
179

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Testing Object-Oriented Code Through a Specifications-Based Mutation Engine

Pantelis Stylianos Yiasemis

Department of Computer Engineering and Informatics,

Cyprus University of Technology

Limassol, Cyprus

email: pantelis.yiasemis@cut.ac.cy

Andreas S. Andreou
Department of Computer Engineering and Informatics,

Cyprus University of Technology

Limassol, Cyprus

email: andreas.andreou@cut.ac.cy

Abstract—This paper presents a simple, yet efficient and

effective mutation engine that can produce mutations of object-

oriented source code written in the C# and Visual Basic

languages as an extension of previous work on the topic [1]. The

engine produces mutants based on user selected mutation

operators the number of which is bounded by the specifications

declared in the source code with the aid of Code Contracts. The

specifications are described using a set of pre- and post-

conditions and invariants. The engine consists of four distinct

and integrated components; a syntactic verification component,

a static analysis component, a mutation generation component,

and a test case quality assessment component. A series of

experiments are conducted which show that the proposed engine

is able to locate a fault and efficiently propose the proper

correction. In addition, the scalability of the proposed approach

is assessed in terms of time and performance with respect to

different program sizes.

Keywords-mutation testing; mutation engine; specifications;

I. INTRODUCTION

The rapid evolution of technology has lead to the creation
of a large variety of tools that automate a number of activities
within the process of software development. Computing
power increases in almost exponential rates, a fact that
supports the development of better and faster software
systems, which, in turn, exercises pressure on their reliability
as typically these systems become increasingly more complex.
The competition that exists between software development
companies pushes them to increase their productivity by
developing the software in tighter time frames having a direct
effect on the quality of the software developed.

Software Testing efficiency, or better the lack of it, is one
of the most important reasons for inadequate quality control in
today’s software development. Software testing is a way of
making sure that a software system meets its specifications
while being correct and appropriate ([2], [3]). Software testing
is a quite complex process that needs to be correctly
performed; it thus consumes a large percentage of the time
and budget of the whole development process. In some
occasions it even surpasses the time and budget needed for the
creation of the software product [4]. Its main purpose is the
improvement of the functional behavior of a system under
development, by revealing and locating faults in source code.

The software testing process comprises two main
activities, the correct identification of faults and their
correction (debugging). Faults can be incorrect steps or data
definitions in a program that when executed together lead to

failure. Such faults are also called errors, anomalies,
inconsistencies or bugs [5]. Identifying faults is more time
consuming than correcting faults in software testing. This
leads to the conclusion that there is a constant need for
developing tools that will aid the acceleration, correctness and
automation of the testing process, by guiding developers to
locate and correct faults more efficiently and effectively.

The aim of this paper is to introduce a mutation engine for
source code written in two popular object-oriented
programming languages, namely C# and VB. Mutations are
replacements of code statements performed through certain
operators that correspond to specific types of errors. These
replacements produce the so-called mutant programs which
are then used in order to assess the quality of a test case set as
regards to its ability to identify faults in code. The proposed
engine constitutes the backbone of a novel mutation testing
technique that takes into consideration the specifications of
the program for creating only valid mutants. The engine is
implemented in Visual Studio 2010 and consists of four
components: The first offers the ability to validate the
grammatical correctness of the source code; the second
provides a form of static analysis for exporting useful
information that can be used to process/modify the source
code; the third involves the production of mutations of the
original source code, while the fourth facilitates the
identification of faults, as well as the assessment of the quality
of test data.

This work constitutes an extension of previous work on
the topic [1], which introduced a Mutation Engine for C#
making use of Code Contracts to limit the number of
produced mutants thus decreasing the time needed for fault
localization. The new ground investigated in this paper may
be summarised to the following: (a) The Mutation Engine has
been extended to work with code written not only in C# but in
VB as well. (b)The assessment of the resulted mutants and the
correct identification and correction of faults for a series of
examples are performed for both programming languages
with comparisons between their results. (c) The engine was
tested against larger versions of code and the time
performance for locating the faults and producing all the
mutants was assessed for multiple program sizes, with the
lines of source code being increased by two, four, six and
eight times respectively.

The rest of the paper is structured as follows: Section II
describes briefly the basic concepts that form the necessary
technical background of this work. Section III presents the
mutation engine, its architecture and key elements ruling the

180

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

generation of mutations, along with a brief demonstration of
the supporting software tool. Section IV describes a set of
experiments and the corresponding results that indicate the
correctness and efficiency of the proposed approach. Finally,
Section V concludes the paper and suggests some steps for
future work.

II. TECHNICAL BACKGROUND

According to Khan [6], there are three kinds of software
testing techniques. These are White Box Testing (WBT),
Black Box Testing (BBT) and the mixing of the two called
Gray Box Testing (GBT). Each techniques offers its own
advantages and disadvantages, differing in the way test cases
are created and executed. In BBT the test cases are created
based on the functions and specifications of the system under
testing without the need for actual knowledge of the source
code. WBT requires that the tester has full access to the
source code and knows exactly the way it works. An
advantage of this method is the ability to locate coincidental
correctness, that is, the case where the final result is correct
but the way it is calculated is not. Furthermore, all possible
paths of code execution may potentially be tested offering the
means to identify errors or/and locate parts of dead code, that
is, parts that are actually never executed. GBT combines the
testing methodology of WBT and BBT, meaning that it tests a
system against the specifications defined but also it uses
information from the source code to create the test cases. It
needs more knowledge of the internals of a system than BBT
but less than WBT.

Different techniques have been proposed for WBT [6]
making use of the structure of the source code or the sequence
of execution, giving birth to static code analysis for the former
and dynamic testing for the latter. This paper concentrates on
dynamic testing where the actual flow of execution drives test
data production. One such technique that has gained serious
interest among the research community is Mutation Testing
(MT).

Various research studies propose Mutation Testing as the
basic element of their approach to software testing (e.g.,
[7],[8]). MT is a relatively new technique introduced by
DeMillo et al. [9] and Hamlet [10], which is based on the
replacement of code statements through certain operators that
correspond to specific types of errors, producing the so-called
mutant programs. These programs are then used to assist in
producing or/and assessing the quality of test data as regards
revealing the errors in the mutants [11].

The general idea behind MT is that the faults being
injected correspond to common errors made by programmers.
The mutants are slightly altered versions of programs which
are very close to their correct form. Each fault is actually a
single change of the initial version of the program. The
quality of a produced set of test cases is assessed by executing
all the mutants and checking whether the injected faults have
been detected by the set or not. This assessment is based on a
Mutation Score (MS), which is the ratio of “killed” mutants
against the non-equivalent mutants. The purpose of mutation
analysis is to aid in creating a test case set of high quality, that
is, a set able to produce a MS closer to 1. Such a test can be
used to detect all the faults that may exist in the code.

It is possible to produce a large number of variations of a
program and the faults that may contain, thus traditional MT
targets only groups of faults that are closer to the original
version of the code. This practice is based on the Competent
Programmer Hypothesis (CPH) and the Coupling Effect (CE).
The CPH states that the code written by programmers is
almost correct. CE states that when identifying simple faults
with a set of test data, the same test data can also identify
larger and more complex faults [12]. While recent work in the
field of MT deals with high order mutations [11] [13], this
paper targets only on first order mutants (simple mutants) as
these may be considered good enough, based on CPH and CE,
for performing adequate testing of program code. Complex
faults are represented by complex mutations consisting of
more than one change in the code, whilst simple faults are
represented by a single mutation (syntactic change) to a
program.

There are a number of ways to represent program code.
Each provides a particular way to understand a program and
manage its source code. Most of them use graphs or/and
binary trees that are able to depict graphically how the
program actually works. The Control Flow Graph (CFG) is
one such way of graphically representing the possible
execution paths. Each of the nodes in a CFG corresponds to a
single line of program source code. The arcs connecting nodes
represent the flow of execution. A CFG may be used as the
cornerstone of static analysis, where its construction and
traversing offers the ability to identify and store information
about the type of statements present in the source code and the
details concerning the alternative courses of execution. A fine
example is the BPAS framework introduced by Sofokleous
and Andreou [14] for automatically testing Java programs. A
CFG may also drive the generation of test data by providing
the means to construct an objective function for optimization
algorithms to satisfy (algorithms by evolution such as the one
proposed in Michael et al. [15]).

The Visual Studio (VS) platform [16] has been constantly
evolving becoming one of the most widely used platforms
today in the software industry. This is partly due to the fact
that it provides the ability to create a number of different types
of applications, like window-apps, web-apps, services, classes
etc. The wide acceptance of VS has driven the development of
a number of third party tools and plug-ins that enhance the
platform with even more functionality, making development
of special-purpose applications simpler and easier. The
aforementioned advantages of VS2010 suggest that its use
might be quite beneficiary for software testing, and more
specifically for developing a new mutation testing tool.

Code Contracts (CC) were introduced by VS2010 as a
means to encode specifications [17], but can be installed on
other versions of Visual Studio as well. CC may consist of
pre-conditions, post-conditions and invariants. The aim is to
improve the testing process through both runtime and static
checking. Runtime checking takes place while the program
executes and produces an exception when the specifications in
the code are not met. Static contract verification is performed
while the project is under development. It produces a warning
when a condition is not satisfied and also proposes a solution
to fix the relevant code. CC also assist in documentation

181

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

generation by producing an XML file with information from
the CC. CC can be used on any .Net platform that contains the
Contracts class, or, if building a project on a platform that
does not support CC (e.g., older versions of Silverlight,
Windows Phone 7, etc), a reference to the assembly
Microsoft.Contracts.dll should be added to the project.

Code Contracts were developed from knowledge obtained
from the Spec# programming system, an attempt made by
Microsoft to provide a way for more cost effective and higher
quality software. SPEC# is in essence a formal language for
API contracts that permits specification and reasoning of
object invariants, even in parallel processing environments or
when callbacks exist in the code. Using a CC enables a
programmer to create a detailed set of specifications that will
be used to verify a program with the use of the static program
verifier. The latter checks if a program satisfies the
specifications with no runtime errors. SPEC# is being
developed as a research project by Microsoft Research’s
Programming Languages and methods group [18].

The mutation engine introduced in this paper is partly
based on the aforementioned concepts. More specifically, it
utilizes CFG and static analysis as in [14] to extract the
information needed for analyzing and describing adequately
the source code under investigation. Moreover, it employs CC
to embed the specifications required in order to assess
whether a program functions properly. The mutation engine
utilizes runtime checking to limit the production of
meaningful mutant programs, that is, programs that do not
violate their original specifications. Lastly, it incorporates an
automatic test case assessment module that either evaluates
the quality of a given test case set, or identifies faults in the
original code, and proposes the proper correction that also
satisfies the specifications. The engine offers a means for
both the automation of software testing and a reduction in the
time required for software testing.

III. MUTATION ENGINE

The mutation engine is implemented in the VS2010
platform. VS2010 was selected partly because it is a relatively
newly introduced platform, meaning that the components
developed may be used as the backbone for future tools and
studies based on this platform, without facing any
incompatibility issues compared to the use of older platforms.
Also, to the best of our knowledge, at present no other such
system exists. The engine was originally designed to work
with the C# programming language. A number of additions
and enhancements were introduced to the engine for
supporting Visual Basic as an extension to our previous work
[5].

A. Research Strategy

The first step to design and implement the mutation
engine was the selection of particular technologies to be
incorporated in the proposed tool. Therefore, CFG were
employed to aid in the static analysis and CC were chosen to
limit the number of produced mutants.

CFG were chosen to represent the code as they give
information about the flow of execution, but most
importantly they identify and store information about the

type of statements present in the code and additional details
regarding alternative courses of execution. This information
can then be used for static analysis of the code, which is a
preprocessing stage that enables the gathering of critical
information as regards specific parameters of the program
under testing. This assists in the application of the mutation
operators on the source code as it identifies everything
present in the code (variables, classes, statements) and the
proper mutations can then be applied to each of the elements
identified. CC were selected as a means to describe the
conditions that exist in the specifications of the program in
order to help eliminate those mutations that do not satisfy the
specifications.

B. Architecture

The architecture of the proposed mutation engine is
depicted graphically in Figure 1 where four major
components enable the execution of the engine’s stages.

1) Syntactic verification component
The first is a source code validation component, which

compiles the source code and presents any erroneous lines.
This component takes as input a source code file (.cs or .vb),
or an executable file (.exe), or a dynamic link library file
(.dll), as well as the project file (.csproj or .vbproj). The
project file provides the validation component with
information for references in libraries and files that the source
code uses and are part of the program. Validation includes
compiling the source code and making sure that no syntactic
or other compilation errors exist so as to proceed with the
second stage of the engine which is the production of
mutations. Otherwise the engine terminates.

Source codeSource code Project FileProject File

Test CasesTest Cases

Validate

Source code

Abstract Syntax
Tree

PassPass

FailFail

Mutation
Operators

Analyzer

Test Case EvaluatorEXIT

Information
Lists

Static Analysis
Component

Parser

Visitor

Mutants

Figure 1. The mutation engine architecture

2) Static analysis component
The second component performs static analysis of the

source code without the need of an executable form of the
program under testing. Static analysis is the extraction of
useful information from the source code concerning the
structure of the program. This component takes as input the
source code file and uses the class AbstractSourceTree (AST)
of SharpDevelop [19] to model the abstract syntax tree of the
code. While compiling a source code file, a binary tree (the

182

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

AST) is created, each node of which represents a line of code.
Traversing this binary tree, offers access to any part of the
source code.

The static analysis component described above consists of
two sub-components, the Parser and the Visitor. The Parser
analyses the source code and creates the AST as mentioned
earlier. The Visitor passes through the AST collecting useful
information, while giving the opportunity for the user to make
changes and additions to the information stored. The
implementation of the Visitor utilised the AbstractAstVisitor
class of SharpDevelop, with some minor additions to help
accessing all the nodes of the AST, both at the high (classes
and their parameters, inheritance, etc.) and the low level
(assignments, conditional statements, unary statements, etc.)
characteristics of the programming language. The Visitor
recursively visits each node and stores in stack-form lists all
the information identified according to the node’s type. In the
experiments described in the next section thirteen such lists
were created; nevertheless, the way the Visitor is structured
enables the addition of any new lists or the modification of
existing ones in a quite easy and straightforward manner.

3) Mutation generation component
The third component is the heart of the mutation engine.

This component analyses the information stored in the lists
created by the Visitor so as to identify the structure and
content of the source code, and creates mutated programs by
applying a number of predefined operators to the initial
program. These mutators are responsible for creating a
number of different variations of the initial source code. Each
mutation is based on one or more grammatical rules that do
not breach the grammatical correctness of the resulting
program.

4) Test case quality assesement component
The final component of the mutation engine is the

automatic test case quality assessment and fault detection
component. It takes as input a text file containing the test
cases. The test case file includes a header containing the name
of the function to be called and the number of arguments that
are needed as input, while the rest of the file contains the test
cases values and the expected results for each set of inputs.
Figure 2 presents an example of a test case file. The function

that is going to be tested is called test and takes 3
parameters, as seen in the header of the file. The rest of the
file contains, for each test case, the input values and expected
results separated by semi-columns. The test case evaluator
then loads all the test cases found in the test case input file and
applies them to the original program.

If the program returns the expected values for each of the
test cases, the tool continues applying each mutation to the
original code and evaluating the results of each test case.

When all the test cases have been applied to all the
mutants, the engine calculates the Mutation Score, along with
information about which mutants were detected, which were
not, the mutants that could not be compiled and some other
run-time information. In the case where the initial source code
fails to give the expected output for a specific test case, the
tool tries to locate a possible solution by finding a mutant that
gives the expected results for all the test cases defined in the
file. This mutation is then logged as a possible valid

correction for the fault, while the engine continues to look for
more possible solutions until all the mutation operators have
been applied. The results are logged in .txt files containing
useful information about which test cases managed to detect
errors, which mutations were identified, the possible
corrections for the initial code, etc.

Figure 2. Format of the Test Cases File

C. Supported Mutation Operators

Mutations are performed at the method level using
operators that are either arithmetic, relational or logical. At
the class level, mutation is performed with operators applied
to a class or a number of classes, and usually involves
changing calls to methods or changing the access modifiers
of the class characteristics (public, private, friendly etc.). The
operators supported by the proposed mutation engine are the:

Arithmetic

 AORBA – arithmetic operations replacement (binary,

assignment)

 AORS – arithmetic operations replacement (shortcut)

 AOIS – arithmetic operations insertion (shortcut)

 AOIU – arithmetic operations insertion (unary)

 AOIA – arithmetic operations insertion (assignment)

 AODS – arithmetic operations deletion (shortcut)

 AODU – arithmetic operations deletion (unary)

 AODA – arithmetic operations deletion (assignment)

Relational

 ROR – relational operations replacement

Conditional

 COR – conditional operations replacement

 COI – conditional operations insertion

 COD – conditional operations deletion

Logical

 LOR – logical operations replacement

 LOI – logical operations insertion

 LOIA – logical operations insertion (assignment)

183

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 LOD – logical operations deletion

 LODA – logical operations deletion (assignment)

Shift

 SOR – shift operations replacement

 SOIA – shift operations insertion (assignment)

 SODA – shift operations deletion (assignment)

Replacement

 PR – parameter replacement

 LVR – local variable replacement

For example if the AORBA operator is applied on the

following line of code

jkreturn this.num / this.den;

then the result will be the creation of four different mutations

by replacing the division (/) operator with either addition (+),

multiplication (*), subtraction (-) and modulo (%). The four

cases for the produced mutated line of code are shown below:

(a) return this.num * this.den;

(b) return this.num + this.den;

(c) return this.num - this.den;

(d) return this.num % this.den;

D. Specification-Based Mutations

The number of possible mutated programs for a certain
case-study may be quite large depending on the type and
number of statements in the source code. Mutations
processing time is proportional to the number of mutants
processed. This is a significant problem that may hinder the
use of mutation testing in certain cases. There is a need to
minimize mutation testing execution time. This is feasible if
useless mutations are removed or avoided. Such mutations
correspond to invalid forms of executions for that particular
program which may be determined by the program’s
specifications. Therefore, the specifications must be taken into
consideration when producing a mutant. These Specifications
are implemented as CC in VS2010. This feature enhances the
fault detection part of our tool, as it removes any possible
mutations that do not satisfy the specifications defined in the
source code.

Figure 3. Class Test Example with CC specifications

Figure 3 demonstrates how mutations are driven by the
specifications inserted via CC. Class Test includes methods
Foo and Goo and uses CC to express two pre-conditions
(denoted by Contract.Requires) and one post-condition
(denoted by Contract.Esures).

In Goo the assignment of x affects the values with which

Foo is called. The first pre-condition requires that x>y. The

engine normally would perform operation replacement

substituting ‘+’ with ‘-’, ‘/’, ‘%’ and ‘*’. Due to the

aforementioned pre-condition the engine will drop the first

three replacements and use only the last one as it is the only

replacement that will still satisfy the pre-condition. The same

applies for b>0, where any arithmetic replacement should not

set b equal or less than zero. In this way the engine produces

only valid mutations and ensures that a certain mutation is

implemented in the engine which enables the production only

of valid mutants thus ensuring that the minimum possible time

and effort will be spent on the subsequent analysis and testing

activities. This approach also limits the search for a possible

solution by the user, when a number of solutions are identified

by the engine.

E. The software tool

A dedicated software tool has been developed to support
the process of MT. An example scenario is given below to
demonstrate its operation: A source code file, the project file
of the program tested and a test case file (optional) are given
as input to the system. If no test case file is provided the
program continues with only the creation of the mutations and
nothing more. The project file and all the references to other
files or libraries are automatically located and linked, and the
source code file is compiled through the validation
component. In the case of compilation errors a pop up
window is presented to the user with the corresponding
information (Figure 4) and the process is terminated.

Figure 4. Execution : Errors in compilation

If there are just warnings, the user is again informed, but
the system now continues to the next step. Static analysis of

public class Test {

 private int Foo(int a, int b) {

 Contract.Requires(a > b);

 Contract.Requires(b > 0);

Contract.Ensures(Contract.Result<int>()>0;

 …

 return (a / b);

 } …

 private void Goo() {

 int x, y;

….

 x = y + 10;

 int result = Foo (x , y) }

184

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

int triang(int i, int j, int k) {

 if ((i <= 0) || (j <= 0) || (k <= 0))

 return 4;

 int tri = 0;

 if (i==j)

tri+=1;

 if (i==k)

tri+=2;

 if (j==k)

tri+=3;

 if (tri==0) {

 if ((i+j==k) || (j+k<=i) || (i+k<=j))

tri=4;

 else tri=1;}

 else {

 if (tri>3) tri=3;

 else {

 if ((tri==1) && (i+j>k))

 tri=2;

 else{

 if ((tri==2) && (i+k>j))

tri=2;

 else {

 if ((tri==3) && (j+k>i))

tri = 2;

 else tri = 4; } } } }

 return tri; } }

the source code is performed, resulting in the creation of an
AST. The visitor component then passes through the AST and
creates the lists that store the information found in the source
code (variables, classes, statements, etc.). The third
component takes as input the lists created by the visitor and a
set of mutators selected by the user, applies these operators
and returns the resulting mutated programs in the path defined
(Figure 5). The last component, the automatic test case quality
assessment component, reads the test case file provided by the
user and executes the initial program with those inputs. If the
execution fails on any test case, the user is notified that the
original program does not validate all the test cases correctly
compared to their expected results and then searches for a
mutated version that does. If the initial program validates
correctly all test cases, then it continues with assessing the
quality of the test data set in order to report the ability of the
test data set to identify faults in the mutants.

Figure 5. Execution : Mutations successfully produced

IV. EXPERIMENTAL RESULTS

In order to test the mutation engine and the corresponding
tool a series of experiments were performed that would help
us assess both the correctness and the efficiency of our testing
approach using programs written in both the C# and VB
programming languages. Four categories of experiment were
conducted as follows:

Category A addressed the quality (adequacy) of a given
test case set against a benchmark program. A file containing
test cases and the expected results was fed into the tool along
with the source code that verified all of the test cases. Then all
the mutations produced by the engine were tested against the
test cases, logging which mutants were discovered or which
ones produced the same result as the original program.

Category B assessed the ability of the tool to discover a
fault in the original code and provide a solution to correct it.
In the case a test cases set fed into the tool does not validate
the original program the tool continues to create mutations
and propose possible solutions in order to validate all the test
cases found in the test file, whilst satisfying all the
specifications found in the code contracts.

Category C demonstrated that the proposed engine works
as supposed on both C# and VB code, by producing correctly
a number of mutations based on atomic changes to the source
code according to the user’s selected types of mutation
operators. The same functions are developed in both
programming languages and the mutations produced were
compared. Also, both the results of C# and VB mutations
were tested against a set of test cases to see if the mutation
engine could identify the same mutants for both languages.

Category D evaluates the scalability of the proposed
approach on large, real-world programs. Benchmark programs
were used, and the type and number of mutations was
recorded. It is worth mentioning that the experiments were
performed on an Intel i7-2600 CPU at 3.4 GHz with 4 GB of
RAM, while the programs used are available in various sites
on the Internet (e.g., http://www.c-program-example.com).

Lastly, category E demonstrated that the mutation engine
could eliminate the mutants that violate the pre-conditions,
post-conditions or invariants set for a program. Comparisons
of the number of mutations produced when using code that
contains specifications against code that does not contain
specifications.

The experiments are analysed below:

A. Test-Data Quality Assessment

This experiment used a specific benchmark program, the
triangle classification program, which is shown in Figure 6.
This program was tested against the 19 different test cases
shown in Table I, the meaning of the values used in its last
column is as follows: 1 equals to a scalene triangle, 2 equals
to an isosceles triangle, 3 to an equilateral and 4 does not
correspond to a triangle.

Figure 6. Trinagle Classification Program Source Code

185

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Using the values in the first three columns of Table I for
the corresponding variables it appears at first that the TCP has
been adequately tested. The source code, the project file and
the test cases file were fed into the tool and all of the available
mutation operators were selected. After the engine finished
both creating the mutants and testing them with the test case
set, a general results file was created (Figures 7 and 8) which
contained all the mutations and the verdict whether there is at
least one test case in the test set that could identify the
alteration performed or not. The file also includes the number
of total mutations, the mutations that failed to compile, the
number of mutations that were successfully discovered or not,
the mutation score and the time needed for the engine to
produce and test the mutations.

TABLE I. TEST DATA THAT COVER ALL POSSIBLE OUTPUTS OF THE

TRIANGLE CLASSIFICATION PROGRAM (TCP)

i j k Result

2 4 5 1

5 6 3 1

2 1 2 2

3 1 2 4

4 8 9 1

3 1 7 1

4 4 4 3

5 5 5 3

5 5 3 2

6 7 2 1

10 2 1 4

10 3 8 1

10 5 -5 4

5 3 5 2

2 2 2 3

0 1 2 4

3 3 1 2

3 4 2 1

Along with the general results file created at the end of the

process, a results file for each mutation is created. This file
contains the results of applying each of the test cases, to the
program and which test case identified the error, if such a case
exists.

The results show that 517 mutants were created, from
which 58 could not be compiled so they were discarded. From
the remaining of 459 mutants, 175 could not be identified by
the test case set as they successfully yielded an identical result
as the original program. Finally, 284 mutations were
identified by at least one test case, leading to a mutation score
of 61%.

This experiment demonstrates that the proposed engine is
able to assess the quality of a set of data to adequately test a
given program.

Such a change that yields the same result is the following
change on the second statement of the code in Fig. 6:

if ((i <= 0) || (j <= 0) || (k <= 0))

to

if ((i <= 0) || (j < 0) || (k <= 0))

Figure 7. Beginning of general results file using Triangle Classification program written in the C# language

Figure 8. End of general results file using Triangle Classification program written in the C# language

186

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Fault Detection

This set of experiments was concerned with the ability of
the mutation engine to reveal errors that were injected in the
initial source code of the triangle classification program. A
number of faults were manually injected into the code and is
described below.

Figure 9 shows two faults inserted in the code, one
relational and one unary.

int triang(int i, int j, int k) {

 if ((i <= 0) || (j != 0) || (k <= 0)){

//*1.should have been ((i<=0)||(j<=0)||(k<= 0))*//

 return 4;}

 int tri = 0;

 if (i==j)

tri+=1;

 if (i==k)

tri+=2;

 if (j==k)

tri+=3;

 if (tri==0) {

 if ((i+j==k) || (j+k<=i) || (i+k<=j))

tri=4;

 else tri=1;}

 else {

 if (tri>3)

tri+=3;

//** 2. should have been tri=3;**//

 else {

 if ((tri==1) && (i+j>k))

 tri=2;

 else{

 if ((tri==2) && (i+k>j))

tri=2;

 else {

 if ((tri==3) && (j+k>i))

tri = 2;

 else tri = 4; } } } }

 return tri; }

}

Figure 9. Faults injected into Triangle Classification Program

The first change was the replacement of the <= relational
operand with != in the second line of the original code. The
tool suggested 6 possible solutions (Table II). It’s clear that
correction #5 is the one that reverted the faulty program to the
original version, but the other 5 proposed fixes yield the same
results with number 5. This can be due to the quality of the
test cases set and its inability to detect all the mutants in the
first place. This means that it is possible to check only 6 out of
the 615 working mutants to find a correct version.
Consequently only 1% of the work is needed compared to
checking all mutations for a possible correction.

The second alteration involved changing the assignment

tri=3 to adding 3 to the variable (tri+=3). The engine
applied all mutation operators in the original version and
suggested 2 possible corrections for this case. The first was
the arithmetic operations deletion (AODA_4) mutation, which
concerned the deletion of the plus operand from the line
changed. The second suggestion was the arithmetic operations

replacement (AORBA_33) that suggested the change of the +
operand to – . This suggestion again resulted in a version that
satisfied all test cases; as we can see from the code the

assignment is executed when the value of tri is equal to 6,

so subtracting 3 will result in tri taking the value of 3 and
validating correctly the test cases.

TABLE II. PROPOSED FIXES FOR THE FIRST INJECTED FAULT

No. Name Proposed Fix

1 COI_2 if ((i <= 0) || (!(j != 0)) || (k <= 0))

2 COI_4 if ((i <= 0) || !((j != 0) || (k <= 0)))

3 COR_1 if ((i <= 0) || (j != 0) && (k <= 0))

4 COR_2 if ((i <= 0) && (j != 0) || (k <= 0))

5 ROR_9 if ((i <= 0) || (j <= 0) || (k <= 0))

6 ROR_10 if ((i <= 0) || (j == 0) || (k <= 0))

The example of Figure 10 employs CC with three pre-

conditions, one post-condition and one invariant, and involves

two errors inserted in class CompareParadigm that cannot
be traced by the static analyzer in VS2010.

class CompareParadigm {

 int num,den;

public CompareParadigm(int numerator, int

denominator){

 Contract.Requires(0 < denominator);

 Contract.Requires(0 <= numerator);

 Contract.Requires(numerator>denominator);

 this.num += numerator;

 //** should have been this.num = numerator **//

 this.den = denominator;

 }

 [ContractInvariantMethod]

 private void ObjectInvariant() {

 Contract.Invariant(this.den > 0);

 Contract.Invariant(this.num >= 0);

}

 public int ToInt() {

Contract.Ensures(Contract.Result<int>()>=0);

 return this.num * this.den; }

}

//** should have been this.num / this.den **//

Figure 10. CompareParadigm Class with embedded Code Contracts

The engine is once again capable of bringing these errors
to light using the arithmetic operation replacement (AORBA)
and arithmetic operations deletion (AODA) mutators.

C. C# and VB comparative evaluation and compatibility

issues

The tool has been extended to support both C# and VB. In
order to assess the behavior of both C# and VB versions of the
triangle classification program were used and the results
compared.

The choice of analyzing only the arithmetic mutation
operators was made, as they produce a large number of
mutants allowing the extraction of some safe conclusions.

187

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. MUTATED PROGRAMS CREATED BY THE ENGINE FOR VB

AND C#

Mutation type
Number of Mutations

Visual Basic C#

AODA 3 3

AOIA 65 65

AOIS 66 66

AOIU 41 41

AORBA 36 36

Total 211 211

Failed to Compile 22 0

Identified Mutations 70 125

Table III shows that the mutation engine produces the same

number of mutations for each operator in both cases of coding

languages. In C# all of the mutations were compiled

successfully, but when dealing with the VB source file, 22

mutations out of 211 could not be compiled. Further

investigation of the mutated VB code files that could not be

compiled highlighted that the mutations produced a form of

syntax that is not always allowed in VB. An example of such

a case is the production of the line below:

tri %= 2

 VB does not support the use of the % operator, as it uses the

mod operator to divide two numbers and return their

remainder. After carefully checking all 22 mutations that

failed to compile the observation that all of them failed

because of the use of the % operator was made.
Continuing this evaluation, a comparison between the

results files of the C# and VB versions of the code revealed
that all of the identified mutants of the VB version were
included in the C# mutants as well. Focusing on cases that
were identified in C# but not in VB all of them were cases
where the ++ and -- operators were introduced before a
variable, as for example:

if (++tri = 1),

or cases with the += and -= operators being introduced as
in:

tri -= 2

The use of these four operators is something that VB’s
compiler does not report either as a warning or an error;
therefore the corresponding statements are compiled correctly,
but they have no meaning and functionality. Because these
statements are ignored, the mutated program yields the same
behavior as the original version.

All 55 mutations that were not identified by the engine
were mutations that used the four operators. This is one of the
main compatibility issues raised in the extension of the
proposed engine and will be addressed in future work possibly
by removing these operators when dealing with VB source
code.

Further investigation of the implications of the VB support
took place by assessing test cases for a sample program based
on the Find Max function; the program takes as input four
numbers and returns the largest one (Figure 11). This would

further validate the mutation engine’s support for locating and
correcting faults in VB programs.

Return max

Figure 11. FindMax Program implemented in VB Programming Language

The evaluation used a test case file that described 20 cases
with their expected results. An excerpt of the file can be seen
in Table IV.

TABLE IV. PART OF THE FINDMAX PROGRAM TEST CASES SET

Num1 Num2 Num3 Num4 Result

5 6 7 8 8

5 6 3 1 6

4 8 9 1 9

-9 -4 -2 -1 -1

3 4 2 1 4

The tool was executed and the selection of all of the

available mutation operators to be applied on the source code
was made. This resulted in the production of a total of 336
mutations, from which 84 failed to compile due to the reasons
described previously. From the remaining 252 produced
mutants, 130 were identified by at least one test case, while
122 were not, something that computes a mutation score of
51% (Table V), indicating that the engine was able to detect
51% of the produced mutations with the test cases set fed.

TABLE V. MUTATED PROGRAMS CREATED BY THE ENGINE FOR VB

IMPLEMENTATION OF FINDMAX FUNCTION

Mutation type
Number of Mutations

Visual Basic

AOIA 65

AOIS 28

AOIU 14

COI 4

LOI 14

LVR 96

PR 69

ROR 20

SOIA 26

Total 336

Failed to Compile 84

Identified Mutations 130

Dim max As Integer = 0

 If num1 > num2 Then

 max = num1

 Else

 max = num2

 End If

 If max < num3 Then

 max = num3

 If max < num4 Then

 max = num3

 End If

 Else

 If max < num4 Then

 max = num4

 End If

 End If

188

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In order to complete the conclusions of the review of the
VB support the fault locating part of the tool was further
investigated. For doing so the next line of code was changed
as shown below:

from If max < num3 Then

to If max > num3 Then

Again the same test cases set was fed into the engine, as
before, and the results of the Mutation Engine proposed two
Relational Operator Replacements that could possibly fix the
fault. These were:

(i) If max < num3 Then

(ii) If max <= num3 Then

The first replacement brings the program to its original
state (i.e., before injecting the fault), while the second one
again yields the same results as the first, as it does not affect
the rest of the code in a way that alters the results for any of
the test cases. As seen in bold letters in Figure 11, in either of

the two cases the result would be that variable max gets the

contents of the num3 variable.
In general, the extension of the engine with the VB

support module, although presenting some compatibility
issues to resolve in the future, provided some encouraging
results showing that the proposed engine is quite useful for
testing source code written in VB exhibiting comparable
performance to that when using C# code.

D. Time Behavioral Analysis

The fourth category of experiments, involved time

analysis and measurements on differently sized C# programs.

To this end, replication of the code of the Triangle

Classification program was decided, by 2, 4, 6 and 8 times

producing double the size of the program in each case. The

test case quality assessment module of the tool was used with

the same test cases shown in Table I. The Stopwatch class

of the System.Diagnostics library was used to measure

the time needed to produce the mutations.

TABLE VI. BENCHMARKS ON C# CODE

Lines Of Code Mutations Time (seconds)

67 468 46

134 905 77

268 1677 157

402 2480 216

536 3290 299

Table VI indicates that the time and number of mutations

increases almost linearly and proportionally to the number of

lines of code. An apparent analogy exists between the three

values: doubling the lines of code nearly doubles both the

number of mutations and hence the time needed for the engine

to create them, as well as to test them. Notably, approximately

50% of the mutants corresponded to the number of failed to

detect mutations, which were executed (tried) at least 20 times

each, while the rest of the “normal” mutations were run a

variable number of times, ranging from 1 to 20. This

emphasizes the importance of controlling the number of

“useless” mutants addressed by the proposed mutation engine

via the specification-driven mutation production and

evaluation, as explained in the next section. For example, in

the first case shown on Table VI where 67 lines of code exist

in the source file for which 468 mutations were produced, it

took the mutation engine 46 seconds to generate and test the

mutants. This is roughly 0.1 seconds spent on producing and

testing each mutant. If a programmer would have to create

manually the mutants and evaluate them against the test cases,

he would have needed at least 2 minutes to make each change,

compile the code and run it against all the test cases. Also, he

would have to document the results and keep track of all the

mutators applied, something which would have taken extra

time as well. The benefits of the automatic tool against the

manual creation and evaluation of the mutants are clear and

significant in terms of the time and effort needed.

In summary, the proposed solution was successfully tested

on a large number of automatically created errors injected in

the code against a number of test cases, reporting the mutants

that identified (or not) each error in a reasonable time span.

The time was less than the time needed for manually creating

modified versions of the initial code and testing them one by

one using the test cases.

E. Normal vs Specifications-Based Mutations Production

The fifth category of experiments involved the use of the
CC. Using CC the tool can eliminate the mutants that violate
the pre-conditions, post-conditions or invariants set for a
program.

First, class CompareParadigm listed earlier, which
includes a number of code contracts, was selected for
experimentation. The number of mutations produced with the
use of the specifications was compared to that of the same
class with no specifications defined in code (in this case the
engine with the CC disabled). Table VII lists the number of
mutations that were produced according to the mutation
operator used. A 58% reduction in the number of mutants is
achieved when using the code contracts version of the code,
which resulted in the engine generating 16 mutants compared
to 38 that were produced without taking into consideration the
specifications.

TABLE VII. MUTATED PROGRAMS CREATED BY THE ENGINE WITH

(SPECS-BASED) AND WITHOUT THE USE OF SPECIFICATIONS (NORMAL)

Operator
Number of Mutations

Specs-based Normal

AORBA 5 8

AOIS 7 10

AOIU 0 6

LOI 2 6

PR 2 3

LVR 0 5

Total 16 38

189

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This reduction is quite significant, as the code consisted of
less than 20 statements. Therefore, one can safely argue that
in cases of large programs the computational burden will be
considerably eased, preserving the effectiveness and
efficiency of the testing process. Moreover, when used in
conjunction with the fault locating part of the engine, it will
obtain a smaller number of solutions. Written specifications
can be used to constrain the creation of mutant solutions and
the tool can propose only one solution to fix the fault.

V. CONCLUSIONS AND FUTURE WORK

Software development is prone to producing lower than
expected quality software while the chance of project failure
is high. Software Testing is an important, though complex,
area of software development that mainly affects the quality
and reliability of delivered software systems. A high
percentage of software development time is devoted to
testing.

Automatic software testing approaches are increasingly
popular among researchers. They develop effective methods
for fault locating and debugging so as to reduce testing
complexity and lead to faster and cheaper software
development steps with high quality standards.

Mutation testing is a technique that produces different
versions of a program under study, each of which differ
slightly from the original one, often mimicking common
mistakes that programmers tend to make. These mutated
versions are used to either identify faults or to assess the
adequacy of a given set of test cases. In this context, a this
paper proposes a simple, yet efficient mutation engine, in
which a user-selectable number of mutation operators can be
applied at the method level and incorporating CC to generate
only valid mutants based on the program’s specifications. The
engine is developed in the Visual Studio 2010 platform and
utilizes Code Contracts to represent the specifications that
must be satisfied with pre-conditions, post-conditions and
invariants for both C# and VB programming languages.

The engine is supported by a dedicated software tool
consisting of four main parts. The first part verifies the
syntactical correctness of the source code and proper linking
with the appropriate libraries. The second part statically
analyses the source code using grammatical analysis and
produces the Abstract Syntax Tree representation of the
source code. The third part uses the information gathered from
the AST and generates mutations using specific operators
selected by the user and obeying the rules imposed by the
encoded specifications. The last part is the test case
assessment component which either calculates the quality of a
given test cases set or proposes possible corrections of faults
that exist in code.

Five series of experiments were conducted that showed
that the mutation engine is a tool that may be used for
identifying faults in the code and for assisting the creation of
the proper set of test data, both in C# and VB. Furthermore,
the experiments demonstrated that the engine scales up
smoothly as programs become larger in a time effective
manner for creating and testing the mutants. Lastly, the
incorporation of specification-based concepts allows for the
significantly improved performance of the mutation engine by

reducing the number of mutants processed and solutions
proposed according to the desired functionality expressed in
the specifications, thus saving time and effort.

Future work will involve extending the proposed mutation
engine to include more class-level mutators. Further additions
and enhancements will be performed for both the C# and VB
modules of the tool, while for the VB support the problem of
applying mutators that produce invalid statements will be
addressed. Moreover, integration of the engine with tools
offered by the VS2010 is under investigation such as PEX,
which is responsible for unit testing in order to automatically
create test cases sets that have high code coverage [20] and
UModel, which assists in creating UML diagrams. The UML
diagrams from UModel can then generate source code that
incorporates specifications that were set in the diagrams. This
integration will enable the formation of a complete testing
environment with dynamic user interaction, both at the flow
of control level and at the diagrammatical level.

Our work can be compared only to a limited number of
similar studies in literature: Saleh and Kulczycki [21]
investigated how formal specifications can detect
implementation errors in C# with the use of Creator of
Mutants (CREAM) tool [22] and Boogie verifier [23] of
SPEC# specifications. Their work tries and succeeds in
showing how formal methods can affect the creation of bug-
free programs by assessing their ability to detect design–time
errors based on the SPEC# specifications. They concentrate
on identifying faults created by mutations, which do not
satisfy the specifications, at design level, without the need for
executing the code. Our approach has a different purpose as it
aims at assessing the quality of a test case set to identify faults
in code and propose corrections for them. CCs are used,
instead of SPEC#, for defining specifications which are
verified dynamically upon code execution against a test case
set and reports on any input values that do not satisfy the
specifications. This makes possible the elimination of mutants
that, although their code verifies statically the specifications,
their execution against specific input values fails those
specifications. Also our choice of CCs over SPEC# provides
support for specifications in any language offered by VS,
while SPEC# is designed to work only with C# code.

For MT in Java the work of Nica et al. [24] tries to answer
the question if MT is really suitable for use in real-world
environments. They evaluate the use of three different
mutation tools for Java, MuJava, Jumble and Javalanche on
some of the Eclipse IDE’s source code, while they use the
included JUnit tests provided with the source code on the
Eclipse’s repository to evaluate them. They neither try to
locate and fix faults in code, nor do they assess the quality of
the test cases set. Also, they use Java source code, while our
work proposes a mutation engine to be used with both C# and
VB programming languages.

Further validation of the proposed mutation engine will
take place with the use of projects developed by graduate
students. This will enable a more systematic evaluation of the
engine using programs of different size and complexity that
will include real faults made by programmers, while assessing
various parameters, such as the time for creating and
processing mutations, the type of mutators used and the nature

190

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of the errors introduced. This systematic investigation will
also bring to light any scalability issues not detected in this
version of the engine. Moreover, efforts for increasing the
performance of the Mutation Engine will be made with the
use of parallel programming and multithreading, coupled with
benchmarking tasks on a variety of different processing power
systems. Lastly, the problem of regression faults will be
addressed by exploring the feasibility of providing a
correction to more than one fault without affecting any
previous corrections.

REFERENCES

[1] A.S. Andreou and P. Yiasemis, “A Specifications-Based
Mutation Engine for Testing Programs in C#”,
Proceedings of the Sixth International Conference on
Software Engineering Advances (ICSEA), Barcelona,
Spain, 2011, pp. 70-75.

[2] C. Kaner, J.H. Falk andH.Q. Nguyen, “Testing Computer
Software”, John Wiley & Sons Inc., New York, NY,
USA, 1999.

[3] A. Bertolino, “Software testing research: achievements,
challenges, dreams”, Proceedings of 29th International
Conference on Software Engineering (ICSE 2007): Future
of Software Engineering (FOSE’07), Minneapolis, USA,
2007, pp. 85–103.

[4] B. Gauf and E. Dustin, “The case for Automated Software
Testing”, Future Directions in Software Engineering
Journal, Vol. 10 (3), 2007, pp. 29-34.

[5] R. Patton, “Software Testing”, Sams Publishing, 2nd
edition, 2006.

[6] M.E. Khan, “Different Forms of Software Testing
Techniques for Finding Errors,” International Journal of
Computer Science Issues (IJCSI), 2010.

[7] “Mutation Testing Repository”,
http://www.dcs.kcl.ac.uk/pg/jiayue/repository/, [accessed
10 May 2011].

[8] M. Nica, S. Nica and F. Wotawa, “On the use of
mutations and testing for debugging,” Software-Practice
and Experience, Article published online, 2012.

[9] R.A. DeMillo, R.J. Lipton and F.G. Sayward, “Hints on
Test Data Selection: Help for the Practicing Programmer”,
IEEE Computer Vol. 11(4), 1978, pp. 34–41.

[10] R.G. Hamlet, “Testing Programs with the Aid of a
Compiler”, IEEE Transactions on Software Engineering,
Vol. 3(4), 1997, pp. 279-290.

[11] M. Harman, Y. Jia and W.B. Langdon, “Strong Higher
Order Mutation-Base Test Data Generation”,
ESEC/FSE’11, Szeged, Hungary, September 5-9, 2011.

[12] A.J. Offutt, “The Coupling Effect: Fact or Fiction”, ACM
SIGSOFT '89 - Third symposium on Software testing,
analysis, and verification ACM, New York, USA, 1989.

[13] G. Fraser and A. Zeller, “Generating Parameterized Unit
Tests”, International Symposium on Software Testing and
Analysis (ISSTA’11), Toronto, Canada, July 17-21, 2011.

[14] A.A. Sofokleous and A.S. Andreou, “Automatic,
Evolutionary Test Data Generation for Dynamic Software
Testing”, Journal of Systems and Software, Vol. 81(11),
2008, pp. 1883–1898.

[15] C.C. Michael, G. McGraw andM.A. Schatz, “Generating
software test data by evolution”, IEEE Transactions on
Software Engineering (12), 2001, pp. 1085–1110.

[16] “Visual Studio 2010”, (2009)
http://www.microsoft.com/visualstudio/en-
us/products/2010-editions, [accessed 18 May 2011].

[17] “Code Contracts User Manual”, (2010), Microsoft
Corporation, http://research.microsoft.com/en-
us/projects/contracts/userdoc.pdf [accessed 20 May 2011].

[18] “SPEC#”, (2004), http://research.microsoft.com/en-
us/projects/specsharp/, [accessed 04 August 2012].

[19] “SharpCode - The Open Source Development
Environment for .NET”, (2009),
http://www.icsharpcode.net/opensource/sd/, [accessed 17
May 2011].

[20] “Pex and Moles - Isolation and White box Unit Testing
for .NET”, (2004), http://research.microsoft.com/en-
us/projects/pex/, [accessed 04 August 2012].

[21] I. Saleh and G. Kulczycki, “Design-Time Detection of
Implementation Errors Using Formal Code Specification”,
RESOLVE 2010 Workshop: Advances in Automated
Verification, , Denison University, Granville, Ohio, June
8, 2010.

[22] A. Derezinska and A. Szustek, “CREAM - a System for
Object-oriented Mutation of C# Programs”, Information
Technologies, Vol.13 (5), Gdansk, 2007, pp. 389-406.

[23] “Boogie: An Intermediate Verification Language”,
http://research.microsoft.com/en-us/projects/boogie/,
[accessed 08 December 2012].

[24] S. Nica, R. Ramler and F. Wotawa, “Is Mutation Testing
Scalable for Real-World Software Projects?”, Third
International Conference On Advances in System Testing
and Validation Lifecycle (VALID), Barcelona, Spain,
2011.

