
 On Exploiting Passing and Failing Test Cases in

Debugging Hardware Description Languages

Bernhard Peischl

Softnet Austria

Graz, Austria

bernhard.peischl@soft-net.at

Naveed Riaz

College of Comp. Science and IT

University of Dammam,

Dammam, Saudi Arabia

nrmohammed@ud.edu.sa

Franz Wotawa

Institute for Software Technology

Graz University of Technology

Graz, Austria

franz.wotawa@ist.tuGraz.at

Abstract - In this manuscript, we outline how to use test suites

for software debugging of hardware description languages. We

propose an algorithmic improvement for dealing with numerous

failing test cases and show how to exploit passing test cases in

terms of a technique called filtering. We report on results

obtained on a well-known benchmark suite. The results clearly

show that both passing and failing tests are capable of increasing

the diagnoses accuracy in the field of software debugging.

Model-based debugging; software debugging; debugging of

hardware description languages; fault isolation.

I. INTRODUCTION

This article is an extension to previous research work [1]
and reports on recent results in software debugging of Verilog
designs. In contrast to the Very High Speed Integrated
Hardware Description Language (VHDL) [2], Verilog [3] has
a formal semantics and thus is amendable to research in
verification and debugging, e.g., its synthesis semantics is
formally specified in Gordon [4]. Whereas VHDL is a
strongly and richly typed language, Verilog is a weakly and
limited typed language [5].

Most of the research in verification deals with the detec-
tion of faults and does not address the fact that debugging
involves locating and correcting the fault. In detecting faults
(software/hardware testing), we make use of numerous test
cases. In the recent past, numerous test cases have been
employed for localizing faults, e.g., in terms of employing
spectrum-based diagnosis [6, 7, 8, 9, 10].

Spectrum-based techniques, however, allow for logical
reasoning at the level of dependencies and do not consider the
semantics of the language in terms of value-level models [11,
12]. Our work exploits synthesis semantics and makes use of
test suites. This article shows that there is solid empirical
evidence that taking into account test suites improves the fault
localization in HDLs considerably.

Over the last 25 years, the Artificial Intelligence (AI) com-
munity has developed a framework for system diagnosis
called model-based diagnosis (MBD). This framework covers
a broad range of capabilities including the isolation of faulty
components and the handling of multiple fault locations [13,
14]. A specific problem solving system is automatically
generated by applying task-specific, but domain-independent
problem solving algorithms (e.g., Greiner et al.’s algorithm
[15]) to the system model. Harnessing these techniques in
software engineering tools may help to master the

development of complex circuits and software-enabled
systems. The state of the art in this field can be characterized
by prototypes that are starting to become part of industrial
applications.

In this article, we extend previous work [1, 11, 12] in the
field of debugging Hardware Description Languages (HDLs)
by (1) introducing an iterative version of Greiner et al.’s
hitting set algorithm and (2) presenting an empirical
evaluation of the impact of passing test cases. Both aspects
contribute to further establish AI-based techniques in the
software engineering field.

Figure 1: Design process with HDLs.

289

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. SIMULATION, TEST AND DEBUGGING

Figure 1 outlines an overview of the hardware design cycle

employing the Verilog HDL. The designer starts with an
initial specification that primarily captures the functional
requirements for the circuit being designed. Usually, this is
followed by a detailed design on the register transfer level
(RTL). Both designs are executable and thus are amenable to
automated verification. In general, the RTL design is verified
very thoroughly in terms of testing and various other analysis
techniques, e.g., hazard analysis. Since there is a fixed
window for start of production, these verification steps
typically are conducted under time pressure and thus the time
for debugging – detecting, localizing, and repairing the
misbehavior – becomes a key performance indicator.

Typically, the design process iterates through several
steps: design and programming is followed by a simulation of
the circuit. The outcome of the simulation is compared to the
specification, that is, it is checked whether the waveform
traces on a higher abstraction level (the specification) deviate
from the waveforms obtained from the test run on the RTL
level. Previous research work, carried out in the VHDL
domain, gives an intuitive understanding on how to leverage
model-based diagnosis for fault localization in HDL designs
(see www.ist.tugraz.at/staff/peischl/HDLDebugging.wmv).

Moreover, to reduce costs and the time to market, it is of
utmost importance to detect the faults as early as possible.
Thus, as testing is a viable economical technique to assure
functional correctness, testing is also subject of numerous
research and innovation projects. However, in order to resolve
a bug, it is equally important to localize and finally remove
the fault. In terms of process maturity this is captured by the
defect backlog metrics (which counts the number of removed
bugs) rather than the defect arrival curve that captures solely
the detection rate of faults [16]. In today’s software/hardware
engineering processes such key performance indicators often
are made available by extracting data from the underlying
development tools [17, 18] thus offering the potential to
quantify the effect of introducing fault isolation tools.

According to a study conducted at IBM Haifa, 50 to 80
percent of the overall development is attributed to verification
activities including localization and correction [19]. Thus,
particularly under local or temporal separation of the design
and the test team, the automation of fault localization (and
correction) is a sustainable topic for ongoing and future R&D
work as it contributes to make the development process more
efficient.

III. DEBUGGING SEQUENTIAL VERILOG DESIGNS

In contrast to our previous research dealing with VHDL
[12, 20, 21, 22] the semantics of Verilog has been analyzed
rigorously, and thus provides the necessary theoretical
underpinning in language semantics and circuit synthesis.
Gordon [4] provides a formal description of various semantic
interpretations of Verilog like event-semantics and trace-
semantics. In event-semantics (which is the semantics
employed for fine-grained simulations) the change of a

variable necessitates the recalculation of depending
procedures.

In contrast to that, the trace semantics of Verilog computes
solely the quiescent values at the end of a simulation cycle.
That is, trace semantics abstracts over transient states and
computes the steady values at the end of the simulation cycle.
For computing these quiescent values, each procedure is
evaluated only once per cycle [4]. Procedures are evaluated in
a certain order such that a procedure is not evaluated until all
its driving procedures have been evaluated. In other words, a
procedure’s outputs are computed only when all its inputs are
known (or can be computed). So we build up our
representation of the design by starting with processes solely
dependent on known inputs and variables (e.g., the primary
inputs, including clock). Afterwards, the outputs of these
processes are attached to the list of already known inputs and
variables. This process continues until all the procedures in
the design are levelized [22]. In this way, we build up a chain
of procedures and their inputs and outputs, thus allowing one
for an evaluation of all the variables used in the design at the
end of the simulation cycle.

Synchronous sequential circuits change their states and
output values at discrete instants of time, which are specified
by the rising and falling edge of a clock signal. In electrical
engineering, sequential circuits are often viewed as a sequence
of connected combinational circuits. This can be done by
selecting specific connections (e.g., one can use minimal-cut
set computation [23] for identifying these connections) and
splitting them in two separated connections. The output of a
stage of a specific cycle is connected to the corresponding
input of the next cycle. We have adopted the same idea for
providing an appropriate debugging model for sequential
designs. Our representation can be broken into two phases,
one in which latches change state, and one in which all the
combinational blocks are evaluated. We effectively break the
design at latches by treating the outputs of the latches as they
were inputs and inputs of the latches as they were outputs.

In our representation, we first identify variables that we
have to synthesize into latches. By splitting these variables
and treating them as additional inputs and outputs, we ensure
that our representation remains acyclic. Then we levelize the
graph according to the levelization strategy discussed above.
Thus, we receive a sequence of procedures depicting the data
flow from the given primary inputs to the primary outputs.
Our next step is to unroll the sequential circuits to incorporate

Figure 2: Illustration of a simple diagnosis problem.

290

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

multiple cycles (input sequence length). We assume that we
know the number of unrollings to be performed in advance.
After the levelization of all the procedures, we create the
debugging model which represents our model at level 1 (cycle
number 1). For every component C, we attach a timestamp i
during the creation of the model to ensure a unique
identification, where Ci represents the instance of component
C at cycle i. Thus, we make n copies of every component
involved, where n is the total number of cycles or unrollings.
In this way, we create n number of instances for each
component.

Diagnosis problem: A diagnosis problem considering circuit

unrolling over n cycles is a triple (SD, COMP,OBS) where

1.
ni

iSDSD
..1

 where SDi is the system description for

cycle i

2.
ni

iCCOMP
..1

 where Ci are the components in cycle

i, and

3.
ni

iOBSOBS
..1

 and OBSi denote the observations in

cycle i.

For every component of our model that is associated with
the source code, we add an assumption ¬AB(C). From a
semantics point of view, this assumption denotes that the
component C is assumed to work corretly. In other words this
means it is assumed to be not abnormal. If we set this
assumption to false, this means that the component is
erroneous.

Example: Consider the digital circuit in Figure 2, which
comprises five digital NAND gates, N1 to N5 and only a single
cycle. We further assume that we have observed the following
values on the digital circuit’s inputs and outputs: a=0, b=1,
c=0, g=1, and h=0. These values correspond to the
observations OBS. The system description SD corresponds to
the syntax and the semantics of the circuit (e.g., a constraint
model, or horn-clause encoding of the circuit). Obviously, SD
and OBS are contradictory. We can prove this by computing
the values for every gate’s outputs (and inputs). From a=0 and
b=0, we conclude that the output of gate N2 becomes 1. From
c=0 follows that the second input of gate N3 must be 1. This
value together with b=1 leads to f=0. Consequently, h=1
contradicts the observed value for h. So, we know that
something must be wrong and that the assumption that all
components are working correct can no longer be valid.

The above given definition captures a diagnosis model for
a single test case (of length n). Given this definition the
diagnosis problem considering a test suite is given as follows,
where we refer to the predicate AB(C) to denote abnormality
of component C (correspondingly)(CAB refers to a

correctly functioning component).

Diagnosis problem, test suite: Given a test suite comprising

the test cases TC1, TC2, …, TCk. Let the system description

SDj be the system description considering test case TCj and

let
j

iC be the instance of component C at cycle i in test case

number j. Correspondingly j

iOBS denote the observations in

cycle i of test case TCj. The diagnosis problem (SD*, COMP*,

OBS*) considering this test suite is given as follows:

1.
kj

j

n

jj

j CABCABCABSDSD
..1

10

*)}(...)()({

2.
nikj

j

iCCOMP
..0,..1

*

3.
nikj

j

iOBSOBS
..1,..1

*

IV. ITERATIVE COMPUTATION OF DIAGNOSES

In computing the diagnosis candidates we determine all
inconsistent sub models (i.e., parts of the given design causing
discrepancies). In the terminology of model-based diagnosis
(MBD) these sub-models are referred to as conflicts. Since the
assumption that all components of a conflict behave correctly
causes the discrepancy, at least one of these components must
be responsible for the misbehavior. Thus, once we have
obtained all inconsistent sub models, for every component, we
have to check, whether assuming this component to be
abnormal allows one for getting rid of the given discrepancy
in every sub model. We collect those assumption(s) that allow
one for removing the given discrepancies and report the
associated components as diagnosis candidates.

Recalling the previous definitions, the computation of
diagnosis candidates is a consistency check for first-order
sentences. In theory, one can compute diagnoses by
generating all subsets Δ of COMP in increasing order of
cardinality and checking whether

is consistent.
Central to this algorithm is the concept of a contradictory sub
model referred to as conflict in the classical MBD literature.
A conflict for a diagnosis problem (SD, COMP, OBS) is a set

COMPCO such that }|)({ COCCABOBSSD

is contradictory. A conflict set is minimal iff no proper subset
of it is a conflict set for (SD, COMP, OBS). A set of conflicts
is referred to as conflict-set F={CO1, CO2, …, COn}.
A conflict CO = {C1, C2, C3, …, Ck} says that the assumption
that all components are correct – that is,
 AB(C1) ^ AB(C2) ^ AB(C3) ^ … ^ AB(Cn) is true –
is inconsistent with SD and OBS. However, SD together with
OBS is consistent. Thus, the correctness assumptions
 AB(Ci) are responsible for the contradiction and must be
altered to eliminate the conflict. This means that we must
invert at least one of the AB(Ci) assumptions. If we now
have more than one conflict, we must invert at least one (not
necessarily different) assumption from every conflict. These
inverted assumptions are a diagnosis because they resolve all

}\|)({ COMPCCABOBSSD

291

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

conflicts. So, a diagnosis is a set of components that, when
assumed to behave incorrectly, leads to a consistent system
state.

Continuing our example, we obtain two minimal conflicts.
Figure 3 depicts them together with the computation of the
contradiction values. There are two conflicts: A, whose
components are N1, N3 and N5, and B, whose components are
N2, N4, and N5. From this follows immediately that {N5} is a
single-fault diagnosis candidate because AB(N5) resolves both
conflicts A and B [12].

However, this rather inefficient brute-force approach does
not work for debugging, as the number of components
becomes huge. Reiter et al. [14] provide an algorithm for
finding a set of minimal diagnoses and Greiner et al. [15]
provide a correction to Reiter’s proposal. Reiter et al. [14] and
Greiner et al. [15] show how to efficiently compute diagnoses
given a single conflict-set in terms of the hitting set algorithm.

The classical MBD literature is primarily focused on how
to compute the diagnoses from a single conflict-set. However,
in model-based software debugging, every failing test case
results in one or several conflicts, i.e., a conflict-set. When
considering several test cases TC1, TC2, TC3, …, TCk, we
obtain a conflict-set for every test case. The resulting set C of
conflict-sets therefore is C = {F1, F2, F3, …, Fk}.

In theory we therefore can compute diagnoses by
computing all minimal hitting sets for the union of the

conflict-sets ⋃ 𝐹𝑖
𝑘
0 . However, in debugging HDLs, conflicts

appear iteratively, e.g., first we execute test cases TC1
(resulting in conflict-set F1) and afterwards (when conflict-set
F2 becomes available) we execute a second test case TC2
(resulting in conflict-set F2). Following the classical literature,
one can compute the diagnoses resulting from conflict-set F1

and afterwards compute the diagnoses for the conflict-set F1

∪ F2. This results in building up the hitting set dag for the
conflict-set F1 twice as this dag needs to be built for test case
TC1 (conflict-set F1) and for both test cases TC1 and TC2
(conflict-set F1 ∪ F2).

In developing our automated debugging tool we managed
to overcome this challenge by using an iterative variant of the
original algorithm from Greiner et. al [15]. This algorithm
answers the research question how to efficiently compute
diagnoses in an iterative manner. Our algorithm consists of
four main parts.

The procedure Iterative_HS(C) takes a set of conflict-sets
C={F1, F2, .., Fn} and returns a dag. By collecting the edge
labels H(n) at all nodes labeled with √ we can retrieve all
(subset-minimal) diagnoses in increasing order of cardinality,
i.e., all single-diagnoses can be retrieved prior to computing
dual-fault diagnosis. For example, by retrieving all edge labels
H(n) up to level three of the graph, we obtain all single- and
dual-fault diagnoses. Note that the order in which the conflict-
sets appear is determined by the availability of the test cases
and the specific decision procedure for computing conflicts
(e.g., the procedure given in [21]). Two different orderings of
the same conflict-sets will result in different dags, however,
from both dags we retrieve the same set of diagnoses.

The procedure HSDAG(D, N, F) is a modified version of
the algorithm proposed in Geiner et. al. It differs from the
original algorithm as it not only operates on the dag D and the
conflict-set F but relies on an ordered set of nodes N. We use
these nodes to control which nodes need to be modified in the
case that the already existing dag (e.g., dag resulting from
conflict-set F1) becomes inconsistent with the new conflict
being added (e.g., dag resulting from conflict-set F1 is
inconsistent with respect to conflict-set F1 and F2).

In order to determine these nodes, we use two further
procedures. The procedure Check_√ (D, F) checks whether
there are nodes marked with √ in the dag D, that according to
the given conflict-set F are no longer valid. To establish the
invariant of the algorithm, we need to label these nodes with
the first set ∑ from F and store these nodes for later processing
within HSDAG. The second procedure Check_× (D, F) checks
whether there are closed nodes that need to be re-opened due
to adding the conflict F. In this case, the respective node is re-
opened and either labeled with the first set from F or marked
with √. Again, we store this node for later processing as it
might be subject of further pruning according to Greiner’s
algorithm.

 Iterative_HS (C)

1. Let DAG represent the growing dag. Let H(n) be the

 set of edge labels on the path in DAG from the root

 down to node n.

2. Generate a DAG0 with root node n0 with

)(0nlabel , where ∑ is the first set in conflict-set

 F1 and 𝐻(𝑛0) = 𝜙.

3. Let N0 be the nodes from DAG0 in breath-first order

4. DAG = DAG0; N=N0.

5. For i=1 to |C|-1

6. DAG=HSDAG (DAG, N, Fi)

Figure 3: Example illustrating the computation of conflicts.

292

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

7. N=Check_√ (DAG, Fi+1)

 Check_× (DAG, Fi+1)

8. Return HSDAG(DAG, N, Fi+1)

Comments:

1. Definition DAG, H(n) denotes the set of edge labels

2. The initial dag DAG0 contains the root node n0

labeled with the first element from conflict-set F1,

and two children

3. N0 is the ordered set of nodes in DAG0

4. Creation of the initial DAG

5. Iteration through all conflict-sets

6. Invoke Check_√ and Check_× to retrieve those

nodes from the DAG that need to be modified in

order to be consistent with the passed conflict set Fi

7. For each conflict-set we invoke HSDAG explicitly

given the set of nodes N that need to be modified

8. Finally, invoke HSDAG to return the pruned DAG

Check_√ (D, F)

1. R= 𝜙

2. For all nodes Dn where label (n)= √ in

 breath-first order do

3. If there is xnHFx)(, then

4. 𝑙𝑎𝑏𝑒𝑙(𝑛) = ∑ where ∑ is the first element

 from F for which)(nH

5. R=R {n}

6. Return R

Comments:

1. Initially, the set of nodes to be processed is void

2. Traverse nodes labeled with √ in breath-first order

3. Check if node needs to be re-labeled

4. Label node n with the first element in F which is not

in H(n)

5. Store node for further processing in HSDAG

Check_× (D, F)

1. R= 𝜙

2. For all nodes Dn where label (n) = ×

 in breath-first order do

3. If there is a node 𝑛′𝐷 which is labeled by √

 and 𝐻(𝑛′) ⊂ 𝐻(𝑛) then

4. If for all 𝑥 ∈ 𝐹, 𝑥 ∩ 𝐻(𝑛) ≠ ∅ then label(n)= √

5. Otherwise, 𝑙𝑎𝑏𝑒𝑙(𝑛) = ∑ where ∑ is the first

 element from F for which)(nH

6. R=R {n}

7. Return R

Comments:

1. Initially, the set of nodes to be processed is void

2. Traverse nodes labeled with × in breath-first order

3. Check if node needs to be re-opened

4. Re-label node with √

5. Re-label node with the first element in F which is

not in H(n)

6. Store node for further processing in HSDAG

HSDAG (D, N, F)

1. For all nodes Nn do

2. if for all 𝑥 ∈ 𝐹, 𝑥 ∩ 𝐻(𝑛) ≠ ∅ then label(n)= √

3. Otherwise, 𝑙𝑎𝑏𝑒𝑙(𝑛) = ∑ where ∑ is the first

 element from F for which)(nH

4. If n is labeled by a set ∑ , for each ,

 generate a new arc with)(nlabel . This arc

 leads to a new node m with

 𝐻(𝑚) = 𝐻(𝑛) ∪ {𝜎}. The new node 𝑚 in D will

 be processed after all nodes in the same

 generation as n have been processed.

5. [REUSE]

a. If there exists a node n’ with

 H(n’)=H(n) { 𝜎 } then generate a

 directed arc from n to n’. Hence n’ will have

 more than one parent.

b. Otherwise, generate a new node m at the end

 of this 𝜎-arc

6. [CLOSING]

 If there exists a node n’ labeled with √

 where 𝐻(𝑛′) ⊂ 𝐻(𝑛) , then set label(n’) to ×

 for closing n. A label is not computed for 𝑛 nor

any successor nodes generated.

7. [PRUNING]

 If the set is to label a node and it has not

 been used previously then attempt to prune D

 as follows:

 a. If there exists a node 𝑛′ which has been

 labeled by a set 𝑆𝐹 𝑤ℎ𝑒𝑟𝑒 ∑ ⊂ 𝑆′ , then

 relabel n’ with ∑. For any α in 𝑆′\∑ the α-

 arc under n’ is no longer allowed. The node

 connected by this edge and all of its

 descendants are removed, except for those

 with another ancestor which is not being

 removed.

 b. Interchange 𝑙𝑎𝑏𝑒𝑙(𝑛) and 𝑙𝑎𝑏𝑒𝑙(𝑛′)

 8. Return D

293

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Comments:

1.-8. HSDAG computation according to Greiner [15].

The authors of [15] in detail describe strategies for

closing, pruning and reuse of nodes.

The functions Check_√ (D, F) and Check_× (D, F) return

those nodes in the dag that are not consistent with the new
conflict-set F. Instead of applying the HSDAG procedure to
the set F1 ∪ F2, we apply it to conflict-set F1 and identify those
nodes that are not consistent with the new set F1 ∪ F2.
Afterwards, we alter, respectively, extend the dag obtained
from conflict-set F1 by applying the HSDAG procedure only
for the identified nodes. Within HSDAG, the strategies for
pruning, closing and re-using nodes are the same as proposed
in Greiner et al. [15].

Example: Let F1={{1,2,3}, {1,3}, {1,4}} and F2={{1,4,5},

{3,4}, {1,2}} be conflict sets obtained from two test cases.
Figure 4 represents the hitting set dag for F1 and Figure 5
represents the corresponding hitting set graph for F1 ∪ F2. In
the following, we assume the existence of an ordered
collection of conflict-set Fi for every test case TCi and show
how to obtain the hitting set dag for the conflict-set F1 ∪ F2.

Note that it is not necessary to compute all the conflicts for
a given test case in advance, rather the algorithm allows one
for computing the conflicts on demand. Furthermore, the
algorithm allows one for computing the hitting sets in order of
increasing cardinality. Thus, we can stop the computation of
diagnoses once a specified depth has been reached (e.g., we
retrieve solely single and dual-fault diagnosis by stopping
computation at depth level 3). In the following, we illustrate
the iterative variant of Greiner’s hitting set algorithm that
takes the set of conflict sets as an argument.

According to our algorithm, we have to build up the hitting
set DAG0. This initial dag consists of a node n0 with two edges
and H(n0)=ϕ. We continue with the computation of the hitting
set dag HSDAGF1 for conflict-set F1 by invoking

HSDAG(DAG0, N0, F1), where the collection N0 represents the
nodes from DAG0 in breath first order.

 This step corresponds to applying the algorithm as
proposed by Greiner et al. [15].

As specified in the algorithm, in line 7, we determine those
nodes in HSDAGF1 that need to be recalculated as their
labeling in no longer consistent with the extended conflict
F1 ∪ F2. As illustrated in Figure 2 (we used circular arcs to

denote pruning of node n2) the nodes n1, n5 (Check_√) and

node n4 (Check_×) are the potential candidates for re-labeling

or re-opening. After having executed Check_√ and Check_

× we invoke HSDAG (DAG1, N1, F2) to finally obtain

HSDAGF1UF2. This dag is consistent with the conflict-set F1 ∪
F2. Figure 5 illustrates the final dag from which we retrieve
the hitting sets {1,3}, {1,4} and {2,3,4} as the set of diagnoses.

V. EXPLOITING PASSING TEST CASES

Since passing test cases do not cause a logical
contradiction, we do not obtain conflicts from passing test
cases. However, passing test cases contribute in isolating
faults in two ways.

First, we need passing test cases to bring the program into
a state, in which another (failing) test case can reveal a
misbehavior. In general, to exhibit misbehavior, sequential
designs need to traverse a chain of intermediate states. In each
of these states, the circuit does not exhibit erroneous behavior,
and thus passing test cases contribute to finally reach a state
in that the circuit exhibits misbehavior.

Second, as the different instances of our components
behave independently, as we create an independent
component for every unfolding of the circuit. We can use
passing test cases to incorporate the notion of deterministic
components into our debugging model. To illustrate the
potential of using passing test cases to locate the root cause
for detected misbehavior we continue with a simple example.

Figure 5: Hitting set for the union of the set F1∪F2

Figure 4: Hitting set dag HSDAGF1 for the conflict-set F1

294

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I: ASSUMPTIONS, AND TEST CASES FOR OUR RUNNING EXAMPLE.

assumption in1 in2 out inter verdict

AB(not), AB(exor) 1 0 1 0 fail

AB(not), AB(exor) 0 0 1 1 pass

Figure 6: Part of a circuit as our running example.

As a part of a circuit, Figure 6 illustrates an exclusive or
and a not gate together with a passing and failing test case for
this circuit. We further assume that the circuit is faulty, that is,
our test suite has identified misbehavior and we obtain both
components (the EXOR and the NOT gate) as possible
diagnosis candidates.

Suppose we have the test cases given in Table I.
Considering the first (failing) test case in the first line, and
assuming the NOT gate to be abnormal but the EXOR gate
correct, we can deduce that variable inter becomes 0.
However, under the same assumption, the passing test case in
line 2, forces variable inter to become 1. We immediately see
that the NOT gate is required to map the variable inter to 0 and
to 1 for the same input value in2=0. Obviously, no
deterministic component can fulfill this requirement. Thus,
the NOT gate can no longer be considered as a valid diagnosis
candidate. To our best knowledge, the authors of [24] were the
first who used this idea for discriminating diagnosis
candidates. Unfortunately, the article gives no further insights
whether the technique can be employed in practice as the
authors do not provide an empirical evaluation to evaluate
scalability and the improvement potential with respect to
accuracy.

In the following, we propose an extension to that which –
under absence of structural faults – allows one for taking
advantage of passing test cases. As passing test cases do not
yield to additional conflicts, we capture their specific
information about diagnoses in terms of Ackermann
constraints [25]. By adding these consistency constraints we
incorporate the fact that the same combination of input values
applied to a deterministic component C produces the same
output for every instance of C. This allows one for exploiting
the many test cases that do not reveal a fault. The system
description with Ackermann constraints SDA is given as
follows:

System description with Ackermann constraints: Let TC

be a set of test cases form a test suite TC, let in(Ci) ={ 1

Cii ,…,

m

Cii } denote the inputs of component Ci, let out(Ci)={ 1

Cio ,…,

n

Cio } denote the outputs and let SD* denote the system

description of a diagnosis problem considering a test suite.

The system description with Ackermann constraints SDA is
given by,

where, i≠j and i,j denote indices of the test cases.

As we will show in the next section, Ackermann
constraints increase the complexity of the model considerably.
Therefore, we used a post processing technique proposed by
the authors of [26]. As shown at the end of this section filtering
allows one for iteratively applying the Ackermann constraints
to the obtained diagnoses. Instead of compiling the constraints
into the debugging model, we apply the constraints in terms
of a dedicated post-processing phase.
Filtering refers to discarding certain diagnoses by taking

advantage of further test cases TCi. A diagnosis Δ states that

}\|)({ COMPCCABTCSD i
is

consistent. This implies that there is a replacement, that is,

there exists a function replace(C) for every component

C that allows one for repairing the program for the

given test case. The function replace(C) allows one for

producing the correct output values for the considered test

case. However, considering a test suite such a replacement

does not exist for all test cases in the test suite TC necessarily.

Since all components COMP \ Δ are assumed to behave

correctly, we can compute the input values in(C) and out(C)

for every component C from Δ (employing forward

propagation). According to this computed input/output

relation, the component C may be required to map the same

input- to different output values. This corresponds to an

inconsistency and the specific diagnoses AB(C) is not

repairable wrt. the specific test case. As there is no function

replace(C) as stated previously, the component C can be

removed from the set of diagnosis candidates. In this vein, we

evaluate the Ackermann constraints in an iterative way by

checking for different input values for a certain output value.

Algorithm 1 (Filtering): Let Δ denote a set of diagnosis

candidates and let TS be a test suite.

1. For all D Δ do

2. For all test cases TCi TC do

a. Let iDi denote the input values and let oDj denote

the output values of component D by assuming

}\|)({)(DCOMPCCABDAB

b. If there exits i,j, i≠j, such that

then remove D from Δ

3. Return Δ

Claim: Algorithm 1 applies the Ackermann constraints

CONA to a set of single-diagnosis candidates.

After applying Algorithm 1 to the set of single-fault diagnosis

candidates, there is no component D at which we obtain

different input values for a certain output value. Thus, we

DjDiDjDi ooii

p

cj

p

ci

n

p

l

cj

l

ci

m

liA

AA

ooiiCABCON

CONSDSD

 11

*

)(

,

295

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

conclude, that

Thus, Algorithm 1 imposes the Ackermann constraints on

the set of single-fault diagnosis candidates. For our evaluation
of the approach we therefore took advantage of the filtering
algorithm previously presented.

VI. PRACTICAL EXPERIENCES AND EVALUATION

Our evaluation and practical experiences answer two
research questions. First, we strive to quantify the impact of
exploiting passing test cases for debugging. This is done by
referring to a former experiment [11] and comparing these
results with our novel results considering passing test cases.
Second, we evaluated the running times of the algorithm
proposed herein. For both research questions, we rely on the
ISCAS’89 benchmark suite [27].

We conducted our experiments on a Dell Power Edge
1950 II - 2x Quad Core with 2.0 GHz and 10GB of RAM. For
computing diagnoses we relied on the extension of Reiter’s
algorithm described herein. Note that, for the efficient
computation of diagnoses, we convert the rules given in the
previous sections into a specific Horn-like encoding [21]. As
the computation of conflict sets is a time critical issue, the
(minimal) conflict sets are computed according to the
procedure explained in [21]. The diagnosis engine and the
proposed extension are implemented in the Java programming
language.

Our debugging tool parses the Verilog code, builds up the
model as described in this article and converts a test suite to
the logical representation. Afterwards, the tool computes
diagnosis candidates in increasing order of cardinality and
visualizes the results by highlighting the corresponding
statements, expressions or operators.

A. Time Complexity of Computing Diagnoses

For our empirical evaluation we use a Horn-like encoding
of the rules presented herein. By relying on this encoding we
make use of an efficient procedure to compute all minimal
conflicts [21]. From the obtained conflicts we retrieve
diagnoses by computing the minimal hitting sets in increasing
order, where for practical purposes, primarily single- and
dual-fault diagnoses are of interest. In general, searching for
all diagnoses has a worst time complexity of the order
O(|MODES|*|COMP|s), where |MODES| is the number of
fault modes, |COMP| is the number of components and s is
the maximal size of the diagnoses [23]. Since we use two fault
modes (AB(C) and AB(C)) and search for single and double
fault diagnoses, our worst time complexity is of the order
O(|COMP|2). Note that we consider the components in every
cycle as independent and thus the number of components
increases with the length of the test case. However, the
average running time complexity is much better because
diagnoses with smaller cardinality (particularly single-fault

diagnoses) are more likely than higher order diagnoses. For
example, finding all single diagnoses is of order O(|COMP|)
assuming the decision procedure can be executed in unit time.

B. Generation of Test Suites

We obtained the test suite by injecting a single-fault
(respectively a dual-fault for the second series of experiments)
into the RTL design. Afterwards, we identified the faults in
terms of running a simulation until we obtained five test cases
revealing the introduced fault. The faults are introduced in a
random way by picking a statement from every circuit and
replacing this statement by another statement. That is, for
every circuit, we replaced an arbitrary statement with a
structurally equivalent statement (same no. of input
parameters). For example, in a specific circuit we randomly
selected a NOR statement and replaced it by an AND
statement. Further, we implicitly removed/added negations as
we substituted a logical statement by the negated counterpart
(e.g., NAND by AND or vice versa). These error types are not
necessarily complete w.r.t. functional errors, but as they are
believed to be common in the design process, we capture the
most common scenarios [28]:

 Mistakenly replacing one gate/statement by another

gate/statement with the same number of inputs.

 Incorrectly adding or removing a gate/statement.

All empirical evaluations are conducted on the Verilog

RTL version of the ISCAS’89 benchmark suite [27]. Further,
the gate-level representations of the ISCAS’89 benchmarks
have been used to obtain the correct waveform traces since our
simulator allowed only for simulation of gate-level circuits.

Regarding all experiments, we verified that the injected
fault (the root cause) is among the retrieved diagnosis
candidates.

C. Empirical Evaluation

In our experimental setting, we assumed that an engineer
only knows the correct values of the primary inputs for every
simulation cycle and the outputs at the end of the final
simulation cycle. That is, specified information captures the
primary inputs vin and their corresponding values valin for
every instant of time t=1..n, (vin, valin, t), together with the
primary outputs and the corresponding value at time n, (vout,
valout, n). The observations are given in terms of the primary
input variables for every cycle and the primary output
variables at the end of the simulation cycle (i.e., at time point
n, where n is the length of the test case). Table II lists the
number of primary inputs, primary outputs, and the number of
gates and D-type flip-flops for the circuits we considered in
our experiment. The last column is not published in Brglez et
al. [27] but lists the number of lines of code in the source code
representation of the Verilog RTL design.

In our first experiment, we evaluate the discrimination
capability of the software debugger with an increasing number
of failing test cases. Figure 7 summarizes the number of
obtained single-fault diagnoses for a part of the ISCAS’89
benchmark suite.

)()(,,.1 11

p

Dj

p

Di

n

p

l

Dj

l

Di

m

l ooiijiji

)()(,,.2 11

p

Dj

p

Di

n

p

l

Dj

l

Di

m

l ooiijiji

)()(,,.3 11

p

Dj

p

Di

n

p

l

Dj

l

Di

m

l ooiijiji

296

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II: STRUCTURAL CHARACTERISTICS OF THE PROGRAMS FOR THE

EMPIRICAL EVALUATION.

circ.

name

no.

prim.

inp.

no.

prim.

outp.

no. D-

type

flip-

flops

no.

gates

no.

lines

s208 11 2 8 96 240

s349 9 11 15 161 545

s382 3 6 21 158 544

s386 7 7 6 159 508

s444 3 6 21 181 602

s510 19 7 6 211 660

s526 3 6 21 193 634

For every circuit we randomly introduced a single fault

and computed all single-fault diagnoses using the algorithm
introduced in Section IV. Regarding this experiment, the
introduced fault always was among the set of retrieved single-
fault diagnoses.

The experiment is of practical relevance as in practice,
engineers have a limited amount of failing test cases only (in
our case up to five) and numerous passing test cases. The
failing test cases relate the primary inputs to the (quiescent)
value of the primary outputs. Our experiment does not assume
any intermediate values to be known (e.g., the expected
temporal response for the primary outputs). We solely rely
instead on the input values for every cycle and the expected
value of the primary outputs at the end of the simulation.

Figure 7 underpins the findings discussed in previous
research articles as the number of single-fault diagnoses being
obtained depends on both, the concrete test case and the
structural complexity of the program. With an increasing
number of failing tests we can considerably reduce the number
of obtained single-fault diagnoses.

Afterwards, we repeated a similar experiment but in
addition applied the filtering algorithm to exploit the
numerous passing test cases for debugging. Figure 8 illustrates
the improvement we gained from applying these test cases
together with the failing test cases. In the figure, no passing
test case (0) refers to using exactly five failing test cases. In
addition, we applied the filtering procedure by using up to four

passing test cases. As in the previous experiment, the
introduced fault always is among the retrieved set of single-
fault diagnoses.

Regarding our experiments, passing test cases were able
to further reduce the number of single-fault diagnoses for
every program we considered.

Figure 9 outlines the running times for our algorithm we
obtained for computing all single-fault diagnoses including
the application of the filtering procedure. Remarkably, the
random fault introduced in circuit s510 yields to a significant
number of diagnoses and thus higher response times when
compared to the remaining circuits. It appears that, (1) the
structural complexity, (2) the random fault we introduced, and
(3) the specific test cases revealing the introduced fault results
in a (at least in relation to the other circuits) computationally
expensive problem. On average we obtained 74 single-fault
diagnoses corresponding to 44 faulty lines in the source code.
Regarding our experiments, a designer can exclude over 93
percent of the statements and expressions from being faulty.

In a second series of experiments, we randomly injected
two faults into every circuit we considered for our experiment.

Figure 7: Single-fault diagnoses with increasing number of failing test

cases.

Figure 8: Improvements due to the filtering technique.

Figure 9: Running times for computing single-fault diagnoses.

297

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Again, we generated up to five failing test cases and computed
all single- and dual-fault diagnoses by using the algorithm
introduced in Section IV. Figure 10 outlines the number of
dual-fault diagnoses we obtained with increasing number of
failing test cases.

For some circuits (e.g., s208, s349 and s386) the obtained
number of dual-fault diagnoses is not monotonically
decreasing. Unlike to computing single-fault diagnoses, this
may happen due to the fact that test cases may mask some
faults. For example, the first test case might reveal the first
fault being introduced but may mask the second fault we
introduced. As a consequence the second fault is not among
the retrieved list of diagnoses. The second test case might
reveal the second fault, therefore, after computing diagnoses,
the second fault will also appear in the list of diagnoses. As a
result, in the presence of multiple faults, when adding further
test cases, in some cases, the number of diagnoses might
increase. However, for most of the circuits in our experiment
the number of dual-fault diagnoses decreases with increasing
number of failing test cases. Again, for every circuit being
considered in the experiment, the introduced pair of faults
appeared among the computed dual-fault diagnoses

Figure 11 outlines the running times for computing dual-
fault diagnoses. Note that one usually computes diagnoses in
increasing order of cardinality. That is, we first use our
algorithm to compute single-fault diagnoses and only if the
real cause of misbehavior cannot be explained by a single-
fault we continue with computing dual-fault diagnoses.

VII. DISCUSSION AND RELATED WORK

The research work regarding fault localization is hardly
comparable due to the variety of benchmarks and different
approaches and abstraction levels being used. For this reason
we predominately discuss the work where empirical results on
the ISCAS’89 (and purely combinational ISCAS’85)
benchmark suites have been obtained.

The authors of [29] propose a method that uses the
crosstalk-induced pulse fault simulation to identify a set of
suspected faults that are consistent with the observed
responses. The authors propose two simulation-based

methods to diagnose a crosstalk-induced pulse fault which
may occur between the clock line of a flip-flop and a signal
line in the sequential circuit. The first method is a basic
method to diagnose the crosstalk-induced pulse faults. It uses
information about the first and the last timeframe at which a
crosstalk-induced pulse fault is detected. The second method
uses additional information to reduce the computational
complexity for diagnosing a crosstalk induced pulse fault. In
order to reduce computational effort, the second method uses
stored state information to calculate the primary output values
at the present timeframe.

The authors of Boppana et al. [30] introduce a state
information-based technique for supporting fault diagnosis.
Storage of faulty state data corresponding can be used to
reduce stored data. It has been demonstrated that the technique
can support fast fault diagnosis in partial scan environments,
particularly if the resulting design is acyclic. In doing so, the
simplified structure of the partial scan circuit has been
exploited. Arguably, the most important contribution of this
work is the useful storage of faulty circuit data corresponding
to flip-flops. Therefore, the circuit is no longer considered as
a black-box element at diagnosis time and hence offers
increased flexibility.

The authors of Smith et al. 2004 [31] present a SAT-based
solution to design diagnosis of (also dual) faults where
existing solvers can be utilized. The authors also examine
different implementation trade-offs and heuristics. Like our
work, experiments with dual faults demonstrate the efficiency
and practicality of the approach.

Peischl and Wotawa 2006 [22] present work on VHDL
and present results on the ISCAS’89 benchmarks regarding
single test cases. This article introduces a model based on the
MBD approach that abstracts over individual events within a
single simulation cycle and allows one for performing source
level debugging.

So far, the work on comparing the various debugging
approaches is rather limited. In Finder et al. 2010 [32], a
methodology is presented to evaluate debugging algorithms
from a qualitative perspective. Notably, the authors of [32] lift
the fault model originally defined for gate level net lists to
higher level descriptions like HDLs and conclude that some

Figure 11: Running times for computing dual-fault diagnoses

Figure 10: Dual-fault diagnoses for a part of the ISCAS’89 benchmarks

298

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

types of bugs can be handled using a simulation-based
approach, while other types of bugs cannot be handled.
Peischl and Wotawa [20] argue that simulation-based
techniques may miss faults. Thus, the comparison of MBD-
based techniques with simulation-based techniques can only
be done in terms of case studies under a given set of
assumptions (e.g., fault types) and the conclusions are
restricted to the respective benchmarks being considered.
Further, the different metrics to measure the quality or
adequacy of the fault candidates (e.g., some notions of
neighborhood, number of fault candidates, etc.) at the various
levels of granularity (statements, expressions, operators etc.)
make a generalized and meaningful comparison almost
impossible.

The authors of [33] outline the results obtained with a
fault-simulation based technique. The main differences to our
experimental settings are as follows:

 In contrast to our experiments, the results described in

[33] have been obtained on the gate level as this work

does not focus on locating the erroneous statement or

expression at the source code level.

 The fault localization is performed on optimized circuits

rather than on the original design. The optimized circuits

only comprise AND and OR gates. In contrast to that, our

work deals with RTL designs and with locating the root

cause on the source code level.

 The authors of [33] only specify the minimal length of

the test cases and only give an upper limit of the number

of failing and passing test cases.

 Most notably, and in contrast to our work, the technique

introduced in [33] requires the primary input values and

correct values for the primary output for every time

frame. To our experience, a designer does only use

limited correctness information (e.g., the expected signal

values at the end of a test case) rather than having

knowledge about all the intermediate values.

 The approach pursued in [33] fails for the circuits’ s208

and s444 due to the high complexity for long failing test

cases.

 Rather than allowing every statement, expression or

signal to be faulty, only signals are considered as

potential root cause for the observed misbehavior. This

is a major difference to our approach, as our technique

allows one for obtaining diagnosis candidates at the level

of statements, and expressions including individual

variables.

 Erroneous implementations are generated in terms of

injecting a gate type error randomly after decomposition

into AND and OR gates [33, 34].

Although the response times and the number of obtained

diagnoses can hardly be compared due to the points mentioned
above, our empirical results correspond with the results
outlined in [33] in two respects:

 The number of potential single-fault diagnoses is

reduced substantially when employing a couple of

failing test cases.

 It appears that further increasing the number of failing

test cases yields to saturation, i.e., the number of

diagnosis candidates does not appear to become

considerably smaller even when increasing the number

of failing test cases substantially. In this respect, the

decision to empirically investigate techniques that allow

one for incorporating passing as well as failing test cases

gains even more importance.

In the models used herein, we abstract over time (we use

trace semantics) and variable values (we only operate with
values 0 and 1). This kind of abstraction is particularly suited
for designs that can be synthesized. For mainstream
programming languages (for example, the Java programming
language) other abstractions like, for example, functional
dependences or abstract interpretation models can be
beneficial [35]. Finding a suitable abstraction is the key in
successfully applying model-based software debugging, as
this allows one for trading off computational complexity and
accuracy of the obtained diagnoses. Today, it is an open issue,
how to systematically find adequate abstractions and this issue
requires further research.

Recent work approaches the fault localization problem
merely from an algorithmic point of view. These articles differ
from our research in two aspects. First, none of the works
addresses source level debugging (in the sense of
automatically highlighting the potential fault candidates at the
level of expressions and statements at the HDL RTL level)
and second, the evaluation of the novel algorithms and
techniques is only performed on combinational circuits
(mostly on the ISCAS’85 benchmark suite) and does not
address sequential circuits (and thus the notion of state).

Siddiqi and Huang [36] propose a heuristic measurement
point selection that can be computed efficiently. Furthermore,
the technique introduced in [36] makes use of hierarchical
diagnosis. For the largest system, where even this approach
fails, the authors make use of specific abstractions. Unlike our
approach (HDL trace semantics is an abstraction of the finer
grained event semantics) this abstraction is not related to HDL
language semantics. Experiments with the (combinational)
ISCAS’85 benchmark suite indicate that this approach scales
to all circuits in the suite except for one.

Feldman et al. [37] combine passive monitoring, probing
and test sequencing with automated test pattern generation.
Within their framework (FRACTAL), the authors empirically
evaluate the trade-offs of three algorithms by performing
experiments on the ISCAS’85 combinational benchmark
circuits.

The same authors further propose a stochastic fault
diagnosis algorithm called SAFARI [38], which trades off
guarantees of computing minimal diagnoses for
computational efficiency. In terms of the ISCAS’85
benchmarks, the authors empirically demonstrate that
SAFARI achieves several orders of magnitude speedup over
two well-known deterministic algorithms. The authors argue

299

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

that SAFARI can be of broad practical significance, as it can
compute a significant fraction of minimal cardinality
diagnoses for systems too large or too complex to be
diagnosed by existing deterministic algorithms.

Abreu and van Gemund [39] use a heuristic approach to
approximate the computation of minimal hitting sets and
present a low-cost approximate minimal hitting set algorithm
called STACCATO. The authors use a heuristic function that
is particularly tailored to MBD problems. One difference to
our work is that the candidates are not retrieved in increasing
order of cardinality. Whether STACCATO can be tailored to
software debugging (e.g., making use of STACCATO only
for large problem spaces) is an open issue and subject of future
research.

Like in this article, Bailey and Stuckey [40] present an
incremental approach to compute hitting sets and show that
circuit error diagnoses requires finding all minimal
unsatisfiable subsets to compute minimal diagnoses.
However, the proposed hitting set algorithm works in the
context of constraints whereas the proposed algorithm herein
is used in our automated debugging tool and is a variant of
Reiter’s hitting set algorithm dealing with sets of items.

VIII. CONCLUSION

In this article, we showed how to employ the well-founded
theory of model-based diagnosis to fault localization in
Verilog designs. We discussed today’s simulation driven
development lifecycle and proposed a model that can handle
test suites comprising passing and failing test cases. To exploit
passing test cases we used a technique called filtering and
related this technique to Ackerman constraints. Regarding
failing test cases, we used an iterative version of Reiter’s
hitting set algorithm.

We present an empirical evaluation of the impact of
passing test cases alongside with an analysis of the running
times of an iterative variant of Greiner et al.’s hitting set
computation in the context of our automated debugging tool
for HDLs. In this respect, we reported on exhaustive empirical
results on one of the mostly employed benchmarks in the area
of HDLs, the ISCAS’89 benchmark suite. Our results clearly
indicated that exploiting test suites (comprising passing as
well as failing test cases) considerably may improve the
accuracy of the obtained diagnoses.

REFERENCES

[1] B. Peischl, N. Riaz, and F. Wotawa, “Using filtering to
improve value-level debugging of verilog designs,” In VALID
2013, The Fifth International Conference on Advances in
System Testing and Validation Lifecycle, pp. 49–54, 2013.

[2] Z. Navabi, “VHDL: Analysis and Modeling of Digital
Systems,” McGraw-Hill, 1993.

[3] IEEE, IEEE Standard Verilog Language Reference Manual
(LRM), IEEE STD 11364-1995, 1995.

[4] M. J. C. Gordon, “Relating event and trace semantics of
hardware description languages,” The Computer Journal, vol.
45, no. 1, pp. 27–36, 2002.

[5] S. Bailey, “Comparison of VHDL, Verilog and
SystemVerilog,” Digital Simulation White Paper,

http://boydtechinc.com/btf/archive/att-1977/01-
LanguageWhitePaper.pdf (last accessed on 09.05.2014).

[6] R. Abreu, P. Zoeteweij, and A. J C Van Gemund, “On the
accuracy of spectrum-based fault localization,” In Testing:
Academic and Industrial Conference Practice and Research
Techniques - MUTATION, 2007, TAICPART-MUTATION
2007, pp. 89–98, 2007.

[7] B. Baudry, F. Fleurey, and Y. Le Traon, “Improving test suites
for efficient fault localization,” In Leon J. Osterweil, H. Dieter
Rombach, and Mary Lou Soffa, editors, ICSE, pp. 82–91,
ACM, 2006.

[8] D. Hao, L. Zhang, T. Xie, Hong Mei, and J. Sun, “Interactive
fault localization using test information,” Journal of Computer
Science and Technolgy, vol. 24, no. 5, pp. 962–974, 2009.

[9] B. Liblit, M. Naik, A. X Zheng, A. Aiken, and M. I. Jordan,
“Scalable statistical bug isolation,” ACM SIGPLAN Notices,
vol. 40, no. 6, pp. 15–26, 2005.

[10] Y. Yu, J.A. Jones, and M.J. Harrold, “An empirical study of
the effects of test-suite reduction on fault localization,” In
Software Engineering, 2008. ICSE ’08, ACM/IEEE 30th
International Conference on, pp. 201–210, 2008.

[11] B. Peischl, N. Riaz, and F. Wotawa, “Automated Debugging of
Verilog Designs,” International Journal of Software
Engineering and Knowledge Engineering, vol. 22, no. 5, pp.
695–723, 2012.

[12] B. Peischl and F. Wotawa, “Model-Based Diagnosis or
Reasoning from First Principles,” IEEE Intelligent Systems,
vol. 18, no. 3, pp. 32-37, IEEE Computer Society, May/June
2003.

[13] J. de Kleer, A. K. Mackworth, and R. Reiter, “Characterizing
diagnoses,” In AAAI , Howard E. Shrobe, Thomas G.
Dietterich, and William R. Swartout, editors, pp. 324–330,
AAAI Press / The MIT Press, 1990.

[14] R. Reiter, “A theory of diagnosis from first principles,”
Artificial Intelligence, vol. 32, no. 1, pp. 57-95, 1987.

[15] R. Greiner, B. A. Smith, and R. W. Wilkerson, “A correction
to the algorithm in Reiter’s theory of diagnosis,” Artificial
Intelligence, vol. 41, no. 1, pp. 79-88, 1989.

[16] S. H. Kan, Metrics and models in software quality engineering,
Addison-Wesley, 1995.

[17] B. Peischl, V. R. Torrents, A. Kalchauer, S. Lang, “Business
intelligence in software qualiy monitoring: Experiences and
lessons learnt from an insutrial case study,” In Proceedings of
the 6th Software Quality Days (SWQD 2014), pp. 34-47, 2014.

[18] L. Lavazza and M. Mauri, “Software process measurement in
the real world: Dealing with operating constraints,” In Lecture
Notes in Computer Science, Qing Wang, Dietmar Pfahl,
DavidM. Raffo, and Paul Wernick, editors, Software Process
Change, vol. 3966, pp. 80–87, Springer Berlin Heidelberg,
2006.

[19] B. Jobstmann, R. Bloem, A. Cimatti, G. Auerbach, and
M. Moulinn, “Prosyd: Property-based system design,
deliverable 2.1/1,” PROSYD Techical Report, FP6-IST-
507219, 2005.

[20] B. Peischl and F. Wotawa, “Error traces in model-based
debugging of hardware description languages,” In Proceedings
of the Sixth International Symposium on Automated Analysis-
driven Debugging, AADEBUG’05, pp. 43–48, New York, NY,
USA, ACM, 2005.

[21] B. Peischl and F. Wotawa, “Computing diagnosis efficiently:
A fast theorem prover for propositional horn theories,” 14th
Internaltional Workshop on Principles of Diagnosis (DX-03),
pp. 175–180, June 2003.

[22] B. Peischl and F. Wotawa, “Automated source-level error
localization in hardware designs,” IEEE Design & Test of
Computers, vol 23, no. 1, pp. 8-19, January 2006.

300

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[23] F. Wotawa, “Applying Model-Based Diagnosis to
SoftwareDebugging of Concurrent and Sequential
ImperativeProgramming Languages,” PhD thesis, Technische
Universität Wien, 1996.

[24] O. Raiman, J. de Kleer, V. A. Saraswat, and M. Shirley,
“Characterizing non-intermittent faults,” In AAAI, Thomas L.
Dean and Kathleen McKeown, editors, pp. 849–854, AAAI
Press / The MIT Press, 1991.

[25] W. Ackermann, Solvable Cases of Decision Problems, North
Holland, 1954.

[26] F. Wotawa, “Debugging hardware designs using a value-based
Model,” Applied Intelligence, vol. 16, no. 1, pp. 71-92, 2002.

[27] F. Brglez, D. Bryan, and K. Kozminski, “Combinational
profiles of sequential benchmark circuits,” In IEEE
International Symposium on Circuits and Systems, pp. 1929–
1934, 1989.

[28] D. Nayak and D. M. H. Walker, “Simulation-based design
error diagnosis and correction in combinational digital
circuits,” In VTS, pp. 70–79, IEEE Computer Society, 1999.

[29] H. Takahashi, M. Phadoongsidhi, Y. Higami, K.K. Saluja, and
Y. Takamatsu, “Simulation-based diagnosis for crosstalk faults
in sequential circuits,” In Proceedings to the 10th Asian Test
Symposium, pp. 63–68, 2001.

[30] V. Boppana, I. Hartanto, and W.K. Fuchs, “Fault diagnosis
using state information,” In Proceedings of Annual
Symposium on Fault Tolerant Computing, pp. 96–103, 1996.

[31] A. Smith, A. Veneris, and A. Viglas, “Design diagnosis using
boolean satisfiability,” In Proceedings of the 2004 Asia and
South Pacific Design Automation Conference, ASP-DAC ’04,
pp. 218–223, Piscataway, NJ, USA, 2004, IEEE Press.

[32] A. Finder and G. Fey, “Evaluating debugging algorithms from
a qualitative perspective,” In Forum on Specification Design
Languages (FDL 2010), pp. 1–6, 2010.

[33] S.-Y. Huang, K.-T. Cheng, K.-C. Chen, and J.-Y. J. Lu, “Fault-
simulation based design error diagnosis for sequential

circuits,” In Proceedings of the Design Automation
Conference, 1998, pp. 632–637, 1998.

[34] A. Kuehlmann, D. I. Cheng, A. Srinivasan, and D. P. LaPotin,
“Error diagnosis for transistor-level verification,” In
Proceedings of the 31st Annual Design Automation
Conference, DAC ’94, pp. 218–224, New York, NY, USA,
1994, ACM.

[35] W. Mayer and M. Stumptner, “Model-based debugging using
multiple abstract models,” In Fifth International Workshop on
Automated and Algorithmic Debugging, CoRR, pp. 55-70,
cs.SE/0309030, 2003.

[36] S. Siddiqi and J. Huang, “Sequential diagnosis by abstraction,”
Journal of Artificial Intelligence Research, vol. 41, no. 2, pp.
329–365, May 2011.

[37] A. Feldman, G. Provan, and A. van Gemund, “A model-based
active testing approach to sequential diagnosis,” Journal of
Artificial Intelligence Research, vol. 39, no. 1, pp. 301–334,
September 2010.

[38] A. Feldman, G. Provan, and A. Gemund, “Approximate model-
based diagnosis using greedy stochastic search,” In of Lecture
Notes in Computer Science, Abstraction, Reformulation, and
Approximation, Ian Miguel and Wheeler Ruml, editors,
volume 4612, pp. 139–154, Springer Berlin Heidelberg, 2007.

[39] R. Abreu and A. J. C. van Gemund, “A low-cost approximate
minimal hitting set algorithm and its application to model-
based diagnosis,” In SARA, Vadim Bulitko and J. Christopher
Beck, editors, AAAI, pp. 2-9, 2009.

[40] J. Bailey and P. J. Stuckey, “Discovery of minimal
unsatisfiable subsets of constraints using hitting set
dualization,” In Proceedings of the 7th International
Conference on Practical Aspects of Declarative Languages,
PADL’05, pp. 174–186, Berlin, Heidelberg, 2005, Springer-
Verlag.

301

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

