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Abstract—System monitors need oracles to determine
whether observed traces are acceptable. One method is to
compare the observed traces to a formal model of the sys-
tem. Unfortunately, such models are not always available —
software may be developed without generating a formal model,
or the implementation deviates from the original specification.
In previous work, we have proposed a learning algorithm to
construct a formal model of the software from its test cases,
thereby providing a means to transform test cases for offline
testing into an oracle for monitoring. In this paper, we refine
our learning algorithm with a set of state-merging rules that
help to exploit the test cases for additional information. We
discuss our approach in detail and identify optimization areas.
Using the additional information mined from the test cases,
models can be learned from smaller test suites.
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I. INTRODUCTION

Today, software systems are generally designed to be
modular and reusable. A common scenario of a modular,
reusable system is a web service, where simple services
are accessed as needed by various clients and orchestrated
into larger systems that can change at any moment. While
the vision of ultimate flexibility is clearly attractive, there
are also drawbacks, as the further usage of a module is
difficult to anticipate. In this scenario, it may be advisable
to monitor a system for some time after its deployment, to
detect erroneous usage or hidden errors.

Monitors are used to observe the system and to assess the
correctness of the observed behavior. To this end, monitors
need oracles that accept or reject the observed behavior, e.g.,
a system model that accepts or rejects the observed traces of
the monitored system. Unfortunately, the increasing usage
of dynamic software development processes leads to less
generation of formal models, as the specification of a formal
model needs both time and expertise. Generating a formal
model in retrospect for an already running system is even
harder, as the real implementation often deviates from the
original specification.

We propose a method for learning a system model from
the system’s test cases without probing the System Under
Test (SUT) itself [1]. When test cases are available, they
often are more consistent to the system than any other model.
Ideally, they take into account all of the system’s possible

reactions to a stimulus, thereby classifying the anticipated
correct reactions as accepted behavior and the incorrect or
unexpected reactions as rejected behavior. As the test cases
are developed in parallel to the software, they provide a
means to judge the correct behavior of the system. Also,
test cases are generated at different levels of abstraction,
e.g., for unit testing, integration testing, and system testing.
By selecting the set of test cases to be used, the abstraction
level of the generated model can be influenced.

The basis of our approach is a learning algorithm, first
introduced by Angluin [2], which learns a Deterministic
Finite Automaton (DFA). To learn from test cases, we
adapted the query mechanisms of the algorithm [3]. Exper-
iments with our approach show that while a model can be
learned this way, the algorithm only accepts simple traces
as input, thereby losing additional information from the test
cases, e.g., regarding branching, default behavior, or syn-
chronization. We believe that exploitation of this additional
information would enhance the learning algorithm.

In this paper, we propose a state-merging approach,
termed semantic state-merging, which exploits the semantic
properties of test cases in order to identify implicitly defined
behavior. We first define a data structure, the trace graph,
to store the available test cases. Then, we define merging
rules for cyclic test cases and for test cases with default
branches for the construction of the trace graph. Based on the
experiences gathered through a prototypical implementation,
we identify optimization areas and possible solutions.

The remainder of this paper is structured as follows.
Section II gives an overview on related work. In Section III,
we introduce the foundations of our work in testing and ma-
chine learning. Section IV describes the trace graph and its
construction. Based on this, Section V defines our approach
to semantic state-merging on test cases. Subsequently, in
Section VI, we give an overview on our experimental
results. Section VII discusses the learning approach and
describes solution ideas to open questions. In Section VIII,
we conclude with a summary and an outlook.

II. RELATED WORK

As our approach combines learning techniques and state
merging, we need to take into account related work from
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both areas. In the following, we give an overview on rele-
vant articles regarding the adaptation of Angluin’s learning
algorithm and state-merging and establish the differences to
our own work.

A. Related Work in Learning

During the last years, a number of approaches have
adapted Angluin’s learning algorithm in combination with
testing. Mainly, the approaches focus on the learning side
of the problem and refine the properties of the generated
model. Among the most recent adaptations are approaches to
learning Mealy machines [4] and parameterized models [5],
[6], [7], [8]. Some approaches can handle large or even
infinite message alphabets [5] or potentially infinite state
spaces [6]. In all those approaches, the learning algorithm
generates test cases that are subsequently executed against
the SUT, so that the System Under Test itself is the oracle
for the acceptability of a given behavior.

Some approaches use outside guidance to improve the
learning approach. The algorithm presented in [9] learns
workflow petri nets from event logs and handles incomplete
data by asking an external teacher. In [10], learning is used
in a modeling approach. In this approach, a domain expert
provides Message Sequence Charts representing desired and
unwanted behavior.

Our approach differs from the above in two aspects. First,
we aim at generating a model for online monitoring. To
this end, we need a model that is independent from the
implementation itself. Therefore, we can neither use the
implementation as an oracle nor learn from event traces
generated by the implementation. Instead, we choose to learn
from a test suite that was developed due to external criteria.
Using a test suite also leads to the second difference of our
approach. Where other approaches rely on unstructured data,
a test suite provides relations between the distinct traces.
We exploit those relations in order to enhance our learning
procedure. Where other approaches address the learning side
of the problem, our focus is actually on the structure of the
teacher.

B. Related Work in Stage-Merging

The basic idea of the state-merging approach is to analyze
examples of the target automaton, identify possible states,
and merge similar states until the remaining states are
considered to be sufficiently distinct. The notion was first
introduced by Biermann [11], who used it to generate com-
puter programs from short code samples. Meanwhile, the
merging techniques have been extended to logical evaluation
of the samples [12], [13] and different heuristics have been
introduced [14].

Also, different input domains have been explored. One
the one hand, there are approaches that synthesize models
from partial models like scenario diagrams [15], [16], [17],
[18]. On the other hand, there are approaches that reconstruct

a behavioral model of an existing software by merging
observed traces [19], [20], [21].

In all cases, the main problem in state-merging is over-
generalization, i.e., a false merging of states, thereby overly
simplifying the model. In our approach, we derive the
merging rules from the semantic context of our domain, i.e.,
the properties of the test specification language. This leads to
a more conservative merging and avoids erroneous mergings,
while nevertheless enlarging the sample space sufficiently.

III. FOUNDATIONS

In the following, the foundations of testing and on the
learning of DFA are presented.

A. Testing

A test case is itself a software program. It sends stimuli to
the SUT and receives responses from the SUT. Depending
on the responses, the test case may branch out, and a test
case can contain cycles to test iterative behavior. To each
path through the test case’s control flow graph, a verdict is
assigned. A common nomenclature is to use the verdict pass
to mark an accepting test case and the verdict fail to mark a
rejecting test case. An accepting test case is a test case where
the reaction of the SUT conforms to the expectations of the
tester. This can also be the case, when an erroneous input is
correctly handled by the SUT. Accordingly, a rejecting test
case is a test case where the reaction of the SUT violates
its specification. Depending on the test specification, there
may be additional verdicts, e.g., the Testing and Test Control
Notation version 3 (TTCN-3) [22] extends the verdicts pass
and fail with the additional verdicts none, inconc, and
error: none denotes that no verdict is set; inconc indicates
that a definite assessment of the observed reactions is not
possible, e.g., due to race conditions on parallel components;
and error marks the occurrence of an error in the test
environment. During the execution of a test case, the verdict
may be changed at different points. The overall assessment
of a test case depends on the verdicts set along the execution
trace, and is computed according to the rules of the test
language. E.g., in TTCN-3, the overall verdict may only be
downgraded, i.e., once an event was rated as fail the overall
verdict may not go back to pass. For most SUTs, there is a
collection of test cases, where each test case covers a certain
behavioral aspect of the SUT. Such a collection of test cases
for one SUT is called a test suite.

The main objective when constructing test cases for a
software system is to assure that the specified properties are
present in the SUT. To test against a formal specification,
e.g., in the form of a DFA, test cases are derived from the
model by traversing the model so that a certain coverage
criterion is met, e.g., state coverage or transition coverage.
State coverage means that every state of the model is visited
by at least one test case. Transition coverage means that
every transition of the model is visited by at least one test



202

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

case. The largest possible coverage of a system model is
path coverage, where every possible path in the software is
traversed.

B. Learning a Finite Automaton Model from Test Cases

Our learning approach is based on a method proposed by
Angluin [2]. The algorithm consists of the teacher, which
is an oracle that knows the concept to be learned, and the
learner, who discovers the concept. The learner successively
discovers the states of an unknown target automaton by
asking the teacher whether a given sequence of signals is
acceptable to the target automaton. To this end, the teacher
supports two types of queries. A membership query evaluates
whether a single sequence of signals is a part of the model
to be learned. An equivalence query establishes whether the
current hypothesis model is equivalent to the model to be
learned.

For learning from test cases, we need to redefine the two
query types in relation to test cases. The most important
mechanism of the learning algorithm is the membership
query, which determines the acceptability of a given behav-
ior. In our case, the behavior of the software and thus of the
target automaton is defined by the test cases. Since the test
cases are our only source of knowledge, we assume that
the test cases cover the complete behavior of the system.
In consequence, we state that every behavior that is not
explicitly allowed must be erroneous and therefore has to be
rejected, i.e., rejected ≡ ¬accepted. Accordingly, we accept
a sequence of signals if we can find a pass test case matching
this sequence, and reject everything else.

The equivalence query establishes conformance between
the hypothesis model and the target model. This is exactly
what a test suite is designed for, therefore, we redefine the
equivalence query as an execution of the test suite against the
hypothesis model, where every test case in the test suite must
reproduce its verdict. A detailed description of the learning
algorithm can be found in [3], [23].

IV. REPRESENTING TEST CASES

For the learning procedure, it is important that queries can
be answered efficiently and correctly. Therefore, we need a
representation of the test suite that is easy to search and
provides a means to compactly store a large number of test
cases. In the following, we define the trace graph as a data
structure and describe its construction.

A. The Trace Graph

As described in Section III-A, a test case is itself a piece
of software and can therefore be represented as an automaton
containing a number of event sequences. Usually, a test case
distinguishes events received from the SUT, events sent to
the SUT, and internal actions like value computation or
setting verdicts. Each possible path through the test case
must contain the setting of a verdict.

For the learning procedure, we only regard input and
output events as the transitions in our target model and
ignore internal actions except for the setting of verdicts. The
verdicts are used to identify accepting test cases.

In general, every test case combines a number of traces,
depending on the different execution possibilities. At the
same time, a test suite contains a number of test cases, where
different test cases may contain identical traces as they partly
overlap. To present the test cases to the learning algorithm,
we combine all traces from all test cases in the test suite into
a single data structure, the trace graph, thereby eliminating
duplicates and exploiting overlaps.

To enable an efficient search on the test cases, the trace
graph is based on a labeled search tree, where all traces share
the same starting state. Traces with common prefixes share
a path in the trace graph as long as their prefixes match.
For the state-merging approach, the nodes in the trace graph
are annotated with the verdicts. Cycles in the test cases are
represented in the trace graph by routing the closing edges
back to the starting node of the cycle. For better control,
nodes where a cycle starts are also marked.

The trace graph forms the basic data structure for our se-
mantic state-merging. The semantic state-merging methods
depend on the information contained in the test cases, which
in turn depends on the test language. To represent this, the
trace graph can be extended to represent diverse structural
information on the test cases by defining additional node
labels. That way, information on the test cases will only
affect the construction of the trace graph, but not the learning
procedure that depends on its structure.

B. Constructing the Trace Graph

To construct the trace graph, we dissect the test cases into
single traces and add them to the trace graph. Starting in the
root of the trace graph, the signals in the trace to be added
are matched to the node transitions in the trace graph as far
as possible. We call this part of the trace the common prefix.
The remainder of the new trace, the postfix, is then added to
the last matched node. Algorithm 1 describes the procedure
in pseudo code.

Cycles of the test case automaton need special treatment,
as a cycle means that an edge loops back to an existing node.
To this end, we separate the cyclic traces into three parts, a
prefix leading into the cycle, the cycle itself and a postfix
following the cycle. We then add the prefix and the cycle,
whereby the last transition in the cycle is linked back to the
beginning of the cycle. Finally, the postfix then is added to
the trace graph.

C. Querying on the Trace Graph

The most important mechanism of the learning algorithm
is the membership query, which determines the acceptability
of a given behavior. In our case, the behavior of the software
and thus of the target automaton is defined by the test cases.
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Data: A sequence of signals w
Start at the root node n0 of the trace graph;1

for all signal in w do2

Get the first signal b in w;3

if the current node has an outgoing edge marked b4

then
Move to the b-successor of n, which is δ(n, b);5

Remove the first signal from w;6

else7

// The signal is unknown at the current node
Add w as a new subgraph at the current node;8

return;9

end10

end11
Algorithm 1: Add a Trace to the Trace Graph

Posing a membership query against the trace graph amounts
to searching the queried trace in the graph and computing the
verdict of the trace. The computation of the verdict has to be
adapted to the semantics of the test specification language.
In TTCN-3, the policy is that a verdict can only get worse.
Accordingly, the overall verdict of a trace is the worst verdict
that is stored in the nodes belonging to that trace. In other
words, for a trace to be accepted, there must be at least one
pass verdict and no fail verdicts stored in the trace graph
for that trace. We rate any trace that is not found on the
trace graph as not acceptable and therefore apply the verdict
fail. The same policy applies to incomplete traces, i.e., the
queried trace does not end in a final state or no verdict has
been applied during the trace.

The purpose of the equivalence query is to prove that
the hypothesis automaton conforms to all test cases in
the test suite. This can be regarded as a structural test
of the hypothesis automaton against the test suite. Based
on the trace graph, the equivalence query is realized as
a tree walking algorithm on the trace graph, where the
number of cycle expansions is registered and the generated
traces are recorded to keep track of interleaved cycles. As
short counter-examples provide better results in the learning
algorithm, a simple depth-first tree walking algorithm is not
sufficient. To extract the shortest possible counter-example
in each iteration, we need to use an iterative deepening
search. The complexity of such an iterative deepening search
depends on the branching factor of the tree to be searched.
For the trace graph, the branching depends on the structure
of the test suite.

V. MINING THE TEST CASES

So far, the state-merging in the trace graph only means
the combination of the test case automata, where traces
are only merged as far as their prefixes match. The trace
graph therefore exactly represents the test cases, but nothing
more. In the following, we show two techniques to derive
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(a) A Test Case with a Cycle
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( fail )
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b
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(c) Trace Graph Combining
Both Test Cases

Figure 1. Precedence of Cyclic Behavior

additional traces based on our knowledge of test cases.

A. Cycles and Non-Cycles

When testing a software system with repetitive behavior
or a cyclic structure, the cycle has of course to be tested.
However, usually it is sufficient to test the correct working
of the cycle in one test case. In all other test cases the
shortest possible path through the software is considered,
which may mean that test cases execute only a part of a cycle
or completely ignore a cycle. Depending on the test purpose,
the existence of the cycle might not even be indicated in the
test case. As long as the cycle itself is tested by another
test case, the test coverage is not influenced. This approach
results in shorter test cases, which means shorter execution
time and thus faster testing. Furthermore, the readability
of the test cases is increased. While the preselection of
possible paths for cycles is appropriate for software testing,
for machine learning it is desirable to have access to all
possible paths of the software.

Consider the two test cases shown in Figures 1a and 1b.
Although this is only a small example for demonstration
purposes, the setting is quite typical. The test case shown in
Figure 1a tests the positive case, that is, a repeated iteration
of the three signals a, b, and c. The test case shown in
Figure 1b tests for a negative case, namely what happens
if the system receives the signal c too early. In the latter
test case, the repetitive behavior is ignored, as it has been
tested before and the test focus is on the error handling of
the system. However, usually this behavior could also be
observed at any other repetition of the cycle.

For the learning procedure, we would like to have all
those possible failing traces, not only the one specified. We
therefore define a precedence for cycles, which means that
whenever a cycle has the same sequence of signals as a non-
cyclic trace, the non-cyclic trace is integrated into the cycle.
Figure 1c shows the trace graph combining the two test cases
in Figures 1a and 1b. Besides the trace a, c, setverdict(fail)
explicitly specified in Figure 1b, the trace graph also con-
tains traces where the cycle is executed multiple times, (a,
b, c)*, a, c, setverdict(fail). With precedence of cycles, the
test suite used as input to the learning algorithm can be more
intuitive, as cycles only need to be specified once.
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Figure 2. Representing Default Branches

B. Default Behavior

Another common feature of test cases is the concentration
on one test purpose. Usually, the main flow of the test
purpose forms the test case, while unexpected reactions of
the SUT are handled in a general, default way. Still, there
may exist a test case that tests (a part of) this default behavior
more explicitly.

Default branches usually occur when the focus of the test
case is on a specific behavior, and all other possible inputs
are ignored or classified as fail. Also, sometimes a test case
only focuses on a part of the system, where not all possible
signals are known. In such cases, the test case often contains
a default branch, which classifies what is to be done on
reading anything but what was specified.

For our application, this poses two challenges. The first
challenge is in the learning procedure. For the different
queries, we need to have as many explicitly classified traces
as possible, but at the same time we do not want to blow
up the size of the test suite. The second challenge is in the
construction of the trace graph. When adding all different
traces into one combined structure, the implicit context
of what is “default” in the local test case is lost. Also,
sometimes another test case uses the same default, adds more
specific behavior in the range of the default, or defines a new
default that slightly differs. We therefore need a method of
preserving the local concept of “default” in the test cases
and a method of combining different defaults in the trace
graph.

Consider a typical default situation, like a default state-
ment in a switch-case environment. The default collects
all cases that are not explicitly handled beforehand. As
branching on alternatives splits the control flow in a pro-
gram, each of the branches belongs to a different trace.
Therefore, when taking the traces one by one, the context
of the default is not clear. To preserve this context, instead
of default we record the absolute complementary of the set
of other alternatives, which is {{a, b}. A complementary set
is a set that contains everything but the specified elements.
Figure 2 shows a test case with defaults (Figure 2a) and
its representation as a trace graph using the complementary
set notation (Figure 2b). The branch marked with {{a}
represents every branch not marked with a.

Figure 3 shows a trace graph with a default branch in
a general way. There are some arbitrary transitions leading
to the default (marked with prefix), the default branching
itself with an edge marked a and an edge marked {{a}

start  
 prefix 

subgraph Aa

subgraph BC{a}

Figure 3. Generic Trace Graph with Default Branch

start  
prefix

 
 C{a} 

 
postfix

(a) Test Trace to be Added

start  
 prefix 

subgraph A a 

subgraph B
 + 

postfix

 C{a} 

(b) New Trace Graph

Figure 4. Add a Trace with a Matching Default

(”everything but a”), and the arbitrary subgraphs of a and
{{a}.

When adding a trace with a matching prefix to this trace
graph, the signal s following the prefix can be matched to
the trace graph according to one of the following three cases.

• Exact Match: s matches one of the branches of the trace
graph, i.e., if s is a complementary set, it is identical
to the complementary set in the trace graph.

• Subset: s matches one signal (or a subset of signals) of
the complementary set in the trace graph.

• Overlap: s is a complementary set, and overlaps the
complementary set in the trace graph.

The first and simplest case is the exact match, where
a trace with a matching complementary set is added. As
the complementary sets are identical, it suffices to add
the postfix of the trace to the subgraph of the default
already in the trace graph. Figure 4 illustrates this. Figure 4a
shows the test trace to be added. The prefix of the trace
matches the prefix of the trace graph (see Figure 3) and
the complementary set {{a} matches the complementary
set in the trace graph. Therefore, the postfix of the trace
has to be added to the subgraph of the complementary set.
Assuming that there are no other defaults in the postfix,
this is done according to the construction rules described
in Section IV-B. Figure 4b depicts the resulting trace graph
after the new trace was added.

In the second case, the new trace matches a subset of
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(a) Test Trace to be Added
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(b) Modify the Trace Graph:
Split the Default Branch
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(c) New Trace Graph

Figure 5. Add a Trace with a Subset of the Default
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(d) New Trace Graph

Figure 6. Add a Trace with a Differing Default

the complementary set in the trace graph. The situation is
depicted in Figure 5, the signal following the prefix in the
trace (Figure 5a), b, is a subset of the complementary set
{{a}. However, the postfix cannot simply be added to the
subgraph of the complementary set, as this would allow
unspecified traces. Instead, before adding the postfix, the
trace graph is modified as shown in Figure 5b. The signal b
is removed from the complementary set and represented by
a distinct edge. Now, the new trace matches exactly and the
adding proceeds as described for the first case. Figure 5c
shows the result.

In the third and last case, the complementary sets of the
new trace and the trace graph overlap (see Figure 6). The
trace contains an edge marked with the complementary set
{{b} (Figure 6a), whereas the trace graph contains an edge
marked with the complementary set {{b} (see Figure 3). The
complementary set of the test trace to be added does not fit
the complementary set of the trace graph, but there is an
overlap, i.e., every signal which is neither a nor b matches
both sets.

The solution is similar to the second case. The transitions
in the trace need to match the transitions in the trace graph,
so the sets are split accordingly. For the trace graph, the
edge marked b is branched out from the complementary set
(Figure 6b). The remaining complementary set in the trace
graph is {{a, b}. However, the complementary set of the
test trace still does not match, so the test trace is also split
(Figure 6c). The complementary sets of the trace graph and
the test trace are now identical, {{a, b}, but the test trace
has been split into two test traces. Now, the two resulting
test traces can be added to the trace graph, resulting in the

trace graph shown in Figure 6d.
The described techniques also generalize to sets with more

than one element. In this case, the sets associated with
the split branches are determined as the intersections and
differences of the given sets.

VI. IMPLEMENTATION AND CASE STUDY

To assess the power of our learning approach, we have
developed a prototypical implementation [23]. The imple-
mentation realizes an Angluin-style learner, which is adapted
to learning from test cases, and the organization of the test
data into a trace graph as discussed in Sections IV and V.
Using the prototype, we performed a case study based on the
conference protocol [24]. The conference protocol describes
a chat-box program that can exchange messages with several
other chat-boxes over a network.

In the following, we will give a short overview of the
prototypical implementation. Subsequently, we describe the
experiments that were performed with two versions of the
conference protocol. In the last section of this chapter, we
will compare the two experiments and draw some conclu-
sions.

A. Prototypical Implementation

Our prototype is implemented in the programming lan-
guage Java, the abstract structure is shown in Figure 7 as a
Unified Modeling Language (UML) class diagramm.

Figure 7. Abstract Structure of the Implementation

The main classes of our prototype implementation are
explained further in the following. The class Learner
implements Angluin’s learning algorithm. In every iteration
of the learning algorithm, a new counter example is obtained
via an equivalence query and used to detect a new state. The
discovered states are organized in a classification tree, which
is also used to generate the new hypothesis automaton. The
two queries, equivalence query and membership query, are
implemented according to our adaptation to learning from
test cases, and mapped onto a trace graph structure.

In the class TraceGraph, the basic methods of semantic
state-merging are implemented. A trace graph structure is
constructed by adding traces from test cases. The precedence
of loops (Section V-A) is currently implemented implicitly,



206

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

as loops are simply added first to the trace tree. Default
branches (Section V-B) are not yet implemented. In con-
sequence, the currently implemented TraceGraph and
Learner classes are generic and can be used for any test
specification language.

For the input of the test cases and the output of the
hypothesis automaton, generic interfaces were defined. In
our prototype, both interfaces are implemented using the
LTSML format that can be used to represent any type of
automaton [25]. For the test cases, we focus on the test
specification language TTCN-3, i.e., the TraceReader
recognizes TTCN-3 keywords and generates traces accord-
ing to the semantics of TTCN-3.

B. The Conference Protocol

Our case study is based on a chat-box program described
in [24], the conference protocol. We have adapted the
protocol to the constraints of our learning procedure.

The conference protocol describes a chat-box program
that allows users to participate at a conference chat over
a network.

• A user enters an existing conference by sending the
service primitive join.

• Then, the user can send messages to the conference chat
(datareq) and receive messages from the conference
chat (dataind). Each datareq causes dataind messages
to be issued to all other participating users and vice
versa.

• At any time after a join, the user can leave the confer-
ence by sending the service primitive leave.

The chat-box program converts each service primitive into
a protocol data unit, which is then sent to each of the other
participating chat-boxes over a network. Figure 8 illustrates
this scenario in a UML interaction diagram.

Figure 8. Two CPEs Connected over a Network Service

C. Mining for Cycles

In the first experiment, we want to assess our approach to
mining the test cases for cycles. To limit the complexity of
the model, we assume that the chat-boxes send messages to
each other in a fixed sequence. Based on this assumption,
we generate two test suites.

In the first test suite, we build the cases to satisfy a
boundary-interior coverage, where the cycles in the data
transmission phase of the protocol are executed once or
twice, or skipped. The trace graph generated for this test
suite contains no cycles. In the second test suite, we explic-
itly declare cycles, instead of unrolling them.

Table I shows our results for this experiment. The protocol
was scaled according to the number of participating chat-
boxes. As the table shows, the semantic state-merging of
cycles reduces the size of the trace graph by more than
half in this example, while the learned automaton was
identical. Also, the test suite can be smaller. In addition, the
compact version of the trace graph also allows an optimized
equivalence query.

D. Limits in Learning Complex Communication

In order to assess the limits of our approach, we extend
our version of the conference protocol. We now assume that
the network service may mix up the signals, so that the
data units are observed in an arbitrary sequence. In our test
scenario, we want to accept all traces, where a chat-box
correctly joined and left the conference. This means that
all participating chat-boxes have reveiced the join messages
before the first data packages occur, and that no data
packages occur after the leave message has been sent.

Every service primitive is distributed to n− 1 other chat-
boxes, which means (n − 1)! correct paths for joining and
leaving the conference and also for sending data. In addition,
there are n − 1 correct paths to receive data. We explicitly
specify the data transfer as cyclic behavior. Therefore, we
can compute the number of correct traces as ((n − 1)!)3 ∗
(n − 1), or (|join|) · (|send|) · (|leave|) · (|receive|), where
|service primitive| denotes the number of correct sequences
for the services primitive.

The goal of this experiment is to find out how many test
cases are needed to correctly learn the protocol. We tried
different approaches to generate test cases for this version
of the conference protocol.

A common coverage criterion in testing is the branch
coverage, where every branch of the SUT is executed. In
application to the conference protocol, this means that we
have to cover every serialization of data units. However, it
turned out that the learned automata do not correctly repre-
sent the intended protocol. A closer look at the model reveals
that the learned automaton contains the traces exactly as they
were specified in the test cases. Instead of generalizing from
the input data, the learning algorithm learned every input
trace by heart. This effect could be reproduced with different
versions of the test suite. Only by using a test suite satisfying
path coverage of the expected automaton, we could learn the
correct automaton.

We deduce that the structure of the SUT has an influence
on the complexity of the learning process and that for correct
machine learning, the test suite has to be as complete as
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Number of Size of Size of the Trace Graph Size of the Test Suite
Chat-Boxes Target Automaton Without Cycles With Cycles Without Cycles With Cycles

1 72 edges, 8 nodes 33 nodes 13 nodes 6 pass traces 2 pass traces
2 168 edges, 12 nodes 60 nodes 22 nodes 9 pass traces 3 pass traces
3 304 edges, 16 nodes 90 nodes 30 nodes 12 pass traces 4 pass traces
4 480 edges, 20 nodes 120 nodes 40 nodes 15 pass traces 5 pass traces
5 696 edges, 24 nodes 164 nodes 48 nodes 18 pass traces 6 pass traces

Table I
EFFECT OF SEMANTIC STATE-MERGING

possible. In fact, this precondition on the learning sample
has been described before as the need for a “structurally
complete” sample. As a rule of thumb, we might say that
“the larger the test suite, the smaller the automaton”, as a
large test suite usually allows more possible paths.

Experimentation has also shown that the growing size of
the test suite affects our learning procedure in two related
points. The first is the generation of the trace graph. For
larger test cases the preprocessing steps, such as cycle de-
tection, are harder to handle. The second is the equivalence
query, where the whole test suite has to be executed again
and again. Interestingly, it is not necessary to compute
all interleaving cycle executions for the equivalence query.
Instead, the crucial points for the equivalence query turn
out to be the intersections between different paths through
the SUT. Therefore, for a better scalability of our learning
procedure, we should aim at detecting intersections of the
test cases in the trace graph, thereby minimizing the trace
graph and reducing the necessary size of the test suite while
keeping its expressiveness.

VII. DISCUSSION AND OPEN QUESTIONS

While our experiments proved the suitability of the
learning approach, they also raised a number of questions
regarding specific properties of the used data structures
and the algorithm. Some of the observations confirmed
design decisions, while at other points, decisions turned
out to be less than optimal. The following sections provide
an assessment of the parts of our learning approach. We
reassess the generated automaton, the use of a test suite
as input sample, and the learning algorithm itself with
respect to their suitability for our purposes. As some of the
encountered questions have also attracted the attention of
other researchers, there are a number of possible solutions
available that could be adapted to our learning approach. In
other situations, a number of possible solutions are suggested
that have not been investigated yet.

A. Suitability of the Learned Automaton

Angluin’s learning algorithm generates a plain DFA,
which consists of a set of states partitioned into accept-
ing and rejecting states, an input alphabet triggering state
transitions and a corresponding state transition relation. As
we have argued in [3], this type of automaton is suitable

for representing system models. The drawback of DFAs is
that to express the same information as a more advanced
model, more states are needed, making the automaton large.
Contrary to expectations, it was not the size of the target
automaton that proved to be a problem, but its structure
and the repercussions on the size of the test suite needed to
correctly identify the automaton.

1) Influence of Parameters: A DFA representing a param-
eterized process such as the conference protocol described in
Section VI-B contains a number of paths to cover different
serializations of the parameters. The experiments show that
to correctly learn all the different serializations, not only all
of them need to be represented in the learning sample, but
also in every possible combination. This also correlates to
the results by Berg et al. regarding prefix-closed models [26],
which state that prefix-closed automata are harder to learn
than random automata, as the learning algorithm would need
to perform a membership query for every prefix.

Berg et al. address this problem by proposing an approach
to learn parameterized automata [27]. Based on the orig-
inal version of Angluin’s learning algorithm, which uses
an observation table to store the discovered information,
they introduce a guard-labeling on the entries of the table,
describing an input partitioning. Then, the result of an
equivalence query can also be the splitting of a partition
beside the discovery of a new state or the acceptance of the
learned automaton. A similar approach is described by Li
et al. [28], which has the advantage of taking into account
both input and output signals, where Berg et al. only consider
input signals.

Both proposed solutions for learning parameterized mod-
els rely on the original version of Angluin’s learning algo-
rithm, which uses an observation table to store the informa-
tion learned, and the table format is essential in computing
the parameterization. In contrast, our approach to learning
from test cases uses a variation introduced by Kearns and
Vazirani [29], which stores the gathered information in a
classification tree. Therefore, an adoption of those solutions
requires some adaptations.

2) Handling Non-Applicable Signals: Another structural
problem of the learned DFA is that the learning algorithm
always generates a fully specified automaton, i.e., an au-
tomaton where in every state, a target state for every possible
signal is specified. As the essence of state based systems
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is that the applicable actions depend on the state of the
system, most states of an automaton can only process a
subset of the global signal alphabet. The handling of the
non-applicable signals then depends on the semantics of the
system. One commonly adopted approach is that the system
should robustly ignore all unspecified signals, which implies
that unspecified transitions at a given state are treated as
self-loops.

However, this approach cannot be adopted by Angluin’s
learning algorithm, as the algorithm only discerns accepted
and rejected traces and therefore cannot tell whether a signal
is not specified and should be ignored via a self-loop or
whether a signal is explicitly rejected and should lead to
a fail state. In consequence, the learning algorithm routes
all unspecified or rejected signals into a global fail state,
thereby generating a fully specified automaton that rejects
non-applicable signals.

Due to the properties of the learning algorithm, we can
identify the global fail state in the learned automaton, as
it is the first rejecting state discovered. Therefore, it would
be possible to remove the global fail state and to replace
transitions leading into it by self-loops to their source states.
This is, however, not a safe transformation, as thereby all
explicitly failing transitions would also be transformed into
self-loops. In consequence, to learn a DFA that ignores some
inopportune signals, those self-loop transitions need to be
explicitly specified in the test suite. This obviously leads
to a larger test suite, which is also less intuitive and less
readable. Alternative approaches would be to distinguish
explicitly and implicitly rejected transitions during learning,
generating self-loops for implicitly rejected transitions, or
to implement a smart transformation algorithm that checks
transitions to the global fail state before removing them.

B. Suitability of a Test Suite as Sample Data

The main idea of our learning approach was to use a
test suite as input data, as the verdicts pass and fail readily
provided an assessment of acceptable and rejectable system
traces. While this assumption holds true, mapping test cases
to input traces of Angluin’s learning algorithm nevertheless
reduces the expressiveness of the test cases considerably.
The test cases need to be linearized, a common starting state
has to be established, and all circumstantial information as
parameters and ports have to be integrated into the input of
the target automaton. Especially the flattening of parameters
and ports leads to an exponential blowup of the number of
test case traces.

While Angluin’s algorithm depends on traces, the seman-
tic state-merging approach is designed to exploit the test
language specific properties of test cases. The test language
specific back-end then represents the sample data in a
generic way to the learning algorithm. This way, the learning
algorithm provides a common front-end to be combined with
different test language specific back-ends. In consequence,

further optimization regarding the representation of the test
suite mainly concerns the state-merging part of our hybrid
algorithm.

1) Mining Additional Properties: The state-merging tech-
niques introduced in Section V define how to merge traces
by generating a prefix tree, the representation and handling
of cycles in the trace graph and the handling of default
branches. However, cycles and defaults are only the most
common properties of test languages.

Stable testing states define known and checkable states
of the SUT. By marking the according states in the trace
graph, a test case containing a marked testing state could be
directly connected at the given state. Thereby, the need for
a common starting state could be avoided.

Parallel behavior can be explicitly defined, especially in
test languages that are targeted at distributed testing. By
defining an according operator on the trace tree, membership
queries containing different sequentializations of parallel
behavior could be answered correctly without explicitly
representing every such path in the test suite.

Besides the verdicts pass and fail, some test languages
define additional verdicts assigned on inconclusive behavior
or on an error in the test environment. In the current learning
approach, everything not accepted, i.e., assigned a pass
verdict, is rejected. However, in an open world approach, the
answer “I don’t know” could be given by the membership
oracle. In this case, the mapping of the test verdicts has
to be reconsidered. The verdict inconc, which is used by
TTCN-3 to indicate that the result of the test case cannot
be decided, maps naturally on an “I don’t know” for the
learner—the teacher does not know whether the behavior is
acceptable or not. Then again, the verdict error is considered
by TTCN-3 to be more severe than a verdict fail, but for
learning purposes it could still amount to an “I don’t know”.

Lastly, information about ports in the test cases could
also be used. Considering a highly connectable SUT, such a
system would feature a number of different ports connecting
to different other systems. To learn a protocol automaton
for just a subset of those communication ports, the test case
traces could be restricted to the ports in question, excluding
all others.

2) Influence of Coverage: While the semantic state-
merging approach is able to make up for many missing
traces, the case study suggests that the test suite used
in learning must at least satisfy a path coverage of the
SUT, as the one experiment where only a branch coverage
was used failed. However, there are other coverage criteria
besides branch and path coverage, e.g., based on condition
determination or on the functions of the SUT, or automatic
test case generation techniques. Further research is needed
to clarify the dependencies of system structure, test suite
coverage, and learnability.
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C. Suitability of the Learning Algorithm
When confronted with the problem of reconstructing a

system model from test cases, learning algorithms seemed
to be a simple solution. The starting assumption was that
while the test cases could be used as they were, some
adaptations would have to be made to the algorithm. Instead,
research shows that the learning algorithm itself can be used
without changes, while the effort of adaptation concerns the
representation of the learning sample, i.e., the test cases. In
fact, the approach to learning from test cases proved to be
a problem of teaching more than of learning.

1) Online and Offline Learning: Online learning algo-
rithms, like Angluin’s algorithm, build a system model by
querying a teacher. Their main advantage is in generating
the necessary queries themselves, thereby avoiding the need
for a complete sample. However, this approach implies the
existence of an omniscient oracle, which is able to answer
arbitrary queries. In contrast, offline learning algorithms
assume the existence of a structurally complete sample,
which is then merged into the target automaton.

The query mechanisms used by Angluin’s algorithm
naturally match the test cases’ verdicts. Also, Angluin’s
algorithm is scalable, growing only linearly with the size
of the target automaton, and always generates a minimal
DFA. As a test suite always assumes completeness with
regard to certain coverage criteria, it can be assumed that
the completeness of the test suite is sufficient to answer the
membership queries. However, our experiments show that
this assumption holds only for high coverage criteria and
even then depends on the structure of the system.

These results seem to suggest that an offline learning
approach would work better for the learning from test cases.
Lambeau et al. [30] propose an offline algorithm based on
state-merging, which takes into account merge constraints as
well as incompatibility constraints, requiring some states to
be merged obligatorily while others need to stay separated.
This approach might work well for the learning from test
cases. However, state-merging algorithms always need to
be closely tailored to the sample data to merge. Therefore,
a state-merging approach would only work for the special
semantics it is designed for.

Our approach combines the advantages of both online and
offline algorithms. The online algorithm is used to drive the
overall learning process, thereby establishing a learning pro-
cedure that is independent from any given test specification
language. Underlying the learning process, state-merging is
used to mine the test language specific information for better
coverage of the automaton’s traces and to generate a data
structure to be used as an oracle.

Following this layered approach, existing methods could
be integrated for optimization. Regarding the online learning
part, these optimizations concern the type of automaton
generated, incorporating i.e., parameterization [27], [28].
Optimizations on the offline learning part should extend

the semantic state-merging approach. Possibly exploitable
properties of test cases comprise differentiation of input and
output signals and consideration of stable testing states. For
example, the stable testing states could be matched to the
merge constraints in the approach by Lambeau et al. [30].

2) Other Versions of Angluin’s Algorithm: Another
source for optimization of the learning procedure is the
version of Angluin’s algorithm that is used. The prototypical
implementation uses a variation introduced by Kearns and
Vazirani [29], which stores the gathered information in a
classification tree. This version has the advantage of asking
less membership queries, but at the cost of more equivalence
queries [31]. Also, the classification tree provides a structure
that is easy to maintain and therefore quickly to implement.

The original version of Angluin’s algorithm uses an
observation table to store the gathered information. This
variation asks more membership queries before constructing
the first hypothesis automaton, thereby reducing the number
of needed equivalence queries [31]. On the other hand,
maintaining the consistency of the observation table needs
more effort.

Experimentation shows that using the trace graph as an
oracle, membership queries are cheap, as their complexity
only depends on the length of the queried trace. Equiva-
lence queries take time, as in the worst case, the whole
test suite has to be run against the hypothesis automaton.
Also, the adaptations to learning from test cases are com-
pletely independent of the underlying implementation of
Angluin’s algorithm. Therefore, re-implementing the core of
the learning algorithm according to the original version of
Angluin’s algorithm might even provide a small performance
advantage.

3) Breaking the Closed World Assumption: In most learn-
ing scenarios, it is comparatively easy to get a correct answer
to membership queries, while the equivalence query is hard
to decide. When learning from a complete test suite, it is the
other way around. The equivalence query can be matched
easily to a run of the test suite against the hypothesis
automaton, the only limiting factor being the time needed
to run a large test suite. This also relates to the results of
Berg et al. [32], who investigate the similarities between
conformance testing and automata inference, finding that
conformance testing solves a checking problem. Therefore,
we can safely assume that a test suite that is sufficient to
declare a system as conforming to its specification also
suffices to decide whether it is equivalent to a learned
hypothesis automaton.

In contrast, when asking membership queries against a
limited set of traces, as every test suite is bound to be,
there will always be queried traces that are not contained
in the test suite. As the experiments show, rejecting every
unknown trace can lead to bad generalization in the hypoth-
esis automaton, while trying to provide for every possible
query leads to inhibitively large test suites. There are several
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possible approaches to solve this dilemma.
One way is to mine the test suite for implicit traces by

state-merging. First efforts in this direction have been inte-
grated into our learning approach and have shown positive
results. Besides further exploitation of the properties of the
test languages, also input from existing research in state-
merging techniques can be used. The state-merging approach
has two main advantages. The approach is self-contained,
as no external input is needed, and it is safe, as the state-
merging is based on information internal to the test suite.
The drawback is that the mining depends on the information
available in the test suite. If a test language with restricted
description possibilities is used, the possibilities of state-
merging are also restricted. Besides, while state-merging
is able to boost the number of covered traces, it cannot
make up for missing test cases if the test suites coverage
is insufficient.

Another possible approach is to include explicit “don’t
know” into the possible answers of a membership query. The
problem of undecidable membership queries has occurred
to researchers in other settings before, therefore a number
of possibly adaptable methods exist. Sloan and Turán [33]
define a meta-algorithm for incomplete membership oracles.
For each undecidable membership query, the learning pro-
cess is forked, one instance assuming acceptance, the other
rejection of the queried string. If a copy is detected to be
inconsistent, it is pruned. While this approach clearly leads
to an exponential growth in the computation, the difficulty
also is how to determine inconsistencies in the forked hy-
potheses. Bshouty and Owshanko [34] propose an extension
of Angluin’s learning algorithm including “don’t know” as
a possible answer to a membership query. Based on the
Kearns-Vazirani version of the algorithm, they partition the
possible traces of the target automaton into cover sets, reset-
ting the algorithm when a counter-example causes a cover
set to be split. Grinchtein and Leucker [35] also suggest an
extension of Angluin’s algorithm. Using Angluin’s original
version, they generate an incomplete observation table that
they subsequently feed into a satisfiability solver, filling in
the gaps with the most consistent solution. However, all
those approaches share the disadvantage of replacing the
uncertainties of the membership oracle with assumptions,
thereby deviating from exact learning.

The third approach is a combination of passive and active
techniques. In this approach, the algorithm learns as much
as possible using the available information, fully exploiting
every counter-example. When an unanswerable query is
encountered, the query is either addressed at an external
oracle, e.g., a domain expert, or translated into a test case
that is executed against the SUT. Asking a domain expert
leads to a guided learning approach. In this case, the learning
is only semi-automatic. Executing a test case against an SUT
could be conducted automatically. However, as the outcome
of the query then would depend on the SUT, this approach

compromises the independence of the learned automaton.
As both approaches draw information from sources beside
the test suite, inconsistencies could be introduced into the
learning data.

VIII. CONCLUSION

We have presented a learning approach that combines
state-merging and learning techniques to generate a DFA
from a test suite. The state-merging is used to represent
the test suite and to find additional test cases exploiting
the semantic properties of the test language. The combined
approach has been implemented in a prototypical tool.
Experiments show that while the state-merging approach
reduces the size of the test suite needed for correct iden-
tification of the model, complex models still need a large
number of test cases for correct identification.

We have discussed the design decisions that form the basis
of our approach to learning from test. The main issue is
the size and coverage of the test suite used in the learning
process. While the mapping of test cases to learning traces
is intuitive and simple, the size of a test suite sufficient for
learning can get inhibitively large. Optimizations to deal
with this problem comprise the extension of the semantic
state-merging approach to better exploit the information
contained in the test cases and an extension of the learning
algorithm to work with unanswerable membership queries.
In addition, the relation between test suite coverage, system
structure, and learnability offers interesting research topics.

Based on the experiments with our learning approach,
the next step is to incorporate the identified optimizations
into our prototypical implementation. In the long run, our
findings on the learnability of different models could also
be used to assess the adequacy of a test suite.
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