
Design by Contract for Web Services: Architecture, Guidelines, and Mappings

Bernhard Hollunder, Matthias Herrmann, Andreas Hülzenbecher
Department of Computer Science

Furtwangen University of Applied Sciences
Robert-Gerwig-Platz 1, D-78120 Furtwangen, Germany

Email: hollunder@hs-furtwangen.de, matthias.herrmann@hs-furtwangen.de, huelzena@hs-furtwangen.de

Abstract—Software components should be equipped with
well-defined interfaces. With design by contract, there is a well-
known principle for specifying preconditions and postcondi-
tions for methods as well as invariants for classes. Although
design by contract has been recognized as a powerful vehicle for
improving software quality, modern programming languages
such as Java and C# did not support it from the beginning. In
the meanwhile, several language extensions have been proposed
such as Contracts for Java, Java Modeling Language, as well as
Code Contracts for .NET. In this paper, we present an approach
that brings design by contract to Web services. We not only
elaborate a generic solution architecture, but also define its
components and investigate the foundations such as important
guidelines for applying design by contract. Technically, the
contract expressions imposed on a Web service implementation
will be extracted and mapped into a contract policy, which will
be included into the service’s WSDL interface. Our solution
also covers the generation of contract-aware proxy objects to
enforce the contract policy on client side. We demonstrate how
our architecture can be applied to .NET/WCF services and
JAX Web services.

Keywords-Design by contract; Web services; WS-Policy;
Contract policies; WCF; JAX; Contracts for Java; Contracts-
aware proxies.

I. INTRODUCTION

Two decades ago, Bertrand Meyer [2] introduced the
design by contract (DbC) principle for the programming lan-
guage Eiffel. It allows the definition of expressions specify-
ing preconditions and postconditions for methods as well as
invariants for classes. These expressions impose constraints
on the states of the software system (e.g., class instances,
parameter and return values) which must be fulfilled during
execution time.

Although the quality of software components can be
increased by applying design by contract, widely used
programming languages such as Java and C# did not support
contracts from the beginning. Recently, several language
extensions have been proposed such as Code Contracts
for .NET [3], Contracts for Java [4] as well as Java
Modeling Language [5] targeting the Java language. Com-
mon characteristics of these technologies are i) specific

This is a revisited and substantially augmented version of “Deriving
Interface Contracts for Distributed Services”, which appeared in the Pro-
ceedings of the Third International Conferences on Advanced Service
Computing (Service Computation 2011) [1].

language constructs for encoding contracts, and ii) extended
runtime environments for enforcing the specified contracts.
Approaches such as Code Contracts also provide support for
static code analysis and documentation generation.

In this work, we will show how Web services can profit
from the just mentioned language extensions. The solution
presented tackles the following problem: Contracts con-
tained in the implementation of a Web service are currently
completely ignored when deriving its interface expressed in
the Web Services Description Language (WSDL) [6]. As
a consequence, constraints such as preconditions are not
visible for a Web service consumer.

Key features of our solution for bringing contracts to Web
services are:

• simplicity
• automation
• interoperability
• client side support
• feasibility
• usage of standard technologies
• guidelines.
Simplicity expresses the fact that our solution is transpar-

ent for the Web service developer—no special activities must
be performed by her/him. Due to a high degree of automa-
tion, the DbC assertions (i.e., preconditions, postconditions,
and invariants) specified in the Web service implementation
are automatically translated into semantically equivalent
contract expressions at WSDL interface level.

As these expressions will be represented in a program-
ming language independent format, our approach supports
interoperability between different Web services frameworks.
For example, Code Contracts contained in a Windows Com-
munication Foundation (WCF) [7] service implementation
will be translated into a WSDL contract policy, which can be
mapped to expressions of the Contracts for Java technology
deployed on service consumer side. This client side support
is achieved by generating contract-aware proxy objects. The
feasibility of the approach has been demonstrated by proof
of concept implementation including tool support.

In order to represent contract expressions in a Web ser-
vice’s WSDL, we will employ standard technologies: i) WS-
Policy [8] as the most prominent and widely supported
policy language for Web services, ii) WS-PolicyAttachment

53

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[9] for embedding a contract policy into a WSDL descrip-
tion, and iii) the Object Constraint Language (OCL) [10]
as a standard of the Object Management Group (OMG)
for representing constraints in a programming language
independent manner.

Design by contract is a useful instrument to improve
service quality by imposing constraints, which must be
fulfilled during execution time. As these constraints are
typically expressed in a Turing complete language, arbitrary
business logic could be encoded. In this paper, we also
present guidelines on how to properly apply design by
contract by identifying functionality, which should not be
part of DbC assertions.

Before we explain our solution in the following sections,
we observe that several multi-purpose as well as domain-
specific constraint languages have already been proposed for
Web services (see, e.g., [11], [12], [13]). However, these
papers have their own specialty and do not address important
features of our approach:

• Contract expressions are automatically extracted from
the service implementation and mapped to an equiva-
lent contract policy.

• Our approach does not require an additional runtime
environment. Instead, it is the responsibility of the
underlying contract technology to enforce the specified
contracts.

• Usage of well-known specifications and widely sup-
ported technologies. Only the notions “contract asser-
tion” and “contract policy” have been coined in this
work.

The paper is structured as follows. Next we will introduce
the basics of design by contract. In Section III, we will
recall the problem description followed by the elaboration
of the solution architecture and an implementation strategy
on abstract level. Guidelines for applying design by contract
will be given in the Sections V and VI. So-called contract
policies will be defined in Section VII. Then we will apply
our strategy to Code Contracts for WCF services (Sec-
tion VIII) and Contracts for Java for JAX-WS Web Services
[14] (Section IX) followed by an example (Section X).
Limitations of the approach will be discussed in Section XI.
The paper will conclude with related work, a summary and
directions for future work.

II. DESIGN BY CONTRACT

Design by contract introduces the so-called assertions to
formalize selected aspects of a software system. Assertions
impose restrictions, which must be met at certain points
during program execution. An assertion can either be a
precondition and postcondition of a method or a class in-
variant. Typically, assertions constrain values of parameters
and variables such as range restrictions and null values. If
an assertion is violated during runtime (i.e., it is evaluated
to false), this is considered to be a software bug [15].

A. Preconditions and Postconditions

Preconditions and postconditions are a means to sharpen
the specification of a method. While the method’s signa-
ture determines the required parameter types, preconditions
and postconditions impose further restrictions on parameter
values. Formally, a precondition (resp. postcondition) of a
method is a boolean expression that must be true at the
moment that the method starts (resp. ends) its execution. In
general, such expressions can be quite complex comprising
logical (e.g. and), arithmetic (e.g. +) and relational opera-
tors (e.g. >) as well as function calls (e.g. size()).

Preconditions ensure that methods are really invoked
according to their specifications. Hence, a violation of a
precondition can be viewed as a software bug in the invoking
client code. In contrast, a method implementation can be
considered incorrect, if its postcondition is violated. This is
due to the fact that the implementation does not conform to
its specification.

B. Class Invariants

A class invariant is a constraint that should be true for
any instance of the class during its complete lifetime. In
particular, an invariant guarantees that only those instances
of a class are exchanged between method invoker and its
implementation that conform to the invariant constraints.
Analogously to preconditions and postconditions, a class
invariant is a boolean expression, which is evaluated during
program execution. If an invariant fails, an invalid program
state is detected.

III. PROBLEM DESCRIPTION

We start with considering a simple Web service that
returns the square root for a given number. We apply Code
Contracts [3] and Contracts for Java [4], respectively, to
formulate the precondition that the input parameter value
must be non-negative.

The following code fragment shows a realization as
a WCF service. According to the Code Contracts pro-
gramming model, the static method Requires of the
Contract class is used to specify a precondition while
a postcondition is indicated by the method Ensures.� �
using System.ServiceModel;
using System.Diagnostics.Contract;

[ServiceContract]
public interface IService {
[OperationContract]
double squareRoot(double d);

}

public class IServiceImpl : IService {
public double squareRoot(double d) {

Contract.Requires(d >= 0);
return Math.Sqrt(d);

}
}� �

Listing 1. WCF service with Code Contracts.

54

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The next code fragment shows an implementation of the
square root service in a Java environment. In this example,
we use Contracts for Java. In contrast to Code Contracts,
Contract for Java uses annotations to impose constraints on
the parameter values: @requires indicates a precondition
and @ensures a postcondition.� �
import javax.jws.WebMethod;
import javax.jws.WebService;
import com.google.java.contract.Requires;

@WebService()
public class Calculator {
@WebMethod
@Requires("d >= 0")
public double squareRoot(double d) {

return Math.sqrt(d);
}

}� �
Listing 2. Java based Web service with Contracts for Java.

Though the preconditions are part of the Web service
definition, they will not be part of the service’s WSDL in-
terface. This is due to the fact that during the deployment of
the service its preconditions, postconditions, and invariants
are completely ignored and hence are not considered when
generating the WSDL. This is not only true for a WCF
environment as already pointed out in [16], but also for Java
Web services environments such Glassfish/Metro [17] and
Axis2 [18].

As contracts defined in the service implementation are
not part of the WSDL, they are not visible to the Web
service consumer—unless the client side developer consults
additional resources such as an up to date documentation
of the service. But even if there would exist a valid docu-
mentation, the generated client side proxy objects will not
be aware of the constraints imposed on the Web service
implementation. Thus, if the contracts should already be
enforced on client side, the client developer has to manually
encode the constraints in the client application or the proxy
objects. Obviously, this approach would limit the acceptance
of applying contracts to Web services.

Our solution architecture overcomes these limitations by
automating the following activities:

• Contracts are extracted from the service implementa-
tion and will be transformed into corresponding OCL
expressions.

• The OCL expressions will be packaged as WS-Policy
assertions—so-called contract assertions.

• A contract policy (i.e., a set of contract assertions) will
be included into the service’s WSDL.

• Generation of contract-aware proxy objects—proxy ob-
jects that are equipped with contract expressions de-
rived from the contract policy.

• Usage of static analysis and runtime checking on both
client and server side as provided by the underlying
contract technologies.

An important requirement from a Web service develop-
ment point of view is not only the automation of these
activities, but also a seamless integration into widely used
Integrated Development Environments (IDEs) such as Visual
Studio, Eclipse, and NetBeans. For example, when deploy-
ing a Web service project no additional user interaction
should be required to create and attach contract policies.

IV. SOLUTION ARCHITECTURE

In this section we introduce the components of the
proposed architecture (see Figure 1). This architecture has
been designed in such a way that is can be instantiated in
several ways supporting both .NET/WCF as well as Java
environments.

Figure 1. Solution architecture.

In short, our approach adopts the code first strategy for
developing Web services. One starts with implementing the
Web service’s functionality in some programming language
such as C# or Java. We assume that some contract technol-
ogy is used to enhance the service under development by
preconditions, postconditions, and invariants. In Figure 1,
this activity is indicated by contract enrichment. At this
point, one ends up with a contract-aware Web service
such as the sample square root service at the beginning of
Section III.

In order to properly evaluate the contracts during service
execution, a contract-aware runtime environment is required.
Such an environment is part of the employed contract
technology.

We adapt the standard deployment of the Web service
such that a contract policy is created and attached to the
WSDL. The exporter component performs the following
tasks:

1) Extraction of contract expressions by inspecting the
Web service implementation.

2) Validation of contract expressions.

55

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3) Construction of contract assertions and contract poli-
cies.

4) Creation of the service’s WSDL and attachment of the
contract policy.

5) Upload of the WSDL on a Web server.
Note that the generated contract policy is part of the

service’s WSDL and is therefore accessible for the service
consumer. Both the WSDL and the contract policy is used by
the importer component to generate and enhance the proxy
objects on service consumer side. The importer component
fulfills the following tasks:

1) Generation of the “standard” proxy objects.
2) Mapping of the contract assertions contained in the

contract policy into equivalent expressions of the con-
tract technology used on service consumer side.

3) Enhancement of the proxy objects with the contract
expressions created in the previous step.

Note that service consumer and service provider may use
different contract technologies. Due to the usage of OCL as
“neutral” constraint language, syntactic differences between
the underlying programming languages will be compensated.

V. GUIDELINES

As mentioned in Section II, the DbC principle is a
useful instrument to improve service quality by imposing
constraints, which must be fulfilled during execution time.
As the constraints are typically expressed in a Turing
complete language, DbC can be misused for specifying
arbitrary business logic contradicting the idea of interface
contracts. This section is concerned with the question, which
functionality should (not) be realized as DbC assertions. The
conformance to these guidelines can be viewed as quality
checking for DbC usage.

In the following, we take a closer look to the following
areas:

1) Side effect free operations
2) Validation of external input data
3) Exception handling with assertions
4) Visibility of member variables and data types
5) Subtyping.

A. Side Effect Free Operations

In [15], the nature of assertions is described to be applica-
tive. The term emphasizes that assertions should behave like
mathematical functions and hence should not produce any
side effects. As a consequence, read access to resources such
as member variables is feasible, however their modification
is disallowed. Strictly speaking, the term applicative not only
excludes modifications of the object the assertions applies
to, but also the invocation of operations that change the state
of runtime objects such as logging or console entities.

It should be noted that in DbC technologies such as Eiffel
[19], Code Contracts for .NET [3], Contracts for Java [4]

and Java Modeling Language [5] assertions may invoke
arbitrary functions of the underlying programming language.
In their current versions, these technologies do not check the
applicative nature of DbC assertions. In other words, a DbC
designer does not get hints when invoking functions that
directly or indirectly produce side effects.

B. Validation of External Input Data

Bertrand Meyer recommends that assertions must not
be used for input validating (cf. [15]). Preconditions and
postconditions are “between” the method caller and the
method provider within a software component. In this sense,
both caller and provider are part of the same software and
do not represent an external system. Although a Web service
consumer is typically part of a different software component,
there is a deep logical dependency between service consumer
and service provider component, which means that both
components belong to the same system.

In contrast, validation of data coming from external sys-
tems should not be performed in DbC assertions. The logic
for checking the quality of those data should be implemented
in separate, standalone (importer) components by means of
typical validation constructs such as if/else.

C. Exception Handling with Assertions

This aspect addresses the question how to proceed if an
assertion is violated during runtime. Modern programming
languages support well-known exception handling strategies
based on try/catch blocks to locate abnormal situations and
to start appropriate compensation actions.

Although current DbC technologies allow exception han-
dling for dealing with failed assertions, a DbC designer
should not intermix both techniques. Otherwise, an excep-
tion thrown by the DbC runtime environment should be
handled by the surrounding application logic. This would not
only have a negative impact on the overall code structure,
but would also violate the first guideline “side effect free
operations”.

D. Visibility of Member Variables and Data Types

Web Services consumers and providers can be viewed
as two parts of a common software system. However,
both components are typically deployed and executed in
separated runtime environments. As indicated in Figure 1,
the Web service consumer sees an abstraction of the service
implementation and its contained DbC assertions by means
of the WSDL interface description. Thus, implementation
details are not passed to the client.

For example, suppose that an assertion specified in the
Web service implementation accesses a private member
variable. As private member variables are not contained in
a WSDL, this information is missing on consumer side.
Obviously, it would not be possible to check this assertion
in components, which invoke the Web service. The same

56

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

situation arises when specific data types and classes are
embedded into DbC assertions, which are not available
in the client environment. Thus, DbC assertions should
only contain variables, data types, and methods that are
meaningful and available also on Web service consumer
side.

E. Subtyping

As most DbC technologies allow inheritance of precon-
ditions and postconditions, it has to be considered how to
handle such circumstances. Liskov and Wing [20] analyzed
problems, which may occur in such settings. They argue that
preconditions should not be strengthened by preconditions
defined in derived classes. In contrast, postconditions and
class invariants should not be weakened in the same way.
This principle is also called behavioral subtyping.

Current DbC technologies apply a pragmatic approach
to ensure this principle. They simply build disjunctions of
the inherited preconditions. Analogously, postconditions and
invariants are connected by a conjunction, which means
that derived DbC assertions never become weaker (see, e.g.,
[21]). Of course, from a DbC developer point of view one
would expect more support exceeding this basic syntactic
manipulation.

VI. AUTOMATED RECOGNITION OF GUIDELINES

The automated detection of the described guidelines
would be a useful feature of a DbC infrastructure. In the
following, we elaborate to what extent such an approach
would be feasible.

A. Side Effect Free Operations

Basically, the automated recognition of side effects is
possible. We have to distinguish several cases. For example,
suppose an assertion invokes a function that does not return
any value (i.e., the return type is void). The only reason for
calling this function is due to its side effects. The same is
true in situations where return values are not processed in
DbC assertions.

Another indicator for side effects are assignments to
member variables such as this.x = 5;. Such statements can
be easily identified by inspecting the code structure. It should
be noted that some programming languages provide build-in
support for declaring methods that have only limited access
to resources. For example, in C++ member function can be
marked with the keyword const, indicating that the function
will not change the state of its enclosing objects [22].

In Code Contracts, the property Pure can be used to mark
methods as side effect free. As described in [3], the current
version behaves as follows: If a method not marked as Pure

is used within an assertion, a warning is generated.
When it comes to automated recognition of side effects

of entities such as logging or console, different strategies
are conceivable. One strategy would be to disallow such

method calls at all, even though they are not part of the
“real” business logic. Such a restrictive approach would be
inline with the applicative nature of DbC assertions. One
could also imagine a more liberal strategy, which allows
the usage of well-defined operations (e.g., System.out.

println, BufferedWriter, etc. in a Java environment). Such
method calls may facilitate debugging and testing both of the
software system and the attached DbC assertions.

B. Validation of External Input Data

As described in the previous section, data received from
external systems should not be validated by means of DbC
assertions. To check this guideline, it must be figured out,
whether a specific data source should be considered external.
Due to the fact that DbC technologies support function calls
within assertions, data can be fetched from arbitrary sources
as shown in the following listing.� �
private int userNumberInput() {
try {

return Integer.parseInt(new BufferedReader(new
InputStreamReader(System.in)).readLine());

} catch (Exception e) { return -1; }
}
@Requires({ "userNumberInput() != -1" })
public int add(int a, int b) {
return a + b;

}� �
Listing 3. Example for validating external input.

This code fragment applies Contracts for Java for spec-
ifying a precondition, which depends on data read from an
input stream.

In this case, it is obvious that the precondition does not
have any semantic relationship to the add method and should
therefore be avoided. However, in general there are situa-
tions, which are more complicated. For example, consider
a method that processes data taken from files or network
sockets. Depending on its functionality, the validation of
the received data may be part of the method’s contract
(and hence should be specified in a precondition) or may
define some separate processing, which is only required in
a specific context. Thus, an automatic compliance checker
for this guideline is conceivable only in limited settings.

C. Exception Handling with Assertions

In contrast to the previous guideline, this rule can be
recognized automatically. This can be achieved by analyzing
the syntactic structure of the DbC assertions.

D. Visibility of Member Variables and Data Types

In general, due to the modifiers for visibility of member
variables such as private, it could be derived automatically
whether a member variable used in a DbC assertion is really
meaningful to a local client.

Now suppose a client application, which invokes a Web
service. As mentioned before, such a client sees the data

57

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

types and its embedded members, which are published in
the WSDL of the Web service implementation. Hence, it
can be checked whether a DbC assertion contains a member
or a data type, which is not occurring in the WSDL. Hence,
the exporter component can fully check this guideline.

E. Subtyping

Finally, the fifth guideline demands the conformance to
the behavioral subtyping principle. In the previous section
we observed that most DbC technologies have chosen a
pragmatic approach by simply joining preconditions, post-
conditions, and invariants in derived classes (see, e.g., [23],
[4]). However, this simple rewriting does not really solve
the specification error.

In contrast, Code Contracts comes with a different strat-
egy. As mentioned in [3], this technology does not allow
adding any preconditions in derived types. For postcondi-
tions and invariants the behavior is similar to that of the
corresponding Java technologies.

It should be noted, that a full validation of the subtyping
principle is general not possible. Given two expressions
(e.g., preconditions), it is in general not decidable for Turing
complete DbC languages whether the one expression entails
the other.

F. DbC Infrastructure Extensions

We have investigated to what extent an automated recog-
nition of the proposed guidelines is possible. We have seen
that most of the guidelines can be checked by inspecting the
syntactic structure of the source code. So far, we have not
implemented such a “code inspector”. The focus of our work
is the elaboration of an overall solution architecture, which
identifies important components for, e.g., the extraction
of DbC expressions and the generation of contracts-aware
proxy objects.

A conformance checker for the proposed guidelines is not
part of this work. In fact, we believe that such a functionality
should be provided by concrete DbC technologies. The
designers of DbC implementations such as [3] and [4] can
use this information to improve their approaches. Basically,
we assume that a DbC compiler should produce warnings,
if guidelines are violated.

VII. CONTRACT POLICIES

Having investigated important guidelines for DbC asser-
tions, we now take a closer look to the exporter compo-
nent. As shown in Figure 1, this component creates the
interface contract for Web services, which is represented
by a WSDL description together with a contract policy. In
this section, we start with defining the building blocks of
contract policies, followed by a very short introduction to the
Object Constraint Language (OCL). In the final subsection,
examples are given.

A. Contract Assertions

We now define contract assertions and contract policies,
which allow the representation of constraints in some neu-
tral, programming language independent format. We apply
the well-known WS-Policy standard for the following rea-
sons: WS-Policy is supported by almost all Web services
frameworks and is the standard formalism for enriching
WSDL interfaces. With WS-PolicyAttachment [9], the prin-
ciples for including policies into WSDL descriptions are
specified.

WS-Policy defines the structure of the so-called assertions
and their compositions, but does not define their “content”.
To represent preconditions, postconditions, and invariants,
we need some language for formulating such expressions.
We decided to use the Object Constraint Language (OCL)
because of its high degree of standardization and sup-
port by existing OCL libraries such as the Dresden OCL
Toolkit [24].

To formally represent constraints with WS-Policy, we
introduce so-called contract assertions. The XML schema
as follows:� �
<xsd:schema ...>
<xsd:element name = "ContractAssertion"/>
<xsd:complexType>
<xsd:sequence>

<xsd:element name = "Precondition"
type = "xsd:string"
maxOccurs = "unbounded"/>

<xsd:element name = "Postcondition"
type = "xsd:string"
maxOccurs = "unbounded"/>

<xsd:element name = "Invariant"
type = "xsd:string"
maxOccurs = "unbounded"/>

</xsd:sequence>
<xsd:attribute name = "Name"

type = "xs:string"/>
<xsd:attribute name = "Context"

type = "xs:anyURI"
use = "required"/>

</xsd:complexType>
</xsd:schema>� �

Listing 4. XML schema for contract assertions.

A ContractAssertion has two attributes: a manda-
tory context and an optional name for an identifier. The
context attribute specifies the Web service to which the
constraint applies. To be precise, the value of the context
attribute is the name of the operation as specified in the
portType section of the WSDL. In case of an invariant,
the context attribute refers to the type defined in the types
section.

The body of a contract assertion consists of a set of OCL
expressions. Depending on the surrounding element type the
expression represents a precondition, a postcondition, or an
invariant. The expressions may refer to the parameter and
return values of an operation as well as to the attributes of
a type.

58

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. OCL Expressions

OCL is a formal language for specifying particular aspects
of an application system is a declarative manner. Typically,
OCL is used in combination with the Unified Modeling
Language (UML) [25] to further constrain UML models.
In OCL, “a constraint is a restriction on one or more values
of (part of) an object-oriented model or system” [26]. In our
context, OCL expressions will be used to specify constraints
for Web services.

We use the following features of OCL in contract asser-
tions:

• The basic types Boolean, Integer, Real, and
String.

• Operations such as and, or, and implies for the
Boolean type.

• Arithmetic (e.g., +, *) and relational operators (e.g., =,
<) for the types Integer and Real.

• Operations such as concat, size, and substring
for the String type.

• The collection types Set and Sequence.
• The construct Tuple to compose several values.
In order to impose restrictions on collections of objects,

OCL defines operations for collection types. Well-known
operations are:

• size(): returns the number of elements in a collection
to which the method applies.

• count(object): returns the number of occurrences
of object in a collection.

• includes(object): yields true if object is an
element in a collection.

• forAll(expr): yields true if expr is true for all
elements in the collection.

• select(expr): returns a subcollection containing
all objects for which expr is true.

• reject(expr): returns a subcollection containing
all objects for which expr is false.

These operations may be used to constrain admissible
values for collections occurring in the service’s WSDL.

Before we give some examples, we introduce the key-
words @pre and result, which can be used in post-
conditions. To impose restrictions on the return value of a
service, the latter keyword can be used. In a postcondition,
the parameters may have different values at invocation and
termination, respectively, of the service. To access the orig-
inal value upon completion of the operation, the parameter
must be equipped with the prefix @pre.

C. Examples

The first example considers the square root service from
Section III, extended by a postcondition. The XML fragment
in Listing 5 shows a formulation as a contract assertion. The
identifier d in the precondition refers to the parameter name
of the service as specified in the WSDL.

� �
<ContractAssertion context="SquareRootService">
<Precondition>
d >= 0

</Precondition>
<Postcondition>

result >= 0
</Postcondition>

</ContractAssertion>� �
Listing 5. Contract assertion for square root service.

The next example illustrates two features: i) the definition
of an invariant and ii) the usage of a path notation to
navigate to members and associated data values. Consider
the type CustomerData with members name, first name
and address. If address is represented by another complex
data type with members such as street, zip and city, we can
apply the path expression customer.address.zip to
access the value of the zip attribute for a particular customer
instance.

Whenever an instance of CustomerData is exchanged
between service provider and consumer, consistency checks
can be performed as shown in the following figure:� �
<ContractAssertion context="CustomerDataService">
<Invariant>
this.name.size() > 0

</Invariant>
<Invariant>
this.age >= 0

</Invariant>
<Invariant>
this.address.zip.size() >= 0

</Invariant>
</ContractAssertion>� �

Listing 6. An invariant constraint.

To demonstrate the usage of constraints on collections
we slightly extend the example. Instead of passing a single
customerData instance, assume that the service now
requires a collection of those instances. Further assume
that the parameter name is cds. In order to state that
the collection must contain at least one instance, we can
apply the expression cds->size() >= 1. With the help
of the forAll operator one can for instance impose the
constraint that the zip attribute must have a certain value:
cds->forAll(zip = 78120).

VIII. CODE CONTRACTS AND WCF

We now instantiate the solution architecture presented in
Section IV. We start with investigating Code Contracts for
WCF (this section); the following section applies Contracts
for Java to JAX Web services.

A. Exporting Contract Policies

In WCF, additional WS-Policy descriptions can be at-
tached to a WSDL via a so-called custom binding. Such
a binding uses the PolicyExporter mechanism also
provided by WCF. To export a contract policy as described in

59

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Section IV, a class derived from BindingElement must
be implemented. The inherited method ExportPolicy
contains the specific logic for creating contract policies.
Details for defining custom bindings and applying the WCF
exporter mechanism are described elsewhere (e.g., [16]) and
hence are not elaborated here.

B. Creating Contract Assertions

Code Contracts expressions are mapped to corresponding
contract assertions. Thereby we distinguish between the
creation of i) the embedding context and ii) OCL expressions
for preconditions, postconditions, and invariants.

In Code Contracts, a precondition (resp. postcondition)
is specified by a Contract.Requires statement (resp.
Contract.Ensures). Thus, for each Requires and
Ensures statement contained in the Web service imple-
mentation, a corresponding element (i.e., Precondition
or Postcondition) will be generated. The context at-
tribute of the contract assertion is the Web service to which
the constraint applies.

According to the Code Contracts programming model, a
class invariant is realized by a method that is annotated with
the attribute ContractInvariantMethod. For such a
method, the element Invariant will be created; its con-
text is the type that contains the method.

Let us now consider the mapping from Code Contracts
expressions to corresponding ones of OCL. We first observe
that Code Contracts expressions may not only be composed
of standard operators (such as Boolean, arithmetic and
relational operators), but can also invoke pure methods, i.e.,
methods that are side-effect free and hence do not update
any pre-existing state. While the standard operators can be
mapped to OCL in a straightforward manner, user defined
functions (e.g., prime number predicate) typically do not
have counterparts in OCL and hence will not be translated
to OCL. For a complete enumeration of available OCL
functions see [10], [26].

The following table gives some examples for selected
features:

Code Contracts OCL
0 <= x && x <= 10 0 <= x and

x <= 10
x != null not x.isType

(OclVoid)
Contract.OldValue(param) @pre param
Contract.Result<T>() return
Contract.ForAll cds->forAll
(cds, cd => cd.age >= 0) (age >= 0)

Table 1. Mapping of Code Contracts expressions to OCL.

In the first two examples x denotes a name of an operation
parameter. They illustrate that there are minor differences
regarding the concrete syntax of operators in both languages.
The third example shows the construction how to access
the value of a parameter at method invocation. While Code

Contracts provide a Result method to impose restrictions
on the return value of an operation, OCL introduces the
keyword return. In the final example, cds represents a
collection; the expressions impose restrictions, which must
be fulfilled by all instances contained in the collection.

C. Collections and Functions

OCL provides a limited set of collection types and func-
tions. Table 2 shows how important collection types and
functions of C# will be mapped to OCL.

C# OCL
System.Collections.Generic.
HashSet(Of T)

Set

System.Array Sequence
System.Collections.Generic.List(
Of T)

Sequence

!System.Linq.Enumerable.Any() Collection.
isEmpty()

System.Collections.ICollection.
Count()

Collection.
size()

System.Collections.Generic.List.
Add(object)

Sequence
.append(
object)

int % int Integer.mod
(int)

System.Math.Max(double, double) Double.max(
double)

System.String.ToUpper() String.
toUpper()

System.String.Concat(String) String.
concat(
String)

System.String.Substring(intStart,
intOffset)

String.
substring
(intStart
- 1,

intStart +
intOffset)

Table 2. Mapping types and functions from C# to OCL.

It should be noted that there are some widely used
types, which are not supported by OCL. An example is a
type representing dates. Such a type is part of Java (e.g.,
java.util.Date) and C# (e.g., DateTime in the .NET
system namespace). In such a case we propose the following
strategy. We define a set of “virtual” OCL types (e.g.,
OCL_Date) together with the mapping rules between the
corresponding types in the programming languages such as
C# and Java. Thus, we can easily extend OCL by additional
types, which are typically used in DbC assertions and which
should be available at WSDL interface level. Of course, the
implementations of the mappings to OCL must be adapted
accordingly.

D. Importing Contract Assertions

As shown in Figure 1, the role of the importer com-
ponent is to construct contract-aware proxy objects. WCF
comes with the tool svcutil.exe that takes a WSDL
description and produces the classes for the proxy objects.

60

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Note that svcutil.exe does not process custom policies,
which means that the proxy objects do not contain contract
assertions.

WCF provides a mechanism for evaluating custom poli-
cies by creating a class that implements the IPolicy-
ImporterExtension interface. In our approach, we
create such a class that realizes the specific logic for parsing
contract assertions and for generating corresponding Code
Contracts assertions. As the standard proxy class is a partial
class, the created Code Contracts assertions can be simply
included by creating a new file.

IX. CONTRACTS FOR JAVA FOR JAX WEB SERVICES

In this section, we consider a contract technology for Java.
The principles of this description can be carried over to other
Java based contracts technologies.

A. Exporting Contract Policies

In Contracts for Java [4], the preconditions, postcon-
ditions, and invariants are expressed with the annotations
Requires, Ensures, and Invariant, respectively. An
example has been given in Section III.

The reflection API of Java SE allows the inspection of
meta-data. In order to access the annotations of methods we
apply these API functions. Given a method (which can be
obtained by applying getMethods() on a class or an in-
terface), one can invoke the method getAnnotations()
to get its annotations. Such an annotation object represents
the contract expression to be transformed into an OCL
expression.

Before we consider in more detail this transformation,
we discuss how to create and embed contract policies
into WSDL descriptions. A Web services framework pro-
vides API functions for these tasks; these functions are
not standardized, though. As a consequence, we need to
apply specific mechanisms provided by the underlying Web
services frameworks.

Basically, the developer has to create a WS-Policy with
the assigned assertions. To include the policy file into the
service’s WSDL, one can use the annotation @Policy,
which takes the name of the WS-Policy file and embeds
it into the WSDL. Other frameworks create an “empty”
default policy, which can be afterwards replaced by the full
policy file. During deployment, the updated policy will be
embedded into the service’s WSDL.

B. Creating Contracts Assertions

In Contracts for Java, the expressions contained in the
@requires, @ensures, and @invariant annotations
are either simple conditions (e.g., d >= 0) or complex
terms with operators such as && and ||. As in Code
Contracts, the expressions may refer to parameter values
and may contain side-effect free methods with return type

boolean. Similar to the mapping of Code Contracts ex-
pressions, these methods will not be mapped to contract
assertions (see Section VIII-B).

The following table gives some hints how to map expres-
sions from Contracts for Java to OCL.

Contracts for Java OCL

0 <= x && x <= 10 0 <= x and x <= 10
x != null not x.isType(OclVoid)
old(param) @pre param
result return

Table 3. Mapping of selected Contracts for Java expressions to OCL.

Note that Contracts for Java currently does not provide
special support for collections (such as a ForAll operator).
Thus, a special predicate needs to be defined by the contract
developer.

C. Collections and Functions

As for C#, we will also give mappings from Java collec-
tion types and functions to OCL (see Table 4).

Java type OCL type
java.util.Set Set
java.util.Array Sequence
java.util.List Sequence

java.util.Collection.isEmpty() Collection.
isEmpty()

java.util.Collection.size() Collection.
size()

java.util.List.add(object) Sequence
.append(
object)

int % int Integer.mod
(int)

java.lang.Math.max(double, double
)

Double.max(
double)

java.lang.String.toUpperCase() String.
toUpper()

java.lang.String.concat(String) String.
concat(
String)

java.lang.String.substring(
intStart, intEnd)

String.
substring(
intStart -
1, intEnd)

Table 4. Data type mappings from Java to OCL.

D. Importing Contract Assertions

To obtain the (standard) proxy objects, tools such as
WSDL2Java are provided by Java Web services frame-
works. Given a WSDL file, such a tool generates Java
classes for the proxy objects. In order to bring the contract
constraints to the proxy class, we apply the following
strategy:

1) Import of the contract policy contained in the WSDL
description.

2) Enhancement of the proxy classes by Contracts for
Java expressions obtained from the contract policy.

61

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

There is no standardized API to perform these tasks.
However, Java based Web services infrastructures provide
their specific mechanisms. A well-known approach for ac-
cessing the assertions contained in a WS-Policy is the
usage of specific importer functionality. To achieve this, one
can implement and register a customized policy importer,
which in our case generates @requires, @ensures,
and @invariant annotations for the contract assertions
contained in the WS-Policy.

The second step interleaves the generated expressions with
the standard proxy classes. A minimal invasive approach is
as follows: Instead of directly enhancing the methods in the
proxy class, we create a new interface, which contains the
required Contracts for Java expressions. The proxy objects
must only slightly be extended by adding an “implements”
relationship to the interface created. This extension can be
easily achieved during a simple post-processing activity after
WSDL2Java has been called.

X. EXAMPLE

As an example, consider a weather data Web ser-
vice as provided by the National Weather Service (NWS,
http://www.weather.gov). We take a closer look to
the NDFDgenByDay service, which is described as follows:
“Returns National Weather Service digital weather forecast
data. Supports latitudes and longitudes for the continen-
tal United States, Hawaii, Guam, and Puerto Rico only.
Allowable values for the input variable “format” are “24
hourly” and “12 hourly”. The input variable “startDate”
is a date string representing the first day (Local) of data to
be returned. The input variable “numDays” is the integer
number of days for which the user wants data.”

Many of the Web services provided by NWS require a
latitude and a longitude both specifying the geographical
point of interest. Depending on the service, additional pa-
rameters such as the start date and length of the forecast.
If called successfully, such a service will return a string,
which represents the weather forecast encoded in the Digital
Weather Markup Language (DWML).

The following listing shows the service’s interface with
WCF/C#.� �
using System.ServiceModel;
using System.Diagnostics.Contract;

[ServiceContract]
public interface WeatherService {
[OperationContract]
string NDFDgenByDay(

decimal latitude, decimal longitude,
System.DateTime startDate,
int numDays,
string format);

}� �
Listing 7. WCF/C# interface of NDFDgenByDay.

With the help of the Code Contract technology we formal-
ize some of the constraints expressed in the documentation.
Listing 8 focusses on selected preconditions and postcondi-
tions of the service.� �
public class WeatherServiceImpl : WeatherService {
public string NDFDgenByDay(

decimal latitude,
decimal longitude,
System.DateTime startDate,
int numDays,
string format) {

Contract.Requires(latitude > 120 && ...);
Contract.Requires(longitude < -175 && ...);
Contract.Requires(numDays > 0 && numDays < 8);
Contract.Requires(format.Equals("12 hourly") ||

format.Equals("24 hourly"));
Contract.Ensures(

Contract.Result<string>().Length > 0);

// here follows the implementation
// of the core functionality
return ... ;
}
}� �

Listing 8. Excerpt of a NDFDgenByDay implementation.

Given this description of the service, our approach auto-
matically derives a representation of the DbC constraints.
In particular, it creates a contract assertion with an OCL
encoding of the constraints (see Listing 9).� �
<ContractAssertion context="NDFDgenByDay">
<Precondition>

latitude > 120 && ...
</Precondition>
<Precondition>

longitude < -175 && ...
</Precondition>
<Precondition>

numDays > 0 && numDays < 8
</Precondition>
<Postcondition>

result.size() > 0
</Postcondition>

</ContractAssertion>� �
Listing 9. Contract assertion for the weather service.

As described above, this contract assertion is packaged
into a contract policy, which will be attached to the weather
service’s WSDL. This interface description is used to gen-
erate the contract-aware clients for .NET/WCF (cf. Section
VIII-D) and JAX (cf. Section IX-D).

XI. LIMITATIONS AND OPEN ISSUES

We have already mentioned that contract languages have
a higher expressivity than OCL. They in particular allow the
usage of user-defined predicates implemented, e.g., in Java
or C#. As OCL is not a full-fledged programming language,
not every predicate can be mapped to OCL. In other words,
only a subset of the constraints will be available at interface
level. At first sight, this seems to be a significant limitation.
However, the role of preconditions and postconditions is

62

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

usually restricted to perform (simple) plausibility checks on
parameter and return values. OCL has been designed in this
direction and hence supports such kinds of functions.

Although WS-Policy [8] and WS-PolicyAttachment [9]
are widely used standards, there is no common API to export
and import WS-Policy descriptions. As mentioned before,
Web services infrastructures have their specific mechanisms
and interfaces how to attach and access policies. Thus, the
solutions presented in this paper must be slightly adapted
if another Web services framework should be used. For
instance, the exporter and importer classes for processing
contract policies must be derived from different interfaces;
also the deployment of these classes must be adapted.

Finally, we observe that the exception handling must be
changed, if contract policies are used. This is due to the fact
that the contract runtime environment has the responsibility
to check the constraints. If, e.g., a precondition is violated,
an exception defined by the contract framework will be
raised, that contains a description of the violation (e.g., that
the value of a particular parameter is invalid). This must be
respected by the client developer—at least during the test
phase of the software application.

XII. RELATED WORK

There are several approaches that increase the expres-
sivity of WSDL towards the specification of constraints.
An overview of different constraint validation approaches
is given in Froihofer [27] together with an evaluation of
different implementation strategies ranging from in-place
injection to wrapper- and compiler-based approaches. In
particular, the impact on performance was investigated. In
[28], Web services are enhanced by using DbC expressions
to add behavorial information. In contrast to our work, the
DbC assertions are not extracted from the Web service’s
implementation.

With WS-PolicyConstraints ([11], [29]) there is a domain
independent, multi-purpose assertion language for formal-
izing capabilities and constraints as WS-Policy assertions.
Basically, this language could be used to define code contract
constraints. However, since WS-PolicyConstraints does not
have an implementation, we use OCL expressions within
contract assertions.

There are some results originating from the service moni-
toring area that are related to our approach. A communality
is the usage of formal languages for specifying additional
requirements for services not expressible within WSDL.
Languages such as WS-Col (cf. [30]), WS-Policy4MASC
(cf. [31]) and annotated BPEL (cf. [32]) are optimized for
monitoring messages and support, for example, message
filtering, logging and correlation. However, this is not the
target of our approach. Instead, our focus lies on the usage
of the standardized language OCL for the specification of
constraints.

The formalization of security constraints for Web services
is a hot topic since the early days of Web services. WS-
Security [33] and WS-SecurityPolicy [12] are two well-
known and widely used specifications for imposing con-
straints addressing encryption and attachment of signatures
for Web services. These approaches do not compete with
our approach, but can be applied in addition.

XIII. CONCLUSIONS

In this paper, we have elaborated a solution architecture
that brings design by contract to Web services. Through
our approach, important constraints (i.e., preconditions and
postconditions for methods as well as class invariants) are no
longer ignored, but will be included into the service’s WSDL
interface description. As a consequence, service consumers
not only see the parameter types required to successfully
invoke the Web service, but also restrictions imposed on the
types such as range restrictions.

We would like to stress two important features of our
approach. First, our solution is based on well-known and
widely used standards such as WS-Policy and the Object
Constraint Language. Hence, no proprietary frameworks are
required to implement the solution architecture. Second, in
order to show the feasibility of our approach, we have instan-
tiated our architecture with two different DbC technologies
and Web services frameworks.

As mentioned in Sections V and VI, the proposed guide-
lines can be viewed as quality checker. This means that only
those expressions should be contained in DbC assertions,
which are inline with the design by contract principle.

ACKNOWLEDGMENTS

We would like to thank Ahmed Al-Moayed, Varun Sud,
and the anonymous reviewers for giving helpful comments
on an earlier version. This work has been partly supported
by the German Ministry of Education and Research (BMBF)
under research contract 17N0709.

REFERENCES

[1] B. Hollunder, “Deriving interface contracts for distributed ser-
vices,” in The Third International Conferences on Advanced
Service Computing, 2011, p. 7.

[2] B. Meyer, “Applying ‘design by contract’,” Computer, vol. 25,
no. 10, pp. 40 –51, oct 1992.

[3] Microsoft Corporation, “Code contracts user manual,”
http://research.microsoft.com/en-us/projects/contracts/-
userdoc.pdf, last access on 06/10/2012.

[4] N. M. Le, “Contracts for java: A practical framework for
contract programming,” http://code.google.com/p/cofoja/, last
access on 08/15/2011.

[5] Java Modeling Language. http://www.jmlspecs.org/, last ac-
cess on 06/10/2012.

63

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[6] Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl/, last access on 06/10/2012.

[7] J. Löwy, Programming WCF Services. O’Reilly, 2007.

[8] Web Services Policy 1.5 - Framework. http://www.w3.org/-
TR/ws-policy/, last access on 06/10/2012.

[9] Web Services Policy 1.5 - Attachment. http://www.w3.org/-
TR/ws-policy-attach/, last access on 06/10/2012.

[10] Object Constraint Language Specification, Version 2.2,
http://www.omg.org/spec/OCL/2.2, last access on 06/10/2012.

[11] A. H. Anderson, “Domain-independent, composable web
services policy assertions,” in POLICY ’06: Proceedings of
the Seventh IEEE International Workshop on Policies for
Distributed Systems and Networks. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 149–152.

[12] WS-SecurityPolicy 1.3. http://docs.oasis-open.org/ws-
sx/wssecuritypolicy/v1.3, last access on 06/10/2012.

[13] A. Erradi, V. Tosic, and P. Maheshwari, “MASC - .NET-
based middleware for adaptive composite web services,” in
IEEE International Conference on Web Services (ICWS’07).
IEEE Computer Society, 2007.

[14] E. Hewitt, Java SOA Cookbook. O’Reilly, 2009.

[15] B. Meyer, Object-Oriented Software Construction (Book/CD-
ROM) (2nd Edition), 2nd ed. Prentice Hall, 3 2000.
[Online]. Available: http://amazon.com/o/ASIN/0136291554/

[16] B. Hollunder, “Code contracts for windows communication
foundation (WCF),” in Proceedings of the Second Interna-
tional Conferences on Advanced Service Computing (Service
Computation 2010). Xpert Publishing Services, 2010.

[17] A. Goncalves, Beginning Java EE 6 Platform with GlassFish
3. Apress, 2009.

[18] D. Jayasinghe and A. Afkham, Apache Axis2 Web Services.
Packt Publishing, 2011.

[19] B. Meyer, Eiffel : The Language (Prentice Hall Object-
Oriented Series), 1st ed. Prentice Hall, 10 1991. [Online].
Available: http://amazon.com/o/ASIN/0132479257/

[20] B. H. Liskov and J. M. Wing, “Behavioral subtyping using
invariants and constraints,” Tech. Rep., 1999.

[21] Y. Feldman, O. Barzilay, and S. Tyszberowicz, “Jose: Aspects
for design by contract80-89,” in Software Engineering and
Formal Methods, 2006. SEFM 2006. Fourth IEEE Interna-
tional Conference on, sept. 2006, pp. 80 –89.

[22] B. Stroustrup, C++ Programming Language, The (3rd Edi-
tion), 3rd ed. Addison-Wesley Professional, 6 1997.

[23] G. T. Leavens, “Jml’s rich, inherited specifications for be-
havioral subtypes,” in Formal Methods and Software Engi-
neering: 8th International Conference on Formal Engineering
Methods (ICFEM). Springer-Verlag, 2006.

[24] Dresden OCL: OCL support for your modeling language,
http://www.dresden-ocl.org/, last access on 06/10/2012.

[25] Unified Modeling Language (UML), Infrastructure,
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF last
access on 06/10/2012.

[26] J. Warmer and A. Kleppe, The Object Constraint Language:
Getting Your Models Ready for MDA. Addison Wesley,
2003.

[27] L. Froihofer, G. Glos, J. Osrael, and K. M. Goeschka,
“Overview and evaluation of constraint validation approaches
in Java,” in ICSE ’07: Proceedings of the 29th international
conference on Software Engineering. IEEE Computer
Society, 2007.

[28] M. L. Reiko Heckel, “Towards contract-based testing of web
services,” Electronic Notes Theoretical Computer Science,
vol. 82, pp. 145–5156, 2005.

[29] “WS-PolicyConstraints: A domain-independent web services
policy assertion language,” Anderson, Anne H., 2005.

[30] P. P. Luciano Baresi, Sam Guinea, “WS-Policy for service
monitoring,” in Technologies for E-Services. Springer, 2006.

[31] A. Erradi, P. Maheshwari, and V. Tosic, “WS-Policy based
monitoring of composite web services,” in Proceedings of
European Conference on Web Services. IEEE Computer
Society, 2007.

[32] S. G. Luciano Baresi, Carlo Ghezzi, “Smart monitors for
composed services,” in Proceedings of the 2nd International
Conference on Service Oriented Computing (ICSOC 2004),
2004, pp. 193–202.

[33] WS-Security. http://www.oasis-open.org/committees/wss, last
access on 06/10/2012.

64

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

