
252

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Soft Constraints in Feature Models: An Experimental Assessment

Jorge Barreiros
1,2

1
Instituto Superior de Engenharia de Coimbra

Instituto Politécnico de Coimbra,

Coimbra, Portugal

jmsousa@isec.pt

Ana Moreira
2

2
Dept. de Engenharia Informática

Universidade Nova de Lisboa

Caparica, Portugal

amm@fct.unl.pt

Abstract—Feature Models specify admissible configurations

of products in Software Product Lines. Constraints are used

to represent domain specific knowledge, such as requiring or

excluding a feature in the presence of another.

Configurations failing to conform to these constraints are

deemed invalid. However, in many cases useful domain

information cannot be expressed comfortably with such

forceful, hard constraints. To overcome this problem, softer

constraints, of less forcing nature, can be used. We describe

a framework for including soft constraints in feature models

based on propositional logic. Analysis procedures for

detecting inconsistencies and conflicts in this framework are

also described. Test sets are built by injecting soft

constraints into publicly available feature models, recreating

typical patterns of use. These features are then subjected to

automated analysis to assess the prevalence of soft constraint

related conflicts and interactions.

Keywords - Feature Models; Software Product Lines; Soft

Constraints; Feature Consistency; Feature Interaction;

Semantic Validation

I. INTRODUCTION

Soft constraints, described in [1], can be used to
represent uncertain configuration information into feature
models [2]. Feature models are frequently used in
Software Product Line (SPL) development [3] for
specifying valid product configurations, that is,
configurations corresponding to a variant that can be
created by an application engineer using the SPL. Product
variants belonging to the same family are created by
specifying a feature configuration, which is then realized
by the composition of corresponding artifacts from a
common pool of assets (such as requirements documents,
design models, code, etc.).

Feature models identify valid configurations by using a
feature tree annotated with additional domain constraints.
These can be represented graphically (e.g., linking
dependent features with a dependency arrow) or textually,
by means of arbitrary cross-tree expressions (Boolean
expressions depending on the configuration variables).
Over-constraining may result in an inconsistent feature
model, that is, one where no configuration exists, where all
the constraints can be satisfied simultaneously.

 Feature models can be represented using logic
expressions according to well-known transformations

described in [4], [5]. A feature model expression is
obtained by conjoining the feature tree expression with the
domain constraints.

An example of a feature model can be found in Fig. 1,
where Sound, Keyboard, and Screen are mandatory
subfeatures of the root feature node Phone, while
MP3Player and Camera are optional subfeatures.
Polyphonic and Monophonic are mandatory and
alternative subfeatures of the Sound feature, and
Monochromatic and Color are alternative subfeatures of
the Screen feature. One domain constraint is represented:
the requires arrow describes that selection of the Camera
feature implies the selection of the Color feature.

Links such as the one connecting Camera and Color in
Fig. 1 describe hard constraints. Any configuration that
does not respect this constraint is invalid. It can be the
case, however, that domain information is not comfortably
representable using such strict constructs. For example, a
situation can be considered where the overwhelming
majority of configurations do indeed respect a certain
restriction, but a few exceptions may exist. In this case,
restrictions on admissible configurations cannot be as
strict. A simple example will be the case of a default
selection for a group of alternative selections: if the parent
feature of such group is selected, then the preferred
alternative configurations may be suggested.

In [1], the use of soft constraints is proposed, similar to
hard constraints but of less forcing nature, in these
situations. The concept of soft constraint has been
described earlier in the context of probabilistic feature
models

[6]. Probabilistic feature models extend standard

feature models by the addition of “soft” constraints that are
associated with a degree of probability. These are often
obtained as the result of a feature mining processes. We
consider the use of a similar concept in standard,
deterministic feature models, avoiding the need to resort to
mechanisms such as data mining or Baysesian networks to
fully specify the required feature joint-probability
distributions. The use of soft constraints allows richer
semantics to be represented in feature models, with
advantages such as enhanced analysis and improved
configuration support. An example of such a constraint in
Fig. 1 would be “Sound suggests Polyphonic”, expressing
domain knowledge that indicates the more common sound
configuration option. Naturally, soft constraints do not
need to be restricted to parent-child features as described:

253

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

other relations such as “Monophonic suggests
Monochromatic” can be represented. This type of
constraints can be useful for efficiently capturing useful
domain information that might be lost otherwise, as it is
usually absent in standard feature models. It can be used to
good effect for multiple purposes, depending on the
specific semantics that are adopted as described later, such
as allowing interactive configuration tools to suggest
configuration choices to the user.

Using soft constraints also allows some semantic
consistency analysis that would otherwise be impossible,
e.g., if a suggested dependency can never be realized in a
feature model, then probably something is not right.
Suggestions may also be unsatisfiable for a certain valid
partial configuration (e.g., suggestions cannot be satisfied
simultaneously if one feature is selected), highlighting that
a trade-off analysis may be in order.

We extend the work presented in [1] by:

• Describing structural patterns of application of soft
constraints.

• Describing a process for injecting soft constraints
into a feature model for the purpose of automated
testing.

• Presenting an enhanced discussion of the impact
of soft constraints in feature configuration and
corresponding analysis technique.

• Using a prototype tool to collect and analyze
experimental results using data from publicly
available feature model repositories.

In Section II, we present motivating examples for our

work. In Section III, we provide a detailed discussion of
soft constraints, discussing benefits of their use, proposing
a categorization of the different types of soft constraints,
and discussing automated analysis procedures. Section IV
presents some typical patterns of use of soft constraints,
while in Section V the soft constraint injection algorithm is
presented. The tool and experimental results are presented
in Section VI, followed by a presentation of related work
in Section VII and conclusions in Section VIII.

Keyboard Screen

Phone

Camera

Monochromatic Color

Sound

Polyphonic Monophonic

MP3 Player

requires
Figure 1. Mobile phone feature model.

II. MOTIVATION

Consider the example in Fig. 2, adapted from [6],
where a feature model is used to describe configuration
variability for an automobile vehicle. In this case, hard
domain restrictions are used to enforce the selection of
manual transmission in sports vehicles and to make sure
that emission control techniques are always used in
products destined for markets with stricter environmental
legislations. While observance of such constraints is
always found in valid products, soft constraints are used to
represent relevant relations between features that, while
not as critical or universally applicable as the hard
constraints, are also important. In this case, it is well
known that the USA market tends to favor vehicles with
automatic transmission over those with manual
transmission, while the converse is true for the European
market. Using soft constraints, such information can be
readily represented in the feature diagram, bringing in
additional semantics that can be used to good effect.

Another example of the use of soft constraints can be
found in Fig. 3. In this case, the feature model is used to
represent dynamic variability of the runtime behavior of a
real-time system. The system should adapt its behavior to
conform to variations in its environment. The state of the
operation environment is assessed by appropriate sensors
and the corresponding features are (de)selected
accordingly, with corresponding impact on the runtime
behavior as dictated by the constraints. A base control task
is to be active at all times, while fan control is only
suggested if the temperature is medium, but mandatory if it
reaches a high level. A filtering task is suggested if electric
noise is detected.

The need to use soft constraints to describe the
variability in this scenario is supported by the fact that the
suggested (non mandatory) features may not always be
selected because of limited resources (e.g., available CPU
load). This means that a feature such as Fan Control may
in fact remain unselected in the presence of its suggestor
(i.e., the Noisy feature), which cannot be comfortably
expressed using only hard constraints.

These examples suggest that soft constraints can be
used to good effect in feature models, by allowing the
inclusion of important domain information of non-forcing
nature.

III. SOFT CONSTRAINTS

In this section, we discuss the benefits gained by using
soft constraints in feature models and present a
categorization of alternative semantics. We then discuss
automated analysis procedures for identifying
inconsistencies and other relevant information, such as
features that cannot be selected if satisfaction of a soft
constraint is sought.

254

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Car

Transmission

Manual

Automatic

USA Europe

MarketEmission Control

Africa

requiresrequires

suggests

suggests

Profile

Utility

Sport

requires

Figure 2. Feature model for car configuration

Engine Control

Moderate

Environment

Noisy

suggests

High

Temperature

Runtime

Base Control

Fan Control Filtering

requires

suggests

Figure 3. Engine control system

A. Benefits of soft constraints

Benefits of using soft constraints in feature models
include:

• Improved configuration support: Interactive
configuration and completion techniques can assist
the configuration of feature models by assessing the
liveliness of features after each configuration step.
Starting from an empty configuration where all
features are considered to be unspecified (neither
selected or deselected), after a feature is selected or
deselected by the user, the liveliness of all features is
re-evaluated with respect to the partial configuration
already defined. Features that are found to be dead
(always unselected) in that partial configuration can
be safely deselected automatically. Conversely,
features that are common to all configurations that
include the partial configuration so far specified can
be automatically selected. For example, if the
developer specifies feature C in Fig. 4 to be selected,
then features D and E can be automatically
deselected by the configuration tool, as no valid
configuration including feature C will contain either
(i.e., both are dead in all configurations where C is
selected). Similarly, A and root are common to all
such configurations, so they can be selected
automatically, leaving only feature B unspecified.
Interactive configuration and completion tools can

use soft constraint information to make
configuration suggestions to the user. For example,
if “A suggests B”, the configuration tool can propose
the selection of B by default whenever A is selected
and B is unspecified. Also, if a valid configuration
fails to conform to a large percentage of soft
constraints, it can be flagged to the developer as
suspicious. Feature configuration support for feature
models with soft constraints is described in [7].

• Improved semantic-oriented consistency checks:
Standard consistency analysis of feature models is
concerned with ensuring that valid configurations do
exist. If soft constraints are present, it is possible to
make sure that configurations are available that
verify the suggested dependencies. If that is not the
case, this may be a sign that an analysis or modeling
error has occurred. For example, if it were actually
impossible to configure a car for the European
market with manual transmission despite such
association being suggested (e.g., because of the
unintended collateral side effect of some hard
constraints), this would be highly suspicious and
should be reported to the developer for additional
consideration. This could be the case if hard domain
restrictions would make it impossible to select a
configuration where both such features are selected.

• Controlled generalization of feature models: A
generalization of a feature model is a transformation
that increases the number of admissible
configurations, making sure that previously valid
configurations remain valid. In some cases, soft
constraints can be used as a mechanism for
controlled generalization of feature models. For
example, if it was found, after creating the feature
model in Fig. 2, that it should actually be possible,
under certain circumstances, to produce vehicles
without emission control for the USA market, the
hard restriction that forbids such products from
being created could be transformed into an
equivalent soft constraint. This would have the
benefit of preserving important domain information
while accommodating the need to allow for spurious
“rogue” configurations.

255

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Semantics and Categorization

Soft constraints can be interpreted according to different
semantics, from configuration suggestions (e.g., describing a
predominant configuration options such as described in [6])
to stricter impositions that must be enforced if possible (i.e.,
a feature must be selected if possible). According to the
adopted interpretation, different types of analysis and
interpretations may be possible. Therefore, we must consider
the possible semantics. These can be broadly categorized in
two different categories:

• Annotational: A soft constraint with an annotational
semantics does not impose any additional restriction
when added to a feature model. Its main purpose is
to embed domain information in the feature model to
assist the configuration automation and semantic
consistency checking. The validity of any specific
product configuration is never influenced by the
presence of an annotational soft constraint.

• Normative: A normative soft constraint must be
considered when assessing the validity of a product
configuration. These constraints represent
configuration information that may potentially
condition the validity of some configurations. A
normative soft constraint must be satisfied if
possible, but can be ignored otherwise. The concept
of “possible satisfaction” is, generally, always
dependent on the characteristics of the feature model
and is also potentially dependent on domain-specific
information (external to what is represented on the
feature model: see below). A normative soft
constraint may change the validity of a configuration
(with respect to the unconstrained feature model),
but it may never cause a feature model to become
inconsistent. Normative constraints can be
interpreted informally as meaning “requires-if-
possible”, “may-require”, “require-if-does-not-
make-configuration-invalid” or some other similar
designation. Applying normative constraints entails
the need to assess the “possibility” of selecting a
specific feature. The topology of the feature model
and cross-tree-constraints is always a decisive factor
in making that assessment (i.e., it cannot be
reasonably considered “possible” to select a feature
when doing so would generate an invalid
configuration). However, it may be the case that the
feature model information is not sufficient to assess
the possibility of selecting a feature: in this case,
external factors, not represented in the feature model
would come into play. This suggests the following
additional characterization of normative constraints:

root

A
B

C D

excludes

E

requires

Figure 4. Iterative configuration example

• Internal: The feature model holds all the
information required to assess selection possibility.

• External: The information in the feature model
alone is not sufficient for assessing possibility of
selection. External factors come into play.

In the example of Fig. 2, if the soft constraints are

interpreted under annotational semantics, then any
configuration that upholds the hard constraints is considered
valid, regardless of complying or not with the soft
constraints. On the other hand, if an (internal) normative
semantic is considered, the following interpretation holds: “If
the USA feature is selected, then the Automatic feature must
be selected, unless doing so would generate an invalid
configuration”. That is, a normative soft constraint should be
interpreted as a hard constraint, unless doing so would turn
an otherwise valid configuration into invalid. In Fig. 3, a
potential example of external normative soft constraints is
represented: in this case, the Fan Control feature should
always be selected if the Moderate heat feature is selected,
unless that is not possible, according to domain information
that is not necessarily integrated in the feature model. For
example, knowing that the implementations of the Base
Control, Fan Control, and Filtering features compete for a
limited resource (CPU load), assessing of the possibility of
including the Fan Control feature must be conducted with
respect to external information. It is out of the scope of this
work to discuss how such external information would be
obtained or retrieved – as examples, an oracle could be used
to provide the required information or a domain specific
ontology could be queried. External normative constraints
require considering information beyond the one available on
the feature model and will not be discussed further in this
work. Therefore, in the remainder, when referring to
normative soft constraints, internal semantics are assumed.

 Table I presents a description of soft constraints and
their intended meaning. Table II presents a summary
overview of hard and soft constraint categorization and their
effects on feature model consistency and configuration
validity.

256

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. SOFT CONSTRAINT DESCRIPTION

Soft Constraint Interpretation

A suggests B A⇒ B

A discourages B A ⇒ ¬B

A absence-suggests B ¬A ⇒ B

A absence-discourages B ¬A ⇒ ¬B

TABLE II. CONSTRAINT CATEGORIZATION SUMMARY

Nature Subtype Affects FM

consistency?

Affects config

Validity?

Hard Yes Yes

Soft Normative No Yes

 Annotational No No

C. Normative Soft Constraint Analysis

Normative soft constraints may change the assessment of
the validity of configurations with respect to the
unconstrained feature model. This results in a change of the
model expression when a new soft constraint is introduced in
an existing feature model. The effect of inserting an internal
normative soft constraint (A suggests B) into a feature model
with feature expression F(A,B,…) can be obtained by
considering that:

• Any configuration valid in the constrained model
will also be valid in the unconstrained model. That
is, F(A,B,…) should hold.

• The soft constraint should be upheld (A ⇒ B), but
not at the cost of invalidating the configuration.
Knowing that the soft constraint fails to hold when A
is selected and B is not, this will only be acceptable
if switching the value of B, in this scenario, would
not be allowed according to the unconstrained

model
1
, that is, ,...),(BAF ¬¬ .

These considerations lead to the following formulation:

,...)),()((,...),(,...),(BAFBABAFBAFS ¬¬∨⇒∧= (1)

where FS is the resulting feature model expression.

Standard feature model techniques can be applied to
analyze the resulting feature expression, e.g., satisfiability-
based techniques are commonly applied to the analysis of
feature model expressions [8], for tasks such as finding dead
features. This can be also done in a feature model annotated
with soft constraints by considering the relevant FS.

1
 Strictly speaking, it would also be possible to satisfy the constraint by

deselecting A rather than selecting B, but we find that solution to be
counter-intuitive, with respect to the compositional approach inherent in

the feature selection process. In other words, a constraint may force the

selection of a feature the user has not selected, but will not force the
deselection of a previously selected feature.

Equation (1) can be applied iteratively with respect to all
soft constraints, in some priority order, to obtain the feature
expression corresponding to a feature model with multiple
soft constraints. Nevertheless, one difficulty must be pointed
out. If F is in clause normal form (CNF), the standard input
format for most SAT solvers, then the number of clauses will
increase exponentially as additional normative soft
constraints are composed. This makes it much more
challenging to analyze normative soft constraints rather than
their annotational counterparts. Fortunately, annotational soft
constraints include valuable information that can be more
efficiently subjected to automated analysis.

D. Soft Constraint Analysis

The inclusion of soft constraints in a feature model brings
additional semantics that allow improved consistency and
sanity checks to be performed. Annotational soft constraints
do not alter in any way the space of admissible
configurations. Nevertheless, the question of whether or not
the soft constraints themselves can be upheld is relevant. In
the remaining text, we assume an annotational interpretation
of soft constraints.

When introducing a soft constraint into a feature model,
all configurations previously valid will remain so. However,
if the soft constraint impacts the feature model meaningfully,
at least some of those configurations will fail to hold all the
soft constraints (or else the soft constraint will be
reproducing information already present in the feature
model: an example would be a suggestion of inclusion of a
parent feature). If no configuration exists where all the soft
constraints are upheld, the soft constraints are inconsistent, in
the sense that their simultaneous satisfaction is impossible
(this is not the same as feature model inconsistency, as
defined in the introduction).

An analysis procedure may be used to identify such
situations. We begin by defining a constraint as active if its

implicant (e.g: A in A⇒B) is true according to the
expressions defined in Table II. It may be impossible to
simultaneously activate all constraints according to the
feature model. In this case, the constraint set is orthogonal.
In this case, the constraints may not be satisfied
simultaneously, because its implicants cannot be verified
simultaneously. A more interesting situation occurs when all
constraints can be active simultaneously, but satisfaction of
the soft constraints is not possible. In this case, the soft
constraints are said properly inconsistent.

Inconsistencies and orthogonally can be analyzed by
verifying the satisfiability of Boolean propositions composed
from the feature expression and soft constraint expressions.
Although verifying the satisfiability of a proposition is an
NP-Complete problem, SAT solvers have proven to be
efficient tools for the majority of expression of practical
interest for feature modeling [8]. Let F be the feature
expression, E the conjunction of the soft constraint
expressions and P the conjunction of the soft constraint
implicants according to the expressions found in Table I:

257

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1. Check for satisfiability of the conjunction F P. If it is

unsatisfiable, then the soft constraints are
inconsistent due to orthogonality.

2. A proper inconsistency in a non-orthogonal set of

constraints can be identified by assessing the
satisfiability of F P E. If that expression is found to
be unsatisfiable, then an inconsistency is detected.

Inconsistencies are not the only interesting interaction

between soft constraints and feature models. In fact, any
constraint of the format presented in Table II may be
satisfied by falsifying the implicant. It may be the case where
a soft constraint may only be satisfied by this recourse. In
this case, we say the implicant is hidden by the soft
constraint, in the sense that it may never be made true if the
soft constraint is to be upheld. This is relevant, as it makes it
possible to identify specific configuration profiles that must
be upheld for satisfaction of the soft constraint to be
possible. In the sequel, we will refer to hidden implicants as
hidden features, although strictly speaking the implicant may
not correspond to the selection of a single feature.

Hidden features can be identified in the following way.
Let F be the feature expression, E the conjunction of the soft
constraint expressions, and Ic the implicant of soft constraint
c. Then:

1. If F E is satisfiable, then at least one
configuration exists that satisfies the feature
model and soft constraints, and proceed to step
2.

2. For all Ic: If F E Ic is not satisfiable, then no
configuration exists that satisfies the feature
model and soft constraints with Ic being true. Ic
is therefore hidden by c.

IV. PATTERNS OF SOFT CONSTRAINT USE

In this section, we propose some typical patterns for the
use of soft constraint annotations in feature models, with
respect to the topological structure of the annotated feature
model. We strived for identifying such patterns for multiple
reasons:

• Identifying typical patterns of use improves
understanding of the subject matter and provides
insight into potential applications of soft constraints.

• If typical patterns of application are identified, with
respect to the topological structure of the feature
model, it becomes possible to automatically annotate
feature models with such constraints for the purposes
of generating test cases for experimenting and
validating the automated analysis techniques we
describe.

In this way, we have identified three patterns that describe
specific cases of application of soft constraints. Naturally,
this list cannot be considered exhaustive in any way, but it is
sufficient for the purposes of providing a basic understanding
of soft constraint use and allowing the automated creation of
test cases. The description of these three patterns follows:

A. Soft Constraint Pattern: Reversed Constraint

Suggestion

The pattern Reversed Constraint Suggestion (RCS)
describes a situation where a feature model includes a hard
constraint C, specifying a requires or excludes relation
between two features (or their absence). The RCS of
constraint C is a soft constraint that specifies that the

reversed relation should also hold, that is, RCS(A⇒B) = B
suggests A.

Examples of RCS can be found in Fig. 5 and Fig. 6. The
feature model in Fig. 6 is an adaptation of a simple
automobile product line described in [9]. A hard constraint
determines that the presence of the “Lateral Parking” feature
requires selection of the “Lateral Range Finder” feature. The
RCS of this hard constraint can be found in the feature
model: using the lateral range finder feature suggests the use
of lateral parking. In Fig. 5, the “Basic absence-suggests
GPS” soft constraint is the RCS of the “GPS excludes
Basic”.

The conceptual interpretation of the RCS pattern is based
on the intuitive notion that, in some cases, if all the
requirements for a certain feature (as specified by hard
constraints) are met, then it may be sensible to
opportunistically select it. For example, in Fig. 6 example,
the suggestion of selecting “Lateral Parking” in the presence

Figure 5. Feature model annotated with soft constraints (source: adapted from www.splot-research.org)

Mobile Phone

GPS Call Screen Media

Basic Color Hi-Resolution Camera Hi-Resolution

discourages

absence-suggests

excludes excludes

258

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of the “Lateral Range Finder” sensor can be interpreted as a
suggestion to take maximum advantage of all the potential
capabilities provided by the installed hardware in the vehicle.
A similar perspective is that the “Lateral Range Finder”
sensor can be considered of reduced utility if the “Lateral
Parking” feature is not selected.

B. Soft Constraint Pattern: Group Selection Suggestion

The pattern Group Selection Suggestion (GSS) is related
to the preferential configuration options of grouped features.
Given a feature group G with subfeatures G1, G2,…, a GSS is
a soft constraint that describes preferred group

configurations (e.g.: GSS(G) ={G⇒Gx}). An example can
be found in Fig. 7. The GSS represents the notion of
preferred configuration options for feature groups.

C. Soft Constraint Pattern: Optional Selection Suggestion

The pattern Optional Selection Suggestion (OSS)
encompasses a broad range of situations where domain-
specific interdependencies affect the configuration of
optional features. An OSS represents one such situation, by
interlinking the configuration of two optional features via a
soft constraint.

One such situation is represented in Fig. 5, where
selection of the optional “Media” feature discourages
selection of the optional “GPS” feature. This soft constraint
could be understood to represent domain-specific constraints
being embedded in the feature model: in this specific case,
this soft constraint could be in place because of hardware
performance limitations that could entail a non-negligible
degradation of performance if both features are selected.

The OSS pattern represents domain-specific
dependencies between optional features and as such has very
generic scope. Specializations of this pattern may be devised
if such domain-specific knowledge is considered. However,
for the purposes of understanding typical structural patterns,
it is sufficient.

V. AUTOMATED TEST CASE GENERATION

Although a large number of feature models can be
obtained from online repositories [10], successfully applying
these to the validation of the techniques proposed in this
work entails the need to individually annotate the models
with soft constraints. These models, however, are concerned
with a large diversity of domains of application, making it
extremely difficult to seek the help of independent domain
experts for all are relevant areas of expertise. Consequently,
manual annotation may be feasible for only a relatively small
number of models in specific areas of expertise. However, it
is still a significantly time consuming task, where arbitrary
decisions, that may put into question the credibility of the
results, are unavoidable. Also, only a fraction of all available
models may be considered, wasting a significant portion of
potentially available resources and putting into question the
representativity of any results that are obtained.

To address these difficulties, we have chosen to annotate
all the feature models by automatically injecting soft
constraints according to the usage patterns (RCS, GSS, and

OSS) described in Section VI. This approach has significant
benefits:

• It allows any models in repository to be used for
validation and test purposes.

• It speeds up test case generation significantly, and
multiple configurations of soft constraint annotations
for each model can be generated, allowing for a large
test set to be created with the corresponding
emergence of observable statistical properties and
trends.

A. Test Case Generation

The following strategy was used to annotate a given base
feature model with soft constraints according to the RCS,
GSS, and OSS patterns.

Given the number of constraints Nc, number of groups
NG, the number of optional features NO of the base feature
model, and the configurable density parameters DRCS, DGSS,
and DOSS,

1. Randomly select a constraint in the base feature
model, generate the corresponding soft constraint
according to RCS and insert it into the model. Do this
Nc *DRCS times.

2. Randomly select one group in the base feature model
and one subfeature belonging to that group. Generate
the corresponding soft constraint according to GSS
and insert it into the model. Do this NG *DGSS times.

3. Randomly select two optional features in the base
feature model, generate the corresponding soft
constraint according to OSS and insert it into the
model. Do this NO *DOSS times.

Car

Sensors
Automated Driving

Controller

Forward Range

Finder

Collision

Avoidance

Breaking

Enhanced

Avoidance

Standard

Avoidance

requires

[1..1]

Lateral Parking
Lateral Range

Finder

requires

suggests

Figure 6. Example of a Reverse Constraint Suggestion, based on a feature

model of a simple automobile product line.

Protocol

ftphttps

suggests

nntp

[1..*]

suggests

Figure 7. Example of Group Selection Suggestions

259

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The density parameters control the number of soft
constraints introduced. Nevertheless, fluctuations may occur
because degenerate or nonsensical soft constraints (such as a
feature suggesting one of its (grand-) parents) are ignored so
they do not pollute or bias the results. Duplicate soft
constraints may also be generated, so the actual number of
soft constraints injected into the feature model may be less
than Nc *DRCS + NG *DGSS + NO *DOSS. This approach is
effective and simpler than trying to always generate valid,
distinct soft constraints in sufficient number (which may
very well be impossible, depending on the chosen density
parameters and structural properties of the base feature
model).

VI. EXPERIMENTAL RESULTS

A. Tool description

We developed a Java based tool that processes and
analyses feature models annotated with soft constraints. The
SAT4J package was used for resolving satisfiability
problems. The SXFM (Simple XML Feature Model) file
format [10], used for storing feature model descriptions, was
extended to include soft constraint information. The partial
contents of a SXFM file containing soft constraint
information can be observed in Fig. 8. Our tool is also
capable of injecting soft constraints into feature models and
conducting the analysis described in Section IV.

B. Test and Validation

For test and validation purposes, we have selected to use
all the feature models with more than 40 features currently
available in the SPLOT feature model repository [10]. These
were provided by the site users and include models from
both academic and industrial origin. This provided us with a
large set of feature models with diverse characteristics and
relevant dimension to validate our work.

Table III presents the relevant characteristics of the
feature models. The descriptions were taken verbatim from
their entries in the online feature repository.

Figure 8. Extract of SXFM file extended with soft constraint information.

The purpose of the experiments is to observe to what
extent the extent inclusion of soft constraints in feature
models may lead to hidden features and inconsistencies as
described in Section V, as well as assessing the effectiveness
of the analysis algorithm. To this effect, soft constraints were
injected in these models and the analysis algorithm was run
to identify inconsistencies and hidden features. Although
weak real world representativity is always a risk when using
automated test case generation, this concern is mitigated by
employing typical patterns of usage to guide soft constraint
injection.

Different test sets were created by injecting soft
constraints with increasing density parameters DRCS, DGSS,
and DOSS. All density parameters were set to the same value
in each test set, and four different test sets were created, with
density values of 0.125, 0.25, 0.5, and 0.75.

The results in Fig. 9 represent the aggregate results of
running soft constraint injection and analysis for the models
in Table III, while Table IV presents the results for each
individual model. Because feature injection is a stochastic
process, experiments were run 5 times for each feature
model for each different setting of the density parameters, for
a total of 20 runs per feature model.

The injection algorithm fails to inject any soft constraint
into three feature models (Thread, Datbase Tool, and DS
Sample) at the lowest density setting, because of their
specific topological properties. For preserving homogeneity,
results for these three models are not represented in Table
IV, since only higher density results are available;
comparison with other results would not be meaningful.

Results in Fig. 9 illustrate that, as can be expected,
inconsistencies noticeably increase with higher densities of
soft constraints. The number of inconsistencies seems to
increase linearly with the number of soft constraints, while
the number of orthogonal constraint sets increases more
rapidly and appears to converge to a value in the vicinity of
80%. The number of unaffected feature models decreases
correspondingly, until it drops bellow the number of
inconsistencies at densities of approximately 65%. An
important observation is that a significant number
(approximately 20%) of inconsistent soft constraints is found
even for low densities of soft constraints. This highlights the
usefulness of automated analysis procedures for validating
feature models annotated with soft constraints.

Results in Table IV show that adding soft constraints to
two specific feature models (PFTeste1 and DELL
Laptop/Notebook Computers) systematically resulted in the
appearance of an inconsistent set of soft constraints set.
Analyzing the characteristics of these two models, it is easily
observed that one common distinguishing feature is the very
high number of hard constrains in each (even after
normalizing according to the number of features). It can be
concluded that constraint density, and not feature model
dimension or other factors, is the main contributing factor for
the appearance of inconsistent soft constraint suggestions.

Hidden features were also identified. Table V presents
the percentage of soft constraints hiding a feature as a
percentage of the total number of soft constraints. For most
feature models, the percentage of hidden features increases

260

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

with the density of soft constraints. The average results
displayed in the last row of Table IV confirm this tendency.
No hidden features were identified in PFTeste1 or DELL
Laptop/Notebook Computers, for the simple reason that
those feature models systematically generated
inconsistencies precluding satisfaction of constraints. The
presence of hidden implicants is found to be prevalent
enough in most models so that automatic detection and
report can be considered useful.

The analysis algorithm was found to be very efficient.
Experiments were conducted in a netbook with 1 Gb of
RAM memory, taking approximately 5-10s for loading,
injecting soft constraints and analyzing once every one of the
feature models considered in this test (between 0.15 and 0.3 s
per feature model).

VII. RELATED WORK

In [6], probabilistic feature models are described that use
soft constraints as descriptions of features that have high
probabilities of being concurrently selected in the same
configuration. Probabilistic feature models and
corresponding samples spaces are suited to represent feature
models obtained through feature mining processes, because
complete feature joint probability distributions must be
obtained. Incomplete specifications must be handled by
complementary mechanisms such as Bayesian networks. In
our work, the use of standard Boolean propositional logic
capitalizes on established tool support and improves
accessibility to the developer. This allows soft constraints to
be more readily used to represent important domain
knowledge in feature models.

“Encourages” and “discourages” constraints have been
proposed for feature models in [11]. However, no precise
semantics have been provided, precluding automated
analysis and reasoning as described in our work.

In [12], fuzzy logic is applied to relate feature
configurations to costumer profiles. Although it is a
significant departure from standard feature modeling
approaches familiar to developers, Fuzzy logic is a powerful
alternative tool for handling uncertainty.

While we focus this work on detection of inconsistencies
and semantical analysis (e.g: detection of hidden features) of
feature models annotated with Boolean soft constraints, in
[7] improved configuration support is described.

Soft constraint frameworks have been studied in the
context of constraint programming. These approaches focus
on the search of a optimal variable assignment with respect
to a set of quantified soft constraint expressions, as opposed
to semantical and consistency analysis [13].

VIII. CONCLUSIONS

We have experimentally demonstrated the usefulness and
viability of automated analysis of soft constraints in feature
models. Typical patterns of soft constraint use were
described. These were injected in publicly available feature
models. In this process, inconsistencies and hidden features
were introduced. These situations can correspond to potential
semantic errors and should be reported back to the user for
further inspection. Our tool was applied and was effective in

identifying these potential problems. This demonstrates that
a framework for handling soft constraints in feature models
using propositional logic can be a valuable tool for feature
modeling. Future work will be conducting in identifying
additional patterns of soft constraint use. The role of soft
constraint usage in typical development tasks such as
refactoring or domain modeling will also be investigated.

TABLE III. FEATURE MODELS

Description

N
u

m
b

e
r
 o

f

F
e
a

tu
re

s

O
p

ti
o

n
a

l

F
e
a

tu
re

s

N
u

m
b

e
r
 o

f

 G
ro

u
p

s

H
a

r
d

C
o

n
st

r
a
in

ts

AndroidSPL 45 8 9 5

Arcade Game PL 61 4 9 34

bCMS system 66 6 8 2

Billing 88 45 2 59

Car Selection 72 10 19 21

Consolas de Videojuegos 41 11 2 5

Database Tool 40 7 7 0

DATABASE_TOOLS 70 20 7 2

DELL Laptop/Notebook

Computers

46 1 8 110

Documentation_Generation 44 3 9 8

DS Sample 41 0 6 0

Electronic Drum 52 1 11 0

E-science application 61 7 16 2

HIS 67 10 6 4

Hotel Product Line 55 31 7 0

J2EE web architecture 77 26 11 0

Letovanje 43 3 13 2

Linea de Experimentos 52 11 4 4

Meshing Tool Generator 40 8 11 17

Model_Transformation 88 11 25 0

OW2-FraSCAti-1.4 63 39 2 46

PFTest1 56 5 8 90

Plone Meeting 57 13 9 0

Printers 172 1 28 0

Reuso – UFRJ – Eclipse1 72 40 7 1

Smart Home 56 36 4 0

Smart Home v2.2 60 30 6 2

SmartHome_vConejero 59 33 0 3

SPL SimulES, PnP 59 8 14 0

Thread 44 0 7 0

Video Player 53 17 9 2

Video Player 71 12 5 0

Web_Portal 43 17 6 6

Xtext 137 95 0 1

261

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV. INCONSISTENCY RESULTS PER FEATURE MODEL

Description

U
n

a
ff

e
c
te

d

O
r
th

o
g

o
n

a
l

In
c
o

n
si

st
e
n

t

N
o

n
-

o
r
th

o
g
o

n
a
l

In
c
o

n
si

st
e
n

t

Model_Transformation 50% 50% 0%

OW2-FraSCAti-1.4 25% 75% 0%

Documentation_Generation 65% 35% 0%

SPL SimulES, PnP 45% 55% 0%

PFTest1 0% 0% 100%

DELL Laptop/Notebook Computers 0% 0% 100%

Linea de Experimentos 50% 50% 0%

Letovanje 50% 45% 5%

Xtext 0% 100% 0%

Smart Home v2.2 30% 60% 10%

SmartHome_vConejero 20% 80% 0%

bCMS system 60% 40% 0%

E-science application 50% 50% 0%

DATABASE_TOOLS 40% 60% 0%

Reuso - UFRJ - Eclipse1 55% 45% 0%

Hotel Product Line 20% 75% 5%

Electronic Drum 30% 70% 0%

Video Player 55% 45% 0%

Billing 40% 60% 0%

Smart Home 40% 60% 0%

Plone Meeting 25% 75% 0%

Meshing Tool Generator 15% 85% 0%

AndroidSPL 40% 60% 0%

Arcade Game PL Feature Model 40% 40% 20%

Web_Portal 35% 60% 5%

Consolas de Videojuegos 95% 5% 0%

Car Selection 40% 60% 0%

Printers 50% 35% 15%

HIS 30% 10% 60%

J2EE web architecture 30% 70% 0%

Figure 9. Aggregate results: unaffected, orthogonal and inconsistent

feature models.

TABLE V. HIDDEN FEATURE RESULTS PER FEATURE MODEL

Percentage of constraints hiding

features
Description

density

0,125

density

0,25

density

0,5

density

0,75

Model_Transformation 0% 0% 0% 79%

OW2-FraSCAti-1.4 4% 56% 98% 91%

Documentation_Generation 0% 0% 11% 10%

SPL SimulES, PnP 0% 33% 67% 69%

PFTest1 0% 0% 0% 0%

DELL Laptop/Notebook

Computers 0% 0% 0% 0%

Linea de Experimentos 0% 0% 0% 20%

Letovanje 0% 11% 29% 36%

Xtext 3% 6% 10% 21%

Smart Home v2.2 0% 0% 32% 33%

SmartHome_vConejero 0% 0% 30% 32%

bCMS system 0% 33% 13% 0%

E-science application 0% 0% 21% 63%

DATABASE_TOOLS 0% 0% 8% 49%

Thread - 0% 22% 47%

Reuso - UFRJ - Eclipse1 0% 6% 30% 28%

Hotel Product Line 0% 0% 17% 11%

Database Tool - 0% 6% 43%

Electronic Drum 0% 0% 67% 100%

Video Player 0% 0% 0% 6%

Billing 45% 41% 100% 100%

Smart Home 0% 0% 8% 9%

Plone Meeting 0% 7% 10% 33%

Meshing Tool Generator 0% 21% 0% 14%

AndroidSPL 0% 13% 58% 88%

Arcade Game PL Feature
Model 0% 0% 0% 2%

Web_Portal 0% 11% 27% 32%

Consolas de Videojuegos 0% 22% 21% 25%

Car Selection 0% 0% 15% 0%

Printers 0% 0% 43% 41%

DS Sample - 0% 0% 67%

HIS 0% 8% 27% 12%

J2EE web architecture 0% 8% 6% 20%

AVERAGE 2% 8% 23% 36%

REFERENCES

[1] J. Barreiros and A. Moreira, "Soft Constraints in

Feature Models," in International Conference in

Software Engineering Advances, ICSEA'11

Barcelona, 2011.

[2] K. Czarnecki and U. Eisenecker, Generative

Programming: Methods, Tools, and Applications:

Addison-Wesley Professional, 2000.

262

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[3] P. Clements and L. Northorp, Software Product

Lines:Practices and Patterns: Addison-Wesley,

2001.

[4] D. Batory, "Feature-Oriented Programming and the

AHEAD Tool Suite," in 26th International

Conference on Software Engineering: IEEE

Computer Society, 2004.

[5] K. Czarnecki and A. Wasowski, "Feature Diagrams

and Logics: There and Back Again," in 11th

International Software Product Line Conference

(SPLC) Kyoto, 2007, pp. 23-34.

[6] K. Czarnecki, S. She, and A. Wasowski, "Sample

Spaces and Feature Models: There and Back

Again," in Software Product Lines, 12th

International Conference, SPLC Limerick, Ireland,

2008, pp. 22-31.

[7] J. Barreiros and A. Moreira, "Configuration Support

for Feature Models with Soft Constraints " in ACM

Symposium on Applied Computing (in press)

Coimbra, 2013.

[8] M. Mendonça, A. Wasowski, and K. Czarnecki,

"SAT-based analysis of feature models is easy," in

Software Product Lines, 13th International

Conference, SPLC 2009, San Francisco, California,

USA, 2009, pp. 231-240.

[9] J. White, B. Dougherty, and D. C. Schmidt,

"Automated reasoning for multi-step feature model

configuration problems," in Software Product Line

Conference 2009 San Francisco, USA, 2009.

[10] M. Mendonça, M. Branco, and D. Cowan,

"S.P.L.O.T - Software Product Lines Online Tools,"

in 24th ACM SIGPLAN International Conference

on Object-Oriented Programming, Systems,

Languages and Applications, OOPSLA 2009

Orlando, USA, 2009.

[11] H. Wada, J. Suzuki, and K. Oba, "A feature

modeling support for non-functional constraints in

service oriented architecture.," IEEE Computer

Society, pp. 187-195, 2007.

[12] S. Robak and A. Pieczynski, "Employment of fuzzy

logic in feature diagrams to model variability in

software families.," in 10th IEEE International

Conference on Engineering of Computer-Based

Systems (ECBS 2003) Huntsville, AL, USA, 2003,

pp. 305-311.

[13] F. Rossi, P. V. Beek, and T. Walsh, "Handbook of

Constraint Programming," in Foundations of

Artificial Intelligence, J. Hendler, H. Kitano, and B.

Nebel, Eds.: Elsevier, 2006.

