
25

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Theoretical and Practical Implications of User Interface Patterns Applied for the

Development of Graphical User Interfaces

Stefan Wendler, Danny Ammon, Teodora Kikova, Ilka Philippow, and Detlef Streitferdt
Software Systems / Process Informatics Department

Ilmenau University of Technology
Ilmenau, Germany

{stefan.wendler, danny.ammon, teodora.kikova, ilka.philippow, detlef.streitferdt}@tu-ilmenau.de

Abstract — We address current research concerning patterns

dedicated to enable higher reusability during the automated

development of GUI systems. User interface patterns are

promising artifacts for improvements in this regard. Both

general models for abstractions of graphical user interfaces

and user interface pattern based concepts such as potential

notations and model-based processes are considered. On that

basis, the present limitations and potentials surrounding user

interface patterns are to be investigated. We elaborate what

theoretical implications emerge from user interface patterns

applied for reuse and automation within user interface

transformation steps. For this purpose, formal descriptions of

user interface patterns are necessary. We analyze the

capabilities of the mature XML-based user interface

description languages UIML and UsiXML to express user

interface patterns. Additionally, we experimentally investigate

and analyze strengths and weaknesses of two general

transformation approaches to derive practical implications of

user interface patterns. As a result, we develop suggestions on

how to apply positive effects of user interface patterns for the

development of pattern-based graphical user interfaces.

Keywords — graphical user interface development; model-

based software development; HCI patterns; user interface

patterns; UIML; UsiXML

I. INTRODUCTION

Interactive systems. Interactive systems demand for a
fast and efficient development of their graphical user
interface (GUI), as well as its adaptation to changing
requirements throughout the software life cycle. In this
paper, E-Commerce software serves as a representative of
these interactive systems. Currently, these are a fundamental
asset of modern business models providing B2C interaction
via online-shops. In many cases, such systems are offered as
standard software, which allows several customization
options after installation. In this context, they are
differentiated into the application kernel and a GUI system.

The application kernel software architecture relies on
well-proven and, partially, self-developed software patterns.
Thus, it offers a consistent structure with defined and
differentiated types of system elements. So, the design has a

positive influence on the understanding of the modular
functional structures as well as their modification options.

Limited customizability of GUIs. Contrary to the
application kernel, the customization of the GUI is possible
only with rather high efforts. An important reason is that
software patterns do not cover all aspects needed for GUIs.
These patterns have been commonly applied for GUIs [2][3],
but in most cases they are limited to functional and control
related aspects [4]. The visual and interactive components of
the GUI are not supported by software patterns yet.
Furthermore, the reuse of GUI components, e.g., layout,
navigation structures, choice of user interface controls (UI-
Controls) and type of interaction, is only sparsely supported
by current methods and tools. For each project with its
varying context, those potentially reusable entities have to be
implemented and customized anew, leading to high efforts.

Moreover, the functional range of standard software does
not allow a comprehensive customization of its GUI system.
The GUI requirements are very customer-specific. In this
regard, the customers want to apply the functionality of the
standard software in their individual work processes along
with customized dialogs. However, due to the characteristics
of standard software, only basic variants or standard GUIs
can be offered. So far, combinations of components of the
application architecture with a GUI are too versatile for a
customizable standard product.

User interface patterns. Along with other researchers
[5] [6] [7] [8] [9], we propose an approach to this problem
through the deployment of User Interface Patterns (UIPs).
These patterns offer well-proven solutions for GUI designs
[10], which embody a high quality of usability [11]. So far,
UIPs usually have not been considered as source code
artifacts, in contrast to software patterns. Current UIPs and
their compilations mostly reside on an informal level of
description [5]. The research towards formal pattern
representations is still in progress.

A. Objectives

In this paper, we elaborate that formal UIPs can assist in
raising effectiveness and efficiency of the development
process of a GUI system. For a start, we present and analyze
conceptual models for the GUI development to valuate and
position UIPs as unique artifacts. In this regard, we describe,
from a theoretical point of view, how reuse and automation
within GUI transformation steps can be established by the
deployment of UIPs.

This is a revisited and substantially augmented version of “Development of
Graphical User Interfaces based on User Interface Patterns”, which
appeared in the in Proceedings of The Fourth International Conferences on
Pervasive Patterns and Applications (PATTERNS 2012) [1].

26

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Moreover, we present and review current approaches
concerning the definition, formalization, and deployment of
UIPs within model-based software development processes
dedicated to GUI-systems. On this basis, we discuss the
limitations and possibilities of transformations into
executable GUIs. For that purpose, two different
transformation approaches have been experimentally
investigated. These approaches will be assessed facing two
different GUI dialog examples. As a result, we derive
practical implications of UIPs and develop suggestions, how
the positive effects of UIPs for the development of GUIs can
be applied. Finally, influences resulting from the use of UIPs
in the development process are discussed.

B. Structure of the Paper

In Section II, selected state of the art and related work
according to general applicable models for the GUI
development are presented. The next section is dedicated to
the current state of concepts and processes already applying
UIPs as software artifacts. Both parts of related work are
assessed according to our objectives in Sections IV and VI
respectively. Subsequently, the theoretical implications of
UIPs on the development process for GUIs are elaborated in
Section V. Afterwards, Section VII presents our two
approaches for the transformation of formal UIPs into source
code. The practical implications of UIPs resulting from their
application in experimental transformations are presented in
Section VIII, which also combines the findings of Sections V
and VII for discussion. Finally, our conclusions are drawn
and future research options are outlined in Section IX.

II. RELATED WORK: GUI DEVELOPMENT PROCESSES

The development of GUI systems still remains a
challenge in our days. To discuss the activities and potentials
of UIPs independently from specific software development
processes and requirement models, we refer to generic model
concepts. In the following sub-sections, we present two
models, which describe activities and capture work products
of the GUI specification process. Additionally, an early
generation concept for GUI systems is presented.

A. GUI Specification Process and Model Transformations

A general GUI specification model. In reference [12],
Ludolph elaborates the common steps of a GUI specification
process. To master the complexity that occurs when deriving
GUI specifications from requirement models, Ludolph
proposes four model layers and corresponding
transformations built on each other. Three of them, being
relevant in our context, are depicted in Figure 1.

Essential model. By the essential model, all functional
requirements and their structures are described. This
information consists of the core specification, which is
necessary for the development of the application kernel.
Examples for respective artifacts are use cases, domain
models and the specification of tasks or functional
decompositions. These domain-specific requirements are
abstracted from the realization technology, and thus, from
the GUI system [12].

Figure 1. Model transformations of the GUI

development process based on [12]

Consequently, a GUI specification must be established to
bridge the information gap between requirements and a GUI
system.

User model. A first step in the direction of GUI
specification is prepared by the user model. With this model,
the domain-specific information of the essential model is
picked up and enhanced by so-called metaphors. The latter
symbolize generic combinations of actions and suitable tools,
which represent interactions with a GUI. Examples of
metaphors would be indexes, catalogues, help wizards or
table filters. The principal action performed by these
examples is a search for objects. How this action is carried
out may differ, since the respective metaphors embody
varying functionality to be accessed by the user in order to
find objects.

The tasks of the essential model have to be refined and
structured in task trees. For each task of a certain refinement
stage, metaphors are assigned, which will guide the GUI
design for this part of the process. In the same manner, use
cases can be supplemented with these new elements in their
sequences to describe user scenarios.

User interface. This model is used for establishing the
actual GUI specification. Through the three parts rough
layout, interaction design and detailed design [12], the
appearance and behavior of the GUI system are concretized.
The aim is to set up a suitable mapping between the elements
of the user model and views, windows, as well as UI-
Controls of the user interface. For the metaphors chosen
before, graphical representations are now to be developed.
The objects to be displayed, their attributes and the relations
between them are represented by views. Subsequently, the
views are arranged in windows according to the activities of
the user scenarios, or alternatively, to the structure of the
more detailed task trees. In these steps, there are often
alternatives, which are influenced by style guides or the used
GUI library and especially by the provided UI-Controls. At
the same time, generic interaction patterns are applied as
transformation tools, which also have an impact on the
choice of UI-Controls.

27

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Cameleon Reference Framework

User interface challenges. In reference [13],
Vanderdonckt presents a GUI specification and development
model, which is more concerned with handling
environmental and non-functional requirements of GUI
systems. The challenges to overcome are represented by
different user skills and cultures. In addition, a user interface
should be aware of different usage contexts and respective
user intentions as well as working environments and
individual capabilities of devices the user interface is running
on.

Need for automation. GUI development is tedious when
facing the above mentioned challenges, and thus,
Vanderdonckt states in [13] that normally, GUIs would have
to be developed for each context or device separately. A
reason is given by the difficulty to source common or shared
parts of the user interfaces. Since architectures and final code
or frameworks have a great impact on the final shape of the
certain user interfaces, the potential reuse is largely limited.
Finally, advice is given to employ model-driven software
development techniques within a GUI development
environment.

To approach a solution, which copes with both the
challenges and need for model-driven development,
Vanderdonckt proposes a methodology, which consists of
GUI modeling abstractions or steps besides a method and
tool support. The proposed four modeling steps [13],
originated from [14], are described in the following
paragraphs:

Task & Concepts (T&C). The tasks to be performed by
the user, while interacting with the GUI-system, are specified
during this step. Additionally, domain concepts relevant to
those tasks are specified as well.

Abstract UI (AUI). With the AUI, tasks are being
grouped and structured by Abstract Interaction Objects
(AIOs): Individual Components and Abstract Containers are
both sub-types of AIOs and form the main elements of an
AUI. These resemble rather abstract entities serving for
definition and structuring purposes only. Thus, AIOs come
without any technical appearance or other format of
imagination, since the options to shape them are very
different during the next two modeling steps and should be
preserved for developers. Besides the structuring of AIOs, an
AUI specifies very basic interaction information such as
input, output, navigation and control [5], which is defined
independently from modality. Finally, the AUI acts as a
“canonical expression of the rendering of the domain
concepts and tasks” [13].

Concrete UI (CUI). The CUI refines the elements of an
AUI to a complete but platform-independent user interface
model. In this regard, Concrete Interaction Objects (CIOs)
refine the AIOs of the AUI. CIOs resemble a chosen set of
both UI-Controls or containers and their respective
properties. While resembling an abstraction, the CUI
“abstracts a FUI into a UI definition that is independent of
any computing platform” [13].

Tasks &

Concepts
Tasks Domain Concepts

Abstract User

Interface (AUI)

Concrete User

Interface (CUI)

Final User

Interface (FUI)

Abstract Containers Individual Components

Graphical Containers Graphical Individual Components

Graph Transformations

Graph Transformations

Rendering

Platform-Specific User Interface Components

Legend
Transformation Transformation Tools

Figure 2. Modeling steps of the Cameleon Reference Framework based
on [13] and implemented by UsiXML [15]

Final UI (FUI). As the last refinement, the FUI
represents a certain device or platform specific user interface
model. So, it embodies the final user interface components
running in that specific environment.

The above described modeling steps are depicted by
Figure 2, which is focused on graphical user interface
implementations, as this is the case for its source [13].

UsiXML. To express the occurring models within these
modeling steps, the GUI specification language UsiXML
(user interface extensible markup language) [15] has been
developed. Concerning the modeling facilities for the CUI
step, UsiXML offers a specific set of CIOs sourced from
common UI toolkits or frameworks. Therefore, the available
modeling elements represent an intersection set of common
GUI element sets.

C. Generators for graphical User Interfaces

To raise efficiency in GUI development, concepts and
frameworks have been invented, which are able to generate
complete GUI applications based on a partly specification of
the application kernel or comparative model bases. Here,
Naked Objects [16] and JANUS [17] can be mentioned. Both
rely on an object-oriented domain model, which has to be a
part of the application kernel. Based on the information
provided by this model, standard dialogs are being generated
with appropriate UI-Controls for the repetitive tasks to be
carried out in conjunction with certain objects. For instance,
to generate an object editor for entities like product or
customer, certain text fields, lists or date pickers are selected
as UI-Controls, which match the domain data types of the
selected domain object for editing.

III. RELATED WORK: USER INTERFACE PATTERNS

In this part of related work, we present definitions,
notations and concepts that address or employ patterns
specific for model-based user interface development.

28

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. User Interface Pattern Definition and Types

Current research has been discussing Human-Computer-
Interaction (HCI) patterns [18] and especially User Interface
Patterns (UIPs) for a longer period [19] [5] now. A UIP can
be defined as a universal and reusable solution for common
interaction and visual structures of GUIs. UIPs are
distinguished by two types according to Vanderdonckt and
Simarro [5]:

Descriptive UIPs. Primarily, UIPs are provided by
means of verbal and graphical descriptions. In this context,
UIPs are commonly specified following a scheme similar to
the one used for design patterns [20]. By reference [21], a
specialized language for patterns was proposed, which is
named PLML (pattern language markup language). Details
about the language structure can be found in [22] as well as
its XML DTD in [5]. A practical application of its
descriptive capabilities for several types of patterns, which
may occur in conjunction with the Cameleon Reference
Framework, is also outlined in [5].

UIP-Libraries. UIP libraries such as [23], [24], and [25]
provide numerous examples for descriptive UIPs. Based on
the presented categories, concepts about possible UIP
hierarchies and their collaborations can be imagined.

Formal UIPs. Generative UIPs [5] are presented rarely.
In contrast to descriptive UIPs, they feature a machine-
readable form and are regarded as formal UIPs accordingly.
The format for storing such UIPs may constitute of a
graphic, e.g., UML [19] or XML based notation [26] [8] [9].
The formal UIPs are of great importance, since they can be
used within development environments, especially for
automated transformations to certain GUI-implementations.

B. Formalization of User Interface Patterns

In order to permit the processing of descriptive UIPs,
they have to be converted to formal UIPs. Possible means for
this step can be provided by formal languages applied for
specifying GUIs. These languages, however, have been
designed for the specification of certain GUIs and were not
intended for a pattern-based approach in the first place. Until
now, there is no specialized language available for
formalizing UIPs.

UsiXML and UIML. In our preparation, we conducted
an extensive investigation on formal GUI specification
languages and their applicability for UIPs. As result, two
languages with an outstanding maturity have been identified.

Intentionally, the XML-based languages UsiXML [15]
and UIML [27] were developed for specifying a GUI
independently from technology and platform specifics.
However, such languages may be applicable for UIPs. One
the one hand, UIML offers templates and associated
parameters for reusing pre-defined structures and behavior of
GUI components. On the other hand, UsiXML is designed to
implement the Cameleon Reference Framework, which
already propagated higher reuse by its abstractions of GUI
modeling steps as well as automated processing by model-
driven software development techniques. Moreover, both
indeed have been applied in model-based processes or have
been extended for that context. More information on that is
provided in Section III.C.

IDEALXML. To raise the efficiency of GUI
development environments, tools are necessary that facilitate
formal specifications of UIPs with regard to language
definitions and rules. A widespread tool concept for
UsiXML is presented with IDEALXML [13] [5]. By using
the various models defined by UsiXML as an information
basis, many aspects of a GUI and additionally the applied
domain model of the application kernel are included in the
GUI specification. As a result, a detailed and comprehensive
XML specification for the GUI can be created. Many aspects
of the user model from [12] are already included.

C. Model-based Processes with User Interface Pattern

Integration

The pattern conception emerged from the HCI research
has already been taken into consideration for model-based
software development of GUI-systems. Researchers have
introduced several model frameworks and notations to
express generative UIPs, and thus, enable formalization
facilities for descriptive UIPs. A common basis assumed for
all different processes is a task based user model that is
exploited to derive dialog and navigation structures of the
user interface. Yet, all approaches have not reached a
sufficient maturity level according to the available
publications. They still were drafting or enhancing their
processes, tools or notations as they had been by challenged
relevant issues surrounding generative pattern definition and
application.

Queen’s University Kingston. Zhao et al. [6] proposed
the detailed modeling of tasks in order to be able to group
them into segments, which are being transformed to dialogs
displaying the associated data or contained sub-tasks.

As challenges for future work, two main aspects
remained: the evaluation of achieved usability by the pattern
application and the extension of customization abilities of the
underlying framework to allow the definition of specific UI-
Controls and even patterns to be integrated into the
established process were suggested in [28]. In addition, the
integration of more user interface patterns along with
guidelines for final UI design as well as an enhancement of
the task analysis to exploit more information relevant for UI
generation were outlined in [6] as future work.

University of Rostock. Radeke et al. [29] presented a
modeling framework that would be capable of employing
patterns for all involved models (task, dialog, presentation
and layout). Since the approach was focused on task
modeling and respective patterns, the derivation of dialog
structures was a main outcome. In order to enhance their
capabilities towards pattern application for CUI models,
UsiPXML (user interface modeling pattern language) was
introduced in [26] as a notation to express all kinds of
involved patterns. Being based on UsiXML as well as
PLML, the new notation incorporated enhancements like
structure attributes and variables to allow for a context-
specific instantiation of a defined pattern.

However, future challenges were stated as follows. The
need for enhanced tool support and the definition of more
complex patterns was raised in [30]. Moreover, the pattern
representation on the CUI level with UsiXML should be

29

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

revised as well according to [31]. Lastly, the expansion of
the set of available patterns and the concept of pattern inter-
relationships were relevant considerations in [26]. For the
latter, the research question about how task and dialog
patterns would influence other patterns situated on lower
levels is left open.

University of Augsburg. An alternative modeling
framework integrating patterns on selected model stages was
suggested by Engel and Märtin in [8]. Rooted in principles
on the structuring of pattern languages [32], the main
emphasis was laid on the hierarchy of patterns and their
notation [33], which was based on a custom XML DTD for
the generative part.

For the encountered challenges, future activities were
considered, which would enrich the implementation aspects
of pattern descriptions [34] and deliver concepts of pattern
relationships. In the focus of transformations, future work
was seen for the derivation of concrete UI models from
abstract ones [35].

University of Kaiserslautern. Starting with criticism of
recent approaches of other researchers, Seissler et al. [9]
proposed a third modeling framework with comparative
models and patterns, but they employed different notations
and introduced a suggestion for a classification of pattern
relationships. Additionally, the need for runtime adaptation
of user interfaces was considered [36] as well as the concept
of encapsulation of UIML fragments [9] within their notation
to express user interface patterns.

They emphasized on tool support for pattern instantiation
or the adaptation of patterns to different contexts of use that
may even change at runtime [36]. Moreover, a proper tool
for pattern selection and integration as well as the refinement
of inter-model pattern relationships were stated as future
challenges in [9]. The latter was considered to reflect the
relations between pattern of different abstractions in order to
offer better modularization and provide options for patterns
that may be better suited for a specific context. Finally,
Seissler et al. recognized in [9] that their future work should
extend the pattern language for further testing of their
notation approach.

IV. MODEL CONSIDERATIONS FOR DEPLOYING USER

INTERFACE PATTERNS

This section is intended to discuss the first part of related
work presented in Section II. Before the more advanced
concepts of Section III are addressed, the transition of
traditional GUI specification and development towards a
pattern-based solution shall be attended to. In this context,
we outline the possible deployment of UIPs in development
processes referring to both conceptual models elaborated by
Ludolph and Vanderdonckt.

A. Review of the GUI Specification Model by Ludolph

Model transformations as described by Ludolph [12]
illustrate a detailed account of relevant model elements for
the GUI specification of the covered domain. However, any
transformations are carried out manually. Besides that, no
automation and only few options for reuse are mentioned.

However, artifact dependencies are detailed and the
transformation of essential model requirement elements to
certain user interface model elements is outlined. For the
final transformation, Ludolph suggests manual and cognitive
means of transformation, which lead to clearly defined
dependencies between user model and user interface entities.
These prerequisites are ideal to be considered in the
discussion on how UIPs influence artifacts. Particularly, it is
of interest, how a GUI specification can be developed
starting from a basis of functional requirement artifacts and
using UIPs as bridging elements for transformations.

B. Review of the Cameleon Reference Framework

Relevance. From our point of view, the Cameleon
Reference Framework as presented in [13] resembles a
valuable model foundation or mental concept for UIPs, since
it addresses the following two aspects. Firstly, GUI
development activities and related tool support to decide on
automation steps are covered. Secondly, pattern deployment
possibilities and related abstractions may be derived. In this
regard, a developer can decide on the granularity, reach and
modularization of potential patterns while having the four
segregated modeling steps on his mind. However, the latter
aspect was not met by the original source and is only
inspired.

GUI development aspect. As far as the first aspect is
addressed, the proposed model abstractions or steps resemble
UI concerns applicable to a wide range of different domains.
The model abstractions make sense as they address the
elaborated challenges in [13] by a separation of concerns.
The four steps have been introduced to handle the various
challenges or requirements by sharing or distributing them
across the abstractions. Consequently, the separation of
models enables different grades of reuse and an isolation of
particular challenges, as they are no longer bound to single
GUI models but to a set of models as proposed.

To approach the modeling steps, a strict top-down
decomposition procedure is not required. In contrast, the
entry point is variable so that one can start with an AUI or
CUI without tasks modeling at all. A user interface may be
subsequently abstracted or refined across the proposed
reification model stages.

Moreover, the steps aid both in forward and reverse
engineering, since they demand for explicitly capturing
implicit knowledge applied in both model transformation
paths: the refinement towards a FUI can be approached by
subsequent increase in detail, which is stored in segregated
models and their elemental notations. As the reification of an
AUI towards CUI is progressing, the elementary concepts
embodied by AIOs of different dialogs can be lined up to
identify reoccurring structures. In this respect, AIOs are an
abstraction and so they do share the commonalities of certain
GUI structures. Consequently, identified AIO structures offer
potentials to discover UIPs for the particular domain during
the transition to the CUI.

 Concerning reverse engineering, the abstraction of a
given FUI or CUI model to abstract grouped tasks embodied
by AIOs is also supported. The derived AUI may be reified
to another platforms’ CUI. If an AUI was already created by

30

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

forward engineering, a modeling step could be avoided for
the migration to other platforms or devices.

For practical implementation, transformation means or
tools mentioned as in the Ludolph model are missing.
Although the models used for implementing the four steps
are closely related to the UsiXML language, the associated
metamodel as a potential implementation is still work in
progress. At usixml.org, no current version could be
consulted. Therefore, no detailed mappings like in the
Ludolph model could be depicted.

Pattern incorporation aspect. As respective
implementations of the Cameleon modeling steps, the
presented models in [13] and [5] currently do not outline the
reuse or modularization of artifacts. A proper pattern-based
view to overcome the manual “translation” [13] process
between available models still has to be invented. At last,
models or fragments of them can only be reused in their
completeness and are not abstracted further. Patterns may be
instantiated at various modeling steps (e.g., AUI, CUI) as
suggested in [5], but can hardly be adapted to other contexts
without manual re-modeling. To conclude, an additional
abstraction inside modeling steps, which allows for pattern
definition and instantiation, is missing and is not provided by
the available sources.

As far as UIPs are concerned, these patterns should not
be associated to the AUI, since the latter is too abstract for
UIPs. Certain UI-Controls cannot be modeled or imagined
on the AUI level, so that a great portion of an individual
UIP’s characteristics cannot be expressed. The resulting
refinement work to “reify” [13] an AUI based UIP towards a
CUI representation would denote a considerable effort. For
instance, whenever a selection AIO is encountered inside a
UIP definition, there would be more than one possible
reification available like a combobox, listbox or a radio
group. Therefore, it could be implied that the model-to-
model transformation between AUI and CUI relied on
extensive manual configuration or intervention, as the CUI
does possess much more detail than the AUI. Otherwise,
strict rules to enable automated graph transformation may
prevent the expression of particular UIPs. Lastly, for the
particular domain addressed here, UIPs rely on the WIMP
(windows, icons, menus and pointer) paradigm, so AUI
considerations will not merit extensive reuse as this would be
permitted by a CUI model.

With respect to the CUI modeling stage, the applied
notation like UsiXML would have to reflect a chosen set of
UI-Controls, events and containers as well as their chosen set
of properties. These sets may already limit the
expressiveness of UIPs or an issue would be the integration
of new types or properties. Due to the fact that particular
UIPs may exclusively address certain devices or platforms or
that other classifications of UIPs may restrict their reusability
to a certain domain [37], even the CUI level would be too
abstract to allow for an exact representation. If this aspect
would not pose an issue in a certain development
environment, UIPs clearly are to be settled on the CUI level,
since there are several advantages for keeping UIPs on that
particular abstraction level:

As mentioned in [13], a notation like UsiXML or even
UIML could be used to express UIPs on the CUI level
leading to the benefits of these languages. Firstly, for the
machine-readable XML languages no programming skills
would be needed. Secondly, with XML as a basis, the
notation would posses a standard format and vast tool
support (parsers, editors). Thirdly, “cross-toolkit
development” [13] would be possible and UIP sources could
be kept independently from changing GUI platforms or
frameworks and lastly, programming languages.

C. Exertion of Ludolph and Cameleon Models

Current state of the art has proposed own specific model
frameworks as mentioned in Section III.C. These approaches
neither have achieved a truly reusable pattern-based solution
yet, nor have they positioned UIPs in relation to generally
applicable fundamentals. Since the transformations by
Ludolph or the Cameleon model have been formulated from
different perspectives, but still embody general concepts, we
take them into consideration to derive theoretical and
practical implications of UIPs.

Different focus. The model by Ludolph is focused on
particular artifacts, their transformations and related
measures. In contrast, the Cameleon Reference Model by
Vanderdonckt presents abstractions to treat environments,
devices, portability, and most notably, the software
production environment, as XML and automation or model-
driven software development are of the essence.

GUI transformations by Ludolph. The model
established by Ludolph can be considered as a refinement of
the Tasks & Concepts as well as the CUI level for graphic
user interfaces, since most artifacts can be allocated to one of
these levels. An AUI level is actually missing and only
implicitly established by the augmentation of user model
elements with metaphors. The final stage of the Ludolph
model can be defined in terms of the CUI when specification
notations like UIML or UsiXML-CUI are being used.

Cameleon. The Cameleon Reference Model is the more
abstract model as its details are to be defined by the
implementation language, especially by UsiXML, and the
particular context of use or domain. Due to the defined
modeling stages, pattern deployment and modularization
concerns can be approached more gentle rather than being
trapped in discussions of how to structure a pattern language
for certain artifacts [38].

Shared limitation. Both models do not feature a clearly
distinguished pattern dimension.

Reuse may be already addressed by Ludolph for GUI
structures within a certain project. For instance, the views
associated to certain objects may experience reuse in each
task they are handled by different operations. However,
objects tend to change in the face of different contexts,
domains, users and thus, real pattern-based reuse across
different projects is missing.

Although the pattern support for the UsiXML metamodel
was already inspired by Vanderdonckt as a “Translation”
[13] of models to different contexts and PLML-patterns in
the environment of IDEALXML [5], it has not been
implemented in the main language facilities of UsiXML yet.

31

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Exertion. The model by Ludolph is already detailed
concerning domain artifacts. Therefore, it will be used to
discuss both the theoretical and practical implications of
UIPs on artifact development stages. Nevertheless, it is not
suitable to position UIPs without the conception of a pattern
language or hierarchy. Märtin et al. [32] [33] support a fine-
grained structure, which is clearly neglected by Seissler et al.
[9]. Furthermore, pattern relations are still to be outlined in
most model-based approaches as mentioned in Section III.C.
Assuming that a pattern language with appropriate pattern
relationships would have been elaborated, Ludolph’s model
may be customized for the particular domain, as it already
holds artifacts typical for business information systems.

The Cameleon Reference Framework will be taken into
consideration to position UIPs concerning their practical
implications. In this context, the abstraction level of UIPs
has to be discussed, i.e., how concrete UIPs should be
compared to implementation level GUI elements.
Additionally, technical considerations should be addressed
like the coupling to GUI frameworks and programming
languages. The most important fact is the positioning of UIPs
in the light of potential notations, which have been
introduced in Section III.B.

D. Limitations of GUI-Generators

In contrast to IDEALXML, which enables the extensive
modeling of the GUI, GUI-generators may generate
executable GUI code but they lack such a broad
informational basis. Therefore, GUI-generators have two
essential weaknesses:

Limited functionality. The information for generating
the GUI is restricted to a domain model and previously
determined dialog templates along with their UI-Controls.
Hence, their applicability is limited to operations and
relations of single domain objects. When multiple and
differing domain objects do play a role in complex user
scenarios [12], the generators can no longer provide suitable
dialogs for the GUI application. Moreover, extensive
interaction flows require hierarchical decisions, which have
to be realized, e.g., by using wizard dialogs. In this situation,
GUI generators cannot be applied. The connection between
dialogs and superordinate interaction design still has to be
implemented manually.

Uniform visuals. A further weakness is related to the
visual GUI design. Each dialog created by generators is
based on the same template for the GUI-design. Solely the
contents which are derived from the application kernel are
variable. Both layout and possible interactions are fixed in
order to permit the automatic generation. The uniformity and
its corresponding usability have been criticized for Naked
Objects [39]. Assuming the best case, the information for
GUI design is based on established UIPs and possesses their
accepted usability for certain tasks. Nevertheless, the
generated dialogs look very similar and there is no option to
select or change the UIPs incorporated in the GUI design.

V. THEORETICAL IMPLICATIONS OF USER INTERFACE

PATTERNS

In this section, the theoretical implications of UIPs are
derived on the basis of considered models of Section IV and
the following scenario serving as a background.

A. Application Scenario: GUI Customization of Standard

Software

On the basis of the customization of GUIs for standard
software and the model transformations described in Section
II.A, the theoretical implications of UIPs are to be
considered. To present an example of standard software, we
refer to e-commerce software, which usually offers both a
front-end system for online-shopping and a back-end system
to manage orders and stock.

Common essential model. This kind of standard
software fulfils the functional requirements of a multitude of
users at the same time. Therefore, these systems share a well-
defined essential model that specifies their functional range
and has many commonalities along existing installations.
Standard software implements the essential model through
different components of the Application Kernel as shown in
Figure 3. Each installation consists of a configuration for the
Application Kernel, which includes many already available
and little custom components in most cases. In this context,
the User Interface acts as a compositional layer that
combines Core and Custom Services together with suitable
dialogs for the user.

Individual GUIs for eShops. Concerning eShops, the
visual design of the GUI is of special relevance, since the
user interface is defined as a major product feature that
differentiates the competitors on the market. Hence, the
needs of customers and users are vitally important in order to
provide them with the suitable and individual dialogs. In this
regard, the proportions of components related to the whole
system are symbolized by their size in Figure 3.

cmp Customizing

Application Kernel

Core Components Custom
Components

User Interface

Core Dialogs Custom Dialogs

Core Services Custom Services

Essential Model

User Model

«call»
«call»

«call»

Figure 3. Components involved in the customization of standard software

32

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In comparison to the Custom Components of the
Application Kernel the Custom Dialogs represent the greater
part of the User Interface and the customization accordingly.
Along with the customization of the application kernel there
is a high demand for an easy and vast adaptability of the
GUI.

GUIs for custom services. The customization of the
GUI system is needed, as elements of the essential model
tend to be very specific after extensive customization or
maintenance processes. Thus, the standard user model as
well as the user interface can no longer be used for the
customized services. In this case, models have to be
developed from scratch and a corresponding solution for the
GUI has to be implemented.

Usability. The development of GUIs is caught in a field
of tension between an efficient design and an easy but
extensive customization. High budgets for the emerging
efforts have to be planned. Additional efforts are needed for
important non-functional requirements such as high usability
and uniformity in interaction concepts and low-effort
learning curve during the customization process of GUIs. For
realizing these requirements, extensive style guides and
corresponding user interface models often need to be
developed prior to the manual adaptation of the GUI. These
specifications will quickly lose their validity as soon as the
GUI-framework and essential functions of the Application
Kernel change.

B. Model Aspects of User Interface Patterns

With the aid of UIPs the time-consuming process of GUI
development and customizing can be increased in efficiency.
To prove this statement, the influences of UIPs on the
common model transformations of the Ludolph model from
Section II.A are examined in the next step. In Section V.C
potentials for improvements are derived from these
influences.

Metaphors and UIPs. Metaphors act as the sole
transformation tool between essential model and user model.
Since they lack visual appearances as well as concrete
interactions, the mapping of metaphors to the elements of the
essential model is very demanding. Metaphors will not be
visualized by GUI sketches prior to the transformation of the
user model.

Since UIPs are defined more extensively and concretely,
they can be applied as a transformation tool instead of using
metaphors. Descriptive UIPs feature a pattern-like
description scheme that, for example, is provided in the
catalogues in [23] and [24]. Thus, they offer much more
information and sometimes even assessments, which can
inspire the GUI specification. In addition, descriptive UIPs
do already possess visual designs that may be exemplary, or
in the worst-case, abstract.

With the user model, operations on objects have to be
specified. The metaphors do not provide enough information
for this step. In contrast, UIPs are definitely clearer
concerning these operations since they group UI-Controls
according to their tasks and do operationalize them in this
way. Interaction designs and appropriate visuals are
presented along with UIPs. These aspects would have to be

defined by on behalf of the developer using only the
metaphor.

When UIPs are used in place of metaphors for
formalization, these new entities can be integrated in the
tools for specifications. Concerning UsiXML, UIPs could
describe the CUIM. Task-Trees are already present in
UsiXML, so this concept of specification partly follows the
modeling concepts in [12] and thus may be generically
applicable.

User model and UIPs. With regard to the user model,
the numerous modeling steps no longer need to be performed
with the introduction of UIPs. Instead, it is sufficient to
derive the tasks from the use cases within the essential model
and allocate UIPs for these. Detailed task-trees no longer
have to be created, since UIPs already contain these
operations within their interaction design. Nevertheless, tasks
have to provide a certain level of detail to derive navigation
structures [29].

Interactions can already be specified in formal UIPs.
Later on, this information can directly be used for parts of
the presentation control of views or windows. As a result, an
extensive user scenario also is obsolete, as it was originally
needed for deriving the more detailed task-tree. Now it is
sufficient to lay emphasis on expressing the features of UIPs
and their connection to the tasks defined by the essential
model. The objects are also represented within the UIPs in an
abstract way. With the aid of placeholders for certain domain
data types, adaptable views for object data can already be
prepared in formal UIPs. Finally, much of the afore-
mentioned information of the user model now will be
provided by completely specified UIPs.

User interface and UIPs. UIPs provide the following
information for the user interface: Layout and interaction of
the GUI will be described by a composition of a hierarchy of
UIPs that is settled on the level of views and windows. When
creating the UIP-hierarchy, a prior categorization is helpful,
which features the distinction between relationship, object
and task related UIPs. This eases the mapping to the
corresponding model entities.

For interactions, the originally applied Models of Human
Perception and Behavior of Figure 1 are no longer explicitly
needed since they are implicitly incorporated in the
interaction designs of the UIPs. In this context, suitable types
of UI-Controls are already determined by UIPs.
Nevertheless, a complete and concrete GUI-design will not
be provided by UIPs, since the number, ordering and
contents of UI-Controls depend on the context and have to
be specified by the developer with instance parameters
accordingly. In the same way, Platform and Graphic
Guidelines act as essential policies to adapt the UIPs to the
available GUI-framework and its available UI-Controls.

Conclusion. We explained that UIPs might cover most
parts of the user model as well as numerous aspects of the
user interface. By using UIPs in the modeling process, these
specification contents can be compiled based on the
respective context without actually performing the two
transformations from Figure 1 explicitly. Basically, the
transformation to the target platform remains as depicted in
Figure 4.

33

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. GUI transformations with the aid of UIPs and automation

C. Influence of User Interface Patterns on GUI-

Transformations

In this section, the potentials of UIPs related to the GUI
specification process are summarized from a theoretical
perspective.

Reuse. By means of UIPs, the transformational gap
between essential model and user interface can be bridged
more easily since reuse of many aspects will be enhanced
significantly. Thereby UIPs are not the starting point of
model transformations; they rather serve as a medium for
conducting needed information for the transformations. The
information originally included in the user model and parts
of the user interface are now extracted from the selection and
composition of UIPs.

Layout and interaction of windows as well as the
interaction paradigm of many parts of the GUI can be
determined by a single UIP configuration on a high level in
hierarchy. This superordinate GUI design can be inherited by
a number of single dialogs without the need for deciding
about these aspects for each dialog in particular.

Many interaction designs can be derived from initial
thoughts about GUI design for the most important use cases
and their corresponding tasks. When a first UIP
configuration has been created, the realization of the Graphic
and Platform Guidelines therein can be adopted for other
UIP-applications since the target platform is the same for
each dialog of a system. Especially when user scenarios
overlap, meaning they partly use the same views or windows
as well as object data, UIPs enable a high grade of reuse. UIP
assignments, already established for other tasks, can be
reused with the appropriate changes.

E-commerce software tends to use many application
components together although they are offered by different
dialogs as illustrated in Figure 3. UIPs can contribute to a
higher level of reuse in this context. Depending on the
possible mapping between Application Kernel components
and UIP-hierarchy, new dialogs can be formed by combining
the views of certain services which are determined by their
assigned UIPs.

Reuse and usability. Besides reuse, UIPs ensure that
multiple non-functional requirements will be met. As proven
solutions for GUI designs their essential function is to enable
a high usability by the application of best-practices or the
expression of design experiences. In this context, they
facilitate the adherence of style guides by means of their
hierarchical composition.

Technically independent essential model. It is a
common goal to keep elements of the essential model free
from technical issues. Thus, the essential model has no
reference to the GUI specification. Therefore, it is not
subject to changes related to new requirements, which the
user may incorporate for the GUI during the lifecycle of the
system. User preferences often tend to change in terms of the
visuals and interactions of the GUI. Concerning use cases,
this rule of thumb is elaborated in [40] and [41]. Technical
aspects and in particular the GUI specification are addressed
in separate models such as user model and user interface
according to [12]. After changes, these models have to be
kept consistent what results in high efforts. For instance, a
new or modified step within a use case scenario has to be
considered in the corresponding user scenario, too.

By assigning UIPs to elements of the essential model,
explicit user models and the prior checking of consistency
between these models both become obsolete. Instead, user
models will be created dynamically as well as implicitly by
an actual configuration of UIPs and essential model
mapping. The approach of Zhao et al. [6] strictly follows this
concept. A technical transformation to the source code of the
GUI that relies on the concrete appearances of the UIPs
remains as shown in Figure 4. By modeling assignments
between UIP and task or between UIP and object, the
number of UI-Controls, the hierarchy and layout of UIPs,
sufficient and structured information on the GUI system is
provided. Subsequently, a generator will be able to compile
the GUI suited for the chosen target platform. These
theoretical influences enable an increased independence from
the technical infrastructure, since the generator can be
supplied with an appropriate configuration to instantiate the
UIPs compatible to the target platform and its specifics.

Modular structuring of windows and views. Common
to software patterns, UIPs reside on different model
hierarchies. Dialog navigation, frame and detailed layout of a
dialog can be characterized by separate UIPs. The views of a
window can be structured by different UIPs on varying
hierarchy levels. Thus, a modular structure of dialogs is
enabled. In addition, versatile combinations, adaptability and
extensibility of building blocks of a GUI will be promoted.

VI. REVIEW OF UIP NOTATIONS AND APPLICATIONS

In this section, both potential notations and applications
of UIPs are reviewed.

A. Review Criteria for XML GUI Specification Languages

Both languages are to be assessed by the following
criteria:

Pattern variability criterion. The main criterion to be
supported by a formalization language is the ability to allow
the developer to abstract certain model structures to patterns.
Each pattern embodies some points of variability to express a
solution that is applicable and adaptable to a number of
contexts. For instance, Figure 5 displays on the upper right
hand side two exemplary UIP sketches. On the lower left
hand side of Figure 5 possible UIP applications are drafted.

34

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Schematic UIP examples and instances used in GUI dialogs

An apparent variability point of each illustrated UIP is
the number of elements of the defined structure, e.g., how
many buttons will appear in a certain UIP instance.

Content criteria. Besides the pattern abstraction
criterion, three additional criteria are relevant for UIPs to be
formalized. Firstly, the visuals to appear in the pattern
structure have to be specified. In some cases certain UI-
Control types make up the main impact of a certain UIP. For
instance, the patterns “Collapsible Panels”, “Carrousel”,
“Fly-out Menu” and the “Retractable Menu” sourced from
[23] require certain UI-Controls that enable animation
effects. It is important for the formalization to express UI-
Controls that enable the desired interaction as close as
possible while retaining a CUI level specification. Secondly,
the layout of modeled structures has to be defined. Thirdly,
stereotype behavior that is represented by the UIP has to be
expressed.

B. UsiXML User Interface Pattern Abstraction Capability

Issues. The assessment of UsiXML is not an easy task
compared to UIML. This is due to the facts that UsiXML is a
far more complex language supporting most levels of
Cameleon and it is not documented by a comprehensive
specification with integrated examples as this is the case for
UIML. At the time of writing, only older metamodels [42] of
UsiXML and the W3C submission [43] of the AUI model
[44] were available, possibly not reflecting new features.

Variability points. At its current state, whenever a
pattern is to be expressed in UsiXML CUI, the variability
points have to be avoided and specified directly. More
precisely, it is only possible to specify a certain button bar or
tab navigation instance with UsiXML. As far as we know,
there is no way to parameterize the number of desired
buttons or tabs. Thus, the described user interface structure
looses on genericity [5]. Only the generativity [5] for a
certain context and the platform- or device independence of
the pattern remains on the CUI model of UsiXML. Other
variability points for behavior and layout may be identified
and reviewed. Unfortunately, this basic variability concern is
a knock-out criterion.

IDEALXML. According to IDEALXML and its pattern
expression capabilities [5], it was not mentioned how UIPs
are being expressed in models such as the AUI or CUI model
as reusable artifacts. Thus, it seems the patterns being
modeled with the IDEALXML environment are always
special instances to be manually adapted to new or changing
contexts.

AUI patterns. Nevertheless, the AUI model and
IDEALXML tool still might be mighty assets for pattern
formalization. Following this thought, a developer would
have to create AIOs of desired facets to model certain
portions of a pattern, e.g., a single control facet for the button
bar UIP or a single navigation facet for the tab navigation
UIP of Figure 5. The modeling would solely be based on
abstract structuring and interaction definition, as there would
be no visual impressions of the final user interface. Later on,
the instantiation of an AUI model pattern towards a CUI
model would be prone to demand for fine-grained
information, as each AIO would have to be configured
individually to represent a specific set of CIOs and thus UI-
Controls. In addition, language facilities would be needed to
determine if an AIO was to be instantiated once or several
times for a CUI. In any case, the modeling of UIPs with the
UsiXML AUI model does not seem to be practical feasible,
since user interface engineers would have a hard time to
imagine the results. Finally, UIPs from public or corporate
libraries could not be modeled with an adequate level of
detail with respect to content criteria introduced in the
previous section.

C. UIML User Interface Pattern Abstraction Capability

Reuse by templates. The UIML language facilities may
enable the storing of UIPs. More precisely, UIML provides
templates for the integration and reuse of already defined
structures in new GUI formalizations [45]. The templates
even may be parameterized, hierarchically nested and
incorporated in the same way as ordinary <part> or
<structure> elements [45]. Additionally, UIML templates
may be used to restructure present <part> elements within a
UIML document by the mechanisms of replace, union and
cascade [45].

Sourcing of templates. UIML templates can only be
sourced by concrete UIML structures, e.g., an existing
<structure> or <part> element. The final element that
incorporates any template must define certain values per
<template-parameters> tag, which holds constants for the
parameters of sourced templates [45].

Variability points. For UIPs to be stored inside a UIML
document variability points need to be maintained.
Therefore, it would be necessary to nest templates up to the
structure root. In other words, the resulting main UIML
document would have to resemble another template itself.

In this regard, even parameterized templates do not seem
to be able to store UIPs deployable for varying contexts,
since the respective parameters would have to be provided in
the main UIML document. Unfortunately, a main UIML
specification cannot be defined as a template that
incorporates other templates and defines their variability
point parameters, which would govern the elements of child

35

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

templates. In detail, it is not allowed for <structure> to define
parameters on that root level. Neither <interface>,
<structure> or <part> tags can define own parameters to be
processed by a pattern instantiation wizard [29] or similar
tool.

Separation of instances and templates. To resolve this
issue, a separation of UIML document types could be
attempted where UIP definition and UIP instantiation are
segregated. The UIML templates stand alone as separate files
and may promise some reuse. Those templates can be
sourced from the same or other UIML files. However, there
are some restrictions as follows. As stated in the UIML 4.0
specification [45], <part> tags can only source <part>-based
templates and <structure> tags <structure>-based templates
respectively. Possible scenarios, which can be derived from
this approach, are explained in the following sub-sections.

1) Sourcing several <part>-based Templates

In this approach, several UIML documents would each
specify a certain UIP with (hierarchical) templates and
respective parameters, repeated parts and maybe
restructuring actions or behavior as additional options. A
schematic example for this kind of solution related to the tab
UIP and “Dialog 1” of Figure 5 is provided by Figure 6.

Definition of placeholders. As shown on the right hand
side of Figure 6, one major UIML document would have to
define the particular UIP instance or complete dialog
(“Dialog 1”) to be rendered. Separate container elements
would have to be defined in the main UIML document
serving as placeholders to be merged with the sourced
template by either the replace, union or cascade options. In
this regard, template parameters of UIML reside on the child
node level as outlined on the right hand side of Figure 6.
This implies that concrete parameters have to be passed to

included templates and consequently, the final UIML
document describing the UIP instances would have to be
created for each application or dialog separately. In this way,
the UIP instance document would be sourcing several
smaller templates as lower level hierarchy <part> elements
within their <structure>.

Separate definition of individual UIP instances.
Finally, parameters would have to be provided and kept in
the UIML UIP instance document as shown in Figure 6.
Therefore, each UIP instance would have to be specified at
root node level separately. The main UIML document would
have to define the panels or containers to include UIPs into
the hierarchy of the virtual tree. This is due to the fact that
UIML template parameters may only be applied for root and
child node level.

2) Sourcing nested <part>-based Templates

The reuse of several <part>-based templates could be
approached, but contained structures would build a strict
hierarchy. As depicted on the left hand side of Figure 6, for
<part>-based templates only one root level container would
be possible, which combines several nested <part> elements
into the same sub-tree. Hence, the incorporation of two UIPs
at the same time would result in a “virtual tree” [45] with
equally ranked or nested elements inside the same container.
The main UIML document could only source both UIPs
within this strictly defined hierarchy and thus, the developer
would replace a <part> with both UIPs at once. According to
Figure 5, the tab UIP would be directly followed by the
button UIP inside the same panel and the dialog data
contents would be situated at the bottom differing from the
actual desired layout depicted in Figure 5.

Figure 6. Schematic UIML <part>-based template and its sourcing inside a UIML document

36

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3) Sourcing <structure>-based Templates
UIP compositions. Complex UIPs or their compositions

like in Figure 5, forming entire new UIP units of reuse, could
be specified with <structure>-based templates and
hierarchical <part> elements. Following this approach,
parameters could be applied to denote the iterators for each
<part> at root node level included in the <structure>-based
template. This variant is illustrated in Figure 7. Additionally,
the cascade merging strategy could be used to preserve
elements not to be replaced and the main UIML document
would have to maintain a similar naming for <part> elements
to be replaced by the template. In Figure 7, the <part>
elements of both the template and UIML instance document
are named equally.

However, these kinds of templates can only replace,
cascade or union with one main <structure> element. Finally,
this implies that only one template can be included in a
UIML document using union or cascade at once. There is no
sourcing of multiple <structure>-based templates possible.

Limitations of UIML instance documents. The current
UIML template facilities are not a suitable solution for UIPs,
since a strong tool support should define an instantiation
configuration at design-time to raise efficiency and not the
UIML document itself. With UIML as the basic
configuration document there would be no overview about
required parameters and no checking of constraints, e.g., the
minimum, maximum or optional occurrence of elements), as
there is even no definition of them inside the UIML
document. UIML offers no visual aids in defining a UIP-
instance. To conclude, reuse would still be limited to certain
portions and GUI specification as well as configuration
would pose high efforts.

Moreover, the above discussed strategies for applying
UIML templates have another considerable drawback. The

<d-template-parameters> definitions only allow for flat
parameter structures. According to the presented examples,
only the number of occurrences of child elements can be
specified in the template and thus, configured in the UIML
instance document. We cannot think of a way how to
configure <style> information such as the label names for the
given UIPs.

Summary. To draw a conclusion, UIML offers rich
facilities like templates and restructuring mechanisms to
manipulate a “virtual tree” structure [45] of a CUI model.
Nevertheless, these capabilities are only valid for structure
elements enumerated and defined concretely. There is no
sufficient solution for the usage of a template, <repeat> or
<restructure> for abstract elements with variable
occurrences.

Currently, it seems that primitive UIPs may be defined
via <part>-based templates, but the template has to be
incorporated into a full UIML document and thus, variables
have to be defined concretely. In addition, the limitations of
parameter definition have to be taken into account.

In the following we provide a summary of current UIML
shortcomings.

4) Current UIML Limitations

No meta-parameters for UIML documents. UIML
provides no means to parameterize templates or UIML
documents even further; meaning the introduction of meta-
templates is not possible. UIML documents do not allow
variables to govern nested templates. A higher level UIP
configuration layer is missing, as indicated on the upper right
hand side of in Figure 6. Such a layer could compensate for
missing pattern support and allow nested parameterization
for the final UIML document.

Figure 7. Schematic UIML <structure>-based template and its sourcing inside a UIML document

37

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. UIML 4.0 DTD [45] template tag definition

This way, the number of embedded template elements or
respective sub-ordinate UIP instance could be governed.
Currently, there is no reuse possible concerning root node
structure elements with UIML, since the root elements are
defined by the UIML UIP instance document itself. A
developer would need to use UIML for defining final dialogs
in detail this way.

Referencing abstract elements. Structure elements that
are sourced from templates need to be referenced explicitly
as this is needed for <style> and <behavior> sections for
example. Therefore, a developer cannot specify the
<behavior> or <style> of abstract elements or those yet to
appear or being instantiated at design- or run-time inside a
UIML document.

UIML DTD. Concerning the current UIML 4.0 XML
DTD [45] as listed in Figure 8, the definition of templates
may be faulty, since only one child element is currently
allowed.

For instance, that means either <structure>, <part> or <d-
template-parameters> are allowed as the solely child.
Restrictions limit reuse to certain UIP combinations: Either
one <structure>-based template in union or cascade as well
as multiple <part>-based templates inside separately defined
container elements are allowed. So a developer cannot
specify how many template instances would be needed.
Meta-parameters that would govern the individual template-
specific parameters are not yet supported.

UIPs already instantiated. In the end, UIML itself is not
capable of expressing complex UIPs. Only concrete template
instances can be used, as they are configured concretely per
<template-parameters> tag.

D. Review of Content Criteria

UI-Control types of UsiXML. According to UI-
Controls, UsiXML defines precisely which types of UI-
Controls are available and what properties they can possess.
An additional mapping model would have to be created in
order to assign these elements to the entities of the target
platform.

UI-Control types of UIML. In comparison to UsiXML,
UIML offers a more flexible definition of UI-Controls, since
custom UI-Controls as well as their properties can be
declared freely in the structure- or respective style-sections
[45] without the need to define them beforehand. To map
these structure parts to technical counterparts of the
implementation, UIML offers a peer-section. This separate
section can be used to specify a mapping between the parts
defined within the structure and any target platform GUI
component. The mapping to the GUI-framework can be
altered afterwards without the need for changing the already
defined UIPs. In addition, standard mappings can be defined
and reused for a certain platform. However, the type safety

like in UsiXML is not given. Thus, a homogenous usage of
types and their pairing with properties has to be ensured by
the developer and is not backed by the language specification
like this is the case for UsiXML.

Layout definition of UsiXML. Concerning layout,
UsiXML uses special language elements to set up a
GridBagLayout.

Layout definition of UIML. UIML offers two variants
for layout definition: Firstly, it is possible to use containers
as structuring elements along with their properties. The
containers have information attached that governs the
arrangement of their constituent parts. Secondly, UIML
provides special tags used for the layout definition. In
comparison to UsiXML, UIML has a more flexible solution
by defining layouts with containers that can be nested
arbitrarily.

Behavior definition. Related to behavior, both languages
define own constructs. Nevertheless, complex behavior is
difficult to master without clear guidelines for both.

E. Summary of XML GUI Specification Languages Review

Besides the considered criteria for review, the two
languages differ in indirect, supportive categories like
framework and tool support or documentation. Additional
comparison criteria and results of our evaluation are
presented by TABLE I.

UsiXML and UIML may express structures similar to
UIPs to some extent, but these resemble already instantiated
patterns or their fragments. In fact, UIML may even express
assorted UIPs through its template facilities. Nevertheless,
these features are not sufficient for most UIP applications. In
sum, both languages are missing the capability to specify
UIPs properly.

F. Valuation of model-based Processes

Referring to the related work in Section III.C, promising
solutions that enable higher reuse through the selection and
instantiation of UIPs during specification and development
of GUI systems are in reach. However, the presented
approaches partly face the same challenges:

Common challenges. On the conceptual level, they need
to review pattern relationships, enhance notations or probe
the expression of more complex patterns or extend the set of
supported patterns. For public evaluation, working examples
of UIP instantiated to a certain context should be provided.
Concerning tool support, researchers have to develop or
enhance tools that aid in selection of appropriate patterns
under consideration of possible relations among them.
Moreover, tools are needed to guide the instantiation or
configuration of selected patterns for a given context.
Therefore, a solution finally adequate to fulfill each
individual project’s goals seems to be ahead of elaborate
work in the future.

Common issues. In sum, we see some issues relevant to
limit the effectiveness of further progress as follows.

Firstly, no detailed requirements or project goals have
been communicated along with the presentation of concepts.

<!ELEMENT template (behavior| d-class| d-

component| constant| content| interface| logic|

part| layout| peers| presentation|

property| restructure| rule| script| structure|

style| variable| d-template-parameters)>

38

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. UIML AND USIXML IN COMPARISON

 UIML UsiXML

language base XML XML

application

platform-independent
user interface
specification

device-, modality- and
platform-independent

user interface
specification

reuse of code parts
by templates with

assigned parameters
no

more than one user

interface structure in

one document

yes no

manipulation of

interface structures

through behavioral
rules and replacement
mechanisms of code

parts

no, only method calls
can be described

dynamic creation of

interface structures

referenced through
the use of variables

no, only static
description

language

documentation

extensive, with
detailed language

specification 4.0 [45]
supplemented by
descriptions and

examples

2012: relative short,
meta model described
by class diagrams and
short descriptions, no

examples
03/2013: no updated
meta model available

corresponding

specification method

and modeling

framework

no, focused on
implementation and

prototyping

yes, implementation
of Cameleon

Reference Model
(Task, Domain, AUI,

CUI models),
IDEALXML both as

method and tool

tool support GUI designer only

vast selection of tools
(GUI designer,

renderer, modeling
framework, …)

rendering

XSL transformation,
or compilation by
own development

XSL transformation,
rendering tools

(XHTML, XUL,
Java)

This hinders the evaluation of given approaches, and thus,
their own justification and comparison to other approaches is
hampered. More precisely, the UIPs defined as generative
patterns and their capabilities remain a vague concept.
Another considerable set-back is due to the fact that no
detailed code examples or notation details have been
presented yet.

Secondly, the general modeling framework and approach
have been outlined as main assets, but no detailed
architecture or transformations to code or final artifacts to be
interpreted have been discussed so far. Up to now, the
readiness of the approaches for practice or even their
invented notations has to be questioned. For a more precise
analysis of considered model-based processes reference [46]
may be consulted.

VII. EXPERIMENTAL APPLICATION OF UIPS IN GUI-
MODEL-TRANSFORMATIONS

Up to now, there have been no reports about experiences
in the practical application of formal UIPs. The particular
steps to be performed for a model-to-code-transformation

and the shape as well as the outline of a formalization of
UIPs are analyzed in the following sections.

A. Approach

To gain further insights about the practical implications
of UIPs, they have been experimentally applied by two
different prototypes. Similar to the probing of software
patterns, selected UIPs were instantiated for simple example
dialogs. These are illustrated in Figure 9.

Sketched examples. On the one hand, the examples
consisted of a view fixed in shape that contained the UIP
„Main Navigation“ [23] on the upper part. On the other hand,
the lower part shows two variants for a view whose visuals
are dependent on the input of the user.
Thereby, the UIP „Advanced Search“ [23] was applied. This
UIP demands for a complex presentation control and is
characteristic for E-commerce applications. Depending on
the choice of the user, the view and interactions are altered.
The search criteria can be changed, deleted and added as
depicted in Figure 9 by two possible states. Both example
dialogs should have been realized by formalized UIPs and
one prototype.

Influences. Based on the current state-of-the-art
concerning potential UIP notations, model-based processes
employing generative patterns and the chosen example, we
opted for two considerable different approaches and
architectures.

Firstly, the potential GUI specification languages turned
out not being capable of storing UIPs in a satisfactory
manner. Only UIML was able to specify selected UIPs at
design-time.

Secondly, the available sources of existing approaches
provide no details about practical considerations and
architectures related to UIP instantiation. In addition, they
are affected by missing requirements for a definition and
vagueness concerning the notation format of UIPs.

Lastly, the chosen dialog examples pointed out, that
certain CUI models statically exists at specification time and
others are due to change at runtime. Thus, a dynamic
reconfiguration of a CUI model has to be considered.

Figure 9. Example dialogs used for prototypes

39

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Seissler et al. [36] also have outlined this aspect, but have
not provided details yet. Finally, XML language capabilities
will not be sufficient to provide proper formalization for
dynamic user interfaces, as static user interfaces are already
restricted.

Generation at design time. To test the formalization of
simple UIPs and the generation of code for the examples, a
solution, which generates the GUI dialogs at design time,
was chosen. In general, the possibility to generate an
executable GUI with the aid of UIPs had to be proven. The
UIPs had to be completely defined at design time. Testing of
the prototype had to be conducted after the GUI system was
fully generated.

Choice of UIP notation. Regarding the structure of a
GUI-specification, UsiXML proposes numerous models in
order to separate the different information concerns domain
objects, tasks and user interface as required by the
underlying Cameleon Reference Framework. Not all the
models were mandatory in terms of the example, since no
explicit essential model was given. On the contrary, UIML
operates with few sections within one XML-document. This
is because the UIML format was easier to handle and learn
with respect to the simple example. With UIML we could
focus on the CUI to FUI transformation only.

In addition, on the basis of our review in Section VI
UIML proved to be better suited for the specification of
UIPs. Firstly, UIML is more compact in structure and
enables a higher flexibility for shaping the formalization.
Secondly, many of the language elements and models from
UsiXML were not actually needed for the UIP „Main
Navigation“. Thirdly, even the „Advanced Search“ example
could not profit from the vast language range of UsiXML,
since all possible variants for search criteria could not have
been formalized or even enumerated. At least UIML offered
the possibility to rely on templates in order to define all
possible lines of search criteria composed of simple UIPs.
UsiXML turned out to be too complex for these simple UIPs.
Due to the limitations in documentation and the metamodel,
it was not clear whether UsiXML permits the reuse of
already specified UIPs at the time of our experiments. So we
decided to apply UIML for the example dialogs.

Generation at runtime. The dynamic dialog Advanced
Search could not be realized by the first approach. Thus, a
solution had to be found that enables the instantiation of
UIPs at runtime. Thereby, it was of importance to keep the
platform independency of the UIML or respective CUI level
specification. The formal UIPs had to be processed directly
during runtime without binding them to a certain GUI-
framework.

In the following analysis, we mainly concentrate on the
latter approach where the instantiation of UIPs is executed at
runtime. In contrast, the generation at design time is an often
applied variant with respect to available approaches outlined
in Section III.C. This particular approach strongly relies on
the employed formalization language for UIPs. In fact, this
major asset is still challenged as seen in Section VI.F.
Therefore, we can not provide further advances by practical
application.

B. Generation at Design Time

Foremost, the simple UIP Main Navigation was realized.
This informally specified UIP was formalized using the
chosen XML language. By means of a self-developed
generator, a model-to-code-transformation was performed to
create an executable dialog. Subsequently, the complete GUI
system was started without any manual adaptations to the
code.

Realization of „Main Navigation“. Java Swing was
chosen as target platform. For the UIML <peer> section we
decided to map the elements of „Main Navigation“ to
horizontal JButtons instead of tabs.

In the formalization, the mandatory parameters for
number, order and naming of UI-Controls were specified. As
result, the UIP was described as an instance. The architecture
was structured following the MVC-pattern [1]. The sections
of UIML were assigned to components like this is illustrated
by Figure 10.

<Structure> and <style> were processed within the object
declarations (UI-Controls) of the View and its constructor.
Based on the <behavior> section, EventListeners were
generated acting as presentation controllers. For the Model
the <content> section was assigned. Hence, the UIP “Main
Navigation” formalized with UIML was transformed to
source code.

Realization of „Advanced Search“. Even by using the
UIML templates, this complex dialog could not be realized
by a generation at design time. It was not possible to
instantiate the formalized UIPs that were depending on the
choice of attributes at runtime.

Results. The prototype primarily was intended to prove
feasibility. This is because we chose a simple architecture
and did not incorporate a Dialog Controller for controlling
the flow of dialogs. The control was restricted to the scope of
the UI-Controls of the respective UIP. Thus, the behavior
only covered simple actions like the deactivation of UI-
Controls or changing the text of a label. Complex decisions
during the interaction process like the further processing of
input data and the navigation control amongst dialogs could
not be implemented.

cmp Generator architecture

UIML Document

<structure>

<style>

<behavior>

<content>

Generator Tool

Parser Java Code
Generator

GUI-System

Model

View

Dialog Controller

UI-Controls

EventListener

Constructor
«trace»

«trace»

«trace»

«trace»

«derive»

«use»

«use»

Figure 10. Architecture applied for code generation

40

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A corresponding superordinate control could have been
realized through a UIP-hierarchy in combination with
appropriate guidelines for the formalization of control
information. Despite the simplicity of the prototype, the
following insights could be gathered:

Informal UIPs could be converted to formal UIP
instances by using UIML as a formal language. Certain
guidelines needed to be defined for this initial step. The
layout of the example was specified by using containers for
the main window and their properties. As a result, the UI-
Controls were arranged according to these presets.

Nested containers and complex layouts have not yet been
used for the experiment in this way. The <style> also was
described concretely within the UIML document as well as
the number and order of UI-Controls. The mapping of a
formal UIP to a software pattern was described according to
the scheme in Figure 10. Concerning the example Advanced
Search, only fixed variants or a default choice of criteria
could have been formalized. The generator could have
created static GUIs accordingly without realizing the actual
dynamics of this particular UIP.

C. Generation at Runtime

Since the Advanced Search UIP was very versatile and
could not be formalized with all its variants with a single
CUI model, the layout of the dialogs was fragmented.

By the means of a superordinate UIP the framing layout
of the view was specified in a fixed manner at design time. In
detail, the headline, labels and the three-column structure of
the view appropriate to a table with the rows of search
criteria were defined.

The mandatory but unknown parameters that determine
the current choice of criteria and UIPs had to be processed at
runtime. Accordingly, a software pattern had to be chosen
that is able to instantiate UIP representations along with their
behavior. This pattern had to act similarly to the builder
design pattern [20], which enables the creation and
configuration of complex aggregates. In [47] a suitable
software pattern was discovered, which is explained shortly
in the following paragraph and depicted in Figure 11:

Quasar VUI. The Virtual User Interface (VUI) is an
early concept included in Quasar (quality software
architecture) [48]. The VUI pattern follows the intention of
programming dialogs in a generic way. This means that the
dialog and its events are implemented via the technical
independent, abstract interfaces WidgetBuilder and
EventListener rather than using certain interfaces and objects
of a GUI-framework directly. By means of this concept, the
GUI-framework is interchangeable without affecting existing
dialog implementations. Solely the component Virtual User
Interface (VUI) depends on technological changes. Upon
such changes, its interfaces would have to be re-
implemented.

We are inclined that the VUI pattern implements some
aspects symbolized by the CUI Cameleon step. Rather than
specifying a certain CUI at design time and statically storing
this as a source, the VUI creates a Dialog in an imperative
way based on CUI level interface operation sequences.

cmp VUI

GUI
Framework

Virtual User
Interface

DialogApplication
Kernel

EventListener

WidgetBuilder

«call»

«use»

«use»«call»

Figure 11. Virtual user interface architecture derived from [47]

By using the interface WidgetBuilder, a dialog
dynamically can adapt its view at runtime. For instance, the
Dialog delegates the VUI to create and configure a new
window containing certain UI-Controls.

The VUI notifies the Dialog via the interface
EventListener when events have been induced by UI-
Controls. Both interfaces have to be standardized for a GUI
system of a certain domain. This is essential to enable the
reuse of reoccurring functionality such as the building of
views and association of UI-Controls with events without
regarding the certain technology or platform specifics being
used. In short, an abstraction comparative to the CUI level
and its advantages are enforced.

VUI for UIPs. The concept, the VUI is based on, can be
adapted to the requirements of the UIP Advanced Search.
The idea is to instantiate complete view components with
UIP definitions besides simple UI-Controls. The Dialog is
implemented by using generic interfaces, which enable the
instantiation of UIPs, changing their layout and their
association with events. In Figure 12 our refinement of the
original VUI is presented.

To enable the implementation of UIP fragments, the VUI
for UIPs is based on our previously described generator
solution. Each possible variation of UI-Controls matching
the attributes of the domain objects for Advanced Search has
been formalized before. Hence, the search criteria rows of
the dialog were visualized by different UIP fragments.
Concerning the formal UIPs, the proper implementations for
the chosen GUI-framework were generated as stated in
Section VII.B. The previously mentioned generator was
integrated in the component UIP Implementations. These
implementations of UIPs located within VUI are based on the
interfaces and objects of the GUI-framework. In analogy to
the UI-Controls already implemented in the GUI-framework,
the available UIP instances were provided via the interface
UIPBuilder and could be positioned with certain parameters.

VUI at runtime. The VUI builds the view or a complete
window as requested by the Logical View. Furthermore, the
VUI provides information about the current composition and
the layout of the Dialog. This information can be used by the
Logical View for parameters to adapt the current view by
delegating the VUI respectively. The Dialog coordinates the
structuring of the view with the component Logical View and
implements the application specific control in the Dialog
Controller as well as dialog data in the Model.

Initially, events are reported to the VUI via API-Events.
The VUI only forwards relevant events to the Logical View.
When the respective event is solely related to properties of a
UI-Control or a UIP instance, it is directly processed by the
Logical View which delegates the VUI when necessary.

41

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

cmp VUI UIPs

GUI
Framework

UI-Creation

API-Events

Virtual User
Interface

Dialog

Formal UIPs

UIPBuilder

ViewEvent

Application
Kernel

ViewData
Style
Data

Logical
View

Dialog
Controller

DialogEvents

Model

DialogData

StyleDefinition

Technical
View

UIP
Implementations

Observer

«use»

«call»

«call»

«use»
«call»

«use»

«use»

«call»

«use»

«call»

«use»

«use»

«trace»

«use»

Figure 12. Virtual user interface architecture for UIPs

If the Logical View cannot process the particular event on
its own, it will be forwarded to the Dialog Controller. For
instance, this occurs when the user presses the button Search
and a new view with the search results has to be loaded. The
Dialog Controller collects the search criteria via the interface
ViewData and sends an appropriate query to the Application
Kernel. The result of the query will be stored as dialog data
in the Model.

Results. For realizing Advanced Search with UIPs, a
complex architecture had to be developed. Details like the
connection of UIP instances to the Dialog data model as well
as the automation potentials of the Dialog Controller could
not yet be analyzed.

The UIPs had to be specified in a concrete manner like in
Section VII.B. The prototype was not mature enough to
handle abstract UIP specifications. The style of the UI-
Controls was also described concretely, so the control of
style by a component of the VUI, as depicted in Figure 12,
has not yet been realized.

Through the VUI, the versatile combinations of Advanced
Search could be realized according to the example at
runtime. The VUI constitutes of a component-oriented
structure related to the software categories of Quasar [48].
Accordingly, it possesses its virtues like the division of
application and technology, separation of concerns therein
and encapsulation by interfaces. Despite its challenging
complexity, a flexible and maintainable architecture for
dynamic GUI systems has been created. Finally, the
formalized UIP fragments could be maintained at CUI level.

VIII. PRACTICAL IMPLICATIONS OF USER INTERFACE

PATTERNS

The reflection of both the theoretical implications of
UIPs on GUI transformations and the results of our
experiments led us to the following findings.

A. Formalization of UIPs

Reflection of results. By experimentally evaluating the
model-to-code-transformation of formal UIPs, we came to
the conclusion that the generation of a GUI is not the
complicated part of the process. Instead, the formalization

and the occurring options in this step lead to the main
problem. Primarily, the preconditions to benefit from the
positive influences of the UIPs on the GUI development
process have to be established by the formalization.

The generator solution was well suited for stereotype and
statically defined UIML contents. In this context, layout,
number and order as well as style of UIPs have been
specified concretely. This led us to a static solution that can
be applied at design time. But the UIP Advanced Search
could not be realized by following this approach.

Parameters for UIPs. In order to overcome this static
solution, a parameterization of formal UIPs has to be
considered. Via parameters the number, order, ID, layout and
style of UI-Controls within UIPs specifications have to be
determined to provide a more flexible solution. Especially
the number and order of UI-Controls have to be abstractly
specified in the first place. In this way, UIPs can be applied
in varying contexts. In place of a concrete declaration of
style for each UIP, a global style template has to be kept in
mind. By using this template, dialogs could be created with
uniform visuals and deviations are avoided. For this purpose,
the VUI incorporated the Style Data component. It is
intended to configure the visuals of UIP instances and UI-
Controls globally. The configuration is used for the
instantiation of these entities by the Technical View.
Consequently, style information from single UIP
specifications could be avoided and the UIPs would receive a
more universal format.

The model-based processes have already approached the
formalization issues. In fact, they have detailed the
parameterization of presented XML languages UsiXML and
UIML for their custom modeling frameworks. However, we
could not rely on their findings, as both detailed information
was missing and considerable future work in the line of
improvements was outlined. Yet, a more sophisticated
solution has still to be invented. This conclusion is backed by
our subsequent work to derive detailed requirements on the
definition and application of generative UIPs [46].

B. Generation at Design Time

In principle, complex UIPs or UIP-hierarchies can be
realized with the generation at design time. The easiest cases
are elementary or invariant UIPs like calendar, fixed forms
or message windows. These examples can be generated with
ease, since they do not need parameters besides a data model.
For UIPs, which require parameters such as hierarchical UIP
structures, an additional transformation is needed prior to the
generation of source code.

Transformation of abstract UIPs. Firstly, the UIP is
abstractly specified along with all parameter declarations
needed and placeholders for nested UIPs. Subsequently,
these parameters have to be specified via a context model,
which adapts the UIP to a certain application. Based on the
abstract UIP specification and the context model, a model-to-
model-transformation is performed in order to generate
concrete UIP specifications like they were used in our
examples. In this state, all required information is available
for the generation of the GUI system. The described model-
to-code-transformation can be performed as a follow-up step.

42

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

It has to be analyzed whether a suitable format is available to
realize this approach, by means of UsiXML or IDEALXML
and the respective AUI and CUI models.

C. Generation at Runtime

Regarding the UIP Advanced Search, it is clear that a
large gap has to be bridged between the essential model and
the user interface. A use case, which demands for such
dynamic UIPs, hides a whole variety of different GUI-
designs and thus CUI level models. Consequently, one static
user interface cannot always be established for the elements
of the essential model. However, even for these dynamic
GUIs UIPs can serve as media to enable reuse of numerous
aspects directly by generation along with a composition at
runtime. The combined application of both our approaches
can provide a feasible solution. Concerning the example
from Figure 9, the previously generated layouts actually
were reused for the Advanced Search window and the views
of search criteria. By instantiation of matching UIPs, even
the interactions respectively the presentation control was
reused.

Generation of dialogs. As shown with our example, the
current VUI is capable of the instantiation and composition
of single parts of a certain Logical View. The generation of
complete Logical Views on the basis of formal UIPs and
their hierarchy could possibly be realized with the VUI
architecture. The model describing the Logical View has to
refer to the standardized interfaces of the VUI and a common
UIP catalog.

To formally specify the UIPs to be used in this
environment, only UIML currently seems to be suitable.
Firstly, an analysis of the required and reused elementary
UIPs as well as the relevant UI-Controls has to be conducted
in order to populate the basic level in the hierarchy of UIPs.
Next, these UIPs have to be formalized with UIML along
with their required data types and invariant behavior that acts
as a basis for presentation control within the VUI.
Furthermore, the interaction and layout within the Logical
View have to be specified using UIML as well. This is
because UIML already offers templates that can be
parameterized and thus used for the composition of several
UIP-documents into one master document establishing a UIP
of higher level. Concerning UsiXML, one dialog can only be
specified by a single AUI or respective CUI model.

To complete the Dialog, meaning Dialog Controller and
Model, relevant information on tasks and data objects has to
be included into a formal model. The research on the
collaboration between adaptable UIPs and these logical
aspects already has advanced [6] [26] [29] [31].

D. Limitations through the Application of UIPs

Individualization. Using UIPs instead of time-
consuming manual transformations, a compromise is being
contracted: A full individualization of the GUI is not
possible with UIPs, since the customization is conducted
within the limits of available and formalized UIPs reside on a
CUI level of abstraction. Nevertheless, UIPs can embody a
further building block of standard software. Customization
will be facilitated by defined parameters and automation.

Metamodels. The application of UIPs demands for clear
guidelines for modeling of the essential model, which result
in a second limitation. The rules for this model need to
define stereotype element types and their delimitations. The
definition of the essential model should be governed by a
metamodel to ensure the uniformity of defined model
instance elements. In this respect, it will be defined what
types and refinements of tasks, domain objects and domain
data types do exist in order to assign them homogenously to
certain UIP categories. This concept is essential for the
proposal of suitable UIPs for the automated development of
GUI systems.

The proposing system needs to work in two ways: On the
one hand, the GUI developer asks for a suitable selection of
UIPs for a certain part of the essential model at design time.
On the other hand, users need to be provided with suitable
UIPs in dynamic dialogs at runtime based on their current
inputs. The mechanisms can only work if a uniform essential
model with clearly defined abstractions derived from fixed
guidelines is available as fundamental information.

IX. CONCLUSION AND FUTURE WORK

A. Conclusion

We theoretically and experimentally elaborated that UIPs
do have numerous positive influences on the GUI
development process. UIPs integrate well in the common
GUI transformations and respective models. Therefore, our
findings are not restricted to the domain of E-commerce
software, but rather can be adapted to other standard
software such as enterprise resource planning systems. Even
for individual software systems, UIPs can be of interest in
case that numerous GUI aspects are similar and their reuse
appears reasonable.

Currently, adaptability and reuse of UIPs are limited due
to inadequate formalization options. Mostly invariant UIP
and simple flat structures can be described by available
template facilities of UIML. UIP compositions could only be
created by manual implementation. We pointed to the
limitations of current UIP specification format options and
presented architectural solutions for their practical
application. Above all, the upstream transformation of the
abstract UIP description into UsiXML or UIML is worth to
be considered, since one could use their strength in
concretely specifying user interfaces. As an alternative to
attempt to fully define UIPs in a single model, the approach
to generate complete CUI level models on the basis of either
UsiXML or UIML should be considered. Afterwards, the
generation of GUIs based on this information would pose a
minor issue.

B. Future Work

Formalization. For future work, we primarily see the
research in formalizing UIPs. An important goal is to enable
UIPs to act as real patterns that are adaptable to various
contexts. The synthesis of a UIP-description model is the
next step to determine properties and parameters of UIPs
exactly and independently from GUI specification languages.
Consequently, it can be more accurately assessed whether

43

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

future UIML or UsiXML versions are able to express the
description model and thus UIPs completely. The
independence from the platform can be achieved by both
languages. However, it was not possible to specify context
independent UIPs besides invariant or concrete UIPs. In this
regard, the composition of UIPs, to form structured and
modular specifications, remains unsolved, too.

Paradigm. Another open issue exists in the field of
interaction paradigms [12] and the applicability of UIPs.
With respect to the procedural paradigm, processes are
defined, which exactly define the single steps of a use case
scenario. To provide a matching user interface for this case,
additional information needs to be included in the
formalization of UIPs. For instance, the process or task
structures have to be specified by UIPs on a high level of
hierarchy. These UIPs possess little visual content, maybe a
framing layout for windows, and mainly act as entities for
controlling the application flow. The Dialog Controller from
Figure 10 and Figure 12 could be based on such a UIP. In
this paper, no information for these components was
integrated in the formal UIPs. So these components had to be
implemented manually. For example, the Dialog Controller
opens a new window with search results for the Advanced
Search, controls the further navigation and delegates the
structuring of the next or previous windows. In this context,
our VUI solution is a compromise between automation and
the reuse of elementary and invariant UIPs through manual
configuration of the Dialog Controller and the delegated
Logical View. A full automation needs further research and
the consideration of the achievements other researchers have
gathered so far in the field of task pattern modeling.

REFERENCES

[1] S. Wendler, D. Ammon, T. Kikova, and I. Philippow,
“Development of Graphical User Interfaces based on User
Interface Patterns,” Proc. 4th International Conferences on
Pervasive Patterns and Applications (PATTERNS 2012),
Xpert Publishing Services, July 2012, pp. 57-66.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and
M. Stahl, A System of Patterns: Pattern-Oriented Software
Architecture, vol. 1. New York: Wiley, 1996.

[3] M. Fowler, Patterns of Enterprise Application Architecture.
Boston: Addison-Wesley, 2003.

[4] M. Haft and B. Olleck, “Komponentenbasierte Client-
Architektur,” Informatik Spektrum, vol. 30(3), June 2007, pp.
143-158, doi: 10.1007/s00287-007-0153-9.

[5] J. Vanderdonckt and F. M. Simarro, “Generative pattern-
based Design of User Interfaces,” Proc. 1st International
Workshop on Pattern-Driven Engineering of Interactive
Computing Systems (PEICS’10), ACM, June 2010, pp. 12-19,
doi: 10.1145/1824749.1824753.

[6] X. Zhao, Y. Zou, J. Hawkins, and B. Madapusi, “A Business-
Process-Driven Approach for Generating E-commerce User
Interfaces,” Proc. 10th International Conference on Model
Driven Engineering Languages and Systems (MoDELS
2007), Springer LNCS 4735, Sept. - Oct. 2007, pp. 256-270,
doi: 10.1007/978-3-540-75209-7_18.

[7] P. Forbrig, A. Wolff, A. Dittmar, and D. Reichart, “Tool
Support for an Evolutionary Design Process using XML and
User-Interface Patterns,” Proc. 5th Canadian University
Software Engineering Conference (CUSEC 2006), CUSEC
Proceedings, Jan. 2006, pp. 62-69.

[8] J. Engel and C. Märtin, “PaMGIS: A Framework for Pattern-
Based Modeling and Generation of Interactive Systems,”
Proc. 13th International Conference on Human-Computer
Interaction. New Trends (HCII 2009), Springer LNCS 5610,
July 2009, pp. 826-835, doi: 10.1007/978-3-642-02574-7_92.

[9] M. Seissler, K. Breiner, and G. Meixner, “Towards Pattern-
Driven Engineering of Run-Time Adaptive User Interfaces
for Smart Production Environments,” Proc. 14th International
Conference on Human-Computer Interaction. Design and
Development Approaches (HCII 2011), Springer LNCS 6761,
July 2011, pp. 299-308, doi: 10.1007/978-3-642-21602-2_33.

[10] M. van Welie, G. C. van der Veer, and A. Eliëns, “Patterns as
Tools for User Interface Design,” in Tools for Working with
Guidelines, J. Vanderdonckt and C. Farenc, Eds. London:
Springer, 2001, pp. 313-324, doi: 10.1007/978-1-4471-0279-
3_30.

[11] M. J. Mahemoff and L. J. Johnston, “Pattern languages for
usability: an investigation of alternative approaches,” Proc.
3rd Asian Pacific Computer and Human Interaction (APCHI
1998), IEEE Computer Society, July 1998, pp. 25-30, doi:
10.1109/APCHI.1998.704138.

[12] M. Ludolph, “Model-based User Interface Design: Successive
Transformations of a Task/Object Model,” in User Interface
Design: Bridging the Gap from User Requirements to Design,
L. E. Wood, Ed. Boca Raton, FL: CRC Press, 1998, pp. 81-
108.

[13] J. Vanderdonckt, “A MDA-Compliant Environment for
Developing User Interfaces of Information Systems,” Proc.
17th International Conference on Advanced Information
Systems Engineering (CAiSE 2005), Springer LNCS 3520,
June 2005, pp. 16-31, doi: 10.1007/11431855_2.

[14] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L.
Bouillon, and J. Vanderdonckt, “A Unifying Reference
Framework for Multi-Target User Interfaces,” Interacting
with Computers, vol. 15(3), June 2003, pp. 289-308, doi:
10.1016/S0953-5438(03)00010-9.

[15] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, and
V. López-Jaquero, “USIXML: A Language Supporting Multi-
path Development of User Interfaces,” in Engineering Human
Computer Interaction and Interactive Systems, Joint Working
Conferences EHCI-DSVIS 2004, Revised Selected Papers, R.
Bastide, P. A. Palanque, and J. Roth, Eds. Springer LNCS
3425, July 2004, pp. 200-220, doi: 10.1007/11431879_12.

[16] R. Pawson and R. Matthews, Naked Objects. Chichester: John
Wiley & Sons, 2002.

[17] H. Balzert, “From OOA to GUIs: The JANUS system,”
Journal of Object-Oriented Programming, vol. 8(9), Feb.
1996, pp. 43-47.

[18] A. Dearden and J. Finlay, “Pattern Languages in HCI: A
critical Review,” Human-Computer Interaction, vol. 21(1),
2006, pp. 49-102, doi: 10.1207/s15327051hci2101_3.

[19] N. J. Nunes, “Representing User-Interface Patterns in UML,”
Proc. 9th International Conference on Object-Oriented
Information Systems (OOIS 2003), Springer LNCS 2817,
Sept. 2003, pp. 142-151, doi: 10.1007/978-3-540-45242-
3_14.

[20] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design
Patterns: Elements of Reusable Object-oriented Software.
Reading: Addison-Wesley, 1995.

[21] S. Fincher, J. Finlay, S. Greene, L. Jones, P. Matchen, J.
Thomas, and P. J. Molina, “Perspectives on HCI Patterns:
Concepts and Tools (Introducing PLML),” Report of the
Workshop Perspectives on HCI Patterns: Concepts and Tools,
2003 Conference on Human Factors in Computing Systems
(CHI 2003), April 2003, http://www.cs.kent.ac.uk/
people/staff/saf/patterns/CHI2003WorkshopReport.doc,
15.06.2013

44

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[22] S. Fincher, PLML: Pattern Language Markup Language,
http://www.cs.kent.ac.uk/people/staff/saf/patterns/plml.html,
15.06.2013.

[23] M. van Welie, A pattern library for interaction design,
http://www.welie.com, 15.06.2013.

[24] Open UI Pattern Library, http://www.patternry.com,
15.06.2013.

[25] A. Toxboe, User Interface Design Pattern Library,
http://www.ui-patterns.com, 15.06.2013.

[26] F. Radeke and P. Forbrig, “Patterns in Task-based Modeling
of User Interfaces,” Proc. 6th International Workshop on Task
Models and Diagrams for User Interface Design (TAMODIA
2007), Springer LNCS 4849, Nov. 2007, pp. 184-197, doi:
10.1007/978-3-540-77222-4_15.

[27] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M.
Williams, and J. E. Shuster, “UIML: An Appliance-
Independent XML User Interface Language,” Computer
Networks, vol. 31(11-16), May 1999, pp. 1695-1708, doi:
10.1016/S1389-1286(99)00044-4.

[28] X. Zhao and Y. Zou, “A Framework for Incorporating
Usability into Model Transformations,” Proc. MoDELS 2007
Workshop on Model Driven Development of Advanced User
Interfaces (MDDAUI 2007), CEUR Workshop Proceedings,
vol. 297, Oct. 2007, http://ceur-ws.org/Vol-297/paper8.pdf.

[29] F. Radeke, P. Forbrig, A. Seffah, and D. Sinnig, “PIM Tool:
Support for Pattern-driven and Model-based UI
development,” Proc. 5th International Workshop on Task
Models and Diagrams for Users Interface Design (TAMODIA
2006), Springer LNCS 4385, Oct. 2006, pp. 82-96, doi:
10.1007/978-3-540-70816-2_7.

[30] P. Forbrig and A. Wolff, “Different Kinds of Pattern Support
for Interactive Systems,” Proc. 1st International Workshop on
Pattern-Driven Engineering of Interactive Computing
Systems (PEICS’10), ACM, June 2012, pp. 36-39, doi:
10.1145/1824749.1824758.

[31] A. Wolff and P. Forbrig, “Deriving User Interfaces from Task
Models,” Proc. Workshop on Model Driven Development of
Advanced User Interfaces (MDDAUI 2009), CEUR
Workshop Proceedings, vol. 439, Feb. 2009, http://ceur-
ws.org/Vol-439/paper8.pdf.

[32] C. Märtin and A. Roski, “Structurally Supported Design of
HCI Pattern Languages,” Proc. 12th International Conference
on Human-Computer Interaction. Interaction Design and
Usability (HCII 2007), Springer LNCS 4550, July 2007, pp.
1159-1167, doi: 10.1007/978-3-540-73105-4_126.

[33] J. Engel, C. Märtin, and P. Forbrig, “Tool-support for Pattern-
based Generation of User Interfaces,” Proc. 1st International
Workshop on Pattern-Driven Engineering of Interactive
Computing Systems (PEICS’10), ACM, June 2012, pp. 24-27,
doi: 10.1145/1824749.1824755.

[34] J. Engel, C. Herdin, and C. Märtin, “Exploiting HCI Pattern
Collections for User Interface Generation,” Proc. 4th
International Conferences on Pervasive Patterns and
Applications (PATTERNS 2012), Xpert Publishing Services,
July 2012, pp. 36-44.

[35] J. Engel, C. Märtin, and P. Forbrig, “HCI Patterns as a Means
to Transform Interactive User Interfaces to Diverse Contexts
of Use,” Proc. 14th International Conference on Human-
Computer Interaction. Design and Development Approaches
(HCII 2011), Springer LNCS 6761, July 2011, pp. 204-213,
doi: 10.1007/978-3-642-21602-2_23.

[36] K. Breiner, G. Meixner, D. Rombach, M. Seissler, and D.
Zühlke, “Efficient Generation of Ambient Intelligent User
Interfaces,” Proc. 15th International Conference on
Knowledge-Based and Intelligent Information and
Engineering Systems (KES 2011), Springer LNCS 6884,
Sept. 2011, pp. 136-145, doi: 10.1007/978-3-642-23866-
6_15.

[37] D. Ammon, S. Wendler, T. Kikova, and I. Philippow,
“Specification of Formalized Software Patterns for the
Development of User Interfaces,” Proc. 7th International
Conference on Software Engineering Advances (ICSEA
2012), Xpert Publishing Services, Nov. 2012, pp. 296-303.

[38] C. Pribeanu and J. Vanderdonckt, “A Transformational
Approach for Pattern-Based Design of User Interfaces,” Proc.
4th International Conference on Autonomic and Autonomous
Systems (ICAS 2008), IEEE Computer Society, March 2008,
pp. 47-54, doi: 10.1109/ICAS.2008.36.

[39] L. Constantine, “The Emperor Has No Clothes: Naked
Objects Meet the Interface”, http://www.foruse.com/articles,
15.06.2013.

[40] D. Kulak and E. Guiney, Use Cases: Requirements in
Context. New York: Addison-Wesley, 2000.

[41] K. Bittner and I. Spence, Use Case Modeling. New York:
Addison-Wesley, 2003.

[42] UsiXML, abstract user interface (AUI) metamodel,
http://www.usixml.org/fr/downloads.html?IDC=348,
15.06.2013.

[43] UsiXML.eu, http://www.usixml.eu/w3c, 11.03.2013.
[44] UsiXML, metamodels submitted to W3C,

http://www.w3.org/wiki/images/5/5d/UsiXML_submission_to
_W3C.pdf, 15.06.2013.

[45] UIML 4.0 specification, http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=uiml, 15.06.2013.

[46] S. Wendler, D. Ammon, I. Philippow, and D. Streitferdt, “A
Factor Model Capturing Requirements for Generative User
Interface Patterns,” Proc. 5th International Conferences on
Pervasive Patterns and Applications (PATTERNS 2013),
Xpert Publishing Services, May 2013, pp. 34-43.

[47] E. Denert and J. Siedersleben, “Wie baut man
Informationssysteme? Überlegungen zur
Standardarchitektur,” Informatik Spektrum, vol. 23(4), Aug.
2000, pp. 247-257, doi: 10.1007/s002870000110.

[48] J. Siedersleben, Moderne Softwarearchitektur - Umsichtig
planen, robust bauen mit Quasar, 1st ed. 2004, corrected
reprint. Heidelberg: dpunkt, 2006.

