
A Programming Paradigm based on
Agent-Oriented Abstractions

Alessandro Ricci
University of Bologna

Via Venezia 52, 47521 Cesena (FC), Italy
a.ricci@unibo.it

Andrea Santi
University of Bologna

Via Venezia 52, 47521 Cesena (FC), Italy
a.santi@unibo.it

Abstract—More and more the notion of agent appears in differ-
ent contexts of computer science, often with different meanings.
Main ones are Artificial Intelligence (AI) and Distributed AI,
where agents are exploited as a technique to develop systems
exhibiting some kind of intelligent behavior. In this paper,
we introduce a further perspective, shifting the focus from
AI to computer programming and programming languages. In
particular, we consider agents and related concepts as general-
purpose abstractions useful for programming software systems
in general, conceptually extending object-oriented programming
with features that – we argue – are effective to tackle some
main challenges of modern software development. The main
contribution of the work is the definition of a conceptual space
framing the basic features that characterize the agent-oriented
approach as a programming paradigm, and its validation in
practice by using a platform called JaCa, with real-world
programming examples.

Keywords-agent-oriented programming; multi-agent systems;
concurrent programming; distributed programming

I. INTRODUCTION

More and more the notion of agent appears in different
contexts of computer science, often with different meanings.
In the context of Artificial Intelligence (AI) or Distributed
Artificial Intelligence (DAI), agents and multi-agent systems
are typically exploited as a technique to tackle complex
problems and develop intelligent software systems [1][2][3].
In this paper, we discuss a further perspective, which aims
at exploiting the value of agents and multi-agent systems as
a programming paradigm, providing high-levels concepts and
mechanisms that are effective to tackle main challenges that
characterize modern and future programming, concerning e.g.
concurrency, distribution, autonomy, adaptivity.

Concurrency, in particular, due to the widespread diffusion
of multi-core technologies, is more and more an important
topic of mainstream programming—besides the academic re-
search contexts where it has been studied for the last fifty
years. This situation is pretty well summarized by the sentence
the free lunch is over as put by Sutter and Larus in [4], which
means that nowadays concurrency is an issue that cannot be
ignored or overlooked even in everyday programming, being it
more and more a must-have feature for improving performance
and responsiveness of programs. Besides introducing fine-
grain mechanisms or patterns to exploit parallel hardware and
improve the efficiency of programs in existing mainstream lan-

guages, it is now increasingly important to introduce higher-
level abstractions that “help build concurrent programs, just as
object-oriented abstractions help build large component-based
programs” [4]. We argue that agent-oriented programming –
as framed in this paper – provides such level of abstraction,
providing a rich set of concepts and mechanisms.

Actually, the idea of agent-oriented programming is not
new in the context of AI/DAI: the first paper about AOP
is dated 1993 [5], and since then many agent programming
languages have been proposed in literature [6][7][8]. The
objective of AOP as introduced in [5] was the definition of
a post-OO programming paradigm for developing complex
applications, providing higher-level features compared to ex-
isting paradigms. In spite of this objective, it is apparent
that agent-oriented programming has not had a significant
impact on mainstream research in programming languages and
software development, so far. We argue that this depends on
the fact that (in spite of few exceptions) most of the effort
and emphasis have been put on theoretical issues related to
AI themes, instead of focusing on the key principles and the
practice of programming. This is the direction that we aim at
exploring in our work and in this paper, which is a revised
and extended version of a previous contribution [9].

The remainder of the paper is organized as follows. After
presenting related work (Section II), we first define a concep-
tual space to describe the basic features of a general-purpose
programming paradigm based on agent-oriented abstractions
(Section III). Then, we provide a first practical evaluation
by exploiting an agent-oriented platform called JaCa (Sec-
tion IV), which actually integrates two different existing agent
technologies, Jason [10] and CArtAgO [11]. After giving an
overview of the main JaCa elements, in Section V we discuss
in detail some selected features of JaCa programming, which
are relevant for the development of software systems, and in
Section VI we provide an overview of the application domains
where JaCa has been effectively applied so far. Finally, in
Section VII we discuss the main features that are currently
missing in existing agent technologies, paving the way to the
design and development of a new generation of agent-oriented
programming languages. Concluding remarks are provided in
Section VIII.

36

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



II. RELATED WORK ON AGENT-ORIENTED
PROGRAMMING

As mentioned in the introduction, most of the agent-oriented
programming languages and technologies – in particular those
based on cognitive model/architectures such as the Belief-
Desire-Intention (BDI) one [12] – have been introduced in
the context of (Distributed) Artificial Intelligence [6][7][8].
Besides, in the context of AOSE (Agent Oriented Software
Engineering) some agent-oriented frameworks based on main-
stream programming languages – such as Java – have been
introduced, targeted to the development of complex distributed
software systems. A main example is JADE (Java Agent DE-
velopment Framework) [13], a FIPA-compliant [14] platform
that makes it possible to implement multi-agent systems in
Java. JADE is based on a weak notion of agency: JADE agents
are Java-based actor-like active entities, communicating by
exchanging messages based on FIPA ACL (Agent Communi-
cation Language). So there is not an explicit account for high-
level agent concepts – goals, beliefs, plans, intentions are ex-
amples, referring to the BDI model – that are exploited instead
in agent-oriented programming languages to raise the level of
abstraction adopted to define agent behaviour. Also, JADE has
not an explicit notion of agent environment, defining agent
actions and perceptions, which are key concepts for defining
agent reactiveness. Differently from JADE, the JaCa platform
presented in this paper allows for programming agents using
a BDI-based computational model and has an explicit notion
of shared programmable environments – perceived and acted
upon by agents – based on the A&A (Agents and Artifacts)
conceptual model [15], described in next sections.

Another example of Java-based agent-oriented framework is
simpA [16], which has been conceived to investigate the use
of agent-oriented abstractions for simplifying the development
of concurrent applications. simpA shares many points with
the perspective depicted in this paper: however it is based
on a weak model of agency, similar to the one adopted in
JADE. Differently from JADE, it explicitly supports a notion
of environment, based on A&A.

Besides the different underlying models, both JADE and
simpA do not explicitly introduce a new full-fledge agent-
oriented programming language for programming agents, be-
ing still based on Java. A different approach is adopted by
JACK [17], a further platform for developing agent-based soft-
ware, which extends the Java language with BDI constructs –
such as goals and plans – for programming agents, integrating
the object-oriented and agent-oriented levels. Finally, similarly
to JADE, Jadex [18] is a FIPA compliant framework based
on Java and XML, but adopting the BDI as underlying agent
architecture.

III. AN AGENT-ORIENTED ABSTRACTION LAYER

Quoting Lieberman [19], “The history of Object-Oriented
Programming can be interpreted as a continuing quest to
capture the notion of abstraction – to create computational
artifacts that represent the essential nature of a situation,
and to ignore irrelevant details”. In that perspective, in

this section we identify and discuss a core set of concepts
and abstractions introduced by agent-oriented programming.
While most of these concepts already appeared in literature in
different contexts, our aim here is to highlight their value for
framing a conceptual space and an abstraction layer useful for
programming complex software systems.

A. The Background Metaphor

Metaphors play a key role in computer science, as means for
constructing new concepts and terminology [20]. In the case
of objects in OOP, the metaphor is about real-world objects.
Like physical objects, objects in OOP can have properties and
states, and like social objects, they can communicate as well
as respond to communications.

The inspiration for the agent-oriented abstraction layer that
we discuss in this paper is anthropomorphic and refers to the
A&A (Agents and Artifacts) conceptual model [15], which
takes human organizations as main reference. Fig. 1 (on
the left) shows an example of such metaphor, represented
by a human working environment, a bakery in particular.
It is a system where articulated concurrent and coordinated
activities take place, distributed in time and space, by peo-
ple working inside a common environment. Activities are
explicitly targeted to some objectives. The complexity of
the work calls for some division of labor, so each person
is responsible for the fulfillment of one or multiple tasks.
Interaction is a main dimension, due to the dependencies
among the activities. Cooperation occurs by means of both
direct verbal communication and through tools available in the
environment (e.g., a blackboard, a clock, the task scheduler).
So the environment – as the set of tools and resources used
by people to work – plays a key role in performing tasks
efficiently. Besides tools, the environment hosts resources that
represent the co-constructed results of people work (e.g., the
cake). Activity Theory [21] and distributed cognition [22]
remark the fundamental role that such artifacts (i.e., resources
and tools) have in human work and organization, both as media
to enable and make it efficient communication, interaction and
coordination and, more generally, to extend human cognitive
and practical capabilities [23].

Following this metaphor, we see a program – or software
system – as a collection of autonomous agents working and
cooperating in a shared environment (Fig. 1): on the one side,
agents (like humans) are used to represent and modularize
those parts of the system that need some level of autonomy
and pro-activity—i.e., those parts in charge to autonomously
accomplish the tasks in which the overall labor is split; on the
other side, the environment is used to represent and modu-
larize the non-autonomous functionalities – called artifacts in
Activity Theory – that can be dynamically composed, adapted
and used (by the agents) to perform the tasks.

A main feature of this approach is that it promotes a
decentralized control mindset in programming [24]. Such a
mindset has two main cornerstones.

The first one is the decentralization and encapsulation of
control: there is not a unique locus of control in the system,

37

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



WHITEBOARD

ARCHIVE

COM. CHANNEL

TASK SCHEDULER

RESOURCE 

CLOCK BAKERY
workspace

workers can join
dynamically the workspace

ENVIRONMENT

AGENTS

observe
use

communicate with

ENV. RESOURCES

Fig. 1. (Left) Abstract representation of the A&A metaphor in the context of a bakery. (Right) Abstract representation of an agent-oriented program composed
by agents working within an environment.

which is instead decentralized into agents. It is worth remark-
ing that here we are assuming a logical point of view over
decentralization—not strictly related to, for instance, physical
threads or processes. The agent abstraction extends the basic
encapsulation of state and behavior featured by objects by
including also encapsulation of control, which is fundamental
for defining and realising agent autonomous behaviour.

The second cornerstone is the interaction dimension, which
includes coordination and cooperation. There are two basic
orthogonal ways of interacting: direct communication among
agents based on high-level asynchronous message passing
and environment-mediated interaction (discussed in Subsec-
tion III-D) exploiting the functionalities provided by environ-
ment resources.

B. Structuring Active Behaviors: Tasks and Plans

Decentralization and encapsulation of control, as well as
direct communication based on message passing, are main
properties also of actors, as defined in [25]. The actor model,
however, does not provide further concepts useful to structure
the autonomous behavior, besides a simple notion of behavior.
This is an issue as soon as we consider the development of
large or simply not naive active entities. To this end, the agent
abstraction extends the actor one introducing further high-level
notions that can be effectively exploited to organize agent
autonomous behavior, namely tasks and plans.

The notion of task is introduced to specify a unit of work
that has to be executed—the objective of agents’ activities.
So, an agent acts in order to perform a task, which can be
possibly assigned dynamically. The same agent can be able
to accomplish one or more types of task, and the type of the
agent can be strictly related to the set of task types that it is
able to perform.

Conceptually, an agent is hence a computing machine that,
given the description of a task to execute, it repeatedly chooses
and executes actions so as to accomplish that task. If the task

concept is used as a way to define what has to be executed, the
set of actions to be chosen and performed – including those
to react to relevant events – represent how to execute such
task. The first-class concept used to represent one such set
is the plan. So the agent programmer defines the behavior
of an agent by writing down the plans that the agent can
dynamically combine and exploit to perform tasks. For the
same task, there could be multiple plans, related to different
contextual conditions that can occur at runtime.

On the one side, tasks and plans can be used to define the
contract explicitly stating what jobs the agent is able to do;
on the other side, they are used (by the agent programmer) to
structure and modularize the description of how the agent is
able to do such jobs, organizing plans in sub-plans.

This approach makes it possible to frame a smooth path
in defining different levels of abstraction in specifying plans
and, correspondingly, different levels of autonomy of agents.
At the base level, a plan can be a detailed description of the
sequence of actions to execute. In this case, task execution is
fully pre-defined, since the programmer provides a complete
specification of the plan; the level of autonomy of the agent is
limited in selecting the plan among the possible ones specified
by the programmer. In a slightly more complex case, a plan
could be the description of a set of possible actions to perform,
and the agent uses some criteria at runtime to select which one
to execute. This enhances the level of autonomy of the agent
with respect to what strictly specified by the programmer. An
even stronger step towards autonomy is given by the case in
which a plan is just a partial description of the possible actions
to execute, and the agent dynamically infers the missing
ones by exploiting information about the ongoing tasks, and
about the current knowledge of its state and the state of the
environment.

38

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



C. Integrating Active and Reactive Behaviours: The Agent
Execution Cycle

More and more the development of applications calls for
flexibly integrating active and reactive computational behav-
iors, an issue strongly related to the problem of integrating
thread-based and event-based architectures [26]. Active behav-
iors are typically mapped on OS threads, and the asynchronous
suspension/stopping/control of thread execution in reaction to
an event is an issue in high-level languages. So, for instance,
in order to make a thread of control aware of the occurrence
of some event – to be suspended or stopped – it is typically
necessary to “pollute” its block of statements with multiple
tests spread around.

In the case of agents, this aspect is tackled quite effectively
by the control architecture that governs their execution, which
can be considered both event-driven and task-driven. The
execution is defined by a control loop composed by a possibly
non-terminating sequence of execution cycles. Conceptually,
an execution cycle is composed by three different stages (see
Fig. 2):

• sense stage – in this stage the internal state of the agent
is updated with the events collected in the agent event
queue. So this is the stage in which inputs generated by
the environment during the previous execution cycle –
including messages sent by the other agents – are fetched.

• plan stage – in this stage the next action to execute is
chosen, based on the current state of the agent, the agent
plans and agent ongoing tasks; additionally, agent state
is also updated to reflect such a choice.

• act stage – in this stage the actions selected in the plan
stage are executed.

The agent machine continuously executes these three stages,
performing one execution cycle at each logical clock tick. Con-
ceptually, the agent control flow is never blocked—actually it
can be in idle state if, for instance, the executed plan states that
no action has to be executed until a specific event is fetched in
the sense stage. This architecture easily allows, for instance,
for suspending a plan in execution and execute another plan
to handle an event suddenly detected in the sense stage.

While in principle this makes an agent machine less efficient
than machines without such loops, this architecture allows
to have a specific point to balance efficiency and reactivity
thanks to the opportunity to define proper atomic actions.
Besides, in practice, by carefully design the execution cycle
architecture, it is possible to minimize the overheads – for
instance by avoiding to cycle and consuming CPU time if there
are no actions to be executed or new events to be processed –
and eventually completely avoid overheads when needed—for
instance, by defining the notion of atomic (not interruptible)
plan, whose execution would be as fast as normal procedures
or methods in traditional imperative languages.

D. “Something is Not an Agent”: the Role of the Environment
Abstraction

Often programming paradigms strive to provide a single
abstraction to model every component of a system. This

sense stage 

plan stage 

act stage 

events

actions

Agent State

Agent Program 
(plans)

Agent Ongoing 
Tasks

clock

Event
queue (sensor)

Action buffer 
(actuator)

Fig. 2. Conceptual representation of an agent architecture, with in evidence
the stages of the execution cycle.

happens, for instance, in the case of actor-based approaches.
In Erlang [27] for example, which is actor-based, every macro-
component of a concurrent system is a process, which is the
actor counterpart. This has the merit of providing uniformity
and simplicity, indeed. At the same time, the perspective in
which everything is an active, autonomous entity is not always
effective, at least from an abstraction point of view. For in-
stance, it is not really natural to model as active entities either a
shared bounded-buffer in producers/consumers architectures or
a simple shared counter in concurrent programs. In traditional
thread-based systems such entities are designed as monitors,
which are passive.

Switching to an agent abstraction layer, there is an apparent
uniformity break due to the notion of environment, which is a
first-class concept defining the context of agent tasks, shared
among multiple agents.

From a designer and programmer point of view, the envi-
ronment can be suitably framed as such non-autonomous part
of the system used to encapsulate and modularize those func-
tionalities and services that are eventually shared and exploited
by the autonomous agents at runtime. More specifically, by
recalling the human metaphor, the environment can be framed
as the set of objects functioning as resources and tools that
are possibly shared and used by agents to execute their tasks.
In order to avoid ambiguity with objects as defined in Object-
Oriented Programming, here we will refer to these environ-
ment entities as artifacts, following our inspiring metaphor and
adopting the terminology typically used in Activity Theory
and Distributed Cognition. In that perspective, a bounded-
buffer, a shared data-base etc. can be naturally designed and
programmed as artifacts populating the environment where –
for instance – producers/consumers agents work. Differently
from agents, artifacts conceptually are not meant to be used to
represent and implement autonomous / pro-active / re-active
/ task-oriented computational entities, but – more similar to
passive objects or components or services – entities providing
some functionality through a proper interface, that can be
perceived and accessed by agents though actions.

39

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



E. Using and Observing the Environment

To be usable by agents, an artifact provides a set of
operations – that constitute its usage interface – encapsulating
some piece of functionality. Such operations are the basic
actions that an agent can execute on instances of that artifact
type. So the set of actions that an agent can execute inside an
environment depend on the set of artifacts that are available in
that environment. Since artifacts can be created and disposed
at runtime by agents, the agent action repertoire can change
dynamically.

The execution of an operation (action) performed by an
agent on an artifact may complete with a success or a failure—
so an explicit success/failure semantics is defined. Actions
(operations) are performed by agents in the act stage of the
execution cycle seen previously. Then, the completion of an
action occurs asynchronously, and is perceived by the agent
as a basic type of event, fetched in the sense stage. This can
occur in the next execution cycle or in a future execution cycle,
since the execution of an operation can be long-term. So, an
important remark here is that the execution cycle of an agent
never blocks, even in the case of executing actions that – to
be completed – need the execution of further actions of other
agents. This means that an agent, even if “waiting” for the
completion of an action, can react to events perceived from
the environment and execute a proper action, following what
is specified in the plan.

Aside to actions, observable properties and observable
events represent the other side of agent-environment interac-
tion, that is the way in which an agent gets input information
from the environment. In particular, observable properties
represent the observable state that an artifact may expose,
as part of its functionalities. The value of an observable
property can be changed by the execution of operations of
the same artifact. A simple example is a counter, providing an
inc operation (action) and an observable state given by an
observable property called count, holding the current count
value. By observing an artifact, an agent automatically receives
the updated value of its observable properties as percepts at
each execution cycle, in the sense stage. Observable events
represent possible signals generated by operation execution,
used for making observable an information not regarding the
artifact state, but regarding a dynamic condition of the artifact.
Taking as a metaphor a coffee machine as an artifact, the
display is an observable property, the beep emitted when the
coffee is ready is an observable event. Choosing what to model
as a property or as an event is a matter of environment design.

IV. EVALUATING THE IDEA WITH EXISTING AGENT
TECHNOLOGIES: THE JACA PLATFORM

The aim of this section is to show more in practice some
of the concepts described in the previous section. To this end,
we will use existing agent technologies, in particular a plat-
form called JaCa, which actually integrates two independent
technologies: the Jason agent programming language [10] –
for programming agents – and the CArtAgO framework [11],
for programming the environment.

falsestopped

stop

PRODUCER
AGENTS

CONSUMER
AGENTS

100n_items_to_produce

put

get

EXTENDED BOUNDED BUFFER

HUMAN USER
TOY WORKSPACE

Fig. 3. A toy workspace, with producer and consumer agents interacting by
means of a ExtBBuffer artifact.

A. JaCa Overview

Following the basic idea discussed in Section III - a JaCa
program is conceived as a dynamic set of autonomous agents
working inside a shared environment, that they use, observe,
adapt according to their tasks. The environment is composed
by a dynamic set of artifacts, as computational entities that
agents can dynamically create and dispose, beside using and
observing them.

In the following, we introduce only those basic elements
of agent and environment programming that are necessary to
show the features discussed at the conceptual level in the
previous section. To this end, we use a toy example about
the implementation of a producers-consumers architecture,
where a set of producer agents continuously and concurrently
produce data items that must be consumed by consumer agents
(see Fig. 3). Further requirements are that (i) the number of
items to be produced is fixed, but the time for producing each
item (by the different producers) is not known a priori; (ii) the
overall process can be interrupted by the user anytime.

The task of producing items is divided upon multiple
producer agents, acting concurrently—the same holds for con-
sumer agents. To interact and coordinate the work, agents share
and use an ExtBBuffer artifact, which functions both as a
buffer to collect items inserted by producers and to be removed
by consumers and as a tool to control the overall process by the
human user. The artifact provides on the one side operations
(actions for the agent) to insert (put), remove (get) items
and to stop the overall activities (stop); on the other side, it
provides observable properties n_items_to_produce and
stopped, keeping track of, respectively, the number of items
still to be produced (which starts from an initial value and is
decremented by the artifact each time a new item is inserted)
and the stop flag (initially false and set to true when the stop
operation is executed).

In the following, first we give some glances about agent
programming in Jason by discussing the implementation of
a producer agent (see Fig. 4), which must exhibit a pro-active
behavior – performing cooperatively the production of items,
up to the specified number – but also a reactive behavior:

40

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



if the user stops the process, the agents must interrupt their
activities. For completeness, also the source code of the
consumer agent is reported (Fig. 5). Then we briefly consider
the implementation of the ExtBBuffer artifact, to show in
practice some elements of environment programming.

B. Programming Agents in Jason
Being inspired by the BDI (Beliefs-Desires-Intentions) ar-

chitecture [12], the Jason language constructs that program-
mers can use can be separated into three main categories:
beliefs, goals and plans. An agent program is defined by an
initial set of beliefs, representing the agent’s initial knowledge
about the world, a set of goals, which correspond to tasks as
defined in Section III, and a set of plans that the agent can
dynamically compose, instantiate and execute to achieve such
goals. Logic programming is used to uniformly represent any
piece of data and knowledge inside the agent program, beliefs
and goals in particular.

Beliefs are represented as Prolog-like facts – that are atomic
logical formulae – and represent the agent knowledge about:

• Its internal state – an example is given by the
n_items_produced(N) belief, which is used by a
producer agent to keep track of the number of items
produced so far. Initially N is zero, and then it is dy-
namically updated by the agent in plans, by means of
specific internal actions.

• The observable state of the artifacts that the agent is
observing—in the example, every producer agent ob-
serves the sharedBuffer artifact, which has two
observable properties: n_items_to_produce, repre-
senting the number of items still to be produced, and
stopped, a flag which is set if/when the process needs
to be stopped.

At design time the agent developer may want to define the
agent’s initial belief-base, by specifying some initial beliefs:
then, beliefs can be added or removed at runtime, according
to the agent changes to its state and to the resources that the
agent dynamically decides to observe.

An agent program may explicitly define the agent’s initial
belief-base and the initial task or set of tasks that the agent
has to perform, as soon as it is created. In Jason goals
– i.e., tasks – are represented by Prolog atomic formulae
prefixed by an exclamation mark. Referring to the example, the
producer agent has an initial task to do, which is represented
by the !produce goal. Actually, tasks can be assigned also
at runtime, by sending to an agent achieve-goal messages.

Then, the main body of an agent program is given by the
set of plans, which define the pro-active and reactive behavior
of the agent. Agent plans are described by rules of the type
Event : Context <- Body, where Event represents
the specific event triggering the plan, Context is a boolean
expression on the belief base, indicating the conditions under
which the plan can be executed once it has been triggered,
and Body specifies the sequence of actions to perform, once
the plan is executed. The actions contained in a plan body can
be split in three categories:

• Internal actions, that are actions affecting only the in-
ternal state of the agent. Examples are actions to create
sub-tasks (sub-goals) to be achieved (!g), to manage
task execution – for instance, to suspend or abort the
execution of a task – to update agent inner state – such
as adding a new belief (+b), removing beliefs (-b).
Internal actions include also a set of primitives that allow
for managing Java objects – which is the data model
supported by CArtAgO – on the Jason side: so it is
possible to create new objects (cartago.new_obj),
invoke methods on objects (cartago.invoke_obj),
etc.) and other related facilities (the prefix cartago. is
used to identify in Jason the library to which the specific
actions belong to).

• External actions, that are actions provided by the envi-
ronment to interact with artifacts—as will be detailed in
next section, these actions correspond to the operations
provided by artifacts and included in artifact interfaces:
so the repertoire of the actions of an agent is dynamic
and depends on the number and type of artifacts available
in the environment;

• Communicative actions (.send,.broadcast), which
make it possible to communicate with other agents by
means of message passing based on speech acts.

Referring to the example, the producer agent has a main
plan (lines 8-10), which is triggered by an event +!produce
representing a new goal !produce to achieve. Since the
agent has an initial !produce goal (line 4), then this
plan will be triggered as soon as the agent is booted. By
means of an internal action !g, the main plan generates two
further subgoals to be achieved sequentially: !setup and
!produce_items.

The plan to handle !setup goal (lines 12-14) creates a
new instance called sharedBuffer of type ExtBBuffer
by means of a predefined action called makeArtifact, and
then starts observing it by executing the predefined action
focus specifying its identifier. This plan fails if the artifact
had been already created (by another producer), generating
a -!setup goal failure event: a plan managing the failure
is specified (lines 16-18), which simply finds out the exact
identifier of the existing artifact and starts observing it.

Then, two plans are specified for handling the goal
!produce_items. One (lines 20-25) is executed if
there are still items to produce—i.e., if the agent has not
the belief n_items_to_produce(0). Note that the
value of this belief depends on the current state of the
sharedBuffer artifact. This plan first produces a new
item (subtask !produce_item), then inserts the item
in the buffer by means of a put action, whose effect
is to execute the put operation on the artifact; if this
action succeeds, the plan goes on by updating the belief
n_items_produced incrementing the number of items
produced and generates a new subgoal !produce_items
to repeat the task. Actually, when executing an external
action – such as put – it is possible to explicitly
denote the artifact providing that action, in order to avoid

41

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



1 /* Producer agent */
2

3 n_items_produced(0). /* initial belief */
4 !produce. /* initial goal */
5

6 /* plans */
7

8 +!produce
9 <- !setup;

10 !produce_items.
11

12 +!setup
13 <- makeArtifact("sharedBuf","ExtBBuffer",[],Id);
14 focus(Id).
15

16 -!setup
17 <- lookupArtifact("sharedBuf",Id);
18 focus(Id).
19

20 +!produce_items : not n_items_to_produce(0)
21 <- !produce_item(Item);
22 put(Item);
23 -n_items_produced(N);
24 +n_items_produced(N+1);
25 !produce_items.
26

27 +!produce_items : n_items_to_produce(0)
28 <- !finalize.
29

30 +!produce_item(Item) <- ...
31

32 +!finalize : n_items_produced(N)
33 <- println("completed - items produced: ",N).
34

35 -!produce_items
36 <- !finalize.
37

38 +stopped(true)
39 <- .drop_all_intentions;
40 !finalize.

Fig. 4. Source code of a producer agent.

1 /* Consumer agent */
2

3 !consume.
4

5 +!consume: true
6 <- ?bufferReady;
7 !consumeItems.
8

9 +!consumeItems
10 <- get(Item);
11 !consumeItem(Item);
12 !consumeItems.
13

14 +!consumeItem(Item) <- ...
15

16 +?bufferReady : true
17 <- lookupArtifact("sharedBuffer",_).
18

19 -?bufferReady : true
20 <-.wait(50);
21 ?bufferReady.

Fig. 5. Source code of a consumer agent.

1 /* Main of the multi-agent program */
2

3 MAS prodcons {
4 environment: c4jason.CartagoEnvironment
5

6 agents:
7 producer agentArchClass c4jason.CAgentArch #10;
8 consumer agentArchClass c4jason.CAgentArch #10;
9 }

Fig. 6. Main configuration file of the producers-consumers program.

ambiguities, by means of Jason annotations: put(Item)
[artifact_name("sharedBuffer")];. The other
plan (lines 27-28) is executed if there are no more items
to produce—the n_items_to_produce belief referred
in the plan context contains the updated value of the
corresponding observable property in the artifact. In this case
the !finalize task is executed, and it prints on standard
output the number of items produced by the agent. The
println action corresponds to the operation with the same
name provided by an artifact called console, which is
available by default in every workspace.

The reactive behavior of an agent can be realized by plans
triggered by a belief addition/change/removal – corresponding
to changes in the state of the environment – and by the failure
of a plan in achieving some goal. In the example, the producer
agent has a plan (lines 38-40) which is executed when the
belief stopped about the observable property of the artifact
is updated to true. This means that the user wants to interrupt
and stop the production. So the plan stops and drops all the
other possible plans in execution – using an internal action
.drop_all_intention – and the !finalize subtask
is executed.

Finally, the producer agent has also a plan (lines 35-36) to
react to the failure of the !produce_items task, which
is expressed by the event -!produce_items. This can

happen when the agent, believing that there are still items to
be produced, starts the plan to produce a new item and tries to
insert it in the buffer. However, the put action fails because
other agents produced in the meanwhile the missing items.

The semantics of the execution of plans reacting to events
is defined by Jason reasoning cycle [10] (shown in Fig. 7),
which is a more articulated version of the execution cycle
described in Section III. In particular, the plan stage in this
case includes multiple steps, to select – given an event – a
plan to be executed. So an agent can have multiple plans in
execution but only one action at a time is selected (in the plan
stage) and executed (in the act stage). By executing an action,
a plan is suspended until the action is completed (with success
or failure). A detailed description of the cycle – as well as of
the Jason syntax – can be found in [10].

C. Programming the Environment in CArtAgO
The implementation of the ExtBBuffer artifact is shown

in Fig. 8. Being CArtAgO a framework on top of the Java
platform, artifact-based environments can be implemented
using a Java-based API, exploiting the annotation framework.
Here we don’t go too deeply into the details of such API, we
just introduce the main concepts that have been mentioned in
Section III; for more information, the interested reader can
refer to CArtAgO papers [11] and the documents that are part
of CArtAgO distribution [28].

42

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable
Plans

Means
Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context
Check

Event
Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

Fig. 7. A representation of Jason reasoning cycle (taken from [10]). In the first steps, the environment is perceived (step 1) and the beliefs about the state
of the environment updated (step 2), by means of a customizable belief-update function (BUF). Besides input information from the environment, beliefs are
updated also with messages possibly sent by other agents (step 3), filtered according some criteria defining “socially acceptable” messages (step 4). Then,
updates to the belief base generate external events, appended in the event queue. This concludes the sense stage. Then, in the plan stage events are considered
one by one (step 5), and for each one a relevant and applicable plan is selected (step 5 and 6), if available, from the plan library. If a plan is found, a new
intention is instantiated (step 8), representing the plan in execution. The plan stage is completed by selecting the next action to do from one of the ongoing
intentions (step 9). Finally, in the act stage the selected action is executed (step 10), and the cycle starts again.

In CArtAgO, an artifact type can be defined by extending
a base Artifact class. Artifacts are characterized by a
usage interface containing a set of operations that agents
can execute to get some functionalities. In the example, the
artifact ExtBBuffer provides three operations: put, get
and stop. The put operation inserts a new element in the
buffer – decrementing the number of items to be produced –
if the stopped flag has not been set, otherwise the operation
(action) fails. The get operation removes an item from the
buffer, returning it as a feedback of the action. The stop
operation sets the stopped observable property to true.

Operations are implemented by methods annotated with
@OPERATION. The init method is used as constructor of the
artifact, getting the initial parameters and setting up the initial
artifact state. Inside an operation, guards can be specified
(await primitive), which suspend the execution of the opera-
tion until the specified condition over the artifact state (repre-
sented by a boolean method annotated with @GUARD) holds. In
the example, the put operation can be completed only when
the buffer is not full (bufferNotFull guard) and the get
one when the buffer is not empty (bufferNotEmpty guard).
The execution of operations inside an artifact is transactional:
among the other things, this implies that at runtime multiple
operations can be invoked concurrently on an artifact but only

one operation can be in execution at a time–the other ones
are suspended. On the agent side, when executing an external
action, the agent plan is suspended until the corresponding
artifact operation has completed (i.e., the action completed).
Then, the action succeeds or fails when (if) the corresponding
operation has completed with success or failure.

Besides operations, artifacts typically have also a set of ob-
servable properties (n_items_to_produce and stopped
in the example), as data items that can be perceived by agents
as environment state variables. Instance fields of the class
instead are used to implement the non observable state of the
artifact—for instance, the list of items items in the example.
Observable properties can be defined, typically during arti-
fact initialization, by means of the defineObsProperty
primitive, specifying the property name and initial value (lines
11-12). Inside operations, observable properties value can
be inspected and changed dynamically by means of prim-
itives such as: getObsProperty, to retrieve the current
value of an observable property (see, for instance, lines
18 and 22), updateObsProperty to update the value,
or updateValue on an ObsProperty object, once the
property has been retrieved with getObsProperty (line
23).

Besides observable properties, an artifact can make it ob-

43

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



1 import cartago.*;
2

3 public class ExtBBuffer extends Artifact {
4

5 private LinkedList<Object> items;
6 private int bufSize;
7

8 void init(int bufSize, int nItemsToProd){
9 items = new LinkedList<Object>();

10 this.bufSize = bufSize;
11 defineObsProperty("n_item_to_produce",nItemsToProd);
12 defineObsProperty("stopped",false);
13 }
14

15 @OPERATION void put(Object obj){
16 await("bufferNotFull");
17 ArtifactObsProperty stopped =
18 getObsProperty("stopped");
19 if (!stopped.booleanValue()){
20 items.add(obj);
21 ArtifactObsProperty p =
22 getObsProperty("n_item_to_produce");
23 p.updateValue(p.intValue() - 1);
24 } else {
25 failed("no_more_items_to_produce");
26 }
27 }
28

29 @GUARD boolean bufferNotFull(){
30 return items.size() < nmax;
31 }
32

33 @OPERATION void get(OpFeedbackParam<Object> result){
34 await("itemAvailable");
35 Object item = items.removeFirst();
36 result.set(item);
37 }
38

39 @GUARD boolean itemAvailable(){
40 return items.size() > 0;
41 }
42

43 @OPERATION void stop(){
44 updateObsProperty("stopped",true);
45 }
46 }

Fig. 8. Source code of the ExtBBuffer artifact.

servable also events occurring when executing operations. This
can be done by using a signal primitive, specifying the
type of the event and a list of actual parameters. For in-
stance, signal("my_event", "test",0) generates an
observable event my_event("test",0). In the example,
to notify the stop we could generate a stopped signal in
the stop operation, instead of using an observable property.
Observable events are perceived by all agents observing the
artifact—which could react to them as in the case of observ-
able property change.

Java objects and primitive data types are used as data model
binding the agent and artifact layers, in particular to encode
parameters in operations, fields in observable properties and
signals.

To summarize, operations are computational processes oc-
curring inside the artifact, possibly changing the observable
properties and generating signals that are relevant for the
agents using/observing the artifact. An operation is executed
as soon as an agent triggers its execution – by executing
the corresponding action. Given the transactional execution
semantics adopted, only one operation can be in execution at a

time—so no interferences and race conditions occur if multiple
agents use concurrently the same artifact. Like in the case
of monitors, other operations that are possibly concurrently
triggered are blocked (suspended). The conditions that can be
specified with the await command are conceptually similar
to condition variables. Differently from the monitor case (with
threads or processes), if an operation (action) is suspended, the
agent that executed it is not: the execution cycle goes on, to
eventually react to percepts and/or select and execute other
actions from other plans.

Other features of the artifact model implemented in
CArtAgO include: (i) the capability of linking together ar-
tifacts, making it possible for an artifact to execute operations
(called linked operations) on other artifacts; (ii) the capability
of triggering the execution of internal operations from other
operations of the same artifact; and (iii) the capability of
specifying for each artifact type a manual, i.e., a machine
readable document containing the description of the function-
alities provided by the artifacts of this type and the operating
instructions, i.e., how to exploit such functionalities.

D. The Multi-Agent Program in the Overall

Finally, the main or entry point of a JaCa multi-agent
program is given by a Jason source file – with extension
*.mas2j – describing the initial configuration of the system,
in particular the name of the MAS and the initial set of the
agents that must be created and possibly some information and
attributes that concern environment and agent implementation.
The configuration file for the example is shown in Fig. 6,
where ten instances of producer agents and ten instances
of consumer agents are spawned. To launch multiple agents
of the same type (e.g., ten producer agents) the cardinality
can be specified as a parameter in the declaration (#10);
the unique name of the agent in this case is given by the
type and a progressive integer (in the example: producer1,
producer2, etc).

By default, a single workspace called default is created
and the specified agents are joined to this workspace. Actually
a JaCa program can be composed by multiple workspaces and
agents can concurrently join and work in multiple workspaces,
either locally or in remote JaCa nodes. Workspaces can be
created dynamically by agents by exploiting functionalities
that are provided by a set of artifacts that are available, by
default, in each workspace. Among the others, such a set
includes: a console artifact, providing functionalities for
printing on standard output; a workspace artifact, providing
functionalities for managing the current workspace, including
creating new artifacts (makeArtifact operation), dispos-
ing existing artifacts (disposeArtifact), discovering the
identifier of existing artifacts (lookupArtifact), setting
the security policies ruling the agent access to artifacts, etc.; a
blackboard artifact, functioning as a blackboard – or better
as a tuple space [29] – providing functionalities for enabling
indirect communication and coordination among agents.

44

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



V. JACA PROGRAMMING: FURTHER FEATURES

In this section we focus on three main programming features
among the others that are provided by JaCa, namely the
capability of exploiting both direct communication based on
message passing and indirect interaction through artifacts, the
support for building distributed programs and the capability
of integrating existing libraries, such as GUI toolkits. Further
features are described in JaCa and CArtAgO technical doc-
umentation.

A. Integrating Direct Communication and Mediated Interac-
tion

In JaCa agents can interact and communicate in two basic
ways, either exchanging messages through speech acts [30] or
by sharing and co-using artifacts functioning as interaction and
coordination media [31]. The first way is generally referred as
direct communication, while the latter as indirect or mediated
communication. Both types of communication are important
in programming concurrent and distributed programs, and we
allow for exploiting them together.

The direct communication model is the one provided by
the Jason language, based on a comprehensive subset of
the KQML Agent Communication Language [30]. Among the
available performatives, tell makes it possible to inform the
receiver agent about some information (stored in the target
agent as a belief), achieve to assign a new goal, and ask
to request information. These performatives must be included
in the communication action (.send) that actually sends the
message, along with the specific parameters. An agent can
react to the arrival of messages or, at a higher level, to the
effect that the speech acts have, that are uniformly modeled
as belief addition (for the tell performative) or goal addition
(for the achieve performative).

To give a concrete taste of the approach, in the follow-
ing we describe the realization of simplified version of the
Contract Net Protocol (CNP) [32], in which both direct
message passing and artifacts are used. In the example, a
ContractNetBoard artifact (Fig. 11) is used by an an-
nouncer agent (code shown in Fig. 9) and five bidder agents
(Fig. 10) to help their coordination in choosing the agent to
whom allocate a task todo. Once the agent has been chosen,
direct communication is used between the allocator of the task
and the chosen agent to allocate the task and get the results.

Some brief explanation of the program behavior. In the
main configuration file (Fig. 12), one announcer agent and five
bidder agents are launched. The announcer opens the auction
to allocate the task by performing an announce action over
the cnp_board artifact (line 7). The artifact is observed
and used also by the bidder agents, who are available for
doing tasks. The announce action/operation executed by the
announcer creates a new observable property task_todo,
storing information about the new task (Fig. 11, lines 12-17).

As soon as a bidder perceives that there is a new task to do,
it reacts (Fig. 10, lines 10-22) by computing a new bid and
issuing them on the contract net board by performing a bid
action. The action can fail if the auction has been already

Fig. 13. An execution trace of the CNP program, displayed on the Jason
console.

closed by the announcer: in that case a message is printed
on the console (lines 20-22). On the artifact side, the bid
operation (lines 19-28) just adds the new bid to the list of
bids received so far, if the auction is still opened, otherwise the
operation fails (by executing the failed artifact primitive).
As a detail, the third parameter of the bid operation is an
action feedback parameter, i.e., an output parameter of the
action bound to some value by the operation execution itself,
set with a fresh identifier univocally identifying the bid.

The announcer waits some amount of time (2 seconds in
the example), and then closes the auction by invoking the
close operation (lines 8-9), which results in changing the
state observable property of the artifact to "closed" and
returns the list of information about the received bids as an
action feedback parameter (lines 30-36). Such information are
represented by instances of the Bid class. Then, the agent
selects a bid (in the example the first one) and awards the
bidder by performing an award action (lines 10-11), which
results in updating the content of the winner observable
property in the artifact (lines 38-41).

This change is perceived by bidder agents, which react
in a different way depending on the fact that they are the
winner or not (lines 24-28). After awarding, the announcer
then communicates directly with the winner bidder by sending
an achieve message specifying the task to be done (line 15).
To retrieve the identifier of the bidder agent to whom sending
the message, the method getWho is invoked on the selected
bid object by means of the cartago.invoke_obj internal
action.

Then, the awarded bidder reacts to the new goal to achieve
(lines 35-37), just printing a message and then sending a
message to inform the announcer about the task result (line
37). Finally the announcer reacts to the new belief communi-
cated by the bidder (lines 19-20) by printing the result on the
console.

A possible execution trace that can be obtained by launching
the program is reported in Fig. 13, which shows the content
of the Jason console. In that specific execution, four bidders
were able to submit their bid on time and the winner was
the bidder bidder2 (whose bid identifier assigned by the
cnp_board was 1).

45

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



1 /* announcer agent */
2

3 !allocate_task("t0",2000).
4

5 +!allocate_task(Task,Deadline)
6 <- makeArtifact("cnp_board","ContractNetBoard",[]);
7 announce(Task);
8 .wait(Deadline);
9 close(Bids);

10 !select_bid(Bids,Bid);
11 award(Bid);
12 cartago.invoke_obj(Bid,getWho,Who);
13 println("Allocating the task to: ",Who);
14 .my_name(Me);
15 .send(Who,achieve,task_done(Task,Me)).
16

17 +!select_bid([Bid|_],Bid).
18

19 +task_result(Task,Result)
20 <- println("Got result ",Result," for task: ",Task).

Fig. 9. Source code of the announcer agent.

1 /* bidder agent */
2

3 task_result("t0",303).
4 !look_for_tasks("t0").
5

6 +!look_for_tasks(Task)
7 <- +task_descr(Task);
8 focusWhenAvailable("cnp_board").
9

10 +task_todo(Task) : task_descr(Task)
11 <- !make_bid(Task).
12

13 +!make_bid(Task)
14 <- !create_bid(Task,Bid);
15 .my_name(Me);
16 bid(Bid,Me,BidId);
17 +my_bid(BidId);
18 println("Bid submitted: ",Bid," - id: ",BidId).
19

20 -!make_bid(Task)
21 <- println("Too late for submitting the bid.");
22 .drop_all_intentions.
23

24 +winner(BidId) : my_bid(BidId)
25 <- println("awarded!.").
26

27 +winner(BidId) : my_bid(X) & not my_bid(BidId)
28 <- println("not awarded.").
29

30 +!create_bid(Task,Bid)
31 <- .wait(math.random(3000));
32 .my_name(Name);
33 .concat("bid_",Name,Bid).
34

35 +!task_done(Task,ResultReceiver): task_result(Task,Res)
36 <- println("doing task: ",Task);
37 .send(ResultReceiver,tell,task_result(Task,303)).

Fig. 10. Source code of bidder agents.

1 /* Contract Net Board artifact */
2

3 public class ContractNetBoard extends Artifact {
4 private List<Bid> bids;
5 private int bidId;
6

7 void init(){
8 this.defineObsProperty("state","closed");
9 bids = new ArrayList<Bid>();

10 }
11

12 @OPERATION void announce(String taskDescr){
13 defineObsProperty("task_todo", taskDescr);
14 getObsProperty("state").updateValue("open");
15 bids.clear(); bidId = 0;
16 log("New task announced: "+taskDescr);
17 }
18

19 @OPERATION void bid(String bid, String who,
20 OpFeedbackParam<Integer> id){
21 if (getObsProperty("state").stringValue().equals("open")){
22 bidId++;
23 bids.add(new Bid(bidId,who,bid));
24 id.set(bidId);
25 } else {
26 this.failed("cnp_closed");
27 }
28 }
29

30 @OPERATION void close(OpFeedbackParam<Bid[]> bidList){
31 getObsProperty("state").updateValue("closed");
32 int nbids = bids.size();
33 Bid[] vect = new Bid[nbids]; bids.toArray(vect);
34 bidList.set(vect);
35 log("Auction closed: "+nbids+" bids arrived on time.");
36 }
37

38 @OPERATION void award(Bid prop){
39 signal("winner", prop.getId());
40 log("The winner is: "+prop.getId());
41 }
42

43 static public class Bid {
44 private int id;
45 private String who, descr;
46

47 public Bid(int id, String who, String descr){
48 this.descr = descr; this.id = id; this.who = who;
49 }
50 public String getWho(){ return who; }
51 public int getId(){ return id; }
52 public String getDescr(){ return descr; }
53 public String toString(){ return descr; }
54 }
55 }

Fig. 11. Source code of the CNP board artifact.

1 MAS cnp_example {
2 environment: c4jason.CartagoEnvironment
3 agents:
4 announcer agentArchClass c4jason.CAgentArch;
5 bidder agentArchClass c4jason.CAgentArch #5;
6 }

Fig. 12. Main configuration file of the CNP example, spawning one announcer
agent and five bidder agents.

46

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



B. Distributed Programming and Open Systems Programming

JaCa intrinsically supports concurrent programming, in dif-
ferent ways: by exploiting Jason runtime architecture, agents
are executed concurrently (and in parallel on a parallel HW,
such as multi-core architectures); also, artifacts are executed
concurrently, that is operations requested on different artifacts
are executed concurrently.

Besides, JaCa directly supports also distributed program-
ming: an agent running on some node can join workspaces
that are hosted on a remote nodes, and then work with
artifacts of the remote workspace(s) transparently. A simple
example is shown in Fig. 14, in which an agent joins a
remote test workspace located in acme.org, and, there,
the agent prints some information on the console, creates a
new Counter artifact called c0 and uses it, by executing
the inc operation and reacting to changes to the count
observable property. While working on multiple workspaces,
in JaCa a notion of current workspace is defined, being it
the workspace implicitly referred when the agent invokes an
operation over an artifact without specifying its full identifier.
current_wsp is a predefined agent belief keeping track
of current workspace. When an agent starts its execution,
the current workspace is set by default to the default
workspace. Then, it is automatically updated as soon as the
agent joins other workspaces (including remote ones) or the
agent executes a predefined set_current_wsp action. So,
in the example, by joining the remote test workspace,
this becomes the current workspace, and then the println
action acts on the console artifact there, as well as the
makeArtifact action that creates a new artifact overthere
too. It is worth noting that in the plan reacting to a change to
the count observable property (mapped on count belief),
the agent prints a message on the console in the original
workspace (lines 19-21): to disambiguate what console to use,
in the action an annotation reporting the workspace where the
artifact is stored is specified (line 21). The agent source code
includes also a plan reacting to a failure in the plan handling
the !use_remote goal, due to the fact that a Counter
artifact called c0 was already present in the remote workspace.

So in the overall this facility makes it possible to imple-
ment open systems with dynamic and distributed structure
and behavior, given by the capability of agents of spawning
other new agents dynamically, of joining dynamically existing
workspaces or creating new ones, of creating / disposing arti-
facts belonging to a workspace. Given the distributed program-
ming facility, a workspace can be joined by unknown agents
of JaCa programs that have been spawned independently
from the program where the workspace has been defined.
The possibility of explicitly specifying security policies at a
workspace level – by exploiting the functionalities provided
by the workspace artifact – makes it possible to rule and
govern such openness according to the need.

C. Wrapping Existing Libraries and External Resources

Specific kind of artifacts can be designed and used to wrap
and reuse existing libraries – written in Java but also in other

1 !test_remote.
2

3 +!test_remote
4 <- ?current_wsp(Id,_,_);
5 +default_wsp(Id);
6 println("testing remote..");
7 joinRemoteWorkspace("test","acme.org",WspID2);
8 ?current_wsp(_,WName,_);
9 println("hello there ",WName);

10 !use_remote;
11 quitWorkspace.
12

13 +!use_remote
14 <- makeArtifact("c0","examples.Counter",[],Id);
15 focus(Id);
16 inc;
17 inc.
18

19 +count(V)
20 <- ?default_wsp(Id);
21 println("count changed: ",V)[wsp_id(Id)].
22

23 -!use_remote
24 [makeArtifactFailure("artifact_already_present",_)]
25 <- ?default_wsp(WId);
26 println("artifact already created ")[wsp_id(WId)];
27 lookupArtifact("c0",Id);
28 focus(Id);
29 inc.

1 public class Counter extends Artifact {
2

3 void init(){
4 defineObsProperty("count",0);
5 }
6

7 @OPERATION void inc(){
8 ObsProperty prop = getObsProperty("count");
9 prop.updateValue(prop.intValue()+1);

10 }
11 }

Fig. 14. An agent joining and working in a remote workspace (top), and the
source code of the counter used and observed remotely (bottom).

languages, such as C and C++, exploiting the JNI (Java Native
Interface) mechanism – making their functionalities available
to agents, with a clean and uniform interface—which is the
one provided by the artifact model. This allows in particular
to build JaCa libraries that make it possible to access and
interact with external resources existing in the deployment
context or outside the system (such as a Web Services, a data-
base, a legacy system).

A main example of JaCa library wrapping and integrating
existing technologies is the one that allows for building
and exploiting graphical user interface (GUI) toolkits. GUIs
inside a JaCa program are modeled as artifacts mediating
the interaction between humans and agents. A basic abstract
artifact GUIArtifact is provided to be extended in order
to create concrete GUIs. A GUI is designed then to make it
observable to interested agents the events generated by the
components (buttons, edit fields, list boxes,...) inside the GUI.
Also, as an artifact, it provides operations that allow agents
to interact with the GUI themselves, for instance to set the
content of text fields.

Fig. 15 shows a simple example, in which an agent uses
a GUI to repeatedly display the output of its work and to
promptly react to user input. In particular, the agent creates

47

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



1 package c4jexamples;
2 ...
3 public class View extends GUIArtifact {
4 private MyFrame frame;
5

6 public void setup() {
7 frame = new MyFrame();
8 defineObsProperty("value",0);
9 linkActionEventToOp(frame.stopButton,"stop");

10 linkWindowClosingEventToOp(frame, "close");
11 frame.setVisible(true);
12 }
13

14 @INTERNAL_OPERATION void stop(ActionEvent ev){
15 signal("stopped");
16 }
17

18 @INTERNAL_OPERATION void close(WindowEvent ev){
19 signal("closed");
20 }
21

22 @OPERATION void setOutput(int value){
23 frame.updateOutput(""+value);
24 getObsProperty("value").updateValue(value);
25 }
26

27 class MyFrame extends JFrame {
28 private JButton stopButton;
29 private JTextField output;
30

31 public MyFrame(){
32 setTitle(".:: View ::.");
33 setSize(200,100);
34 JPanel panel = new JPanel();
35 setContentPane(panel);
36 stopButton = new JButton("stop");
37 stopButton.setSize(80,50);
38 output = new JTextField(10);
39 output.setText("0"); output.setEditable(true);
40 panel.add(output); panel.add(stopButton);
41 }
42 public void updateOutput(String s){
43 output.setText(s);
44 }
45 }
46 }

1 count(0).
2 !do_task_with_view.
3

4 +!do_task_with_view
5 <- makeArtifact("gui","c4jexamples.View",[],Id);
6 focus(Id);
7 !do_task.
8

9 +!do_task
10 <- -count(C);
11 C1 = C + 1;
12 +count(C1);
13 setOutput(C1);
14 !do_task.
15

16 +stopped : value(V)
17 <- .drop_all_intentions;
18 println("stopped - value: ",V).
19

20 +closed
21 <- .my_name(Me);
22 .kill_agent(Me).

Fig. 15. Implementing and using GUI in JaCa: the View artifact (left), the agent using the GUI (right—top) and the output of the program (right—bottom).

a GUI artifact called View, providing one stop button and
one output edit text. The structure of the GUI – based on
Java Swing library – is defined by the MyFrame class,
as it would be in a traditional OO program. An instance
of this class is created inside View and events generated
by the GUI components are linked to internal operations
of the artifact by means of a set of predefined methods
implemented in GUIArtifact. In particular an action event
generated by frame.stopButton causes the execution of
the internal operation stop, which generates an observable
event stopped, and the window closing event is mapped
onto the close operation, which generates a closed event.
The agent first creates an instance called gui of the View
artifact, and then repeatedly uses the view to display the results
of its task, by means of the setOutput action (operation).
While doing this task, the agent also observes the GUI and as
soon as a stopped event is perceived, the agent reacts by
suspending all its current ongoing activities (intentions) and
printing in standard output a message. If a closed event is
perceived, the agent terminates.

VI. USING JACA IN REAL-WORLD APPLICATION
CONTEXTS

We are currently applying the JaCa platform in different
application domains, to stress the benefits but also the weak-
nesses of its programming model and more in general of the
proposed agent-oriented programming approach.

One of these domains is the development of distributed
applications based on Service-Oriented Architecture (SOA)
and Web Services (WS) in particular. In that context, agents
and multi-agent systems are deserving increasing attention
both from the applicative viewpoint, as an effective technique
to build complex SOA applications dynamically composing
and orchestrating services [33], and from the foundational
viewpoint, as a reference meta-model for the service-based
approach, as suggested by the W3C Web Services Architecture
reference document [34]. To this end, programming models
and platforms are needed to build SOA/WS applications as
agent-oriented systems in a systematic way, exploiting the
existing agent languages and platforms to their best, while
enabling their co-existence and fruitful co-operation. In that
context, we devised a library of artifacts on top of the JaCa

48

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



platform, enabling the development of SOA/WS applications
in terms of workspaces populated by agents and artifacts.
Agents encapsulate the responsibility of the execution and con-
trol of the business activities characterizing the SOA-specific
scenario, while artifacts encapsulate the business resources and
tools needed by agents to operate in the application domain.
In particular, artifacts in this case are exploited to model
and engineer those parts in the agent world that encapsulate
Web Services aspects and functionalities – e.g., interaction
with existing Web Services (agents as service consumers),
implementation of Web Services (agents as service providers)
– eventually wrapping existing non-agent-oriented code. First
results of this work are available in [35].

We are also investigating the adoption of our approach
for the engineering of advanced Ambient Intelligence (AmI)
applications. For the AmI context, a relevant research issue
concerns how to concretely program non-intrusive applications
exhibiting features such as context-awareness, personalisation,
adaptivity and anticipation of users’ desires [36]. To this
end we applied our approach for realising a typical AmI
application [37]: the management of a rooms allocation prob-
lem in the context of a smart co-working space – e.g., a
school, an office building, etc. – where people can book
and use rooms according to their needs and to the current
occupancy schedule. The application has to set an autonomous
and adaptive room management behavior in accordance with:
(i) the events that are currently held – e.g., regulating the
room temperature in accordance with the number of the event’s
participants, automatically turning off the lights for teaching
events involving a projector, etc. – and (ii) also on the base
of rooms (re)allocation in accordance with incoming user
requests—i.e., aiming at optimising the number of events the
system can host at any given time. Agents as usual encapsulate
the control and decision-making part of the application, in this
case related to monitoring and controlling facilities in rooms
as well as deciding appropriate strategies to use for dynamic
rooms allocation. The artifact-based distributed environment
instead has been exploited to model and interface with the
physical devices in the rooms (lights, temperature controllers,
etc.), to model and represent high-level shared data structures
with related operations (such as registers keeping track of
room participants and schedules), besides typical coordination
artifacts.

Another project where our agent-oriented programming
approach has been applied concerns the engineering of an
agent-based Machine-To-Machine (M2M) management infras-
tructure. M2M refers to technologies allowing the construction
of automated and advanced services and applications (e.g.,
smart metering, traffic redirection, and parking management)
that largely make use of smart devices (sensor and actuators of
different kinds, possibly connected through a Wireless Sensor
and Actor Network (WSAN)) communicating without human
interventions. In [38] is discussed the realisation of an agent-
based infrastructure to enable the deployment of city-scale
M2M applications that share a common set of devices and
network services. In such infrastructure each WSAN area

1 !init.
2

3 +!init
4 <- focus("NotificationManager");
5 focus("SMSService");
6 focus("ViewerArtifact").
7

8 +sms_received(Source, Message) : not (state("running"))
9 <- showNotification(Source, Message,

10 "jaca.android.sms.ViewerArtifact", Id).
11

12 +sms_received(Source, Message) : state("running")
13 <- append(Source, Message).

Fig. 16. Source code of the Jason agent that manages the SMS notifications.

Fig. 17. The two different kinds of SMS notifications: (a) notification per-
formed using the standard Android status bar, and (b) notification performed
using the ViewerArtifact.

group is modelled through a CArtAgO workspace, where an
agent acting as a gateway collects data sent from all the agents
managing and controlling M2M devices (sensors, actuators)
through artifacts. Finally a dynamic pool of agents regulate
the functioning of each M2M infrastructural node in accor-
dance with the current workloads experimented in the M2M
infrastructure. The governance infrastructure is evaluated using
a Smart Parking Management scenario, where an M2M system
monitors the parking occupation in order to reduce traffic and
to guide drivers through the streets.

The final domain we are considering in this paper is the
engineering of smart mobile applications, in particular for
pervasive and context-aware computing scenarios. To this end,
JaCa has been ported on the Android platform [39], enabling
the development of Android applications using agent-oriented
programming [40] [41]. The project is called JaCa-Android.
Actually, besides porting the technology, JaCa-Android in-
cludes a library of artifacts that allows agents running into
an Android application to seamlessly access and exploit all
the features provided by the smartphone and by the Android
SDK. Just to have a taste of the approach, Fig. 16 shows a
snippet of an agent playing the role of smart user assistant,

49

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



with the task of managing the notifications related to the
reception of SMS messages: as soon as an SMS is received,
a notification must be shown to the user. A SMSService
artifact is used to manage SMS messages, in particular this
artifact generates an observable event sms_received each
time a new SMS is received. A ViewerArtifact is used
to show SMS messages on the screen and to keep track
– by means of the state observable property – of the
current status of the viewer, that is if it is currently visualized
by the user on the smartphone screen or not. Finally, a
NotificationManager artifact is used to show messages
on the Android status bar, providing a showNotification
operation to this end. Depending on what the user is actually
doing and visualizing, the agent shows the notification in
different ways. The behavior of the agent, once completed the
initialization phase (lines 1-6), is governed by two reactive
plans. The first one (lines 8-10) is applicable when a new
message arrives and the ViewerArtifact is not currently
visualized on the smartphone’s screen. In this case, the agent
performs a showNotification action to notify the user
of the arrival of a new message using the status bar (Fig. 17,
(a)). The second plan instead (lines 12-13) is applicable when
the ViewerArtifact is currently displayed on screen and
therefore the agent could notify the SMS arrival by simply
appending the SMS to the received message list showed by
the viewer (Fig. 17, (b)): this is done by executing the append
operation provided by ViewerArtifact.

For a developer able to program using the JaCa program-
ming model, moving from one application context to another
is a quite straightforward experience. Indeed, she can continue
to design and program the business logic of the applications
by suitably defining the Jason agents’ behavior, and she only
need to acquire the ability to work with the artifacts that are
specific of the new application context.

VII. TOWARDS A NEW GENERATION OF
AGENT-ORIENTED PROGRAMMING LANGUAGES FOR

COMPUTER PROGRAMMING

By exploiting existing agent technologies (Jason and
CArtAgO in particular), JaCa makes it possible to con-
cretely experiment agent-oriented programming as a general-
purpose paradigm for computer programming and software
development, getting in practice some of the benefits of agent-
orientation described in Section III. However, the approach
lacks of some fundamental features when compared to current
languages for software development – such as the object-
oriented ones – due to the fact that the agent programming
models / technologies on which JaCa is based have been
designed having Distributed Artificial Intelligence problems
in mind, not software development in general. These missing
features concern desiderata that are not crucial from an AI
point of view, but from a software engineering and program-
ming perspective.

A first important desideratum concerns error checking, i.e.,
the possibility to detect errors in programs before executing
them. Not only syntax errors, but also errors concerning the

semantics of the program: examples are allocating tasks to
agents that have not plans to handle them, or executing actions
that are not part of the interface of an artifact, or rather
having agent plans that react to events that are never generated
by the artifacts used in the plans. To this purpose, current
AOP languages offer very limited and ad-hoc capabilities.
In programming languages and software engineering, this
issue is addressed by introducing a sound notion of type and
type systems [42]. So designing agent-oriented programming
languages with strong typing would allow for type checking
programs at compile type, strongly impacting on the process
of program development.

Typing is important also for the program organization and as
a conceptual tool for building more clean and elegant systems.
In fact, the definition of a notion of subtyping is the base for
introducing conceptual specialization in program organization,
and then defining a substitutability principle [43] also in agent-
oriented programs, getting finally a safe way to extend and
reuse program specifications.

Inheritence instead [43] – along more recent mechanisms
such as traits [44] – are important features in OOP to achieve
code reusability and a way to define hierarchies and com-
positions that relate implemented parts of a systems (such
as classes). So we believe that suitable mechanisms that
foster code reuse are important also for the agent-oriented
paradigm, both on the agent side – for instance, making it
possible to define new agents from existing ones, inheriting
their capabilities (such as their plans) – and on the environment
side – for instance, defining the artifact classes by extending
existing ones, so inheriting their operations and observable
properties.

Besides typing and inheritance, a stronger support for
modularity [45]. Finding suitable abstractions and mechanisms
to improve the modularization of agent behavior is a main
issue also in current research in agent programming languages
(examples are [46], [47], [48], [49], [50], [51]). In the case of
Jason for instance, the source code inside an agent to achieve
some goal is fragmented into a flat sequence of typically small
plans, that trigger each other. A notion of module – similar
to the notion of capability [47] adopted by the JACK plat-
form [17]– has been recently proposed to improve Jason agent
modularity [51]. Actually, among all the possible solutions
that can be adopted for achieving a good modularity, we are
interested in those that allow for contextually introducing also
mechanisms for reuse such as inheritance and for keeping
a strong separation between specification of the behaviors
(through typing) and their (hidden) implementation.

Finally, we argue that a modern programming language
designed for software development in general must necessarily
have a good or seamless integration with object-oriented and
functional programming, that are very strong and mature
paradigms for defining and working with data structures and
related purely transformational algorithms. This is not the case
for existing agent programming languages, that are typically
based on logic programming and do not provide a seamless
and efficient support to manipulate objects.

50

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



These motivations lead us to explore the definition and
development of new agent-oriented programming languages,
integrating and embedding in a sound way all these features
from their foundation. This is the objective of the simpAL
project, whose first results are reported in [52]. simpAL is an
agent-oriented programming language designed from scratch
so as to embed some main ideas and features of JaCa, but
taking object-oriented programming and in particular Java-
like languages as reference for defining and manipulating data
structures, and to integrate features like an explicit notion
of typing and inheritance. Actually simpAL is not meant to
replace JaCa, which we consider the reference platform–
along with JaCaMo [53], which extends JaCa to support
also organization-oriented programming—for exploring the
development of multi-agent systems for tackling problems in
Distributed Artificial Intelligence contexts.

VIII. CONCLUSION

In this paper, we discussed agent-oriented programming as
an evolution of Object-Oriented Programming representing the
essential nature of decentralized systems where tasks are in
charge of autonomous computational entities, which interact
and cooperate within a shared environment. In the state-of-
the-art, agents and multi-agent systems have been explored so
far mainly as an approach for tackling AI and DAI problems:
in this paper we solicited a further perspective, which aims
at exploring the value of agent-orientation as a programming
paradigm, providing an effective level of abstraction to tackle
the complexities which characterize modern programming
(e.g, concurrency). In order to show in practice some of
the main concepts underlying the approach, we exploited the
JaCa platform, which is based on existing agent-oriented
technologies—the Jason language to program agents and
CArtAgO framework to program the environment. JaCa tech-
nology can be used to concretely experiment the approach for
developing real-world applications tackling some of the main
aspects that characterize today software system complexity,
such as concurrency, distribution, reactivity, flexibility and
autonomy. Finally, we shed a light on some fundamental
features that are missing today in existing agent programming
technologies and languages (such as typing and inheritance),
which can be considered a must-have for us to investigate
agent-orientation as a general-purpose paradigm for computer
programming and software development. Future work will
be devoted in particular to both verify the effectiveness of
the approach in practice, using agent-oriented programming
to tackle relevant programming problems and projects, and
to improve our current models and technologies—JaCa and
simpAL, in particular.

REFERENCES

[1] Nicholas R. Jennings. An agent-based approach for building complex
software systems. Commun. ACM, 44(4):35–41, 2001.

[2] Mike Wooldridge. An Introduction to Multi-Agent Systems. John Wiley
& Sons, Ltd, 2002.

[3] Stuart Russell and Peter Norvig. Artificial Intelligence, A Modern
Approach. Prentice Hall, 2009.

[4] Herb Sutter and James Larus. Software and the concurrency revolution.
ACM Queue: Tomorrow’s Computing Today, 3(7):54–62, September
2005.

[5] Y. Shoham. Agent-oriented programming. Artificial Intelligence,
60(1):51–92, 1993.

[6] Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fal-
lah Seghrouchni. Special Issue: Multi-Agent Programming, volume 23
(2). Springer Verlag, 2011.

[7] Rafael H. Bordini, Mehdi Dastani, and Amal El Fallah Seghrouchni, ed-
itors. Multi-Agent Programming Languages, Platforms and Applications
- Volume 1, volume 15. Springer, 2005.

[8] Rafael H. Bordini, Mehdi Dastani, Amal El Fallah Seghrouchni, and
Jürgen Dix, editors. Multi-Agent Programming Languages, Platforms
and Applications - Volume 2. Springer, 2009.

[9] Alessandro Ricci and Andrea Santi. Agent-oriented computing: Agents
as a paradigm for computer programming and software development. In
Proc. of the 3rd Int. Conf. on Future Computational Technologies and
Applications (Future Computing ’11), pages 42–51, Rome, Italy, 2011.
IARIA.

[10] Rafael Bordini, Jomi Hübner, and Mike Wooldridge. Programming
Multi-Agent Systems in AgentSpeak Using Jason. John Wiley & Sons,
Ltd, 2007.

[11] Alessandro Ricci, Michele Piunti, and Mirko Viroli. Environment
programming in multi-agent systems: an artifact-based perspective.
Autonomous Agents and Multi-Agent Systems, 23:158–192, 2011.

[12] A. S. Rao and M. P. Georgeff. BDI Agents: From Theory to Practice.
In 1st Int. Conf. on Multi Agent Systems (ICMAS’95), 1995.

[13] Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood.
Developing Multi-Agent Systems with JADE. Wiley, 2007.

[14] The Foundation of Intelligent Physical Agents organization (FIPA) –
http://www.fipa.org, last retrieved: July 5th 2011.

[15] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Artifacts in the
A&A meta-model for multi-agent systems. Autonomous Agents and
Multi-Agent Systems, 17 (3), December 2008.

[16] Alessandro Ricci, Mirko Viroli, and Giulio Piancastelli. simpA: An
agent-oriented approach for programming concurrent applications on top
of java. Science of Computer Programming, 76(1):37 – 62, 2011.

[17] Nick Howden, Ralph Rönnquist, Andrew Hodgson, and Andrew Lucas.
JACK intelligent agentsTM — summary of an agent infrastructure. In
Proc. of 2nd Int. Workshop on Infrastructure for Agents, MAS, and
Scalable MAS, 2001.

[18] Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. Jadex: A
BDI reasoning engine. In Rafael Bordini, Mendi Dastani, Jurgen Dix,
and Amal El Fallah Seghrouchni, editors, Multi-Agent Programming.
Kluwer, 2005.

[19] Henry Lieberman. The continuing quest for abstraction. In ECOOP
2006, volume 4067/2006, pages 192–197. Springer, 2006.

[20] Michael David Travers. Programming with Agents: New metaphors
for thinking about computation. Massachusetts Institute of Technology,
1996.

[21] Bonnie Nardi, editor. Context and Consciousness: Activity Theory and
Human-Computer Interaction. MIT Press, 1996.

[22] David Kirsh. Distributed cognition, coordination and environment
design. In Proceedings of the European conference on Cognitive Science,
pages 1–11, 1999.

[23] Alessandro Ricci, Andrea Omicini, and Enrico Denti. Activity Theory as
a framework for MAS coordination. In Paolo Petta, Robert Tolksdorf,
and Franco Zambonelli, editors, Engineering Societies in the Agents
World III, volume 2577 of LNCS, pages 96–110. Springer, April 2003.

[24] Mitchel Resnick. Turtles, Termites and Traffic Jams. Explorations in
Massively Parallel Microworlds. MIT Press, 1994.

[25] Gul Agha. Actors: a model of concurrent computation in distributed
systems. MIT Press, Cambridge, MA, USA, 1986.

[26] Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based
and event-based programming. Theoretical Computer Science, 2008.

[27] Joe Armstrong. Erlang. Commun. ACM, 53:68–75, September 2010.
[28] CArtAgO project web site – http://cartago.sourceforge.net, last retrieved:

July 5th 2011.
[29] David Gelernter. Generative communication in Linda. ACM Transac-

tions on Programming Languages and Systems, 7(1):80–112, January
1985.

[30] Y. Labrou, T. Finin, and Yun Peng. Agent communication languages:
the current landscape. Intelligent Systems and their Applications, IEEE,
14(2):45 –52, mar/apr 1999.

51

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[31] Andrea Omicini, Alessandro Ricci, Mirko Viroli, Cristiano Castel-
franchi, and Luca Tummolini. Coordination artifacts: Environment-
based coordination for intelligent agents. In Proc. of the 3rd Int. Joint
Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS’04),
volume 1, pages 286–293, New York, USA, 19–23July 2004. ACM.

[32] R. G. Smith. The contract net protocol: High-level communication and
control in a distributed problem solver. IEEE Trans. Comput., 29:1104–
1113, December 1980.

[33] Michael N. Huhns, Munindar P. Singh, and Mark et al. Burstein.
Research directions for service-oriented multiagent systems. IEEE
Internet Computing, 9(6):69–70, November 2005.

[34] W3C Web Service Architecture – http://www.w3.org/TR/ws-arch/, last
retrieved: June 21th 2012.

[35] Alessandro Ricci, Enrico Denti, and Michele Piunti. A platform for
developing soa/ws applications as open and heterogeneous multi-agent
systems. Multiagent Grid Syst., 6:105–132, April 2010.

[36] P. Remagnino and G. L. Foresti. Ambient intelligence: A new multidisci-
plinary paradigm. IEEE Transactions on Systems, Man and Cybernetics,
Part A: Systems and Humans, 35(1):1–6, 2005.

[37] A. Sorici, O. Boissier, G. Picard, and A. Santi. Exploiting the jacamo
framework for realising an adaptive room governance application. In
Proc. of the compilation of the co-located workshops on DSM’11,
TMC’11, AGERE!’11, AOOPES’11, NEAT’11, & VMIL’11, pages 239–
242. ACM, 2011.

[38] C. Persson, G. Picard, F. Ramparany, and O. Boissier. A jacamo-
based governance of machine-to-machine systems. In Proc. of the
10th International Conference on Practical Applications of Agents and
Multi-Agent Systems (PAAMS 12), Advances in Soft Computing Series.
Springer, 2012.

[39] Android Platform web site – http://www.android.com/, last retrieved:
June 21th 2012.

[40] Andrea Santi, Marco Guidi, and Alessandro Ricci. JaCa-Android: An
agent-based platform for building smart mobile applications. In M. et al.
Dastani, editor, Languages, Methodologies, and Development Tools for
Multi-Agent Systems, volume 6822 of LNAI, pages 95–119. Springer,
2011.

[41] JaCa-Android project web site – http://jaca-android.sourceforge.net/,
last retrieved: June 21th 2012.

[42] Luca Cardelli and Peter Wegner. On understanding types, data abstrac-
tion, and polymorphism. ACM Comput. Surv., 17:471–523, December
1985.

[43] Peter Wegner and Stanley B. Zdonik. Inheritance as an incremental
modification mechanism or what like is and isn’t like. In Proceedings
of the European Conference on Object-Oriented Programming, ECOOP
’88, pages 55–77, London, UK, UK, 1988. Springer-Verlag.

[44] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and
Andrew P. Black. Traits: A mechanism for fine-grained reuse. ACM
Trans. Program. Lang. Syst., 28:331–388, March 2006.

[45] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Commun. ACM, 15:1053–1058, December 1972.

[46] M. Birna van Riemsdijk, Mehdi Dastani, John-Jules Ch. Meyer, and
Frank S. de Boer. Goal-oriented modularity in agent programming. In
Proc. of the 5th Int. Joint Conf. on Autonomous agents and Multiagent
systems (AAMAS’06), pages 1271–1278, New York, NY, USA, 2006.
ACM.

[47] P. Busetta, N. Howden, R. R onnquist, and A. Hodgson. Structuring
BDI agents in functional clusters. In N.R. Jennings and Y. Lespèrance,
editors, Intelligent Agents VI, volume 1757 of LNAI, pages 277–289.
Springer, 2000.

[48] L. Braubach, A. Pokahr, and W. Lamersdorf. Extending the capability
concept for flexible BDI agent modularization. In Programming Multi-
Agent Systems, volume 3862 of LNAI, pages 139–155. Springer, 2005.

[49] Peter Novák and Jürgen Dix. Modular BDI architecture. In AAMAS ’06:
Proceedings of the fifth international joint conference on Autonomous
agents and multiagent systems, pages 1009–1015, New York, NY, USA,
2006. ACM.

[50] Koen Hindriks. Modules as policy-based intentions: Modular agent
programming in GOAL. In Programming Multi-Agent Systems, volume
5357 of LNCS, pages 156–171. Springer, 2008.

[51] Neil Madden and Brian Logan. Modularity and compositionality in
Jason. In Proceedings of International Workshop Programming Multi-
Agent Systems (ProMAS 2009). 2009.

[52] Alessandro Ricci and Andrea Santi. Designing a general-purpose
programming language based on agent-oriented abstractions: the simpal

project. In Proc. of the compilation of the co-located workshops
on DSM’11, TMC’11, AGERE!’11, AOOPES’11, NEAT’11, VMIL’11,
SPLASH ’11 Workshops, pages 159–170, New York, NY, USA, 2011.
ACM.

[53] Olivier Boissier, Rafael H. Bordini, Jomi F. Hbner, Alessandro Ricci, and
Andrea Santi. Multi-agent oriented programming with jacamo. Science
of Computer Programming, (0):–, 2011.

52

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


