
Towards High Quality Mobile Applications:

Android Passive MVC Architecture

Karina Sokolova∗†, Marc Lemercier∗

∗University of Technology of Troyes
Troyes, France

{karina.sokolova, marc.lemercier}@utt.fr

Ludovic Garcia†

†EUTECH SSII
La Chapelle Saint Luc, France

{k.sokolova, l.garcia}@eutech-ssii.com

Abstract—Nowadays, the demand for mobile application devel-
opment is high. To be competitive, a mobile application should
be cost-effective and should be of good quality. The architecture
choice is important to ensure the quality of the application over
time and to reduce development time. Two main leaders are
very represented on the mobile market: Apple (iOS) and Google
(Android). The iOS development is based on the Model-View-
Controller design pattern and is well structured. The Android
system does not require any model: the architecture choice
and the application quality highly depends on the developer
experience. Heterogeneous solutions slow down the developer,
while the one known design pattern could not only boost
development time, but improve the maintainability, extensibility
and performance of the application. In this work, we investigate
widely used architectural design patterns and propose a unified
architecture model adapted to Android development. We provide
implementation examples and test the efficiency of the proposed
architecture by implementing it on real applications.

Keywords–Smart mobile devices (smartphones, tablets); de-
sign patterns; Model-View-Controller; Android architecture model;
Fragments; Android passive MVC.

I. INTRODUCTION

This paper is an extended version of the conference pro-
ceedings [1].

The mobile market has grown rapidly in recent years. Many
enterprises feel the need to be present on mobile markets and
propose their services with mobile applications. Compared to
computer programs, mobile applications often have limited
functionalities, shorter shelf life and lower price. New applica-
tions should be developed fast to be cost-effective and updated
often to keep users interested. The quality of the application
should not be neglected, as mobile users are very pernickety
and competition is stiff. Architecture choice remains important
for mobile applications to ensure quality: mobile applications,
as well as other systems, could be complex and evolve over
time.

The demand for smartphone application development is
high especially for the two market leaders: Apple (iOS) and
Google (Android). Cross-platform solutions, such as Phone-
Gap, Rhodes Rhomobile and Titanium Appcelerator reduce
development time, as one application is developed for several
platforms [2], but have limited possibilities – often requiring
native plug-ins. Cross-platform solutions also add complex-
ity to the native code (e.g., web layer) that decreases the

performance of the application. The support of non-native
solutions could be abandoned. Moreover, the cross-platform
solution forces having the same user interface for all platforms,
while users of different platforms have different habits from
native elements. The final application interface that is not
common to the platform could be rejected by the user. Native
solutions enable use of all the platformÕs options with better
performance and lighter code enabling the creation of an
application adapted to the platform, therefore developers often
choose native software development kits (SDK).

The iOS SDK imposes the Model-View-Controller (MVC)
design pattern for the iOS application development [3]. An-
droid requires no particular architecture [4] – developers
choose a suitable architecture for their applications that is
especially difficult for less experienced developers. Complex
applications that do not follow any architecture can end as a
’big ball of mud’ code: incomprehensible and unmaintainable
[5]. Suitable architecture can improve three non-functional
requirements of software structural quality: extensibility, main-
tainability and performance. A defined architecture could ad-
ditionally reduce the complexity of the code, simplify the
documentation and facilitate collaboration work [6].

Android development books and tutorials are mostly fo-
cused on Android SDK technical details and user interface
design. Only a few works have been dedicated to the Android
application architecture, while the Android community identi-
fies an architecture as an important part of successful system
design and development. Developers open many discussions
about suitable Android architecture on forums, blogs and
groups.

In this work, we provide an overview of some widely used
architectural patterns and propose an MVC-based architecture
particularly adapted to the Android system. Android Passive
MVC simplifies the development work giving the guidelines
and solutions for common Android tasks enabling the creation
of less complex, high-performance, extendable and maintain-
able applications.

We provide the detailed pattern description with possible
implementations. We introduce several usage scenarios and
propose an example of a social networking mobile application
’Tweetle’ developed with our pattern. We also discuss the
applicability of other presented patterns on Android develop-
ment, special cases that are relevant to and the difference with

123

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Android Passive MVC implementation.

We evaluate Android Passive MVC regarding the main-
tainability, extensibility and reusability with scenario-based
software architecture evaluation method using the two im-
plementations of ’Tweetle’. We also compare two implemen-
tations of ’TaskProjectManager’ Android application made
for a client by an experienced developer: Android Passive
MVC implementation and an old implementation having no
defined architecture. We conduct an experiment of long time
pattern usage for real Android applications development: two
developers applied Android Passive MVC for 10 months on
their everyday Android projects and gave their feedback.

The remainder of the paper is organised as follows: the
second section presents architectural patterns used in software
development. Section 3 presents briefly the architecture used in
iOS application development. Section 4 presents the Android
SDK and existing difficulties in adapting one known architec-
ture to Android. In Section 5, we propose a design pattern
adapted to the Android environment - Android Passive MVC.
Section 6 provides some typical cases that may arise while
developing an Android application and the corresponding An-
droid Passive MVC implementation. Section 7 describes a con-
crete example of a social networking application implemented
using Android Passive MVC. In Section 8, we go further
and provide an architecture for the core of an application.
Section 9 evaluates the Android Passive MVC. Sections 10
and 11 discuss the applicability of other architecture presented
in Section 2. Section 12 presents works related to mobile
applications architecture and Section 13 concludes this work
and presents some perspectives.

II. ARCHITECTURAL DESIGN PATTERNS

We present five architectural design patterns in historical
sequence. These patterns are widely used in desktop and web
applications development. If mobile development assimilates
similar design, developers moving from other systems could
take advantage of their knowledge. Different components and
existing variants of models are included in the description.

A. Model-View-Controller (MVC)

Presented in 1978, Model-View-Controller is the oldest
design pattern and has been successfully applied for many
systems since its creation [7][8][9].

The goal of this model is to separate business logic from
presentation logic. The business logic modifications should not
affect the presentation logic and vice versa [7]. MVC consists
of three main components: Model, View and Controller. The
Model represents data to be displayed on the screen. More
generally, Model is a Domain model that contains the business
logic, data to be manipulated and data access objects. The View
is a visual component on the screen, such as a button. The
Controller handles events from user actions and communicates
with the Model. The Controller also communicates with the
View directly if the Model does not need to be changed (e.g.,
scrolling action). The View and the Controller depend on the
Model, but the Model is completely independent. The design
pattern states that all Views should have a single Controller,
but one Controller can be shared by several Views.

Figure 1. a) Classic MVC, b) Application Model MVC

MVC model has three varieties: Classic MVC, Passive
Model MVC and Application Model MVC (AM-MVC). The
scheme of Classic MVC and Application Model MVC is
shown in Figure 1. The Classic MVC is shown on the left
(a) and the AM-MVC is shown on the right (b). The scheme
of Passive Model MVC (c) is shown in Figure 2.

In Classic MVC and Passive Model MVC, Controller
handles events and communicates directly with a Model that
is indicated by a black arrow. On the Classic MVC the
Model processes data and notifies the View. The View handles
messages from the Model and updates the screen using the data
received from the Model. This behaviour is implemented using
the Observer pattern (grey arrow in Figure 1). Conversely, the
communication between the Model and the View in Passive
Model MVC is done exclusively via the Controller. The Model
notifies Controller which then notifies View and finally the
View makes changes on the screen [10].

The AM-MVC is an improved Classic MVC with an
additional component. The Application Model component was
added for the presentation logic (e.g., change the screen colour
if the value is greater than 4) that was often added to View or
Controller previously and makes a bridge between the Model
and the View-Controller couples.

B. Presentation-Abstraction-Control (PAC)

The PAC architecture was introduced in 1987 [11]. This
architecture aims to improve the modularity of the system that
is limited with MVC. PAC propose to decompose the system
functionalities into hierarchically organised cooperating agents

Figure 2. Passive Model MVC

124

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. PAC architecture

each responsible for a particular task. Each agent manages the
part of the user interface and maintains its data and state. Some
agents could also exist without any particular user interface
but coordinating other agents. The system can be extended by
additional agents, the modification of one agent should not
affect other agents.

Each agent of the PAC system consists of three com-
ponents: Presentation, Abstraction and Control. Presentation
component contains the presentation logic. Abstraction com-
ponent contains the functionality of the agent and the data
it maintains. Control component links the Presentation and
the Control acting as an adapter and allows communication
between agents. One can see that PAC agent is organised
as Passive MVC with the difference that the user events are
intercepted by the Presentation component [12]. Figure 3
depicts the architecture.

Agents are organised in the hierarchy where lower level
agents depend on their parents. High-level agents contains the
core functionalities, manage the database and main interface.
Low-level agents maintain particular functionalities, particular
interfaces, the information about the interface and expose
actions to the user. Lower level agents could, for example,
manage different sensors. Intermediate-level agents combine,
maintain and coordinate low-level agents.

The actions intercepted by the low-level agents can be
redirected to the upper agents to access their functionalities,
the outgoing events such as an error event is also transferred
to the particular ’error manager’ agent via parental Control
components. The changes in high-level agent’s data are also
transferred to collaborators agents.

This architecture allows a very modular system to be
made with communicating agents but the system can become
very complex with the fast growing number of agents. The
organisation or communication between agents could also
become complex.

C. Model-View-Presenter (MVP)

The Model-View-Presenter was introduced in 1996 as an
MVC adaptation for the modern needs of event-driven systems
[13]. The model consists of three components: Model, View
and Presenter. In this model, the View represents a full screen

Figure 4. Supervising controller and Passive view

and it handles events from the user actions. The Presenter is
responsible of the presentation logic. The Model is a Domain
model.

There are two types of MVP: Supervising controller and
Passive view. Both models are shown in Figure 4. The Super-
vising controller uses the Observer pattern for the communica-
tion between Model and View. The View can interact directly
with the Model to save the data if there is no change to be
made on the screen. Otherwise, the communication between
the View and the Model is made via the Presenter. Interaction
between View and Model of the Passive View MVP is done
exclusively via Presenter [13].

D. Hierarchical-Model-View-Controller (HMVC)

The Hierarchical-Model-View-Controller was first intro-
duced in 2000 and is similar to PAC architecture. HMVC is
presented as a Classic MVC adaptation for Java programming
[14]. This model takes into account the hierarchical nature
of Java graphical interface components: the main window
frame contains panes that contain components. The authors
propose to create layered architecture for the screen with
Classic MVC triads for each layer communicating with each
other by Controllers. The HMVC model is shown in Figure 5.

Thereby the child Controller intercepts methods from its
View. If a View of the upper hierarchy (parent View) needs to be
changed, the child component informs the parent Controller,
which makes the changes. The communication between layers
is made exclusively via Controllers. Unlike PAC, the Con-
trollers of HMVC have direct access to the Model and to core
components without interacting with the high-level triad.

E. Model-View-ViewModel (MVVM)

Model-View-ViewModel is another model to separate the
presentation and business logic. The ViewModel is a linking
component between View and Model. This design pattern is
mainly used in Microsoft systems [15]. The realization of this

Figure 5. Hierarchical-Model-View-Controller

125

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

model is done with binding between components [16]. The
binding is not supported in Android by default but could be im-
plemented using the very recent Android-binding framework.
As stated in [17], a good basic model should not use any
additional framework and should be easily implemented with
original components, therefore this model is not dealt with in
the paper.

III. IOS APPLICATION
DEVELOPMENT

The iOS mobile development has already adopted an
architecture. We want to take advantage of iOS experience and
knowledge in making the Android architecture. In this section
we present the main principles of the architecture used in iOS
development.

iOS is a OS X based system adapted to mobile devices.
iOS developers use specific language called Objective C to
create mobile applications.

The base architecture for mobile iOS application is an
adapted Passive MVC. Like the original Passive MVC, the iOS
architecture is based on three components: View, Model and
Controller. Models and Views are independent and communi-
cate with each other only via Controllers. The communication
between Controllers and Model is organised via an Observer-
Observable pattern.

Views and Models are highly reusable. Multiple Views are
already provided by Apple: SplitView, TableView, ImageView,
PageView, CellView, WebView, MapView, TextView, Button-
View, etc. Controllers are less reusable, they link Views with
Models, set up the Views (contain presentation logic), and
intercept actions made on View to call methods from the
Model. Many controllers are already predefined in iOS: View-
Controller, SplitViewController, TableViewsController, etc.

A main controller for each screen or a group of screens ex-
ists in iOS applications. For example TabBar represents a menu
and there are as many screens as tabs in this menu. All screens
are managed by the same controller - TabBarController. Each
screen can embed other Views that can have a corresponding
Controller or can be managed by the parent Controller.

One can see the logic of iOS applications is similar to
Android applications; knowledge of iOS architecture is helpful
to adapt an Android architecture.

IV. ANDROID APPLICATION
DEVELOPMENT

A. Background

Android is a Linux-based open source operation system
designed for mobile devices. Android was first presented by
Google in 2007 and in spite of huge competition from Apple
has been the leading smartphone platform since 2010. Google
continues to work on the system systematically integrating
new features and correcting bugs. Many manufacturers of
smartphones and tablets adopted this open-source solution; the
National Security Agency (NSA) and National Aeronautics
and Space Administration (NASA) also choose Android for
their projects.

Android applications are mainly written in Java using the
Android SDK [18]. The code is compiled to be executed on
the Dalvic virtual machine on a smartphone. Additionally,
developers can use the Native Development Kit (NDK) to add
a C or C++ written code referred to as native. NDK allows
more advanced features and better performance, however, the
complexity of the code increases with the quantity of native
code [19] – Google suggested minimizing the use of this kit.

Four principal components of Android SDK are used in
Android application development: Activity, Service, Content
provider and Broadcast receiver. Developers use predefined
extendable classes to implement those components.

Activity is a main mandatory component of Android appli-
cations created when the application is opened. The simplest
Android application can contain the only class implementing
the Activity. Activity is also the entry point to the application:
to start the application the system must launch the Activity
component. Applications can make the Activity public to share
the functionality it proposes.

Many Activities can exist in the application but only one
is active at a time. The Activities history is saved: the system
automatically maintains the stack of Activities and opens the
previous Activity with its last state when the button ’back’ is
pressed. The oldest Activities are deleted from the stack for
other memory usage.

The Service works on the background of an application
permitting an execution of long tasks (e.g., file download)
without freezing the screen. When the application is closed,
unlike Activity, the work of the Service is not interrupted.
Services can communicate directly with the Activity it is
attached to.

The Content provider component gives access to the local
data stored in SQLite databases. Content provider is aimed to
be used for the data sharing between applications but can also
be used internally.

The Broadcast receiver is a messaging system that enables
communication inside the application and between multiple
Android applications installed on the phone.

In 2010, Google introduces a new component into the An-
droid systems called Fragment. Fragment is a new extendable
class available in the Android SDK. Visible interface elements
can now be controlled by Fragments instead of Activity, which
permits the elaboration of more flexible interfaces. Therefore,
part of the interface can be changed by treplacing one Frag-
ment with another Fragment. Each Fragment is attached to the
Activity and maintains access to the Activity.

Fragments main intention was to simplify the adaptability
of an application between smartphones and tablets where two
screens on a smartphone can become a single screen on a tablet
due to the size difference. Fragments increase the modularity
of the Android applications.

An exhaustive description of Android development envi-
ronment and modules can be found in [20].

B. Experience

Activity causes major difficulties in implementing the
known architecture: is it a View, a Controller, a Presenter or

126

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Activity as ’View-Presenter’ of MVP or a ’Controller’ of MVC

none of them?

One can observe that Android SDK already integrates many
simple Views such as Button, TextView, ImageView, EditText
and also more complex Views such as ListView, AdapterView,
etc. One can also find several Controllers such as ViewFlipper,
ViewSwitcher, etc. Views can be combined together on the
screen by layout.xml and even embeds other Views, defining
the appearance.

The most common way to develop Android application is
to create one Activity per screen. Naturally, Activity initialize
Views and intercepts actions made on Views by the user
(methods corresponding to actions could be directly defined in
layout.xml, Activity should implement the defined methods).
Presentation logic of the full screen and a communication with
the core of an application is often situated in the Activity
making it very heavy and complex [21]. Thereby Activity
managing actions and the presentation logic of the full screen
behaves as a View-Presenter couple of MVP or a big Controller
of MVC. The simple schema is shown in Figure 6.

We also found examples where a single Activity manages
an entire application: all possible actions of an application and
the full presentation logic is managed by only one class -
Activity.

The View-Presenter or thick Controller implementation
leads to multiple problems: reutilization, maintenance, exten-
sibility, code clarity, team development and even performance.
Parts of code integrated into single Activity cannot be reused,
methods can only be copied to another Activity making the
redundant code. Any additional View and action complicates
the Activity. A modification of one action repeating on sev-
eral screens requires modification in all related Activities
(assuming one Activity per screen). Activity can contain the
implementation of very different actions non related to each
other, this can make the Activity very complex, unreadable
and incomprehensible. Activity is kept in memory while the
application is running, thereby a very big Activity affects
performance. Finally, the modification in the user interface and
application logic can lead to the need of full redevelopment of
all Activities.

Some developers improve the architecture placing the Ac-
tivity as a MVP View and put the presentation logic to the
Presenter component. It makes Activity lighter as it manages
only actions available on one screen, but reutilization and

maintenance problems remain the same as explained above.
The simple schema is shown in Figure 7.

Another MVC implementation place Activity instead of
View and creates the Controller separately. Activity cannot
be implemented as a View due to the particularity of the
component, but Activity can initiate and regroup all Views
on the screen. Thereby we obtain very thin Activity and
thick Controller handling all screen events and managing the
presentation logic. The simple schema is shown on Figure 8.

Even if Controllers could be reused by other Activities the
full object is needed to reuse methods related to one View
from the previous screen; the structure of application becomes
unclear due to the reutilization. Problems of extensibility and
maintenance persist.

This solution works for simple applications where one
Activity represents one visual block, while Activity usually
manages several Views: main screen, menu, dialogue box, lists,
forms, etc. In complex visual applications Controllers becomes
heavy.

Assuming the Activity cannot be a View, as Views are
already available and extensible on Android, few developers
replace the MVP Presenter with Activity. The simple schema
is shown in Figure 9.

This solution makes View intercept event of all visual
components available in the screen; presentation logic moves
to Activity, but similar problems appear: reusability, extensibil-
ity, code clarity, etc. Presentation logic cannot be reused, but
should be copied to another Activity if needed. The complexity
of a single View increases with the number of events. This is
suitable only for very simple applications with very simple
screens.

The appearance of Fragments could have solved the archi-
tecture ambiguity, but Google proposes new components with-
out suitable documentation about the utilisation of Fragments,
thereby creating new ambiguity instead of solving the problem.
Now developers ask themselves in what cases they should use
the Fragments and not the simple Activity, what component
should handle actions and presentation logic, where to place
the Fragment management code, etc. We find previously ex-
plained MVC/MVP solutions, where the component that is
not implemented as Activity becomes a Fragment (e.g., MVP
implementation where Presenter is implemented as Activity
and View is implemented as Fragment).

Figure 7. Activity as ’View’ of MVP with additional Presenter component

127

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Activity as ’View’ of MVC with additional Controller component.

Nowadays more and more developers use Fragments, often
as Controllers of MVC, but questions about presentation logic,
communication between components, the actual purpose of
components and its logic remains unanswered.

The full code organisation needs to be clarified: what
existing component should be used and for what purpose,
what type of code can be placed in those components and
when and for what purpose should additional components
be created? We find many applications where the part of
core logic of an application is placed in the Activity or in
the Controller/Presenter making them even more complex.
Developers are often unsure about the decomposition of an
application to Activities and Fragments and have problems in
core organisation.

We did not find any Android application example devel-
oped using HMVC or PAC architectures. The implementations
of MVVM requires additional libraries, therefore we do not
take them into account.

V. ANDROID PASSIVE MVC :
PRESENTATION

Even if MVC and MVP architectures seem suitable for
Android developments they are not intuitive to implement.
The main defined problem is an Activity component that is
hardly reusable. We aim to define a new architecture that can
be easily implemented with Android-specific components, such
as Activity and Fragments. The implementation of the model
should improve the application and code quality: reduce the

Figure 9. Activity as ’Presenter’ of MVP with additional View component.

Figure 10. Activity as an intermediate component between Views and
Controllers.

complexity of an application, clarify the code and improve
extensibility. The coupling between components should be
weak to avoid the modification of other components if one
is modified. Modules should be reusable [17][22]. A mobile
phone has a limited memory, therefore the creation of un-
necessary objects should be avoided. Objects remaining in
the memory should be lightweight [19]. Modification in user
interface or in navigation logic should involve the minimum
modification of the application.

In this section we present in details our proposition: the
architecture for Android application development we named
Android Passive MVC.

We have decided to base our architecture on the MVC
model, as MVC is well-known and widely used in desktop and
web systems as well as in iOS mobile development. Developers
coming from other systems would be able to easily appropriate
the Android development architecture.

Activity is an inevitable component of the Android appli-
cation. Previous experience of the Android community shows
Activity does not fit well on the MVC model, while it seems
to be well adapted to developers’ needs. Many View com-
ponents are already available on Android but Activity cannot
be a Controller or a Model. From the previously described
development experiences one can see that the screen cannot
be represented entirely by one or two components. It becomes
trivial that the screen should be decomposed into many logical
parts and each part should have the related components. For
the new architecture we decided to create MVC triads around
Activity making the Activity the fourth component.

We can think of Activity as a main screen (parent) con-
troller in HMVC model. The simple schema is shown in Figure
10.

An observer-observable pattern is relevant for multi-screen
systems but only one screen is active at a time in Android
applications. This pattern implies keeping in memory Views
and Models that appear heavy for the mobile environment,
therefore we chose the Passive Model MVC as a basis for our
architecture.

In our model, Activity becomes an intermediate component
between the Views and the Controllers. The Activity represents
a screen controller or, in some cases, a main controller for a
group of logically conjoint screens.

128

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Controllers take the event handling responsibility and the
presentation logic making the Activity lightweight. Controllers
are also lightweight because one Activity can interact with
many small reusable Controllers. Controller handles events and
presentation logic only for a small number of views logically
linked together. Controllers should not contain any code related
to the core application functionalities.

The Views are the interface components, such as a form,
a menu or a list of elements. View components contain
methods that allow the setting or obtaining of data from
the user interface on Controller demand, the setting of event
listeners on visual components and the modification of visual
components (set errors, change colours, etc.). Views are created
if necessary extending Android predefined Views, otherwise
the Android predefined Views fit to the architecture. Views
are independent and do not communicate. Views should not
contain any application logic or data.

The Model in our architecture is a Domain Model contain-
ing the application core logic and data. The simple scheme of
the Android Passive MVC architecture with all components is
shown in Figure 11.

The starting Activity creates a link between a View and a
corresponding Controller to make them communicate directly.
Controller set up the View it is responsible of: visual presen-
tation and the data. The Controller handles events from the
user action (e.g., button click), calls necessary methods from
the Model and then updates the View on Model response.

Simple hierarchy of Activity and Controllers depending on
this Activity will be suitable for many simple applications,
although Android interface is a modular interface similar
to Java. We propose to organise View-Controller couples in
Hierarchy as HMVC and PAC architectures. The actions of
interface modules controlling another interface module will be
organised as parent-child controllers.

We define two type of controller: Mediate Controller and
Coordinating Controllers. We borrowed names from iOS ar-
chitecture also having two types of controllers.

Coordinating Controller is a simple Controller for an
independent part of the screen coordinating the presentation
logic and events of its Views. This Controller can call the
Model, modify its View visualisation, show dialogues, call
Activities but does not exchange Controllers. The Coordinating
Controllers do not have any child controllers. Coordinating
Controllers are very reusable and make an application very
modular. Coordinating controllers can be perceived as low-
level PAC agents.

Mediate Controller often corresponds to the part of the
interface modifying or exchanging Coordinating Controllers
(part of the interface). Menus in the interface would often

Figure 11. Android Passive MVC

Figure 12. Communication between Controllers

correspond to the Mediate Controller. Mediate controllers can
also initialise child Mediate Controllers (e.g., for a submenu).
Activity Mediate Controller manages Activity replacement.
Mediate controllers are similar to the Intermediate-level PAC
agents with the difference that they have direct access to the
Domain Model (application core).

Mediate Controllers are not very reusable as they need
all their children to function, although Mediate Controllers
show the presentation logic of the application; the logic of
the interface can be modified by updating or changing the
Mediator controller.

To keep components loosely coupled it is recommended to
ensure communication between Controllers and Activity via
interfaces. The communication schema is shown in Figure 12.

Android Passive MVC makes Activity lightweight by mov-
ing all event handlers and presentation logic to Controllers and
interface management to Views. Views and Controllers created
on demand avoid unnecessary objects, saving memory. An-
droid predefined View fits the model and new developer Views
are reusable in future applications. Coordinating controllers are
very reusable and makes the application very modular. Mediate
Controllers are less reusable but enable easy modification of
the logic of the application only by modifying the Mediate
Controllers.

Developers can easily modify or remove application com-
ponents by only updating or deleting the corresponding View-
Controller couple. Application can be extended with View-
Controller couples. The Model is independent from the View,
the Controller and the Activity. The user interface could be
replaced without any impact on Model, therefore the main-
tainability of the application is high.

VI. ANDROID PASSIVE MVC:
IMPLEMENTATION

This section presents some examples of Android Passive
MVC implementation. We introduce more details and special
cases of architecture usage. Controllers of AP-MVC can be
implemented with simple Java classes or with the Android
Fragment component.

Both implementations are suitable for the new manually
created Activities. Some predefined Activities, especially from
third-party libraries, will possibly not fit the implementation.

129

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Android Passive MVC implementation

A. Java classes implementation

Controllers can be implemented as simple Java classes, the
same as Views. Controller should be linked to the Activity,
therefore the Activity should implement a Controller listener
interface and pass it to the Controller to establish the com-
munication. The components communicating via listeners are
loosely coupled and the communication of Android compo-
nents via interfaces is presented in [23].

As the Activity would initialise the Controller, it can
communicate with Controller directly, but the communication
via interface is preferable. Activity should also retrieve the
View and pass this View to the Controller to establish a direct
communication. We propose to establish the communication
between the Controller and the Model via listeners (interfaces).

Figure 13 shows the Android Passive MVC implementation
diagram. Listeners increase the performance of the application
and create a weak coupling between components that improve
maintainability.

For the example showing the implementation without Frag-
ments we created a login screen with a classic login form to
enter the login and password; if the login is successful the
user goes to the welcome page, otherwise an error message
appears.

The example contains two Activities: Login Activity
managing the login page and Welcome Activity for the wel-
come page. The login form is managed by Login View and
Login Controller. Login Activity implements the LoginCon-
trollerListener interface to be able to receive calls from the
Login Controller. The schema is shown in Figure 14.

Login View contains methods for obtaining login and pass-
word (getters), methods to set button listener and methods to
set errors. Login Controller handles events from the login form
implementing the onClickListener; while the button is pressed,
Controller calls the model that launches simple verifications.
If login is successful, Controller opens a welcome screen. If
login fails Controller sets up an error message.

Figure 14. Login implementation example

Figure 15. AP-MVC impose the creation of Fragment event if the only one
is currently used within Activity

B. Fragments implementation

Fragments is an Activity-like component that can represent
and control a part of the interface. Fragments can be used to
implement Controllers in Android Passive MVC. Since the
introduction of Fragments, Google insists on the high usage
and integration of Fragments into Android applications and
deprecates Activity-based functionalities.

Fragments propose multiple advantages in Android Con-
troller implementation versus simple Java classes:

• Fragments are native Android components automati-
cally linked to the Activity via layout.xml having the
native possibility to communicate with the Activity.

• Fragments have their life cycle linked to the Activity.

• Fragments are automatically linked to Views via lay-
out.xml and can retrieve Views to communicate di-
rectly.

• Android integrates the Fragment manager: Fragments
can be easily replaced, deleted or added to the Activ-
ity.

• Activity has access to all attached Fragments.

• Fragments integrate the back button gesture: option of
saving the Fragment with its state in the back stack
and retrieving it on back button press. We can also
choose to retrieve the existing Fragment with its state
or create a new Fragment with the default state.

• Fragments can manage other Fragments.

A Fragment is created for each piece of an interface having
an action or several logically linked actions. We propose to
distribute all actions between Fragments and do not add user
actions directly to the Activity. Even for only one simple form
(e.g., login form) the Android Passive MVC imposes the use of
the Controller (Fragment) along with the Activity. This makes
the application more modular and improves maintainability, the
same independent Fragment can be easily reused in the future.
Figure 15 shows a single Activity with a single Fragment and
a single Activity with two independent fragments.

Fragment is linked to corresponding Views via the lay-
out.xml. Fragment should not retrieve other Views available
in the Activity to stay independent.

Fragment can play the role of Mediate Controllers and
manage other Fragments or change Activity. One Fragment
cannot exchange itself with another Fragment therefore it

130

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

needs a parent Fragment (Mediate Controller) to perform the
transaction. Figure 16 illustrates an example.

Android gives the option of adding a Fragment that is
not directly linked to the interface, permitting the creation
of Mediate Controllers without visual components. In some
cases, actions from different screens and different Activities
can be combined in one single Mediate Controller if those
screens are logically linked. For example, a form can have
several pages (screens) with ’next’ button or ’go to first page’
button; the appearance of the screen changes on click event
interception. In this case, rather than adding an action to each
fragment separately, making them dependent, the developer
should create a Mediate Controller combining those actions
in one place. Figure 17 illustrates this example. Therefore, in
the case of user interface reorganisation (e.g., add new screen
in the middle of the chain) only the Mediate Controller needs
to be modified. The same should be done for a bundle of
dependent fragments within a single Activity.

Fragment initialises itself with default data or the data
recovered from the bundle (Android mechanism to pass the
data between Activities), therefore Fragments stay maximally
independent from other Fragments. Some Fragments can be
initialised by an Activity or parent Fragment (Mediate Con-
troller) to increase reusability. The possible communication
between Fragments and Activities is shown on Figure 18 with
two Mediate Controllers and one (the upper right) Coordi-
nating Controller. Fragments should rarely have a callback
to parent Fragments but if necessary the callback can be
implemented with interfaces.

Developer should avoid high hierarchy between Fragments
within a single Activity as parent Fragment is linked to the
child Fragments. Activities make components more indepen-
dent and simplifies the Fragment management.

In some cases, Fragments depend on each other (cannot be
a parent-child, but should initialise each other), we observe the
circular dependency between Fragments. Figure 19 shows an
example: a list of folders and a file path to the parent folder.
By clicking on the folder in the file path, the folder list should
be updated; by clicking on the folder in the list, the file path
should be updated. Another example is a mobile tablet with
a large screen that contains the statistics data represented in
different Views: tables or graphs. Changes in any of the Views
should affect all other Views.

This is also a typical case where the Classic MVC is very
pertinent where the Observer-Observable pattern can be used

Figure 16. Mediate Fragment corresponding to the possible menu that
exchange 2 Fragments depending on intercepted action

Figure 17. A chain of dependent Fragments or Activities. a) Direct calls make
dependent Fragments b) Mediate Controller makes components independent

instead of Mediate Controller: several Views represent the data
using the same Model, Controllers can modify the Model and
all Views should be updated. Although Mediate Controller
keeps components more independent.

It is possible in Android to retrieve one Fragment from
another Fragment and to call the initialisation method.
Although this makes very tight coupled components. A better
way is to make those Fragments communicate via listeners
implemented by a parent component: a Fragment playing the
role of Mediating Controller.

VII. CONCRETE APPLICATION WITH
ANDROID PASSIVE MVC:

’TWEETLE’

To illustrate the implementation mechanism we take an
example of a Twitter client (microblogging social network)
with three buttons (main menu); one screen has an additional

Figure 18. Communication between Fragments and Activity

131

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 19. Circular dependency between Fragments a) Direct calls, dependent
Fragments b) Mediator Controller makes Fragments independent

submenu. The user can see the Twitter timeline, send tweets
with and visualise the list of tweets of his followers and
followees. The bar with the copyright button showing the
application authorÕs name appears permanently on the up of
the screen. bar with the copyright button showing author’s
name of the application appears permanently on the up of the
screen. The interface of ’Tweetle’ is depicted in Figure 20.

One can see that all three screens are logically linked
together by the main menu; one screen is divided into two
logically linked parts by the submenu. Main actions are clicks
on the main menu and clicks on the submenu. Additionally,
by clicking on any of the list, a user can retweet the message.
Finally, the button sending the tweet is presented on the last
screen.

One can notice that we need two Mediate Controllers for
the main menu and a submenu and at least two Coordinating
Controllers for the copyright bar and the list of tweets.

Application can be implemented in two ways. We present

Figure 20. ’Tweetle’ application user interface with followers/followees
messages active tab

both implementations and discuss advantages and disadvan-
tages of each.

1) First implementation: each different screen interface is
manages by a separate Activity. This possibility is similar to
”before fragments appears” implementation solutions. In our
example, the main menu imposes three Activities with three
buttons. One can also suppose to create one Activity by sub-
menu or to keep the single Activity for both submenu actions
as we did in our implementation example as modifications on
the screen are minimal.

The screen can be decomposed into four Fragments:
mostly repetitive elements on the screen. Fragment should only
contain the presentation logic and actions that are logically
linked together. Different actions like ”retweet” and ”onMenu-
Pressed” need different Fragments.

The bar containing the copyright button corresponds to a
copyright Coordinating Controller (Fragment). This controller
is highly reusable even for different applications of the same
developer. The bar and the button can be personalised with
an layout.xml, but the Controller containing copyright action
calling the dialog or a new Activity can be reused exactly in
the same way in another application.

The second Fragment is a main menu Mediating Controller.
This controller will change the screen (Activity) depending on
the button pressed. Controller also manages the presentation
of the main menu: active and non-active buttons.

The third Fragment is a list Fragment: retweet Coordinating
Controller. We can reuse the same Fragment for all lists as the
user action is the same for all lists of the application and there
is no presentation logic.

The fourth Fragment corresponds to the submenu Mediat-
ing Controller and manages the changes in the data of the
list (reinitialise the data or change the Fragment) and the
presentation logic of active and non-active buttons.

Last Fragment corresponds to the form permitting to send
the tweet - tweet Coordinating Controller.

Activity plays the role of an initialiser of child Controllers
or a main Mediating Controller. Mediating Controllers can
also initialise themselves using the data from the bundle to
be more independent. Copyright Fragment is attached only by
the layout.xml and do not need any additional initialisation.
Activity initialise the main menu: call the Fragment method to
set up active button and event listeners. Activity also initialises
the list of tweets of the first screen: Activity as a main
Controller can call the Model to retrieve the data and to
set it to the list Coordinating Controller. List Coordinating
Controller (Fragment) can retrieve the data itself either. For the
Followers/Followees screen the submenu Mediate Controller
(Fragment) with its default state is attached automatically to
the Activity. Submenu Fragment initialises the list of tweets.
Initialisation calls are depicted in Figure 21.

2) Second implementation: create an Activity for a group
of logically linked screen. In our example we only have one
Activity. Fragments remains the same: one submenu Fragment,
one list Fragment and ’send message form’ Fragment.

Menu actions can be implemented either in the Activity
or a Mediator Controller (Fragment). We suggest to keep the

132

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 21. Activity by screen initialisation calls

main menu independent in the Fragment instead of adding it
to the Activity directly to enforce maintainability. Main menu
Fragment manages clicks on buttons, apply visual modifica-
tions on buttons and exchanges other visible Fragments. The
submenu Fragment have an child list fragment to manage: the
information shown by the list depends on the action made on
the submenu. Initialisation call schema is depicted in Figure
22.

3) Both implementations: are very similar but have advan-
tages and disadvantages.

The first implementation is easy to set up and keeps the
structure clear. Activities are nearly empty thereby the only ac-
tive fragments take place in memory, the number of fragments
is also limited and easy to manage. ’Back’ button is manages
automatically. Android integrates a bundle mechanism allow-
ing information to pass between Activities; Fragments could
initialise themselves retrieving the information from the bundle
while the Activity is changed. Otherwise, this implementation
is only suitable for lightweight interfaces as all Fragments
are reinitialised for each screen. The time response increases
significantly if heavy images appear on the interface.

The second implementation has a clear structure but could
be trickier to manage. This solution permits to reinitialise
only necessary fragments, therefore can be used with more
heavy static images, for example with the background image.
Although, developer should assure to keep in memory only
visible fragments. A large number of Fragments managed by
a single Activity can be complicated and heavy if all Fragments
are kept in memory. Fragment should be manually added
to the back stack to manage the ’back’ button. The second
implementation is also useful for Activities aimed at being
shared and at returning messages to other applications: this
type of functionality should be implemented within a single
Activity that another application could call for result.

VIII. ANDROID DOMAIN MODEL

The clear separation of presentation and business logic
cannot ensure the application of good quality alone. The

Figure 22. Activity as Main Menu

core of the application should also be implemented through
patterns and gold architectures. Android application business
logic structure is similar to any Java application core logic,
therefore all patterns that can be applied to Java could also be
applicable to the Android Domain Model, although we observe
difficulties in Android Domain Model organisation.

In this section we go further and give some guidelines of
the business logic of the application – the Model. Android
applications have similar needs: internal database management
and access, web service access and reusable components use.
Clear main architecture of business logic is necessary to obtain
the application of quality.

The Model of Android Passive MVC is a Domain
Model containing business methods, web service call methods,
database access objects, reusable methods and data model
objects.

A Domain Model architecture should include components
that are usual for Android applications, such as Database
manager, Web services manager and Business logic. Those
components should be independent, as the architecture should
be adaptable. Reusable components should be also separated.
The basic model architecture is shown in Figure 23.

The architecture of Domain Model proposed in this doc-
ument is inspired by 3-tier architecture that separates the
presentation, the business and the data access layers [24].

The business layer of our model regroups objects and meth-
ods that use web services, business services and reusable tools.
Business services contain business logic. If an application
works via Internet as well as locally, all necessary verifications
are done in Business services, which calls corresponding
methods. The communication between a presentation and a
domain model layer are made via Business services.

The data layer contains Models, Data Access Objects
(DAO) and Database Manager. DAO and Model are the imple-
mentation of the Data Access Object pattern. Model contains
data being persisted in the database or retrieved by web
services calls. Model is a simple Plain Old Java Object (POJO)
that contains only variables and their getter and setter methods.
To avoid transcription of the Android Native Cursor object
to Model objects, Model can encapsulate the Cursor object
proposing getters and setters for a concrete value type available
in Cursor. Data is manipulated and transferred through the

Figure 23. Domain Model Architecture

133

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

application using those lightweight objects that are often called
Data Transfer Object (DTO).

Persistence methods are organized in DAOs. DAO contains
methods that enable the data in a database to be saved, deleted,
updated and retrieved. Even if Android proposes an abstraction
on the data access level with Content Provider, DAO simplifies
the code of the application. The DAO design pattern creates a
weak coupling between components and uses a Model object
instead of an Android Cursor object in the application. DAO
can also be used for the data stored in XML or text files.
Good practice is to make DAO accessible via interfaces. It
allows DAO modification (for example the change of SQLite
to XML storage) without any change in Business services,
which increases maintainability.

Database manager is in charge of database creation.
Database manager exists only if SQlite database is used by
the application. It stores the name of the database, and of its
tables and methods to be able to create, drop, open and close
the database.

This architecture regroups logically similar methods to-
gether, increasing cohesion. High cohesion facilitates the main-
tainability of the software. The final code of the application
could be organized in packages by architectural component:
Activities, Views, Controllers, Business Services, Tools, Web
Services, Model, DAOs and Database. It gives the clear
structure of an application and limits the package number.
Additional packages could be created for interfaces, parsers
(e.g., XML, JSON) and constants.

IX. ARCHITECTURE EVALUATION

We evaluate the architecture in two steps. First, we ensure
that the architecture fits the lists of code quality criteria pro-
posed by [17][19]. Second, we propose modification scenarios
that can be applied to the ’Tweetle’ and discuss the impact
of each scenario on the implementation. Third, we ask an
experienced Android developer to rewrite one of his latest
applications using Android Passive MVC, compare results and
give feedback regarding the model. Finally, we proposed to two
developers that they use the architecture for 10 months in their
real life projects and obtained their feedback.

A. Code quality

The evaluation of our architecture is based on the following
three code quality evaluation criteria: maintainability, extensi-
bility and reusability.

1) Maintainability: option of modifying the system.
2) Extensibility: option of adding new functionalities to

the system.
3) Reusability: option of reusing the same components

in different functionalities of the system or in differ-
ent systems.

The use of standard platform techniques is important for
the model: the support of third-party functionalities could be
interrupted making implementation of the model impossible.
The Android Passive MVC could be implemented using An-
droid SDK without any additional libraries.

A high-quality application has high maintainability and
extensibility: codes have weak coupling between components,
easy code suppression possibility and high testability. The
Passive MVC architecture ensures high maintainability. Clear
separation between presentation and business logic simplifies
testability of components. Weak coupling between all layers is
carried out via listeners. One component (ex. interface, DAO,
web service) could be replaced or modified without changes
in others. The extension or modification of the user interface
itself is done by simply adding, deleting or modifying the view-
controller couples.

The reusability of components make the code clearer
and boost development time. The view-controller components
of the Android MVC model could be reused through the
application and could be easily embedded in other Android
applications made with Android Passive MVC.

Good performance is especially important in mobile en-
vironments: resource utilization should be limited as mobile
devices have little memory. Short response time is essential
for modern users. The Android MVC architecture makes a
very lightweight Activity component. Controllers, View and
Model objects are also small and kept in memory only if used,
which minimizes resource utilization. The use of listeners also
slightly increases response speed.

B. Scenario-based evaluation

We chose the scenario-based software architecture evalua-
tion method to validate Android Passive MVC; the overview of
such methods can be found in [25]. Scenarios enable evaluation
of the architecture of a specific system and comparison of
several architectures of the same system regarding modifiabil-
ity. We apply scenario-base evaluation to previously described
implementations of Android Passive MVC to show the benefits
of this architecture. Most scenario-based methods involve
shareholders, software designers and an evaluation team for
the real project to define possible modification scenarios and
the ability of the architecture to support those modifications.
Our example is an illustration of the architecture, we define
the most likely modification scenarios for the implementation.
The two architectures of ’Tweetle’ are described in Section 7.

1) Adapt the phone version to the tablet
2) Add new tab to the main menu
3) Move the main menu to the separate independent

screen
4) Modify the appearance of the list
5) Add a bar containing the name of the active tab

We analyse and explain the impact of each scenario on the
both implementations if different.

Table I presents the quality criteria evaluated for each
scenario.

1) Scenario 1: Adapt the phone version to the tablet

’Tweetle’ is an application dedicated to the smartphone
usage, but can be adapted to smart tablet. Tablets in landscape
mode have enough space to keep all three screens visible at
one time, therefore the main menu becomes just an indicative

134

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

name menu to define each list without any action. Tablet in
portrait mode will have a mobile application behaviour.

The adaptation can be easily achieved with Android Passive
MVC. Application should only be adapted for the tablet
landscape mode. The developer should define a new layout.xml
for the new tablet appearance: the new layout mainly consists
of combining the existing layouts into one. Developers do not
need to define a Controller (Fragment) for the main menu as
there is neither action nor presentation logic needed. Other
Controllers remain the same. Developers should add to the
Activity a verification of whether the tablet landscape mode is
active or not and set the corresponding layout. All Controllers
defined in the layout.xml will be attached automatically. One
can see that a very few modifications are needed to make the
adaptable interface. This scenario shows the high maintainabil-
ity and reusability allowed by the Android Passive MVC.

2) Scenario 2: Add new tab to the main menu

It is very probable to add new tab to the existing menu. For
example, ’Tweetle’ need an extension with a map showing the
newest geolocated tweets nearby. For both implementations,
the developer should create a new map Fragment generating
the map and Controlling actions on the map. Then, the devel-
oper can modify the main menu Fragment (controller) to add
an action to the new button. For the first implementation the
developer should also add a new activity-initialising fragment
and an active button. Domain Model would be enriched with
several new components as a new web service recovering
geolocated tweets or a new DAO method recovering geolocated
tweets from existing database have to be used.

One can see that only one Controller should be modified
for this extension and several independent components are
created. The modification of existing components is very light
in Domain Model too.

3) Scenario 3: Move the main menu to the separate screen

The client wants to change the style of the mobile ap-
plication creating a Windows 8-style menu screen with big
square buttons and icons taking up the full screen. For the first
implementation, the developer should create a new layout for
the main menu and attach it to the new activity with the exact
same Controller. The developer needs to check other Activities
corresponding to the menu tabs to delete the initialisation of
the active button, as it is not used any more if the initialisation
was made in Activity.

The second implementation requires greater modifications:
Activity can take a Mediator Controller role and replace the
main menu with another Fragment, as the Fragment cannot
replace itself. The developer could also pass to the first

TABLE I
EVALUATION CRITERIA BY SCENARIO

Scenario # Maintanability Reusability Extensibility
1 x x
2 x x
3 x
4 x
5 x

implementation modifying entirely the main menu Controller
and creating additional Activities reusing all other fragments.

This example shows that for maintenance reasons the
developer should preferably choose different Activities for the
independent screens, as in the first implementation. In spite
of the common menu, all tabs are completely independent
and could be arranged differently in the interface while the
application evolves. Fragment Mediate Controllers are less
reusable but as they are very small they can be reimplemented
easily. This example shows that the architecture resists exten-
sive visual modifications and most Controllers remain reusable.

4) Scenario 4: Modify the appearance of the list

It is possible to improve the visualisation of messages: to
add an avatar, nickname, and make different colours for dif-
ferent lists. This can be done easily for both implementations.
The developer should create an adapter to adapt the Tweet
object from the Domain Model to the new visualisation in
the list. The developer should only modify the adapter in the
list Controller to modify the visualisation of all Controllers.
If different visualisations are needed for different lists, the
developer can create different Controllers or different Adapters
and set up the visualisation in parent controllers.

This example also shows the maintainability of an applica-
tion made with Android Passive MVC and the reusability of
components.

5) Scenario 5: Add a bar containing the name of the active
tab

We assume we should add a new name bar to the initial
’Tweetle’ application. The visual appearance of this bar is the
same for all tabs; the name corresponds to the tab name. For
the first implementation, the easiest way is to add this bar
directly into the layout.xml without any modification in the
code. This is not possible for the second implementation. If
the developer adds the modification of the view of the name
bar to the main menu, two interfaces becomes dependent and
cannot be used separately. Main menu could also notify the
Activity to set up the name bar, but in this case the bar is not
reusable in other Activities. The most reusable way to carry
out the second implementation is to create a Fragment for the
name bar. The main menu could pass the data to initialise the
name bar as it initialises the lists instead of manipulating the
view directly.

This example shows how the first implementation has
maintainability advantages over the second implementation
as the parent Fragments implementing Fragment transactions
could be trickier to manage in case of the interface mod-
ification, but child Fragments can always be reused. This
example also shows that Fragments have advantages even for
the interface having no action but presentation logic.

C. Architecture application

We asked an Android developer with three years’ experi-
ence to test the Android Passive MVC in real life projects.
He chose to redevelop one of his latest applications which
had become complex and hard to maintain, extend and test.
The application is called ’TaskProjectManager’ and it enables
tasks to be assigned to different employees and to view the full

135

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II
TASKPROJECTMANAGER STATISTICS

Original Android MVC % Gain
Packages 25 17 32
Classes 393 275 30

Functions 2186 1683 23
Avg CCN 2,30 1,87 19
Max CCN 110 30 73

calendar of tasks on the screen by day, week and month. The
application also generates reports according to parameters.

We choose to compare the old version and the novel version
developed using the Android Passive MVC without Fragments.
In spite of the fact that developers produce slightly better
code while redeveloping the same application due to greater
experience, our measurements show the impact of Android
Passive MVC on the redevelopment.

Measurements of both versions of the application are made
with JavaNCSS, a source measurement suite for Java, and the
results are shown in Table II. Android Passive MVC reduces
all code parameters.

For each comparison feature denoted i, the gain is cal-
culated as the difference between the original and the An-
droid Passive MVC applications scores (resp. Originali and
AndroidMV Ci) divided by the original application score (i.e.,
Originali).

Gaini =
Originali −AndroidMV Ci

Originali
(1)

where:
Originali - measurement of feature i taken on the originally
implemented application
AndroidMV Ci - measurement of feature i taken on the
Android Passive MVC implementation
i - the comparison feature

The Android Passive MVC helps with organizing classes
in packages. The original version of the application had many
packages created partly using the MVP model, partly the
application logic, and partly the Android components names.
The limited number of packages of the Android Passive MVC
version gives the application a clear structure deciding the
Domain Model from the interface management.

The full code became smaller: both the number of classes
and the number of functions were reduced. We observed the
application had a main menu appearing while the calendar was
visible. Calendar had different modes of functionality man-
aged by different activities with a huge presentation method
managing the appearance of different activities. Menu actions
were found multiplied in those activities. The Android Passive
MVC enables high reusability of components and structuration
of presentation logic.

The code complexity is evaluated using Cyclomatic Com-
plexity Number (CCN). ‘Cyclomatic complexity measures
the number of linearly independent paths through a program
module’ [6]. Normal method complexity without any risks is

1-10 CCN, with 11-20 CCN the complexity is moderate, with
21-50 CCN the complexity is very high and with CCNs greater
than 50 the program is untestable. Table II shows that the
average complexity of the application has decreased slightly.
The maximum CCN dropped significantly: an original version
has methods with CCNs of 40, 50 and even 100 and 110 mostly
for Activities handling a huge number of events, while the new
version has the only JSON parser with a CCN of 30 and several
methods with a CCN of 10 to 15 in the application core.

The developer’s feedback explained that the Android Pas-
sive MVC model is easy to understand and to follow. The
final application was visibly more reactive: the response time
became almost nil, while the users of the original version
complained about a very long response time for each screen.
The Android Passive MVC version is open to extensions and
easily modifiable. The developer said that he had already added
more functionalities to the new application before transmitting
the code for the CCN analysis. Application components are
not only reusable in the application, but could also be reused
in future Android development.

The same developer and his colleague continued to use
the Android Passive MVC in their everyday job of Android
application development for clients. They have tested the
version with Fragments and consider it even easier due to the
many predefined Android actions.

We obtained a new feedback after 10 months of testing.
The developers recognise the improvement of development
process since the architecture was introduced: they were able
to test both types of Fragment implementations but mostly the
first one. The software design state became shorter. They were
able to reuse components from one application in another with
slight controller modification: photo gallery, search views, 3D
and PDF visualizers, horizontal scroll view, etc. They reported
the shorter development time due to the clear structure defined
by the architecture and easier group work. The division of
projects on tasks became simpler and conflicts in code merges
became less frequent.

They also noted that they were able to integrate updates
rapidly while some old projects without the architecture were
redeveloped entirely because of updates demanded by the
client.

The developers also discovered that the architecture helps
students in practical training to do better and gives them
more autonomy. In older project, students without experience
needed continual supervision and without it produced little
maintainable code. Student, having a short practical training
during the experimental Android Passive MVC usage, showed
better results while having the same background as previous
students involved into Android development.

The developers also noted that the architecture simplified
the work with a colleague’s code if he is absent, thanks to the
common logic, naming and structure.

X. ANDROID AND MVP

In the MVP, the View and the Presenter correspond to a full
screen interface. It is not suitable for Android, as visual block
embedded into one View could be reused on several screens.
Although architecture similar to MVP can be implemented

136

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

on Android around the Activity making triads for each visual
piece (such as Android Passive MVC).

The Presenter manages the presentation logic of the View
and communicates with the model. The difference between the
implementation of both architectures is the event handling.

Events in MVP are handled by Views and the action is
transmitted to the Presenter. Unlike the Android Passive MVC,
in MVP View listens to the events and only calls corresponding
methods in Presenter instead of letting the Controller listen
to events directly. This implies the creation of additional
classes for each View (visual component) implementing event
listeners.

The code of Controller/Presenter remains the same. The
only difference is that instead of one method handling an event
(e.g., click event) Presenter uses many methods corresponding
to the action to be carried out on one particular event (e.g.,
click on search button). This slightly reduces the Controller
complexity and allows easier testing. The initial event handling
method is placed in the View and remains very simple and does
not need any tests.

We did not take the MVP implementation as a base
architecture: the implementation of two models is very similar.
The existence of Controller having a very complex event
handlers can justify the use of MVP instead of Android Passive
MVC but we assume it is a rare case. We assume the MVP
implementation is the extension of Android Passive MVC for
the exceptional particular use.

XI. ANDROID AND AM-MVC

The AM-MVC adds the Application Model (AM) compo-
nent to triads moving the presentation logic to this component.
We assume this component can be used in Android Passive
MVC in some cases where the action of visual component
remains the same but the visual presentation changes. This
kind of situation is visible on ’Tweetle’ implementation with
reusable lists. Instead of unambiguity as to whether the pop-
ulation of the list should be done in the Controller or in the
parent Controller, different AM components could be created
for each list then, depending on the screen, Controller can
initialise the necessary AM object.

We did not find this situation very common and the
improvement sufficient to include this case directly into the
Android Passive MVC. Similar to the MVP, we consider the
AM component as a possible extension for the exceptional use.

XII. RELATED WORKS

The question of mobile architecture and mobile develop-
ment process was investigated since the first mobile devices,
such as mobile phones and Personal Digital Assistants (PDA),
appeared.

Several works were conducted on high-level (methodology)
aspects studying the appropriateness of Agile methodology and
proposing new methodologies for mobile application develop-
ment: A Hybrid Method Engineering Approach [26], MobileD
[27], etc. Among other aspects, the reusability of components
was noted as a very important one.

Many projects are concentrated on web service-based mo-
bile applications. [28] proposes the Balances MVC architecture
to partition optimally the core of the application between
client and server for different types of application. [29] studies
the gap in mobile service-oriented application and propose a
mediator layer between the mobile device and the server to fill
the gap. Those authors do not include any concrete client-side
architecture.

Other works were conducted on the low-level (architecture)
issues. [6] conducted an experiment on the possibility of ap-
plying the Agile development on mobile systems using design
patterns and proved that rapid development only benefits from
defined architectures and patterns. [30] analysed the possible
cases in application of MVC and PAC architectures in mobile
J2ME and Symbian development and concluded that PAC is
slightly more suitable due to the modularity of the interface.
Authors such as [31] propose some guidelines for designing
and developing mobile applications based on a single concrete
implementation example.

Concerning Android systems, authors mostly concentrated
on security and privacy problems rather than on application
architecture. We only found the work of [23] proposing to
perform a communication between all Android components
via interfaces. We aimed to fill in the gap of the client-side
architecture for modern Android system.

XIII. CONCLUSION AND FUTURE WORK

The architecture plays an important role in the development
of good quality applications. We identified the gap in the
Android development, which was missing unified defined
architecture.

We have analysed some well-known architectural design
patterns and proposed an Android architecture solution based
on an MVC and PAC/HMVC design pattern. We have also
proposed the Domain Model organization for the Android
application that helps to structure the core functionalities. We
have provided implementation examples for several common
cases in Android development and a concrete implementation
of a Twitter client mobile application - ’Tweetle’.

The architecture defined can simplify the work of novice
and experienced developers alike and enable the creation of
less complex and well-structured applications.

The architecture was evaluated in several ways: scenario-
based evaluation showed the high maintainability of the ex-
ample implemented with Android Passive MVC. One existing
Android application was reimplemented using Android Passive
MVC, resulting in better maintainability, extensibility and
performance. The complexity of the new implementation was
considerably lower. We also involved two developers in long-
term testing of the architecture on real projects and collected
positive feedback on Android Passive MVC. We provided
architecture explanation online to reach a larger population
and to collect more feedback.

We aim to create a plug-in for Android development
environments such as Eclipse or Android Studio to generate
common structure, components and classes for an application.
For example, the model and database classes can be generated
using the database structure.

137

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

It is important to note, that Android Passive MVC could
also be applied to other systems similar to HMVC and PAC
architectures. It requires the main component (main Controller)
implemented as Activity in Android but can be represented
otherwise in another system.

REFERENCES

[1] K. Sokolova, M. Lemercier, and L. Garcia, “Android Passive MVC: a
Novel Architecture Model for the Android Application Development,”
in Patterns 2013, IARIA, Ed., 2013, pp. 7–12.

[2] S. Allen, V. Graupera, and L. Lundrigan, Pro Smartphone Cross-
Platform Development: IPhone, Blackberry, Windows Mobile and An-
droid Development and Distribution, 1st ed. Berkely: Apress, Sep.
2010.

[3] D. Mark and J. LaMarche, More IPhone 3 Development, ser. Tackling
Iphone Sdk 3. Berkely: Apress, Jan. 2010.

[4] J. Steele, N. To, S. Conder, and L. Darcey, The Android Developer’s
Collection. Addison-Wesley Professional, Dec. 2011.

[5] B. Foote and J. Yoder, “Big Ball of Mud,” in Pattern Languages of
Program Design. Addison-Wesley, 1997, pp. 653–692.

[6] T. Ihme and P. Abrahamsson, “The Use of Architectural Patterns in the
Agile Software Development of Mobile Applications,” in ICAM 2005
Internation Conference on Agility, Aug. 2005, pp. 155–162.

[7] G. Krasner and S. Pope, “A description of the model-view-controller
user interface paradigm in the smalltalk-80 system,” Journal of object
oriented programming, vol. 1, 1988, pp. 26–49.

[8] P. Sauter, G. Vögler, G. Specht, and T. Flor, “A Model–View–Controller
extension for pervasive multi-client user interfaces,” Personal and Ubiq-
uitous Computing, vol. 9, no. 2, Mar. 2005, pp. 100–107.

[9] M. Veit and S. Herrmann, “Model-view-controller and object teams:
a perfect match of paradigms,” in AOSD ’03: Proceedings of the
2nd international conference on Aspect-oriented software development.
ACM Request Permissions, Mar. 2003, pp. 140–149.

[10] S. Burbeck. Applications Programming in Smalltalk-80TM: How
to use Model-View-Controller MVC. [Online]. Available: http://st-
www.cs.illinois.edu/users/smarch/st-docs/mvc.html (1997)

[11] J. Coutaz, “PAC,” ACM SIGCHI Bulletin, vol. 19, no. 2, Oct. 1987,
pp. 37–41.

[12] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture, Volume 1: A System of Pat-
terns. Chichester, UK: Wiley, 1996.

[13] M. Potel, “MVP: Model-View-Presenter the taligent programming
model for C++ and Java,” Taligent Inc, 1996.

[14] J. Cai, R. Kapila, and G. Pal. HMVC: The layered
pattern for developing strong client tiers. [Online]. Avail-
able: http://www.javaworld.com/article/2076128/design-patterns/hmvc–
the-layered-pattern-for-developing-strong-client-tiers.html (2000)

[15] J. Smith, “Wpf apps with the model-view-viewmodel design pattern,”
MSDN magazine, Feb. 2009.

[16] R. Garofalo, Building Enterprise Applications with Windows Presenta-
tion Foundation and the Model View ViewModel Pattern. Microsoft
Press, Mar. 2011.

[17] S. McConnell, Tout sur le code : Pour concevoir du logiciel de qualité
(Everything about code: make software of quality), 2nd ed. Dunod,
Feb. 2005.

[18] R. Meier, Professional Android 4 Application Development (Wrox
Professional Guides), 3rd ed. Birmingham: Wrox Press Ltd., May
2012.

[19] I. Salmre, Writing Mobile Code: Essential Software Engineering for
Building Mobile Applications. Addison-Wesley Professional, Feb.
2005.

[20] S. Brahler, “Analysis of the android architecture,” Karlsruher Institute
of Technology, Tech. Rep., 2010.

[21] F. Garin, Android - Concevoir et développer des applications mobiles
et tactiles (Android - Comprehend and develop mobile and tactile
applications), 2nd ed. Dunod, Mar. 2011.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, 1st ed. Addison-
Wesley Professional, Nov. 1994.

[23] W.-Y. Kim and S.-G. Park, “The 4-tier design pattern for the develop-
ment of an android application,” Lecture Notes in Computer Science,
vol. 7105, Dec. 2011, pp. 196–203.

[24] P. D. Sheriff, Fundamentals of N-Tier Architecture, pdsa inc. ed. PDSA
Inc., May 2006.

[25] M. T. Ionita, D. K. Hammer, and H. Obbink, “Scenario-based software
architecture evaluation methods: An overview,” in Workshop on Meth-
ods and Techniques for Software Architecture Review and Assessment
at the International Conference on Software Engineering, 2002.

[26] V. Rahimian and R. Ramsin, “Designing an agile methodology for
mobile software development: A hybrid method engineering approach,”
in Research Challenges in Information Science, 2008. RCIS 2008.,
2008, pp. 337–342.

[27] P. Abrahamsson et al., “Mobile-D: an agile approach for mobile
application development,” in OOPSLA ’04: Companion to the 19th
annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, Oct. 2004, pp. 174–175.

[28] H. J. La and S. D. Kim, “Balanced MVC Architecture for Devel-
oping Service-Based Mobile Applications,” in e-Business Engineering
(ICEBE), 2010 IEEE 7th International Conference on, 2010, pp. 292–
299.

[29] A. Papageorgiou, B. Leferink, J. Eckert, N. Repp, and R. Steinmetz,
“Bridging the gaps towards structured mobile SOA,” in MoMM ’09:
Proceedings of the 7th International Conference on Advances in Mobile
Computing and Multimedia, Dec. 2009, pp. 288–294.

[30] D. Plakalovic and D. Simic, “Applying MVC and PAC patterns in
mobile applications,” Journal of Computing, vol. 2, no. 1, Jan. 2010,
pp. 65–72.

[31] D. Zissis, D. Lekkas, and P. Koutsabasis, “Design and Development
Guidelines for Real-Time, Geospatial Mobile Applications: Lessons
from ‘MarineTraffic’,” in Mobile Web and Information Systems.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 107–120.

138

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

