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Abstract—Smartphones and related mobile end-user devices rep-
resent key components of mobile computing based solutions and
enable end users to conveniently access services and information
virtually everywhere and any time. Due to their continuously
growing importance and popularity, mobile devices have recently
become a common target for malware. Unfortunately, capabilities
of malware-detection applications on smartphones are limited,
as integrated security features of smartphone platforms such as
sandboxing or fine-grained permission models restrict capabilities
of third-party applications. These restrictions prevent malware-
detection applications from accessing required information for
the identification of malware. This renders the implementation
of reliable malware-detection solutions on smartphones difficult.
To overcome this problem, we propose an alternative malware-
detection method for smartphones that relies on the smartphone’s
measured power consumption. We show that information con-
tained in the measured power consumption of smartphones can in
principle be used to identify certain kinds of malware by means of
simple threshold-based approaches. We also propose two different
machine-learning techniques that allow for a classification of
applications according to their power consumption in situations,
where disturbing influences prevent an application of simple
threshold-based approaches. The capabilities of all proposed
techniques have been assessed by means of an evaluation with
real-world applications running on physical smartphones. The
results of this evaluation process demonstrate the applicability of
power consumption based classification and malware-detection
approaches in general and of the two proposed machine-learning
techniques in particular.

Keywords–Android; power consumption; application classifica-
tion; malware detection; machine learning.

I. INTRODUCTION

With the growing popularity of mobile end-user devices
such as smartphones or tablet computers, also malware for
these devices has become an issue. The special architecture
and characteristics of modern mobile end-user devices raise
the demand for appropriate methods to detect such malware.
Innovative approaches to detect malware on mobile end-user
devices based on power-consumption measurements have been
proposed by the authors in [1]. In this article, we further
elaborate on the proposed techniques and on its underlying
concepts.

During the past years, powerful mobile end-user devices

have become part of our daily life and have significantly
changed the way we access information, communicate, and in-
teract with each other. During the past few years, smartphones
and tablet computers have gradually replaced traditional end-
user devices such as desktop PCs and laptops as preferred
consumer devices. Considering current sales and usage statis-
tics [2], it can be expected that mobile computing in general
and smartphone-based solutions in particular will continue to
play a major role in future.

The recent success of popular smartphone platforms such
as Apple iOS [3] or Google Android [4] has unfortunately
turned these platforms into attractive targets for attackers.
This is especially problematic, as mobile end-user device
typically store and process an increasing amount of security
and privacy-sensitive data. In this context, malware tailored
to the special characteristics of smartphone platforms has
turned out to be a potential threat during the past few years.
Recent reports [5] show that smartphone malware must be
expected to evolve to a major issue in mobile computing in
the future. By exploiting specific functionality provided by
the infected smartphone platform, smartphone malware can
cause financial losses, e.g., by calling premium-rate numbers
or by compromising smartphone-based authentication schemes
of e-banking solutions. During the past years, especially the
Android platform has been frequently targeted by smartphone
malware. A recent example is a malware called Eurograbber. In
2012, Eurograbber has been used to steal 47 million USD from
European bank accounts by intercepting SMS-based authenti-
cation processes of e-banking portals [6]. Android seems to
be especially prone to malware due to the platform’s support
of alternative application sources that usually lack extensive
malware checks, and due to the broad functionality offered by
Android’s public APIs. This is advantageous for application
developers and users, as it allows for mobile applications with
increased functionality. At the same time, it also gives attackers
the opportunity to implement more powerful malware. For
instance, the Android APIs grant application developers as
well as attackers full access to incoming and outgoing SMS
messages, or facilitate the execution of arbitrary background
tasks. While this enables the development of mobile apps
that can make use of SMS functionality, it also facilitates the
development of malware that intercepts or spies on incoming
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messages.

The factual vulnerability of the Android platform against
malware raises the need for reliable methods to distinguish
benign apps from malicious ones and to detect unwanted
behavior on smartphones. On classical end-user devices such
as desktop computers or laptops, this functionality is typically
implemented by anti-virus software, which is able to detect
malicious software at runtime. Unfortunately, the deployment
of anti-virus software on smartphone platforms in general,
and on Android in particular is difficult. This is mainly
due to the fact that Android (as well as other smartphone
platforms) implements several security features on operating-
system level, which limit access rights and capabilities of third-
party applications. For instance, all smartphone applications
are executed in a so-called sandbox and are, thus, unable
to access resources of other applications being installed and
executed on the same device. This way, application-specific
data remains protected from unauthorized access by other
applications. While implemented security features definitely
improve the system’s basic security, they also render the im-
plementation of supplementary security software difficult. For
instance, the implemented sandbox feature prevents anti-virus
software on Android smartphones from collecting information
that is required to reliably detect smartphone malware at
runtime.

Integrated security features that limit the capabilities of
classical malware-detection methods can theoretically be by-
passed by rooting the smartphone’s operating system. Rooting
has become common practice in the power-user community,
as it gives users more control over the device and allows
for additional functionality. However, rooting is not really
an option to increase the capabilities of anti-virus software,
as it significantly decreases the smartphone’s overall security
and enables additional attack vectors. Furthermore, non-rooted
device still represent the majority of all mobile end-user
devices. For these reasons, we focus on the class of non-rooted
devices only.

The reliable detection of malware on non-rooted smart-
phones is still an unsolved problem that definitely needs to be
addressed to assure the security of future mobile computing. To
overcome this problem, we propose a new technique to detect
malware on mobile end-user devices. The proposed technique
compensates the lack of required information about running
applications by making use of side-channel information being
available on non-rooted Android smartphones. This way, this
work answers two basic research questions. First, this work
evaluates if and to what extend power-consumption informa-
tion available on smartphones can be used to classify running
mobile applications and to identify malware. Second, this work
investigates capabilities of different machine-learning tech-
niques to analyze available power-consumption information.

The results presented in this article extent first results that
have been presented in 2013 [1]. The obtained results show
that alternative approaches to identify malware on mobile end-
user devices can be successful. Furthermore, obtained results
indicate that the application of machine-learning techniques
can improve the classification of applications according to
their power consumption. Even though the described work
is basically a first proof of concept, the obtained results are
promising and open new possibilities for malware detection

on mobile end-user devices. This way, this work contributes
to the security of future mobile-computing applications.

The remainder of this paper is structured as follows. In
Section II, existing malware-detection approaches for smart-
phones are briefly surveyed and limitations of these approaches
are identified. Subsequently, Section III introduces the tool
PowerTutor [7] and explains our approach to measure the
power consumption of applications on smartphones. In Sec-
tion IV, we show that measured power-consumption traces
can indeed be used to enhance the security of critical ap-
plications on smartphones by means of a simple detection
mechanism for SMS-based malware. In Section V, we focus
on more sophisticated methods to analyze collected power-
consumption information and propose two methods to an-
alyze collected power-consumption measurements based on
approved machine-learning techniques. We evaluate the capa-
bilities of the proposed methods to classify applications and to
distinguish benign applications from malicious ones in Section
VI. Finally, conclusions are drawn in Section VII.

II. RELATED WORK

During the past years, several approaches to detect and
analyze malware on mobile platforms have been introduced.
Basically, existing approaches can be classified into static
and dynamic analysis methods. Static analysis refers to the
inspection of an application’s source code or binary package
without running it, whereas dynamic analysis involves running
the application to capture additional information.

Dynamic analysis includes techniques such as Information
Flow Analysis, where private data is labeled and prevented
from leaving the device. TaintDroid [8] is an Android kernel
extension that follows this approach and allows for dynamic
taint tracking. Dynamic approaches, which apply machine-
learning techniques to distinguish benign applications from
malicious ones, include [9] by Shabtai et al. and [10] by
Burguera et al. Both references include extensive listings of re-
lated Android-based malware-detection systems. Most of these
approaches run candidate applications in a sandbox to derive
measurements, such as system-call intervals and networking
usage. Our technique presented in this paper follows a similar
approach. Similar to related work, we make use of side-channel
information to classify smartphone applications. However, in
contrast to other related work, we rely on power-consumption
measurements for this purpose.

A comprehensive overview of dynamic malware-analysis
techniques is also provided by Egele et al. in [11]. Many of
these methods are highly advanced in detecting and analyzing
malware. However, these methods usually require complex
external analysis frameworks and can hardly be deployed on
non-rooted end-user devices, due to their requirement to deeply
integrate into the smartphone’s operating system. Thus, these
methods are usually less useful for detecting malware on
typical end-user devices at runtime.

The technique presented in this paper addresses this
problem and facilitates dynamic malware detection directly
on non-rooted Android phones by analyzing the devices’
power consumption. A related approach to analyze the power-
consumption in order to detect malware has been followed
by Jacoby and Davis [12], who have proposed an intrusion
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detection system that correlates various attack scenarios to
typical power consumptions. Additional work has been pub-
lished by Buennemeyer et al. [13] [14], who propose systems,
which use power profiles of phones to detect malware targeting
battery drainage. Our technique follows a similar approach but
extracts more detailed information from the collected power-
consumption measurements in order to classify applications
and to detect malware.

Employing the power consumption to reveal additional
information on an IT system is actually not a new idea.
For instance, approaches to extract secret information stored
on smart cards by means of measuring and analyzing their
power consumption have already been proposed in 1999 by
Kocher et al. [23]. Based on this work, various techniques to
reveal secret data and information from IT systems have been
proposed during the past few decades. Most of these techniques
however require an elaborate measurement equipment and the
application of complex analysis methods. This renders a real-
time application of these approaches on current mobile end-
user devices difficult. The techniques proposed in this paper
follow a slightly different approach and rely on methods that
basically allow for real-time application.

For the proposed techniques, the collection of accurate
power-consumption measurements on smartphones is a key
aspect and mandatory enabler of our technique. We discuss
details of this aspect in the next section.

III. MEASURING THE POWER CONSUMPTION OF
SMARTPHONES

Measurements of a smartphone’s power consumption build
the basis of the proposed classification and malware detec-
tion techniques. To collect the required power-consumption
measurements, we rely on the tool PowerTutor by Zhang et
al. [7]. Another tool that would allow for the acquirement
of this kind of information is Trepn [15]. In contrast to
PowerTutor, Trepn uses hardware sensors and thus promises
more exact measurements. However, Trepn is limited to the
Snapdragon mobile development platform [16] and can hence
not be applied on typical Android based end-user devices.
Heading for a solution that is applicable on real end-user
devices, PowerTutor has therefore been our tool of choice.

The tool PowerTutor is basically a smartphone application
that measures the power consumption of all applications run-
ning on the same smartphone. For each application, the power
consumption of six smartphone components is measured. In
particular, the power consumption of the components CPU,
Audio, Display, Wi-Fi, 3G and GPS is measured separately.
Figure 1 shows the mean per-component power consumption
of six different applications. All information shown in Figure
1 has been directly derived from measurements created by
the tool PowerTutor. The graphically prepared measurements
shown in Figure 1 clearly indicate that there are significant
differences between power-consumption measurements of dif-
ferent applications. Furthermore, Figure 1 shows that there are
also differences in the power consumption of different com-
ponents. Unsurprising, the smartphone display and the mobile
network (3G) are responsible for most of the measured power

consumption - at least for the six measured applications1.

Figure 1: Comparison of mean power usage per component
using six different applications

Figure 1 shows that power measurements provided by
the tool PowerTutor indeed contain valuable information that
might allow for a classification of running applications and
for an on-the-fly identification of malicious apps at runtime.
To improve efficiency and to appropriately cope with limited
processing power on mobile end-user devices, we have decided
to focus on measurements of one component only in a first
step. Analysis of power-consumption measurements of several
applications have shown that the smartphone CPU is actually
the best suited component for profiling running applications
by means of its power consumption. This is also illustrated by
Figure 2. This figure shows the stacked power consumptions
of the six measured components while running the app HTC
Music Player. This figure shows that the CPU is basically
the only component that shows a significant change in power
consumption over time. Similar results have also been obtained
for other applications, which justifies our decision to focus on
the power consumption of the CPU only. At this point, it has to
be noted that ignoring all other components of course reduces
the amount of available information. However, considering all
available power-consumption information from all components
significantly increases complexity and is hence considered as
future work.

Figure 3 shows the measured power consumption of the
CPU component caused by the smartphone game Angry Birds,
the Android Browser, the Idle process, and the security appli-
cation Lookout Mobile Security. These measurements show

1GPS is also know to consume significant amounts of power. However,
none of the six measured applications used GPS functionality during the
measurements.
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Figure 2: Power usage of HTC Music Player stacked per
component.

that there are obvious differences in the measured power con-
sumption of different applications running on the same device.
Obviously, the application Angry Birds and the Web browser
consume significantly more power than the Idle process or the
application Lookout Mobile Security. The first question that
arises from these observations is whether and to what extend
these differences in the power consumption can be used to
identify applications and suspicious behavior. We show in the
next section that this question can be positively answered and
that differences in measured power consumptions can in some
cases be directly used to identify applications with suspicious
behavior on smartphones at runtime.

IV. DETECTION OF SMS-CONTROLLED SPYWARE

SMS-controlled spyware has evolved to a serious threat
on the Android smartphone platform. This kind of malware
spies on private user data (e.g., position information, data
received and sent via SMS, etc.) and is able to receive hidden
control commands via SMS. These messages contain control
commands and are sent to the victim’s smartphone unnoticed
by the legitimate user. Apart from spyware, capturing and
processing SMS messages is also handled by malware (e.g.,
Eurograbber), which attacks two-factor authentication systems
that are usually employed by online-banking systems. Spy-
ware and malware related to SMS functionality are typically
implemented for the Android platform, due to the availability
of public APIs for accessing low-level SMS functionality.
This is in contrast to iOS and Windows Phone, where this
functionality is only handled by the operating system and
cannot be used via public APIs.

In general, spyware and malware, which access SMS-
related APIs can be assigned to two different categories
according to the implemented functionality.

• SMS Sniffers: SMS sniffers, which are mostly rele-
vant for spyware, only capture the information in the
received SMS messages, and process and optionally
forward this information.

• SMS Catchers: SMS catchers also suppress the SMS
forwarding mechanism of the operating system, which
would deliver the message to the default SMS client.
Therefore, the user will not receive a notification
on the newly arrived messages. This functionality is
often required by malware that attacks online banking
systems, because the received TAN must not be shown
to the user, who would otherwise be alarmed by
receiving a TAN without executing an actual transac-
tion. The problem of SMS catchers has recently been
addressed by Android 4.4., which requires definition
of a default SMS application that always receives
incoming messages without the possibility to suppress
the notification of the user. However, the market share
of Android 4.4. is still very limited and the principle
problem of reading SMS messages remains.

To assess the general potential of power consumption
based malware-detection approaches, we show how to identify
suspicious SMS processing activities by analyzing the power
consumption of an Android smartphone. For this purpose, we
have developed the following two smartphone applications for
the Android platform:

• Malware Simulator: This application simulates SMS-
controlled spyware and is able to intercept incoming
SMS messages as well as to silently forward copies
of received SMS messages to arbitrary recipients.
Furthermore, this application is able to determine the
smartphone’s current location either by reading out
the last known position from the Android system, or
by determining the current position using available
position sensors. The determined position information
can be forwarded to an attacker by SMS. This way, the
developed malware simulator implements all typical
features of SMS-controlled spyware, which receives
commands via SMS, spies on the user’s current lo-
cation, forwards determined location information, and
silently forwards copies of SMS messages to a remote
attacker.

• Malware Detector: This application detects anoma-
lies of local SMS processing activities by measuring
and analyzing power-consumption information pro-
vided by PowerTutor. Thus, the basic goal of this
application is to successfully identify the implemented
malware simulator as spyware.

To evaluate the general capabilities of power consumption
based malware detection approaches, we carried out the fol-
lowing steps: First, the malware detector has measured the
power consumption for three seconds each time an SMS mes-
sage has been received by and processed on the device. Second,
from the obtained measurements, an appropriate model has
been extracted. According to this model, all measured power
traces have been classified into four categories depending
on the SMS processing operation that has been taking place
during the measurements. Finally, the extracted model has been
integrated into the developed malware detector. With the help
of this model, the malware detector has then been used to
identify suspicious activities during SMS processing operations
in real time.

Following this approach, both the malware simulator and
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Figure 3: One minute plots of CPU energy consumption

the malware detector have been deployed on a Samsung
Galaxy S2 smartphone running the Android 2.3 operating
system. The device’s power consumption has been measured
during execution of the following SMS processing steps carried
out by the malware simulator:

• Step A – Normal SMS receive: An incoming SMS
message is received and forwarded to Android’s de-
fault SMS application without any further action.

• Step B – Pos. Command 1: An incoming command
SMS message is intercepted and an SMS message is
returned that includes the last known location.

• Step C – Pos. Command 2: An incoming command
SMS message is intercepted and an SMS message
is returned that includes the currently determined

location.

• Step D – Forward SMS: An incoming SMS is
forwarded to Android’s default SMS application and
additionally forwarded to a given number.

The power consumption of each processing step has been
measured for ten times. Figure 4 shows the average power
consumption of the four different SMS processing steps.
Obviously, there are significant differences in the power con-
sumption depending on the executed processing step. If the
SMS is forwarded to Android’s default SMS application for
further processing (Step A and Step D), more energy is
consumed compared to processing steps, in which an incoming
SMS message is intercepted and another SMS message is
sent unnoticed by the user (Step B and Step C). Due to the
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significant differences in the measured power consumptions,
an appropriate model for the detection of suspicious activities
can be extracted by simply considering the average value of
the power measurements. In the present case, an average power
consumption of 150 has been chosen to define the lower bound
of an SMS that is processed by Android’s SMS application.
If the average value is beneath this bound, it is likely that an
incoming SMS message has been intercepted and hidden from
the user.

The reliability of this rather simple model has been eval-
uated by sending 10 normal SMS messages that have simply
been forwarded to Android’s SMS application. Additionally,
we have sent ten SMS messages, that have been intercepted by
our malware simulator and discarded afterwards. By measuring
the power consumption during execution of the SMS process-
ing steps and by applying our simple model to the obtained
measurements, the implemented malware detector was able
to successfully distinguish between discarded messages and
messages forwarded to Android’s SMS application. This way,
we have shown that it is basically possible to detect in real time
whether an SMS message is received normally or whether it
is intercepted by a third party application. This validates the
postulated assumption that information contained in power-
consumption measurements can indeed be used to identify
malicious applications on smartphones and hence positively
answers the first research question of this work.

V. ENHANCED CLASSIFICATION TECHNIQUES

The successful realization of a malware detector that is
able to identify suspicious SMS processing activities at run-
time confirms the capabilities of application-classification and
malware-detection techniques based on power-consumption in-
formation. However, even though there are obvious differences
in the power consumption of these two applications (Figure 3),
an immediate identification and classification of applications
based on such measurements is often not possible. This is due
to the fact that the measured power consumption is not only
influenced by the application itself, but also by other effects,
such as varying user inputs, the processed data, different
screen orientations, the deployment of hardware acceleration
techniques, or 3G or WiFi signal reception. This is illustrated
in Figure 5, which shows two different measurements of one
and the same application. Although stemming from the same
application, the two measured power-consumption traces are
quite different.

Disturbing influences render the determination of a simple
and unique power-consumption signature for a given appli-
cation or smartphone state impossible. Unambiguous results,
such as the ones obtained for the implemented malware
detector for identification of SMS-controlled spyware, are
usually hard to achieve in practice. To overcome this problem,
we propose two analysis techniques that rely on approved
machine-learning approaches. The proposed techniques can
be used to classify smartphone applications according to their
power consumption, even if there are only minor differences
in collected power measurements due to disturbing influences.

During the past years, different machine-learning tech-
niques for the classification of data have been proposed.
For the given scenario, i.e., the classification of smartphone

applications based on their power consumption, two techniques
have been chosen and adapted to the given requirements. Both
techniques consist of a learning phase and a classification
phase. During the learning phase, well-known input data is
used to train a model. In the subsequent classification phase,
the trained model is used to classify unknown input data. The
two techniques are discussed in more detail in the following
subsections.

A. Power-Consumption Histograms

This technique is rather simple and counts how often a
specific application is on a certain power-consumption level.
In order to model this, we have computed power histograms
by dividing the interval between 0% power consumption and
100% power consumption into 15 disjoint and equal-sized
intervals. A histogram is then created by simply assigning
each data point to exactly one interval and counting the data
points in each interval. In order to cope with differences
in the absolute power consumption, the values have been
normalized appropriately. During the learning phase, the av-
erage histograms have been created by measuring the power
consumption of well-know applications. Figure 6 shows some
examples of average histograms for different applications that
have been obtained during the training phase.

In the classification phase, the histograms of applications to
be classified are compared with the trained average histograms
by applying distance-measures such as cosine similarity. To
assess the capabilities of this approach, this technique has been
evaluated in a real-world scenario. Results of this evaluation
process are presented and discussed in Section VI.

B. MFC Coefficients and Gaussian Mixture Models

This technique makes use of Mel Frequency Cepstral
Coefficients (MFCC) to classify smartphone applications based
on their power consumption. This technique has originally
been introduced for speaker-recognition systems [17][18] and
is also frequently used for music similarity finders [19][20].
In such systems, MFC coefficients and their distribution are
extracted from recorded voice or music using complex trans-
formations as implemented by the melcepst function [21].
The distributions of the extracted MFCC are then used to
create a Gaussian Mixture Model (GMM) for each MFCC. The
resulting GMM define a unique representation of the recorded
voice or music. Later recordings of voice or music can be
compared to existing representations in order to implement
voice-recognition and music-similarity finders.

Our intention behind using a speaker recognition approach
was to map the problem of matching voice recordings to a
person to the problem of matching power measurements to
an application. Spoken voice recordings vary in pitch and
frequency and are very unlikely to be equal between two
recordings. This, naively speaking, resembles the problem we
face with power-consumption measurements.

Our implementations bases on an existing speaker-
recognition implementation by Anil Alexander [22]. This
implementation relies on GMM and MFCC and can be cus-
tomized with a number of parameters including the number
of Gaussians and the number of MFCC to use. Experiments
have shown that for our purposes best results can be achieved
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Figure 5: One minute plots of CPU energy consumption

with three Gaussians and twelve MFCC. Hence, during the
learning phase the distributions of twelve MFCC are computed
from power-consumption measurements for each class of ap-
plication. The computed distributions of the twelve MFCC are
then approximated using a GMM with three Gaussians. The
resulting GMM finally represents the result of the learning
phase. Figure 7 illustrates the distribution of twelve different
MFCC and the resulting GMM.

During the classification phase, MFCC are derived from
power-consumption measurements of the application to be
classified. For each derived MFCC, the best matching GMM
is selected out of all GMM that have been obtained during the
learning phase. By combining the classification results of all
twelve MFCC, the best matching application class is finally
determined.

VI. EVALUATION

We have evaluated the reliability and efficiency of the
proposed feature extraction techniques by testing prototype
implementations of the two techniques in a real-world scenario.
Required power-consumption measurements have been ac-
quired using the tool PowerTutor. For convenience reasons, the
classification itself has been performed off the mobile device,
as the learning phase (especially for the speaker recognition
based approach) is rather slow. This subsection describes the
model that has been used to classify applications, discusses
details of the dataset creation, and presents results that have
been obtained by applying the two classification techniques
introduced in Section V.
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Figure 6: Average histograms of different applications

A. Classification Model

Applications with the same or almost the same purpose are
expected to cause similar power consumptions. Therefore, we
have roughly grouped applications into distinct sets according
to their purpose. The resulting list of groups is no comprehen-
sive classification scheme of all available applications. It is
merely a logical grouping of the power-consumption measure-
ments we gathered in this experiment and does raise no claim
to completeness. Based on the gathered measurements, the
following six groups of applications have been defined: Games,
Internet, Idle, Malware, Music, and Multimedia. Note that
malware and security software have been assigned to the same
group. Both malware and security software usually remain idle
in the background until being activated by a certain event (e.g.,
reception of a command message via SMS). This comparable
behavior leads to a comparable power consumption too and
justifies a common classification of these both types of applica-
tion. Of course, also other malware with different behavior and
hence a different power-consumption profile exists. However,
for a first proof of concept only malware with the above-
described behavior has been considered. Consideration of other
types of malware is regarded as future work.

B. Dataset Creation

PowerTutor provides specific measurements for each run-
ning application. However, in practice these application spe-
cific measurements have turned out to be not as reliable
and accurate as desired. Therefore, we have refrained from
using application specific measurements and have relied on

system-wide power-consumption measurements provided by
PowerTutor instead.

We have further limited subsequent analysis steps to
the measured power consumption of the smartphone’s CPU.
Although PowerTutor also provides measurements for other
smartphone components such as the display or the GPS re-
ceiver, measurements of these components have been omitted
in order to reduce computation costs when learning and due
to the fact that these components often lack activity.

To evaluate the proposed classification techniques, we
finally created 96 system-wide power-consumption measure-
ments (CPU) using a customized instance of PowerTutor. To
facilitate a subsequent analysis, we have adapted PowerTutor
such that beside the measurement values themselves also the
device model, the capture date, and the sample rate have been
stored. The 96 captured measurements (sixteen measurements
per application group) have been limited to the length of about
one minute, with a total of 247 data points per measurement.
We have cut off the trace length after about one minute, as this
is a realistic time-frame for real-world scenarios. Analysis of
longer measurements is considered as future work. Similarly,
increasing the number of analyzed applications is also con-
sidered as future work. For a first proof of concept, the used
number of applications and the chosen time interval is however
sufficient. In total, six devices have been used to collect
the measurements (three Samsung Galaxy S2 smartphones
and three HTC Desire devices). To reduce noise, only the
application to be measured and PowerTutor have been active
during the measurements.
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Figure 7: Gaussian Mixture Models of twelve MFCC derived from power-consumption measurements

C. Results

The 96 captured measurements have been used to evaluate
the efficiency and reliability of the proposed classification
techniques. As quality indicators, the positive predictive value
(PPV, also referred to as precision), the true positive rate (TPR,
also referred to as recall or sensitivity), the true negative rate
(TNR, also referred to as specifity), the accuracy, and the area
under the receiver operating characteristic (AUC) have been
used. According to its definition, PPV refers to the correct
positive classification in relation to all positive classifications.
Accordingly, TPR refers to true positives given all real pos-
itives. TNR denotes true negatives (TN) given all negatives.
Accuracy is the relation between correctly classified samples
given all samples. The receiver operating characteristic is a
graphical representation of the trade-off between TPR and FPR
(1-TNR). AUC (also sometimes denoted as AUROC) refers to
the area below this resulting curve.

In order to appropriately divide the available measurements
in training and test data, we have folded the available dataset
using 10-fold cross validation. To enhance the robustness of the
obtained results, average values over 100 runs are presented.

TABLE I: HISTOGRAM BASED APPROACH: CONFUSION MA-
TRIX FOR CATEGORIES GAMES (G), INTERNET (IN), IDLE
(ID), MALWARE (MW), MUSIC (MU), AND MULTIMEDIA
(MM)

G IN ID MW MU MM

G 13.98 1 0 1.02 0 0
IN 1 13.14 0 0 0 1.86
ID 0 0 12 4 0 0

MW 0 0 3.97 10.07 1.96 0
MU 0 0 0 2 9.24 4.76
MM 0.27 0.75 0 0 0 14.98

For our performance evaluation, a confusion matrix for the six
predefined application categories has been created, which can
be interpreted in the following way: Values in the diagonal of
the matrix have been classified correctly (true positives), values
within a row not in the diagonal represent false negatives and
values within a column not in the diagonal represent false
positives. Other values are considered true negatives.

Obtained results of the histogram based approach are
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TABLE II: CLASSIFICATION RESULTS (HISTOGRAM BASED
APPROACH)

Category PPV TPR TNR Accuracy AUC

Games 0.87 0.92 0.98 0.97 0.95
Internet 0.82 0.88 0.98 0.95 0.93
Idle 0.75 0.75 0.95 0.92 0.85
Malware 0.63 0.59 0.91 0.87 0.75
Music 0.58 0.83 0.98 0.91 0.90
Multimedia 0.94 0.69 0.92 0.92 0.80

TABLE III: MFCC AND GMM BASED APPROACH: CON-
FUSION MATRIX FOR CATEGORIES GAMES (G), INTERNET
(IN), IDLE (ID), MALWARE (MW), MUSIC (MU), AND
MULTIMEDIA (MM)

G IN ID MW MU MM

G 10.40 3.46 0.01 0 0.55 1.58
IN 2.07 12.67 0 0 0.26 1
ID 0.39 0 11.65 3.6 0.18 0.18

MW 0.07 0.01 2.56 13.15 0 0.21
MU 0.22 0.81 0 0.97 9.39 4.61
MM 0.96 2.97 0.01 0.03 1.20 10.83

shown in Table I and Table II. In case of the MFCC based
approach, best results have been achieved with 3 Gaussians
and twelve MFCC. The performance evaluation results of the
MFCC based approach are outlined in Table III and Table IV.

D. Discussion

From these results, various findings can be derived. Mobile
security applications and malware running in the background
can generally be distinguished from application being active at
the moment (with the exception of system services). Games,
Internet, music and multimedia applications are distinguishable
as well. Music and multimedia applications are more difficult
to distinguish correctly, due to their similar power-consumption
profile. However, given their related purposes this is plausible.
Streaming a YouTube video with sound is not too different
from listening to music while reading related information
displayed by the music player.

The obtained results have also revealed that the MFCC
based approach works better for the distinction between the
categories Idle and Malware. Therefore, this approach seems to
be more suitable for malware-detection purposes. On the other
hand, the histogram approach constitutes a fast classification
method, suitable for mobile devices with limited computational
power.

It has to be noted that the obtained results basically repre-
sent a first proof of concept only. The number of measured
applications and also the time period, in which the power
consumption of applications has been measured, has been
intentionally kept rather low for the sake of simplicity and
both, an analysis regarding a larger dataset and an analysis
regarding a larger number of applications is left open for future
work.

Although the number of applications and also the length
of measurements has been fixed to a relatively small value,
obtained results are still useful due to using 10-fold cross
validation, and, thus, answer the second research question of

TABLE IV: CLASSIFICATION RESULTS (GMM BASED AP-
PROACH)

Category PPV TPR TNR Accuracy AUC

Games 0.65 0.74 0.95 0.90 0.85
Internet 0.79 0.64 0.91 0.89 0.78
Idle 0.73 0.82 0.97 0.93 0.90
Malware 0.82 0.75 0.94 0.92 0.85
Music 0.59 0.82 0.97 0.91 0.90
Multimedia 0.68 0.59 0.91 0.87 0.75

this work. Concretely, obtained results show that machine-
learning techniques are suitable to analyze power-consumption
measurements of smartphone applications for classification and
malware-detection purposes.

VII. CONCLUSION

Smartphones and related mobile end-user devices are fre-
quently used to store and process security and privacy-critical
data. Malware on smartphones is a growing threat for these
data and hence a major challenge for future mobile computing
solutions. To overcome this challenge, new and innovative
methods to detect malware on smartphones and related mobile
end-user devices are needed. In this paper, we have tested
the hypothesis that the power consumption of smartphones
correlates with the kind of applications being executed on the
smartphone and that this correlation allows for a classification
of applications and a detection of malicious software. To
test this hypothesis, we have proposed a simple threshold-
based method and two machine-learning techniques that can
be used to classify unknown applications according to their
power consumption. We have further assessed the validity of
the general hypothesis and the capabilities of the proposed
machine-learning techniques by means of a concrete proto-
type implementation and a succeeding evaluation in a real-
world scenario. The conducted assessment has corroborated
the constructed hypothesis and has shown the capabilities
of the proposed techniques to correctly classify smartphone
applications according to their power consumptions.

Although first results are promising, this work mainly
represents a proof of concept and a solid basis for future
work. In a next step, we plan to port the entire classification
onto a smartphone in order to render external classification
frameworks unnecessary. Power measurements can already
be collected directly on the smartphone using tools such as
PowerTutor. The development of a purely smartphone based
application classification and malware detection solution that
relies on the techniques presented in this paper is hence mainly
a matter of computing resources available on smartphones.
Since information on the smartphone’s power consumption
is publicly available on Android smartphones, our solution
does not require root access to the operating system and is
hence applicable on virtually all end-user devices. We are also
planning to refine the proposed techniques and to enhance
the current prototype in order to achieve even more accurate
results and to be able to classify multiple applications running
simultaneously on a smartphone.
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