restore the value ofi in line 11 and
19. The reverse section consist of a loop that processes
the control flow stackCS. The basic block identifiers are
restored from the stack and depending on the value, the
corresponding adjoint basic block is executed. For example,
the sequence given in (11) as content in theCS stack leads
to a n-times evaluation of the adjoint basic block one and
afterward one evaluation of the adjoint basic block zero.
The basic block one in line 9 to 11 has the corresponding
adjoint basic block in line 19 to 22. In contrast to (7), in
line 22 the adjointa1 y is not incremented but assigned.
This is due to the fact thaty is on both hand sides of
the original assignment in line 10. This brings an aliasing
effect into play. This effect can be avoided with help of
intermediate variables; making this code difficult to read.
For that reason we show the adjoint assignment without
intermediate variables.dcc generates adjoint assignments
with intermediate variables and incrementation of the left-
hand side as shown in (7). Thedcc-generated code and the
one shown here are semantically equivalent. To accumulate
the gradient using the functiona1 f, we again have to write
a driver, presented in Listing 5. It is sufficient to initialize
the adjoint variablea1 y and call the adjoint functiona1 f

only once to get the whole gradient (line 2), illustrating the
reduced runtime complexity of the adjoint mode.

1 a1 y=1;
2 a1 f ( n , x , a1 x , y , a1 y ) ;
3 for ( i n t j =0; j<n ; j ++)
4 g rad i en t [ j ]= a1 x [ j ] ;

Listing 5: Driver for a1 f

IV. H IGHER ORDER DIFFERENTIATION

Numerical optimization algorithms often involve higher-
order derivative models. Thus, the need for Hessians is
imminent. With this in mind,dcc was designed to generate
higher-order derivative codes effortlessly using itsreappli-
cation feature. dcc is able to generatejth-order derivative
code by reading(j−1)th-order derivative code as the input.
In this section we will focus on second-order models.

1 void a1 f ( i n t n , double∗ x , double∗ a1 x ,
2 double& y , double& a1 y )
3 {
4 i n t i =0;
5 / / augmented forward sec t i on
6 CS PUSH( 0 ) ;
7 y=0;
8 for ( i =0; i<n ; i ++) {
9 CS PUSH( 1 ) ;

10 FDS PUSH( y ) ; y=y∗ s i n ( x [ i ] ) ;
11 IDS PUSH( i ) ;
12 }
13 / / reverse sec t i on
14 while (CS NON EMPTY) {
15 i f (CS TOP==0) {
16 a1 y =0;
17 }
18 i f (CS TOP==1) {
19 IDS POP( i ) ;
20 FDS POP( y ) ;
21 a1 x [ i ]+=y∗cos ( x [ i ] ) ∗a1 y ;
22 a1 y=s i n ( x [ i ] ) ∗a1 y ;
23 }
24 CS POP;
25 }
26 }

Listing 4: Adjoint dcc output

The tangent-linear mode reapplied to the first-order
tangent-linear code (6) withm = 1 for scalar functions
yields the second-order tangent-linear code

Ḟ
(↓
x,

↓

ẋ, y
↓
, ẏ
↓

) dcc
−→ ˜̇

F
(↓
x,

↓

x̃,
↓

ẋ,

↓

˜̇x, y
↓
, ỹ
↓
, ẏ
↓
, ˜̇y
↓

)
,

where
˜̇y =

(
∇2F (x) · ẋ

)⊺
· x̃+∇F (x) · ˜̇x ,

ẏ = ∇F (x) · ẋ ,

ỹ = ∇F (x) · x̃ and

y = F (x) .

(12)

Again, dcc generates exactly the implementation of the
mathematical model. As we see in (12), the term∇F (x) · ˜̇x
must be equal to0 in order to accumulate the entries of
the Hessian∇2F . As a consequence,̃ẋ must be set to0 on
input. The product

(
∇2F (x) · ẋ

)⊺
·x̃ represents a projection

of the Hessian, determined by the vectorsẋ and x̃. In our
case withm = 1 the Hessian∇2F ∈ R

n×n hasn2 entries.
To compute the entry∇Fi,j of the Hessian the vectors

x̃ and ẋ have to be set to thei-th and j-th Cartesian
basis vectors, respectively. In order to accumulate the whole
Hessian this step has to be repeated for each entry, yieldinga
computational complexity ofO

(
n2

)
·cost (F ). Taking either

adjoint or tangent-linear first-order input code, we reapply
dcc by invokingdcc -t -d 2 t1_foo.cpp. This tells
dcc to generate second-order (-d 2) tangent-linear (-t)
derivative code while avoiding internal namespace clashes.

Looking at the possible combinations of the two dif-
ferentiation models, there exist another three second-order
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models. We may either apply the adjoint model to the
tangent-linear code or apply the adjoint mode to the adjoint
code. We will focus on the model where tangent-linear mode
is applied to the adjoint code, calledtangent-linear over
adjoint mode.

This time the adjoint code (7) is taken as the input for the
reapplication of the tangent-linear mode, obtaining

F̄
(↓
x,

↓
x̄
↓
, y
↓
,
↓
ȳ
) dcc
−→ ˙̄F

(↓
x,

↓

ẋ,
↓
x̄
↓
, ˙̄x
↓
, y
↓
, ẏ
↓
,
↓
ȳ,

↓

˙̄y
)

,

where

ẏ = ∇F (x) · ẋ ,

y = F (x) ,

˙̄x = ˙̄x+ ẋ
⊺ · ∇2F (x) · ȳ +∇F (x)⊺ · ˙̄y and

x̄ = x̄+∇F (x)
⊺
· ȳ .

(13)

The generated implementation computes the term
ẋ⊺ · ∇2F (x) · ȳ. This time we do not end up with
one single entry, but we are able to harvest one complete
row ∇2Fi of the Hessian in˙̄x. To achieve this, the term
∇F (x)⊺ · ˙̄y and thus ˙̄y must be set to0 on input. The
scalarȳ must be set to1. Finally to compute a row of the
Hessian∇2Fi, ẋ must be set to thei-th Cartesian basis
vector. As such, we have to rerun this modeln times in
order to accumulate the whole Hessian, yielding only a
linear increase in runtime complexity ofO(n) · cost (F ).

The desired dcc command is dcc -a -d 2
t1_foo.cpp resulting in the filea2_t1_foo.cpp. The
option-a instructsdcc to generate adjoint code.

V. REVERSAL STRATEGIES - CHECKPOINTING

One inherent disadvantage of the adjoint AD model over
the tangent-linear model is its high memory consumption.
In the reverse section of an adjoint code, each adjoint
computation of a non-linear operation is dependent on a
value computed during the forward run. As we have seen in
Section III this value is stored on a data stack if it happens
to be overwritten. In real world programs this process is not
the exception but the rule. Memory locations are rewritten
and reused as often as possible so that the program is as
memory efficient as possible. For the adjoint AD model this
results in one consumed memory location for nearly every
statement. For example, updating a thousand times a variable
of type double precision (e.g.,x = x + y2) results at least
in an additional memory usage of eight thousand bytes. For
each execution of this statement we have one value pushed
on the stack byFDS PUSH(x).

There are several strategies to address this issue. We will
present checkpointing, the core method of every AD tool
to reduce memory consumption. In particular we will focus
on howdcc deals with checkpointing and how the memory
footprint may be influenced by the user.

Augmented forward

mode

Reverse mode

Store mode

Restore mode

a1 h

a1 g

a1 f

a1 h

a1 g

a1 f

(a) Split Reversal

a1 h

a1 g

a1 f

a1 h

a1 g

a1 f

a1 h

a1 g

a1 g

(b) Joint Reversal

Figure 1: Reversal models

First we look at the reversal strategy ofdcc. In general
the adjoint model consists of a forward section and a reverse
section. What happens in the case of interprocedural code
where a function calls an arbitrary number of functions.
There are two distinct ways of adjoining interprocedural
code, namelysplit reversaland joint reversal.

Split reversal, presented in Figure 1a is the straightforward
way of adjoining code. It strictly sticks to the adjoint model.
The original code is executed in an augmented forward run.
The augmentation essentially amounts to the additional stack
operations introduced in Section III. These stacks are global
data structures indcc.

The augmented forward section is visualized by a square
with two right arrows . One arrow stands for the values
that are pushed on the stack. The other arrow represents the
original function evaluation. The augmented forward section
of f calls the augmented forward section ofg, which itself
calls the augmented forward section ofh. Each function
pushes its computed values on the floating point data stack
(FDS).

After the augmented forward section off the reverse
section off starts, marked by a square with two left arrows

. This corresponds to the reverse adjoint computation with
the needed function values being popped from the stack.
Through the reverse section off the reverse sections ofg
andh are eventually called.

In the end, there are two ways of calling a function in
split reversal: in augmented forward mode and reverse mode.
Memory consumption of split reversal is always directly
related to the sum of pushes in the forward section.

Joint reversal, as shown in Figure 1b exploits the interpro-
cedural structure of the program by introducing checkpoint-
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ing at each function call. Each function needs to be able to
store and restore its arguments.

We first start by callingf in augmented forward mode
. If a function runs in augmented forward mode it will

make subcalls instore mode . Store mode results ing
storing its arguments (down arrow) and running the original
code ofg (right arrow), which itself calls the original code
of h (right arrow).

The reverse mode off calls g in restore mode .
g restores its arguments and runs in augmented forward
mode leading toh called in store mode. In joint reversal
the forward section is immediately followed by the reverse
section. Sog starts its reverse section resulting inh called in
restore mode.h restores its arguments and starts its forward
section followed by the reverse section. Afterh has returned,
g finished its reverse section, which eventually leads tof

finalizing its reverse section.
By joining the forward and reverse section, the values

that are pushed on the stack in the forward section are
being popped from the stack in the following reverse section.
This has two benefits. For one, memory access is struc-
turally more local leading to a more efficient exploitation
of cache memory. Additionally, memory consumption is
significantly reduced since interprocedural code consumes
far less memory than the sum of all the push operations. In
split reversal we had two ways of calling a function whereas
in joint reversal we have three; store, restore+augmented
forward and reverse mode. We now compare the two reversal
schemes along the call graph presented in Figure 1.

For the sake of simplicity, we assume that the original
function evaluation, the forward section and the reverse
section off ,g andh have each a computational cost of1.
Additionally, we assume that all the pushes of a function’s
forward section have a memory consumption of1. Finally,
we assume that storing the arguments of a function has
no additionally memory footprint. Taking all of this into
account we now compare the two reversal schemes on the
call graph presented in Figure 1.

Split reversal runs all three functions in their forward and
reverse section. So we end up with a computational cost
of six. All the forward sections are called after each other,
therefore the memory consumption is three.

In joint reversal afterf has finished its forward section
we have a memory consumption of1. Only the values off
have been pushed on the stack. We assume thatg is called
in the middle off . So half of the values were popped from
the stack at the moment wheng is called in restore mode
(memory=0.5). Wheng ends its forward section, memory
consumption is at1.5. Assuming thath is called in the
middle of g we end up with a peak memory consumption
of 2 after the forward section ofh. The computational cost
amounts to the number of squares in the picture, which is
equal to9.

In general, joint reversal is a trade off between memory

consumption and computational cost. Memory consumption
is reduced by a third from3 to 2 whereas the computation
cost has risen by fifty percent from6 to 9. There has been
more investigations into the mixing of these two strategies.
[10] shows that the optimal reversal strategy is NP-complete.
dcc uses joint reversal as its sole reversal scheme putting
the emphasis on memory efficient code. In the next chapter
we will demonstrate how we exploit this feature to achieve a
more efficient memory footprint for our Burgers simulation.

VI. BURGERSIMPLEMENTATION

As has been described in Section I we compute the ve-
locity field according to (2). We use dynamic programming
by introducing a data arrayu[ i ][ j ] storing the velocity for a
grid point i in time stepj. The functionh implementing the
computation of the velocity field has the following signature:

1 void h ( i n t& nx , / / number o f g r i d po i n ts
2 i n t t0 , / / f i r s t t ime step to s t a r t

w i th
3 i n t n , / / number o f t ime steps to

compute
4 double& cost , / / cos t f u n c t i o n
5 double∗∗ uob , / / observa t ions
6 double∗∗ ub , / / basic s ta tes
7 double∗∗ u , / / model s o l u t i o n s
8 double∗ ui , / / i n i t i a l cond i t i ons
9 double& dx , / / space increment

10 double& dt , / / t ime increment
11 double& r , / / Reynolds number
12 double& dtdx ,
13 double& c0 ,
14 double& c1
15 )

Listing 6: Function h

This function computesu[ i ][ j ] and updatescost for all grid
pointsxi, 0 ≤ i < nx and for all time stepst0 ≤ j < n.
Supposing that for each time step we need doc·nx pushes on
the stack, we end up with approximatelyc ·nx ·n pushes for
the entire simulation. This is also the memory consumption
for calling the adjoint codea1 h.

The code will now be restructured according to a recursive
checkpointing scheme by relying on the interprocedural joint
reversal mode present indcc.

1 void h ( . . . ) {
2 . . .
3 h a l f =n−t0 / 2 ;
4 t1= t0+ h a l f ; n0= t1 ; n1=n ;
5 i f ( d i f f > 2) {
6 g ( nx , t0 , n0 , cost , uob , ub , u , u i , dx , dt , r ,

dtdx , c0 , c1 ) ;
7 g ( nx , t1 , n1 , cost , uob , ub , u , u i , dx , dt , r ,

dtdx , c0 , c1 ) ;
8 }
9 else

10 h ( nx , t0 , n , cost , uob , ub , u , u i , dx , dt , r ,
dtdx , c0 , c1 ) ;

11 }

Listing 7: Function h
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Figure 2: Burgers recursive call tree joint reversal

g has the same signature ash. Its task is to decompose the
interval of time steps, callingh on a subinterval of[t0, n].

The resulting call tree as well as its joint reversed coun-
terpart is illustrated in Figure 2.

We assume that theh has a computational cost of1 over
the entire interval fromt0 to n. If we call h in over the entire
interval we end up with a forward and a reverse section
adding up to a computational cost of2. In our new structure
we assume thatf and g have no computational cost and
no memory consumption. In our exampleh has a cost of1

2

since it only runs over half the interval oft0 to n. We callh
10 times. Thus the computational cost of this call tree is5.
Note that this is independent from the depth of our recursive
call tree. The memory consumption though is halved at every
increase of the recursive call three depth. Ultimately memory
consumption can be reduced to the number of pushes in one
single time step.

VII. C ASE STUDY

A. Differentiation of the original code

As discussed in Section I, we run a test case on an inverse
problem based on Burgers’ equation (1). As a start we take
the code presented in [3] implementing the original function
with the signature of

Table I: Time and memory requirements for gradient com-
putation

n 250 500 1000 2000
f (s) 0.03 0.08 0.15 0.32
TLM (s) 33 109 457 1615
ADJ (s) 0.21 0.43 0.85 1.82
TLM-ADJ (s) 150 587 2286 8559
IDS size 7500502 15001002 30002002 60004002
FDS size 5000002 10000002 20000002 40000002
CS size 7500503 15001003 30002003 60004003

1 vo id f ( i n t n , i n t nt , double& cost , double∗∗
u , double∗ ui . . . )

2 {
3 . . .
4 }

Listing 8: Signature of Burgers’ function

Taking n grid points of ui as the initial conditions we
integrate overnt timesteps. The values are saved in the two
dimensional arrayu for each grid pointi and time stepj .

To solve the inverse problem we need the derivatives of
cost with respect to the initial conditionsui.

The results in Table I represent the runtime of one full
gradient accumulation as well as the memory requirements
in adjoint and tangent-linear mode. Additionally one Hessian
accumulation is performed using the tangent-linear over
adjoint model (13). Different problem sizes are simulated
with varying n. We also mention the different stack size
shown in Section III.

If we assume four bytes per integer and control stack
element plus eight bytes for a floating data stack element
we end up with a memory requirement of≈ 610 MB for
the Hessian accumulation. The tests were running on a
GenuineIntel computer with Intel(R) Core(TM)2 Duo CPU
and with 2000.000 MHz CPU.

The execution time of the tangent-linear gradient compu-
tation is growing proportionally to the problem sizenx and
the execution time off:

FM :
cost(F ′)

cost(F )
∼ O(n). (14)

The single executon oft1 f takes approximately twice as
long as the execution off.

The execution time of the adjoint gradient computation is
growing only proportional to the execution time off:

AM :
cost(F ′)

cost(F )
∼ O(1). (15)

Finally we accumulate the Hessian using tangent-linear
over adjoint mode. Here, the runtime is growing linearly
with respect ton as well asf since the dimension of the
dependentcost is equal to1.

FM −AM :
cost(F ′′)

cost(F )
∼ O(n). (16)
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Table II: Recursive checkpointing withn = 100000. Interval
size of100000 amounts to no recursion.

Interval size FDS size Runtime(s)
100000 29999610 69,3
10000 2062706 74,9
1000 433242 76,5
100 229410 79,1
10 202292 88,3

For scalar functions in particular, the runtime complexity
for accumulating the Hessian using AD is the same as the
runtime complexity of the gradient accumulation using finite
difference. This enables developers to implement a second-
order model where a first-order model has been used so far.

B. Differentiation using recursive checkpointing

Based on the recursive checkpointing scheme presented
in Section V and its implementation in Section VI we
conducted benchmarks varying the interval size threshold for
diff where the recursion ofg will stop by eventually calling
h. The first order adjoint model was applied to compute a
single gradient accumulation. The benchmarks were run on a
cluster node consisting of a single thread on a Sun Enterprise
T5120 cluster.

At an interval size of 100 we see major memory savings
of around 98% whereas the runtime is only marginally
increased by around 15% from 69,3s to 79,1s. This illustrates
that checkpointing is crucial to reduce a computational prob-
lem in memory space while keeping the runtime complexity
at a feasible level.

VIII. C ONCLUSION & FUTURE WORK

We have presented a source transformation compiler for
a restricted subset of C/C++. As such,dcc runs on any
system with a valid C/C++ compiler making it a very
portable tool. Its unique reapplication feature allows code
to be transformed up to an arbitrary order of differenti-
ation. While relying to the adjoint model for the higher-
order differentiation, we save one order of magnitude of
computational cost compared to a tangent-linear only or
finite difference code. However, the adjoint model poses
a high memory load, making an efficient checkpointing
scheme crucial. Otherwise, a computation for large scale
codes is even unfeasible. This is solved by resorting to
interprocedural checkpointing, enabled by the joint reversal
structure of the generated adjoint code. We illustrated the
entire development process along a case study based on a
one-dimensional implementation of the Burgers equation.

Not mentioned in this paper are several extensions not
directly linked to the derivative code compiler presented
here. As large simulation codes run on cluster systems, they
mostly rely on parallelization techniques. The most widely
used parallelization method is MPI. Hence, while applying
the adjoint mode all the MPI calls need to be reversed too

[11]. This feature has been integrated intodcc using an
adjoint MPI library [12]. Additionally there are attempts to
achieve the same goal with OpenMP [13]. For the sake of
brevity we also did not mention the program analysisdcc
performs like for exampleactivity andTBRanalyses [14].

The compiler is open-source software (Eclipse Public
License) and available upon request. This paper should serve
as first guideline on how to differentiate C code using this
tool.

Finally, the development ofdcc is largely application
driven, especially with regard to its ability in parsing the
entire C/C++ language.
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