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Abstract - In this manuscript, we outline how to use test suites 

for software debugging of hardware description languages. We 

propose an algorithmic improvement for dealing with numerous 

failing test cases and show how to exploit passing test cases in 

terms of a technique called filtering. We report on results 

obtained on a well-known benchmark suite. The results clearly 

show that both passing and failing tests are capable of increasing 

the diagnoses accuracy in the field of software debugging.  

Model-based debugging; software debugging; debugging of 

hardware description languages; fault isolation. 

I.  INTRODUCTION  

This article is an extension to previous research work [1] 
and reports on recent results in software debugging of Verilog 
designs. In contrast to the Very High Speed Integrated 
Hardware Description Language (VHDL) [2], Verilog [3] has 
a formal semantics and thus is amendable to research in 
verification and debugging, e.g., its synthesis semantics is 
formally specified in Gordon [4]. Whereas VHDL is a 
strongly and richly typed language, Verilog is a weakly and 
limited typed language [5]. 

Most of the research in verification deals with the detec-
tion of faults and does not address the fact that debugging 
involves locating and correcting the fault. In detecting faults 
(software/hardware testing), we make use of numerous test 
cases. In the recent past, numerous test cases have been 
employed for localizing faults, e.g., in terms of employing 
spectrum-based diagnosis [6, 7, 8, 9, 10]. 

Spectrum-based techniques, however, allow for logical 
reasoning at the level of dependencies and do not consider the 
semantics of the language in terms of value-level models [11, 
12]. Our work exploits synthesis semantics and makes use of 
test suites. This article shows that there is solid empirical 
evidence that taking into account test suites improves the fault  
localization in HDLs considerably. 

Over the last 25 years, the Artificial Intelligence (AI) com-
munity has developed a framework for system diagnosis 
called model-based diagnosis (MBD). This framework covers 
a broad range of capabilities including the isolation of faulty 
components and the handling of multiple fault locations [13, 
14]. A specific problem solving system is automatically 
generated by applying task-specific, but domain-independent 
problem solving algorithms (e.g., Greiner et al.’s algorithm 
[15]) to the system model. Harnessing these techniques in 
software engineering tools may help to master the 

development of complex circuits and software-enabled 
systems. The state of the art in this field can be characterized 
by prototypes that are starting to become part of industrial 
applications. 

In this article, we extend previous work [1, 11, 12] in the 
field of debugging Hardware Description Languages (HDLs) 
by (1) introducing an iterative version of Greiner et al.’s 
hitting set algorithm and (2) presenting an empirical 
evaluation of the impact of passing test cases. Both aspects 
contribute to further establish AI-based techniques in the 
software engineering field. 

Figure 1: Design process with HDLs. 
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II. SIMULATION, TEST AND DEBUGGING 

 
Figure 1 outlines an overview of the hardware design cycle 

employing the Verilog HDL. The designer starts with an 
initial specification that primarily captures the functional 
requirements for the circuit being designed. Usually, this is 
followed by a detailed design on the register transfer level 
(RTL). Both designs are executable and thus are amenable to 
automated verification. In general, the RTL design is verified 
very thoroughly in terms of testing and various other analysis 
techniques, e.g., hazard analysis. Since there is a fixed 
window for start of production, these verification steps 
typically are conducted under time pressure and thus the time 
for debugging – detecting, localizing, and repairing the 
misbehavior – becomes a key performance indicator. 

Typically, the design process iterates through several 
steps: design and programming is followed by a simulation of 
the circuit. The outcome of the simulation is compared to the 
specification, that is, it is checked whether the waveform 
traces on a higher abstraction level (the specification) deviate 
from the waveforms obtained from the test run on the RTL 
level. Previous research work, carried out in the VHDL 
domain, gives an intuitive understanding on how to leverage 
model-based diagnosis for fault localization in HDL designs 
(see www.ist.tugraz.at/staff/peischl/HDLDebugging.wmv). 

Moreover, to reduce costs and the time to market, it is of 
utmost importance to detect the faults as early as possible. 
Thus, as testing is a viable economical technique to assure 
functional correctness, testing is also subject of numerous 
research and innovation projects. However, in order to resolve 
a bug, it is equally important to localize and finally remove 
the fault. In terms of process maturity this is captured by the 
defect backlog metrics (which counts the number of removed 
bugs) rather than the defect arrival curve that captures solely 
the detection rate of faults [16]. In today’s software/hardware 
engineering processes such key performance indicators often 
are made available by extracting data from the underlying 
development tools [17, 18] thus offering the potential to 
quantify the effect of introducing fault isolation tools. 

According to a study conducted at IBM Haifa, 50 to 80 
percent of the overall development is attributed to verification 
activities including localization and correction [19]. Thus, 
particularly under local or temporal separation of the design 
and the test team, the automation of fault localization (and 
correction) is a sustainable topic for ongoing and future R&D 
work as it contributes to make the development process more 
efficient. 

 

III. DEBUGGING SEQUENTIAL VERILOG DESIGNS 

In contrast to our previous research dealing with VHDL 
[12, 20, 21, 22] the semantics of Verilog has been analyzed 
rigorously, and thus provides the necessary theoretical 
underpinning in language semantics and circuit synthesis. 
Gordon [4] provides a formal description of various semantic 
interpretations of Verilog like event-semantics and trace-
semantics. In event-semantics (which is the semantics 
employed for fine-grained simulations) the change of a 

variable necessitates the recalculation of depending 
procedures.  

In contrast to that, the trace semantics of Verilog computes 
solely the quiescent values at the end of a simulation cycle. 
That is, trace semantics abstracts over transient states and 
computes the steady values at the end of the simulation cycle. 
For computing these quiescent values, each procedure is 
evaluated only once per cycle [4]. Procedures are evaluated in 
a certain order such that a procedure is not evaluated until all 
its driving procedures have been evaluated. In other words, a 
procedure’s outputs are computed only when all its inputs are 
known (or can be computed). So we build up our 
representation of the design by starting with processes solely 
dependent on known inputs and variables (e.g., the primary 
inputs, including clock). Afterwards, the outputs of these 
processes are attached to the list of already known inputs and 
variables. This process continues until all the procedures in 
the design are levelized [22]. In this way, we build up a chain 
of procedures and their inputs and outputs, thus allowing one 
for an evaluation of all the variables used in the design at the 
end of the simulation cycle. 

Synchronous sequential circuits change their states and 
output values at discrete instants of time, which are specified 
by the rising and falling edge of a clock signal. In electrical 
engineering, sequential circuits are often viewed as a sequence 
of connected combinational circuits. This can be done by 
selecting specific connections (e.g., one can use minimal-cut 
set computation [23] for identifying these connections) and 
splitting them in two separated connections.  The output of a 
stage of a specific cycle is connected to the corresponding 
input of the next cycle. We have adopted the same idea for 
providing an appropriate debugging model for sequential 
designs. Our representation can be broken into two phases, 
one in which latches change state, and one in which all the 
combinational blocks are evaluated. We effectively break the 
design at latches by treating the outputs of the latches as they 
were inputs and inputs of the latches as they were outputs. 

In our representation, we first identify variables that we 
have to synthesize into latches. By splitting these variables 
and treating them as additional inputs and outputs, we ensure 
that our representation remains acyclic. Then we levelize the 
graph according to the levelization strategy discussed above. 
Thus, we receive a sequence of procedures depicting the data 
flow from the given primary inputs to the primary outputs. 
Our next step is to unroll the sequential circuits to incorporate 

Figure 2: Illustration of a simple diagnosis problem. 
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multiple cycles (input sequence length). We assume that we 
know the number of unrollings to be performed in advance. 
After the levelization of all the procedures, we create the 
debugging model which represents our model at level 1 (cycle 
number 1). For every component C, we attach a timestamp i 
during the creation of the model to ensure a unique 
identification, where Ci represents the instance of component 
C at cycle i. Thus, we make n copies of every component 
involved, where n is the total number of cycles or unrollings. 
In this way,  we create n number of instances for each 
component. 

 

Diagnosis problem: A diagnosis problem considering circuit 

unrolling over n cycles is a triple (SD, COMP,OBS) where 

 

1. 
ni

iSDSD
..1

 where SDi is the system description for 

cycle i 

2. 
ni

iCCOMP
..1

 where Ci are the components in cycle 

i, and 

3. 
ni

iOBSOBS
..1

 and OBSi  denote the observations in 

cycle i. 

For every component of our model that is associated with 
the source code, we add an assumption ¬AB(C). From a 
semantics point of view, this assumption denotes that the 
component C is assumed to work corretly. In other words this 
means it is assumed to be not abnormal. If we set this 
assumption to false, this means that the component is 
erroneous.  
 

Example: Consider the digital circuit in Figure 2, which 
comprises five digital NAND gates, N1 to N5 and only a single 
cycle. We further assume that we have observed the following 
values on the digital circuit’s inputs and outputs: a=0, b=1, 
c=0, g=1, and h=0. These values correspond to the 
observations OBS. The system description SD corresponds to 
the syntax and the semantics of the circuit (e.g., a constraint 
model, or horn-clause encoding of the circuit). Obviously, SD 
and OBS are contradictory. We can prove this by computing 
the values for every gate’s outputs (and inputs). From a=0 and 
b=0, we conclude that the output of gate N2 becomes 1. From 
c=0 follows that the second input of gate N3 must be 1. This 
value together with b=1 leads to f=0. Consequently, h=1 
contradicts the observed value for h. So, we know that 
something must be wrong and that the assumption that all 
components are working correct can no longer be valid. 

The above given definition captures a diagnosis model for 
a single test case (of length n). Given this definition the 
diagnosis problem considering a test suite is given as follows, 
where we refer to the predicate AB(C) to denote abnormality 
of component C (correspondingly )(CAB  refers to a 

correctly functioning component). 

Diagnosis problem, test suite: Given a test suite comprising 

the test cases TC1, TC2, …, TCk. Let the system description 

SDj be the system description considering test case TCj and 

let 
j

iC  be the instance of component C at cycle i in test case 

number j. Correspondingly j

iOBS  denote the observations in 

cycle i of test case TCj. The diagnosis problem (SD*, COMP*, 

OBS*) considering this test suite is given as follows: 

 

1.  
kj

j

n

jj

j CABCABCABSDSD
..1

10

* )}(...)()({


  

2. 
nikj

j

iCCOMP
..0,..1

*



   

3. 
nikj

j

iOBSOBS
..1,..1

*



  

IV. ITERATIVE COMPUTATION OF DIAGNOSES 

In computing the diagnosis candidates we determine all 
inconsistent sub models (i.e., parts of the given design causing 
discrepancies). In the terminology of model-based diagnosis 
(MBD) these sub-models are referred to as conflicts. Since the 
assumption that all components of a conflict behave correctly 
causes the discrepancy, at least one of these components must 
be responsible for the misbehavior. Thus, once we have 
obtained all inconsistent sub models, for every component, we 
have to check, whether assuming this component to be 
abnormal allows one for getting rid of the given discrepancy 
in every sub model. We collect those assumption(s) that allow 
one for removing the given discrepancies and report the 
associated components as diagnosis candidates. 

Recalling the previous definitions, the computation of 
diagnosis candidates is a consistency check for first-order 
sentences. In theory, one can compute diagnoses by 
generating all subsets Δ of COMP in increasing order of 
cardinality and checking whether 

is consistent. 
Central to this algorithm is the concept of a contradictory sub 
model referred to as conflict in the classical MBD literature. 
A conflict for a diagnosis problem (SD, COMP, OBS) is a set 

COMPCO  such that }|)({ COCCABOBSSD    

is contradictory. A conflict set is minimal iff no proper subset 
of it is a conflict set for (SD, COMP, OBS). A set of conflicts 
is referred to as conflict-set F={CO1, CO2, …, COn}. 
A conflict CO = {C1, C2, C3, …, Ck} says that the assumption 
that all components are correct – that is,  
 AB(C1) ^  AB(C2) ^  AB(C3) ^ … ^  AB(Cn) is true – 
is inconsistent with SD and OBS. However, SD together with 
OBS is consistent. Thus, the correctness assumptions  
 AB(Ci) are responsible for the contradiction and must be 
altered to eliminate the conflict. This means that we must 
invert at least one of the   AB(Ci) assumptions. If we now 
have more than one conflict, we must invert at least one (not 
necessarily different) assumption from every conflict. These 
inverted assumptions are a diagnosis because they resolve all 

}\|)({  COMPCCABOBSSD
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conflicts. So, a diagnosis is a set of components that, when 
assumed to behave incorrectly, leads to a consistent system 
state.  

Continuing our example, we obtain two minimal conflicts. 
Figure 3 depicts them together with the computation of the 
contradiction values. There are two conflicts: A, whose 
components are N1, N3 and N5, and B, whose components are 
N2, N4, and N5. From this follows immediately that {N5} is a 
single-fault diagnosis candidate because AB(N5) resolves both 
conflicts A and B [12]. 

However, this rather inefficient brute-force approach does 
not work for debugging, as the number of components 
becomes huge. Reiter et al. [14] provide an algorithm for 
finding a set of minimal diagnoses and Greiner et al. [15] 
provide a correction to Reiter’s proposal. Reiter et al. [14] and 
Greiner et al. [15] show how to efficiently compute diagnoses 
given a single conflict-set in terms of the hitting set algorithm.   

The classical MBD literature is primarily focused on how 
to compute the diagnoses from a single conflict-set. However, 
in model-based software debugging, every failing test case 
results in one or several conflicts, i.e., a conflict-set. When 
considering several test cases TC1, TC2, TC3, …, TCk, we 
obtain a conflict-set for every test case. The resulting set C of 
conflict-sets therefore is C = {F1, F2, F3, …, Fk}. 

In theory we therefore can compute diagnoses by 
computing all minimal hitting sets for the union of the 

conflict-sets ⋃ 𝐹𝑖
𝑘
0 . However, in debugging HDLs, conflicts 

appear iteratively, e.g., first we execute test cases TC1 
(resulting in conflict-set F1) and afterwards (when conflict-set 
F2 becomes available) we execute a second test case TC2 
(resulting in conflict-set F2). Following the classical literature, 
one can compute the diagnoses resulting from conflict-set F1 

and afterwards compute the diagnoses for the conflict-set F1 

∪ F2. This results in building up the hitting set dag for the 
conflict-set F1 twice as this dag needs to be built for test case 
TC1 (conflict-set F1) and for both test cases TC1 and TC2 
(conflict-set F1 ∪ F2).  

In developing our automated debugging tool we managed 
to overcome this challenge by using an iterative variant of the 
original algorithm from Greiner et. al [15]. This algorithm 
answers the research question how to efficiently compute 
diagnoses in an iterative manner. Our algorithm consists of 
four main parts.  

The procedure Iterative_HS(C) takes a set of conflict-sets 
C={F1, F2, .., Fn} and returns a dag. By collecting the edge 
labels H(n) at all nodes labeled with √ we can retrieve all 
(subset-minimal) diagnoses in increasing order of cardinality, 
i.e., all single-diagnoses can be retrieved prior to computing 
dual-fault diagnosis. For example, by retrieving all edge labels 
H(n) up to level three of the graph, we obtain all single- and 
dual-fault diagnoses. Note that the order in which the conflict-
sets appear is determined by the availability of the test cases 
and the specific decision procedure for computing conflicts 
(e.g., the procedure given in [21]). Two different orderings of 
the same conflict-sets will result in different dags, however, 
from both dags we retrieve the same set of diagnoses. 

The procedure HSDAG(D, N, F) is a modified version of 
the algorithm proposed in Geiner et. al. It differs from the 
original algorithm as it not only operates on the dag D and the 
conflict-set F but relies on an ordered set of nodes N.  We use 
these nodes to control which nodes need to be modified in the 
case that the already existing dag (e.g., dag resulting from 
conflict-set F1) becomes inconsistent with the new conflict 
being added (e.g., dag resulting from conflict-set F1 is 
inconsistent with respect to conflict-set F1 and F2).  

In order to determine these nodes, we use two further 
procedures. The procedure Check_√ (D, F) checks whether 
there are nodes marked with √ in the dag D, that according to 
the given conflict-set F are no longer valid. To establish the 
invariant of the algorithm, we need to label these nodes with 
the first set ∑ from F and store these nodes for later processing 
within HSDAG. The second procedure Check_× (D, F) checks 
whether there are closed nodes that need to be re-opened due 
to adding the conflict F. In this case, the respective node is re-
opened and either labeled with the first set from F or marked 
with √. Again, we store this node for later processing as it 
might be subject of further pruning according to Greiner’s 
algorithm. 

 
        Iterative_HS (C) 

1. Let DAG represent the growing dag. Let H(n) be the  

    set of edge labels on the path in DAG from the root      

    down to node n.  

2. Generate a DAG0 with root node n0 with 

    )( 0nlabel , where ∑ is the first set in conflict-set  

    F1 and 𝐻(𝑛0) = 𝜙.  

3. Let N0 be the nodes from DAG0 in breath-first order 

4. DAG = DAG0; N=N0. 

5. For i=1 to |C|-1 

6.      DAG=HSDAG (DAG, N, Fi) 

Figure 3: Example illustrating the computation of conflicts. 
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7.      N=Check_√ (DAG, Fi+1)    

              Check_× (DAG, Fi+1) 

8. Return HSDAG(DAG, N, Fi+1) 

 

Comments: 

 

1. Definition DAG, H(n) denotes the set of edge labels 

2. The initial dag DAG0 contains the root node n0 

labeled with the first element from conflict-set F1, 

and two children 

3. N0 is the ordered set of nodes in DAG0 

4. Creation of the initial DAG 

5. Iteration through all conflict-sets  

6. Invoke Check_√  and Check_× to retrieve those 

nodes from the DAG that need to be modified in 

order to be consistent with the passed conflict set Fi  

7. For each conflict-set we invoke HSDAG explicitly 

given the set of nodes N that need to be modified 

8. Finally, invoke HSDAG to return the pruned DAG  

 

Check_√ (D, F) 

1. R= 𝜙 

2. For all nodes Dn where label (n)= √  in  

          breath-first order do 

3.    If there is  xnHFx )(,    then  

4.    𝑙𝑎𝑏𝑒𝑙(𝑛) = ∑ where ∑ is the first element 

       from F for which  )(nH  

5.    R=R  {n} 

6. Return R 

 

Comments: 

 

1. Initially, the set of nodes to be processed is void 

2. Traverse nodes labeled with √  in breath-first order 

3. Check if node needs to be re-labeled 

4. Label node n with the first element in F which is not  

in H(n) 

5. Store node for further processing in HSDAG 

 

Check_× (D, F) 

1. R= 𝜙 

2. For all nodes Dn where label (n) = ×  

    in breath-first order do 

3. If there is a node 𝑛′𝐷 which is labeled by √  

           and 𝐻(𝑛′) ⊂ 𝐻(𝑛)   then  

4. If for all 𝑥 ∈ 𝐹, 𝑥 ∩ 𝐻(𝑛) ≠ ∅ then label(n)= √ 

5. Otherwise, 𝑙𝑎𝑏𝑒𝑙(𝑛) = ∑ where ∑ is the first 

            element from F for which  )(nH  

6.  R=R {n} 

7.  Return R 

 

 

 

 

Comments: 

 

1. Initially, the set of nodes to be processed is void 

2. Traverse nodes labeled with ×  in breath-first order 

3. Check if node needs to be re-opened 

4. Re-label node with √ 

5. Re-label node with the first element in F which is 

not in H(n) 

6. Store node for further processing in HSDAG 

 

HSDAG (D, N, F) 

1. For all nodes Nn  do 

2.    if for all 𝑥 ∈ 𝐹, 𝑥 ∩ 𝐻(𝑛) ≠ ∅ then label(n)= √  

3.      Otherwise, 𝑙𝑎𝑏𝑒𝑙(𝑛)  = ∑ where ∑ is the first  

             element from F for which  )(nH  

4.      If n is labeled by a set ∑ , for each  ,  

             generate a new arc with )(nlabel . This arc 

             leads to a new node m with  

             𝐻(𝑚) = 𝐻(𝑛) ∪ {𝜎}. The new node 𝑚 in D will  

             be processed after all nodes in the same  

             generation as n have been processed.  

5. [REUSE] 

a. If there exists a node n’ with  

    H(n’)=H(n)   { 𝜎 } then generate a 

    directed arc from n to n’. Hence n’ will have 

    more than one parent. 

b. Otherwise, generate a new node m at the end 

    of this 𝜎-arc 

6. [CLOSING] 

 If there exists a node n’ labeled with √    

 where 𝐻(𝑛′) ⊂ 𝐻(𝑛) , then set label(n’) to ×  

 for closing n. A label is not computed for 𝑛 nor 

any successor nodes generated. 

7. [PRUNING] 

  If the set  is to label a node and it has not 

  been used previously then attempt to prune D  

  as follows: 

 a. If there exists a node 𝑛′ which has been 

     labeled by a set  𝑆𝐹  𝑤ℎ𝑒𝑟𝑒 ∑ ⊂ 𝑆′ , then    

     relabel n’  with ∑. For any α in 𝑆′\∑ the α- 

     arc under n’ is no longer allowed. The node 

     connected by this edge and all of its 

    descendants are removed, except for those  

    with  another ancestor which is not being    

    removed. 

       b. Interchange 𝑙𝑎𝑏𝑒𝑙(𝑛) and  𝑙𝑎𝑏𝑒𝑙(𝑛′)  

       8. Return D 
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Comments: 

 

1.-8. HSDAG computation according to Greiner [15]. 

The authors of [15] in detail describe strategies for 

closing, pruning and reuse of nodes.  

 
The functions Check_√ (D, F) and Check_× (D, F) return 

those nodes in the dag that are not consistent with the new 
conflict-set F. Instead of applying the HSDAG procedure to 
the set F1 ∪ F2, we apply it to conflict-set F1 and identify those 
nodes that are not consistent with the new set F1 ∪  F2. 
Afterwards, we alter, respectively, extend the dag obtained 
from conflict-set F1 by applying the HSDAG procedure only 
for the identified nodes. Within HSDAG, the strategies for 
pruning, closing and re-using nodes are the same as proposed 
in Greiner et al. [15]. 

 
Example: Let F1={{1,2,3}, {1,3}, {1,4}} and F2={{1,4,5}, 

{3,4}, {1,2}} be conflict sets obtained from two test cases. 
Figure 4 represents the hitting set dag for F1 and Figure 5 
represents the corresponding hitting set graph for F1 ∪ F2. In 
the following, we assume the existence of an ordered 
collection of conflict-set Fi for every test case TCi and show 
how to obtain the hitting set dag for the conflict-set F1 ∪ F2. 

Note that it is not necessary to compute all the conflicts for 
a given test case in advance, rather the algorithm allows one 
for computing the conflicts on demand. Furthermore, the 
algorithm allows one for computing the hitting sets in order of 
increasing cardinality. Thus, we can stop the computation of 
diagnoses once a specified depth has been reached (e.g., we 
retrieve solely single and dual-fault diagnosis by stopping 
computation at depth level 3). In the following, we illustrate 
the iterative variant of Greiner’s hitting set algorithm that 
takes the set of conflict sets as an argument. 

According to our algorithm, we have to build up the hitting 
set DAG0. This initial dag consists of a node n0 with two edges 
and H(n0)=ϕ. We continue with the computation of the hitting 
set dag HSDAGF1 for conflict-set F1 by invoking 

HSDAG(DAG0, N0, F1), where the collection N0 represents the 
nodes from DAG0 in breath first order. 

 This step corresponds to applying the algorithm as 
proposed by Greiner et al. [15].  

As specified in the algorithm, in line 7, we determine those 
nodes in HSDAGF1 that need to be recalculated as their 
labeling in no longer consistent with the extended conflict  
F1 ∪  F2. As illustrated in Figure 2 (we used circular arcs to 

denote pruning of node n2) the nodes n1, n5 (Check_√) and 

node n4 (Check_×) are the potential candidates for re-labeling 

or re-opening. After having executed Check_√ and Check_

×  we invoke HSDAG (DAG1, N1, F2) to finally obtain 

HSDAGF1UF2. This dag is consistent with the conflict-set F1 ∪  
F2. Figure 5 illustrates the final dag from which we retrieve 
the hitting sets {1,3}, {1,4} and {2,3,4} as the set of diagnoses. 
 

V. EXPLOITING PASSING TEST CASES 

Since passing test cases do not cause a logical 
contradiction, we do not obtain conflicts from passing test 
cases. However, passing test cases contribute in isolating 
faults in two ways.  

First, we need passing test cases to bring the program into 
a state, in which another (failing) test case can reveal a 
misbehavior. In general, to exhibit misbehavior, sequential 
designs need to traverse a chain of intermediate states. In each 
of these states, the circuit does not exhibit erroneous behavior, 
and thus passing test cases contribute to finally reach a state 
in that the circuit exhibits misbehavior. 

Second, as the different instances of our components 
behave independently, as we create an independent 
component for every unfolding of the circuit.  We can use 
passing test cases to incorporate the notion of deterministic 
components into our debugging model. To illustrate the 
potential of using passing test cases to locate the root cause 
for detected misbehavior we continue with a simple example. 

 

Figure 5: Hitting set for the union of the set F1∪F2 

Figure 4: Hitting set dag HSDAGF1 for the conflict-set F1 
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TABLE I: ASSUMPTIONS, AND TEST CASES FOR OUR RUNNING EXAMPLE. 

assumption in1 in2 out inter  verdict 

AB(not),  AB(exor) 1 0 1 0 fail 

AB(not),  AB(exor) 0 0 1 1 pass 

 

 
Figure 6: Part of a circuit as our running example. 

As a part of a circuit, Figure 6 illustrates an exclusive or 
and a not gate together with a passing and failing test case for 
this circuit. We further assume that the circuit is faulty, that is, 
our test suite has identified misbehavior and we obtain both 
components (the EXOR and the NOT gate) as possible 
diagnosis candidates. 

Suppose we have the test cases given in Table I. 
Considering the first (failing) test case in the first line, and 
assuming the NOT gate to be abnormal but the EXOR gate 
correct, we can deduce that variable inter becomes 0. 
However, under the same assumption, the passing test case in 
line 2, forces variable inter to become 1. We immediately see 
that the NOT gate is required to map the variable inter to 0 and 
to 1 for the same input value in2=0. Obviously, no 
deterministic component can fulfill this requirement. Thus, 
the NOT gate can no longer be considered as a valid diagnosis 
candidate. To our best knowledge, the authors of [24] were the 
first who used this idea for discriminating diagnosis 
candidates. Unfortunately, the article gives no further insights 
whether the technique can be employed in practice as the 
authors do not provide an empirical evaluation to evaluate 
scalability and the improvement potential with respect to 
accuracy. 

In the following, we propose an extension to that which – 
under absence of structural faults – allows one for taking 
advantage of passing test cases. As passing test cases do not 
yield to additional conflicts, we capture their specific 
information about diagnoses in terms of Ackermann 
constraints [25]. By adding these consistency constraints we 
incorporate the fact that the same combination of input values 
applied to a deterministic component C produces the same 
output for every instance of C. This allows one for exploiting 
the many test cases that do not reveal a fault. The system 
description with Ackermann constraints SDA is given as 
follows: 

 
System description with Ackermann constraints: Let TC 

be a set of test cases form a test suite TC, let in(Ci) ={ 1

Cii  ,…, 

m

Cii } denote the inputs of component Ci, let out(Ci)={ 1

Cio  ,…, 

n

Cio } denote the outputs and let SD* denote the system 

description of a diagnosis problem considering a test suite.  
 

The system description with Ackermann constraints SDA is  
given by,  

 
where, i≠j and i,j denote indices of the test cases. 

As we will show in the next section, Ackermann 
constraints increase the complexity of the model considerably. 
Therefore, we used a post processing technique proposed by 
the authors of [26]. As shown at the end of this section filtering 
allows one for iteratively applying the Ackermann constraints 
to the obtained diagnoses. Instead of compiling the constraints 
into the debugging model, we apply the constraints in terms 
of a dedicated post-processing phase.  
Filtering refers to discarding certain diagnoses by taking 

advantage of further test cases TCi. A diagnosis Δ states that

}\|)({  COMPCCABTCSD i
is 

consistent. This implies that there is a replacement, that is, 

there exists a function replace(C) for every component   

C  that allows one for repairing the program for the 

given test case. The function replace(C) allows one for 

producing the correct output values for the considered test 

case. However, considering a test suite such a replacement 

does not exist for all test cases in the test suite TC necessarily.  

Since all components COMP \ Δ are assumed to behave 

correctly, we can compute the input values in(C) and out(C) 

for every component C from Δ (employing forward 

propagation). According to this computed input/output 

relation, the component C may be required to map the same 

input- to different output values. This corresponds to an 

inconsistency and the specific diagnoses AB(C) is not 

repairable wrt. the specific test case. As there is no function 

replace(C) as stated previously, the component C can be 

removed from the set of diagnosis candidates. In this vein, we 

evaluate the Ackermann constraints in an iterative way by 

checking for different input values for a certain output value. 

 

Algorithm 1 (Filtering): Let Δ denote a set of diagnosis 

candidates and let TS be a test suite. 

1. For all D   Δ do 

2. For all test cases TCi   TC do 

a. Let iDi denote the input values and let oDj denote 

the output values of component D by assuming 

}\|)({)( DCOMPCCABDAB    

b. If there exits i,j, i≠j, such that    

then remove D from Δ 

3. Return Δ 

 

Claim: Algorithm 1 applies the Ackermann constraints 

CONA to a set of single-diagnosis candidates. 

After applying Algorithm 1 to the set of single-fault diagnosis 

candidates, there is no component D at which we obtain 

different input values for a certain output value. Thus, we  
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conclude, that 

 
Thus, Algorithm 1 imposes the Ackermann constraints on 

the set of single-fault diagnosis candidates. For our evaluation 
of the approach we therefore took advantage of the filtering 
algorithm previously presented. 

VI. PRACTICAL EXPERIENCES AND EVALUATION 

Our evaluation and practical experiences answer two 
research questions. First, we strive to quantify the impact of 
exploiting passing test cases for debugging. This is done by 
referring to a former experiment [11] and comparing these 
results with our novel results considering passing test cases. 
Second, we evaluated the running times of the algorithm 
proposed herein. For both research questions, we rely on the 
ISCAS’89 benchmark suite [27]. 

We conducted our experiments on a Dell Power Edge 
1950 II - 2x Quad Core with 2.0 GHz and 10GB of RAM. For 
computing diagnoses we relied on the extension of Reiter’s 
algorithm described herein. Note that, for the efficient 
computation of diagnoses, we convert the rules given in the 
previous sections into a specific Horn-like encoding [21]. As 
the computation of conflict sets is a time critical issue, the 
(minimal) conflict sets are computed according to the 
procedure explained in [21]. The diagnosis engine and the 
proposed extension are implemented in the Java programming 
language. 

Our debugging tool parses the Verilog code, builds up the 
model as described in this article and converts a test suite to 
the logical representation. Afterwards, the tool computes 
diagnosis candidates in increasing order of cardinality and 
visualizes the results by highlighting the corresponding 
statements, expressions or operators. 

A. Time Complexity of Computing Diagnoses 

For our empirical evaluation we use a Horn-like encoding 
of the rules presented herein. By relying on this encoding we 
make use of an efficient procedure to compute all minimal 
conflicts [21]. From the obtained conflicts we retrieve 
diagnoses by computing the minimal hitting sets in increasing 
order, where for practical purposes, primarily single- and 
dual-fault diagnoses are of interest. In general, searching for 
all diagnoses has a worst time complexity of the order 
O(|MODES|*|COMP|s), where |MODES| is the number of 
fault modes, |COMP| is the number of components and s is 
the maximal size of the diagnoses [23]. Since we use two fault 
modes (AB(C) and AB(C)) and search for single and double 
fault diagnoses, our worst time complexity is of the order 
O(|COMP|2). Note that we consider the components in every 
cycle as independent and thus the number of components 
increases with the length of the test case. However, the 
average running time complexity is much better because 
diagnoses with smaller cardinality (particularly single-fault 

diagnoses) are more likely than higher order diagnoses. For 
example, finding all single diagnoses is of order O(|COMP|) 
assuming the decision procedure can be executed in unit time. 
 

B. Generation of Test Suites 

We obtained the test suite by injecting a single-fault 
(respectively a dual-fault for the second series of experiments) 
into the RTL design. Afterwards, we identified the faults in 
terms of running a simulation until we obtained five test cases 
revealing the introduced fault. The faults are introduced in a 
random way by picking a statement from every circuit and 
replacing this statement by another statement. That is, for 
every circuit, we replaced an arbitrary statement with a 
structurally equivalent statement (same no. of input 
parameters). For example, in a specific circuit we randomly 
selected a NOR statement and replaced it by an AND 
statement.  Further, we implicitly removed/added negations as 
we substituted a logical statement by the negated counterpart 
(e.g., NAND by AND or vice versa). These error types are not 
necessarily complete w.r.t. functional errors, but as they are 
believed to be common in the design process, we capture the 
most common scenarios [28]: 
 

 Mistakenly replacing one gate/statement by another 

gate/statement with the same number of inputs. 

 Incorrectly adding or removing a gate/statement. 

 
All empirical evaluations are conducted on the Verilog 

RTL version of the ISCAS’89 benchmark suite [27]. Further, 
the gate-level representations of the ISCAS’89 benchmarks 
have been used to obtain the correct waveform traces since our 
simulator allowed only for simulation of gate-level circuits. 

Regarding all experiments, we verified that the injected 
fault (the root cause) is among the retrieved diagnosis 
candidates. 

C. Empirical Evaluation 

In our experimental setting, we assumed that an engineer 
only knows the correct values of the primary inputs for every 
simulation cycle and the outputs at the end of the final 
simulation cycle. That is, specified information captures the 
primary inputs vin and their corresponding values valin for 
every instant of time t=1..n, (vin, valin, t),  together with the 
primary outputs and the corresponding value at time n, (vout, 
valout, n).  The observations are given in terms of the primary 
input variables for every cycle and the primary output 
variables at the end of the simulation cycle (i.e., at time point 
n, where n is the length of the test case). Table II lists the 
number of primary inputs, primary outputs, and the number of 
gates and D-type flip-flops for the circuits we considered in 
our experiment. The last column is not published in Brglez et 
al. [27] but lists the number of lines of code in the source code 
representation of the Verilog RTL design. 

In our first experiment, we evaluate the discrimination 
capability of the software debugger with an increasing number 
of failing test cases. Figure 7 summarizes the number of 
obtained single-fault diagnoses for a part of the ISCAS’89 
benchmark suite. 
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TABLE II: STRUCTURAL CHARACTERISTICS OF THE PROGRAMS FOR THE 

EMPIRICAL EVALUATION. 

circ. 

name 

no. 

prim. 

inp. 

no. 

prim. 

outp. 

no. D-

type 

flip-

flops 

no. 

gates 

no. 

lines 

s208 11 2 8 96 240 

s349 9 11 15 161 545 

s382 3 6 21 158 544 

s386 7 7 6 159 508 

s444 3 6 21 181 602 

s510 19 7 6 211 660 

s526 3 6 21 193 634 

 
For every circuit we randomly introduced a single fault 

and computed all single-fault diagnoses using the algorithm 
introduced in Section IV. Regarding this experiment, the 
introduced fault always was among the set of retrieved single-
fault diagnoses.  

The experiment is of practical relevance as in practice, 
engineers have a limited amount of failing test cases only (in 
our case up to five) and numerous passing test cases.  The 
failing test cases relate the primary inputs to the (quiescent) 
value of the primary outputs. Our experiment does not assume 
any intermediate values to be known (e.g., the expected 
temporal response for the primary outputs). We solely rely 
instead on the input values for every cycle and the expected 
value of the primary outputs at the end of the simulation. 

Figure 7 underpins the findings discussed in previous 
research articles as the number of single-fault diagnoses being 
obtained depends on both, the concrete test case and the 
structural complexity of the program. With an increasing 
number of failing tests we can considerably reduce the number 
of obtained single-fault diagnoses. 

Afterwards, we repeated a similar experiment but in 
addition applied the filtering algorithm to exploit the 
numerous passing test cases for debugging. Figure 8 illustrates 
the improvement we gained from applying these test cases 
together with the failing test cases. In the figure, no passing 
test case (0) refers to using exactly five failing test cases. In 
addition, we applied the filtering procedure by using up to four 

passing test cases. As in the previous experiment, the 
introduced fault always is among the retrieved set of single-
fault diagnoses.  

Regarding our experiments, passing test cases were able 
to further reduce the number of single-fault diagnoses for 
every program we considered.  

Figure 9 outlines the running times for our algorithm we 
obtained for computing all single-fault diagnoses including 
the application of the filtering procedure. Remarkably, the 
random fault introduced in circuit s510 yields to a significant 
number of diagnoses and thus higher response times when 
compared to the remaining circuits. It appears that, (1) the 
structural complexity, (2) the random fault we introduced, and 
(3) the specific test cases revealing the introduced fault results 
in a (at least in relation to the other circuits) computationally 
expensive problem. On average we obtained 74 single-fault 
diagnoses corresponding to 44 faulty lines in the source code. 
Regarding our experiments, a designer can exclude over 93 
percent of the statements and expressions from being faulty. 

In a second series of experiments, we randomly injected 
two faults into every circuit we considered for our experiment. 

Figure 7: Single-fault diagnoses with increasing number of failing test 

cases. 

Figure 8: Improvements due to the filtering technique. 

Figure 9: Running times for computing single-fault diagnoses. 
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Again, we generated up to five failing test cases and computed 
all single- and dual-fault diagnoses by using the algorithm 
introduced in Section IV. Figure 10 outlines the number of 
dual-fault diagnoses we obtained with increasing number of 
failing test cases.  

For some circuits (e.g., s208, s349 and s386) the obtained 
number of dual-fault diagnoses is not monotonically 
decreasing. Unlike to computing single-fault diagnoses, this 
may happen due to the fact that test cases may mask some 
faults. For example, the first test case might reveal the first 
fault being introduced but may mask the second fault we 
introduced. As a consequence the second fault is not among 
the retrieved list of diagnoses. The second test case might 
reveal the second fault, therefore, after computing diagnoses, 
the second fault will also appear in the list of diagnoses. As a 
result, in the presence of multiple faults, when adding further 
test cases, in some cases, the number of diagnoses might 
increase. However, for most of the circuits in our experiment 
the number of dual-fault diagnoses decreases with increasing 
number of failing test cases. Again, for every circuit being 
considered in the experiment, the introduced pair of faults 
appeared among the computed dual-fault diagnoses 

Figure 11 outlines the running times for computing dual-
fault diagnoses. Note that one usually computes diagnoses in 
increasing order of cardinality. That is, we first use our 
algorithm to compute single-fault diagnoses and only if the 
real cause of misbehavior cannot be explained by a single-
fault we continue with computing dual-fault diagnoses. 
 

VII. DISCUSSION AND RELATED WORK 

The research work regarding fault localization is hardly 
comparable due to the variety of benchmarks and different 
approaches and abstraction levels being used. For this reason 
we predominately discuss the work where empirical results on 
the ISCAS’89 (and purely combinational ISCAS’85) 
benchmark suites have been obtained.  

The authors of [29] propose a method that uses the 
crosstalk-induced pulse fault simulation to identify a set of 
suspected faults that are consistent with the observed 
responses. The authors propose two simulation-based 

methods to diagnose a crosstalk-induced pulse fault which 
may occur between the clock line of a flip-flop and a signal 
line in the sequential circuit. The first method is a basic 
method to diagnose the crosstalk-induced pulse faults. It uses 
information about the first and the last timeframe at which a 
crosstalk-induced pulse fault is detected. The second method 
uses additional information to reduce the computational 
complexity for diagnosing a crosstalk induced pulse fault. In 
order to reduce computational effort, the second method uses 
stored state information to calculate the primary output values 
at the present timeframe. 

The authors of Boppana et al. [30] introduce a state 
information-based technique for supporting fault diagnosis. 
Storage of faulty state data corresponding can be used to 
reduce stored data. It has been demonstrated that the technique 
can support fast fault diagnosis in partial scan environments, 
particularly if the resulting design is acyclic. In doing so, the 
simplified structure of the partial scan circuit has been 
exploited. Arguably, the most important contribution of this 
work is the useful storage of faulty circuit data corresponding 
to flip-flops. Therefore, the circuit is no longer considered as 
a black-box element at diagnosis time and hence offers 
increased flexibility. 

The authors of Smith et al. 2004 [31] present a SAT-based 
solution to design diagnosis of (also dual) faults where 
existing solvers can be utilized. The authors also examine 
different implementation trade-offs and heuristics. Like our 
work, experiments with dual faults demonstrate the efficiency 
and practicality of the approach. 

Peischl and Wotawa 2006 [22] present work on VHDL 
and present results on the ISCAS’89 benchmarks regarding 
single test cases. This article introduces a model based on the 
MBD approach that abstracts over individual events within a 
single simulation cycle and allows one for performing source 
level debugging. 

So far, the work on comparing the various debugging 
approaches is rather limited. In Finder et al. 2010 [32], a 
methodology is presented to evaluate debugging algorithms 
from a qualitative perspective. Notably, the authors of [32] lift 
the fault model originally defined for gate level net lists to 
higher level descriptions like HDLs and conclude that some 

Figure 11: Running times for computing dual-fault diagnoses 

 

Figure 10: Dual-fault diagnoses for a part of the ISCAS’89 benchmarks  
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types of bugs can be handled using a simulation-based 
approach, while other types of bugs cannot be handled. 
Peischl and Wotawa [20] argue that simulation-based 
techniques may miss faults. Thus, the comparison of MBD-
based techniques with simulation-based techniques can only 
be done in terms of case studies under a given set of 
assumptions (e.g., fault types) and the conclusions are 
restricted to the respective benchmarks being considered. 
Further, the different metrics to measure the quality or 
adequacy of the fault candidates (e.g., some notions of 
neighborhood, number of fault candidates, etc.) at the various 
levels of granularity (statements, expressions, operators etc.) 
make a generalized and meaningful comparison almost 
impossible.  

The authors of [33] outline the results obtained with a 
fault-simulation based technique. The main differences to our 
experimental settings are as follows: 

 In contrast to our experiments, the results described in 

[33] have been obtained on the gate level as this work 

does not focus on locating the erroneous statement or 

expression at the source code level. 

 The fault localization is performed on optimized circuits 

rather than on the original design. The optimized circuits 

only comprise AND and OR gates. In contrast to that, our 

work deals with RTL designs and with locating the root 

cause on the source code level. 

 The authors of [33] only specify the minimal length of 

the test cases and only give an upper limit of the number 

of failing and passing test cases. 

 Most notably, and in contrast to our work, the technique 

introduced in [33] requires the primary input values and 

correct values for the primary output for every time 

frame. To our experience, a designer does only use 

limited correctness information (e.g., the expected signal 

values at the end of a test case) rather than having 

knowledge about all the intermediate values. 

 The approach pursued in [33] fails for the circuits’ s208 

and s444 due to the high complexity for long failing test 

cases. 

 Rather than allowing every statement, expression or 

signal to be faulty, only signals are considered as 

potential root cause for the observed misbehavior. This 

is a major difference to our approach, as our technique 

allows one for obtaining diagnosis candidates at the level 

of statements, and expressions including individual 

variables. 

 Erroneous implementations are generated in terms of 

injecting a gate type error randomly after decomposition 

into AND and OR gates [33, 34].  

 
Although the response times and the number of obtained 

diagnoses can hardly be compared due to the points mentioned 
above, our empirical results correspond with the results 
outlined in [33] in two respects: 
 

 The number of potential single-fault diagnoses is 

reduced substantially when employing a couple of 

failing test cases. 

 It appears that further increasing the number of failing 

test cases yields to saturation, i.e., the number of 

diagnosis candidates does not appear to become 

considerably smaller even when increasing the number 

of failing test cases substantially. In this respect, the 

decision to empirically investigate techniques that allow 

one for incorporating passing as well as failing test cases 

gains even more importance. 

 
In the models used herein, we abstract over time (we use 

trace semantics) and variable values (we only operate with 
values 0 and 1). This kind of abstraction is particularly suited 
for designs that can be synthesized. For mainstream 
programming languages (for example, the Java programming 
language) other abstractions like, for example, functional 
dependences or abstract interpretation models can be 
beneficial [35]. Finding a suitable abstraction is the key in 
successfully applying model-based software debugging, as 
this allows one for trading off computational complexity and 
accuracy of the obtained diagnoses. Today, it is an open issue, 
how to systematically find adequate abstractions and this issue 
requires further research. 

Recent work approaches the fault localization problem 
merely from an algorithmic point of view. These articles differ 
from our research in two aspects. First, none of the works 
addresses source level debugging (in the sense of 
automatically highlighting the potential fault candidates at the 
level of expressions and statements at the HDL RTL level) 
and second, the evaluation of the novel algorithms and 
techniques is only performed on combinational circuits 
(mostly on the ISCAS’85 benchmark suite) and does not 
address sequential circuits (and thus the notion of state). 

Siddiqi and Huang [36] propose a heuristic measurement 
point selection that can be computed efficiently. Furthermore, 
the technique introduced in [36] makes use of hierarchical 
diagnosis. For the largest system, where even this approach 
fails, the authors make use of specific abstractions. Unlike our 
approach (HDL trace semantics is an abstraction of the finer 
grained event semantics) this abstraction is not related to HDL 
language semantics. Experiments with the (combinational) 
ISCAS’85 benchmark suite indicate that this approach scales 
to all circuits in the suite except for one. 

Feldman et al. [37] combine passive monitoring, probing 
and test sequencing with automated test pattern generation. 
Within their framework (FRACTAL), the authors empirically 
evaluate the trade-offs of three algorithms by performing 
experiments on the ISCAS’85 combinational benchmark 
circuits.  

The same authors further propose a stochastic fault 
diagnosis algorithm called SAFARI [38], which trades off 
guarantees of computing minimal diagnoses for 
computational efficiency. In terms of the ISCAS’85 
benchmarks, the authors empirically demonstrate that 
SAFARI achieves several orders of magnitude speedup over 
two well-known deterministic algorithms. The authors argue 
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that SAFARI can be of broad practical significance, as it can 
compute a significant fraction of minimal cardinality 
diagnoses for systems too large or too complex to be 
diagnosed by existing deterministic algorithms.  

Abreu and van Gemund [39] use a heuristic approach to 
approximate the computation of minimal hitting sets and 
present a low-cost approximate minimal hitting set algorithm 
called STACCATO. The authors use a heuristic function that 
is particularly tailored to MBD problems. One difference to 
our work is that the candidates are not retrieved in increasing 
order of cardinality. Whether STACCATO can be tailored to 
software debugging (e.g., making use of STACCATO only 
for large problem spaces) is an open issue and subject of future 
research. 

Like in this article, Bailey and Stuckey [40] present an 
incremental approach to compute hitting sets and show that 
circuit error diagnoses requires finding all minimal 
unsatisfiable subsets to compute minimal diagnoses. 
However, the proposed hitting set algorithm works in the 
context of constraints whereas the proposed algorithm herein 
is used in our automated debugging tool and is a variant of 
Reiter’s hitting set algorithm dealing with sets of items. 
 

VIII. CONCLUSION 

In this article, we showed how to employ the well-founded 
theory of model-based diagnosis to fault localization in 
Verilog designs. We discussed today’s simulation driven 
development lifecycle and proposed a model that can handle 
test suites comprising passing and failing test cases. To exploit 
passing test cases we used a technique called filtering and 
related this technique to Ackerman constraints. Regarding 
failing test cases, we used an iterative version of Reiter’s 
hitting set algorithm.  

We present an empirical evaluation of the impact of 
passing test cases alongside with an analysis of the running 
times of an iterative variant of Greiner et al.’s hitting set 
computation in the context of our automated debugging tool 
for HDLs. In this respect, we reported on exhaustive empirical 
results on one of the mostly employed benchmarks in the area 
of HDLs, the ISCAS’89 benchmark suite. Our results clearly 
indicated that exploiting test suites (comprising passing as 
well as failing test cases) considerably may improve the 
accuracy of the obtained diagnoses. 
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