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Abstract—Due to the widespread adoption of the Model Driven
Engineering paradigm, models have become cornerstone compo-
nents in the software development process. This fact requires ver-
ifying such models’ correctness in order to ensure the quality of
the final product. In this context, the Unified Modeling Language
(UML) and the Object Constraint Language (OCL) constitute
two of the most commonly used modeling languages. We have
defined an overall framework to reason about UML/OCL models
based on Constraint Logic programming (CLP). In particular,
as model finding and design space exploration tool, we use
Formula. We show how to translate a UML model into a CLP
program following a Meta–Object Facility (MOF) like frame-
work. Furthermore, we enhance our proposal by identifying an
expressive fragment of OCL, which guarantees finite satisfiability
and we show its translation to Formula. We also complete
our approach by developing the CD2Formula Eclipse plug–in,
which implements, following a Model Driven Architecture (MDA)
approach, our UML model to Formula translation proposal.
The proposed framework can be used to reason, validate and
verify UML software designs by checking correctness properties
and generating model instances using the model exploration tool
Formula.

Keywords–UML, OCL, Constraint Logic Programming, reason-
ing, model verification, MDA

I. INTRODUCTION

This paper is an extension of the work presented in [1]. Due
to the widespread adoption of the Model Driven Engineering
(MDE) [2] paradigm, models have become cornerstone com-
ponents in the software development process. This fact requires
verifying not only the completeness of such models but also
their correctness in order to ensure the quality of the final
product, reducing time to market and decreasing development
costs. In this context, the Unified Modeling Language (UML)
and the Object Constraint Language (OCL) constitute two of
the most commonly used modeling languages. On the one
hand, UML [3] has been widely accepted as the de–facto
standard for building object-oriented software. OCL [4], on
the other hand, has been introduced into UML as a logic-
based sublanguage to express integrity constraints that UML
diagrams cannot convey by themselves.

Unfortunately, in some occasions, possible design errors
are not detected until the later implementation stages, thus
increasing the cost of the development process [5], [6]. This

situation requires a wide adoption of formal methods within the
software engineering community. In this line, there have been
remarkable efforts to formalize UML semantics to solve am-
biguity and under specification detected in UML’s semantics.
The formalization and analysis of the specific UML modeled
artifacts can be done by carrying out a translation to another
language that preserves its semantics [5], [6], [7], [8]. The
resulted translation can be used to reason about the software
design by checking predefined correctness properties about the
original model [6].

In this paper, we propose to use the Constraint Logic
programming (CLP) paradigm as a complementary method for
UML modeling foundations, including models’ satisfiability
and inspection. More specifically, we focus on UML class
diagrams (CD), annotated with OCL constraints, which are
considered to be the mainstay of Object-Oriented analysis
and design for representing the static structure of a system.
Considering CD/OCL models as model representation, we
propose an overall framework to reason about such models
based on CLP. In particular, as model finding and design
space exploration tool we use Formula [9], which stands
on algebraic data types (ADT) and CLP, and which has
been proved to provide several advantages, including more
expressivity, over using other tools [10], [11]. The defined
framework is two–fold. Firstly, we have conceptually defined
a proposal for the translation of CD/OCL models to Formula.
Secondly, we have used a Model Driven Development (MDA)
based approach [12] to automatically generate the Formula
specification from a class diagram. As for the first contribution,
we give a proposal for the translation of a UML model
into a Constraint Satisfaction Problem following a multilevel
Meta–Object Facility (MOF) like framework. We enhance our
proposal by identifying a fragment of OCL that guarantees
finite satisfiability, while being, at the same time, considerably
expressive. We also show how to translate such OCL fragment
to Formula, by giving, as an intermediate step, a representation
of the OCL constraints as First-Order Logic (FOL) expres-
sions. As for the second contribution, we have implemented
our class diagram to Formula translation approach by using
a model-to-text (M2T) transformation tool, obtaining a set
of transformation files defined in such a tool. Additionally,
we have integrated the resulted files into an Eclipse plug–
in, called CD2Formula plug–in, we have developed to easily
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and automatically transform a class diagram to Formula. The
proposed framework can be used to reason, validate and verify
UML software designs by checking correctness properties and
generating model instances using the model exploration tool
Formula.

As advanced previously, the results presented in this paper
are based on the work published by the authors of this paper
in [1]. In this paper we provide an extended version of that
work, presenting the development of our CD2Formula plug–in
as additional contribution.

The remainder of the paper proceeds as follows. In Sec-
tion II we provide a brief introduction to Formula. An overview
of our framework is presented in Section III. Section IV
presents the translation of a class diagram to Formula, while
Section V describes the chosen OCL fragment and its repre-
sentation into Formula. The automatic MDA–based translation
of a UML class diagram to Formula, together with the develop-
ment of our CD2Formula plug–in, is presented in Section VI.
Section VII summarizes the strengths and weaknesses of our
approach and discusses related work. Finally, Section VIII
presents our main conclusions and future work.

II. A BRIEF OVERVIEW OF FORMULA

In this section, we provide a general background of the
Formula language by presenting the basic Formula concepts.
In order to illustrate these basic concepts, we will lean on
Figure 1, which, as we will explain later in detail, corresponds
to an excerpt of a specific Formula domain we propose to
define for translating class diagrams to Formula, but that we
use here for explanatory purposes.

A. Formula units and design–space exploration

Formula distinguishes three units for modeling the prob-
lem: domains, models and partial models. Modeling in For-
mula always starts with specifying the problem domain and
formalizing an abstraction of the problem that can be used by
Formula to reason about the design [13]. A Formula domain
FD is the basic specification unit in Formula for an abstraction
and allows specifying ADTs and a logic program describing
properties of the abstraction. The logic programming paradigm
provides a formal and declarative approach for specifying
such abstractions [9], which in Formula are represented by
rules and queries. A Formula model FM is a finite set of
data type instances built from constructors of the associated
domain FD, and which satisfies all its constraints [9]. Formula
allows to specify individual concrete instances of the design-
space or parts thereof, in a specific Formula unit called partial
model [9]. A Formula partial model FPM is a set of instance-
specific facts placed along with some explicitly mentioned
unknowns, which correspond to the parts of the model FM
that must be solved. FPMs allow unknowns to be combined
with parts of the model that are already fixed [9].

Finally, in order to explore the design–space, Formula loads
the specification of the domains and the partial models defined
for the specific problem and executes the logic program. The
execution finds all intermediate facts that can be derived from
the given facts in the partial model, and tries to find valid
assignments for the unknowns. This step is carried out by the
Formula solver, which, in case it finds a solution that satisfies

all encoded constraints, will reconstruct a complete instance
model from this information made of known facts [10], [11].

domain extends

primitive
primitive

conforms

Figure. 1: An extract of a Formula domain.

B. Domains’ syntax

Basically, a Formula domain consists of abstract data
types, rules and queries. Firstly, abstract data types constitute
the key syntactic elements of Formula. Based on the defined
data types, a number of rules and queries are specified as logic
program expressions, ensuring the remaining constraints [9].
Roughly speaking, rules specify implications and queries
restrict the valid states by specifying forbidden states.

Abstract data types. They are defined by using the operator
::=, indicating in the right hand side their properties by means
of fields. A data type definition can be labeled with the
primitive keyword, denoting that it can be used for the
extension of other type definitions. Otherwise, the data type
results in a derived constructor. As a way of example, in line
3 of Figure 1 we define the Class data type representing
the UML Class meta–element constructor. The derived type
Classifier, on the other hand, is defined as the union of
the Class and Association types (see line 5 of Figure 1).

Around data types, Formula defines different categoriza-
tions of the structural elements as building blocks for defining
Formula expressions. These elements are mainly Formula
terms and predicates.

As it can be inferred from the Help Formula Documenta-
tion [13], Formula distinguishes different types of terms, which
could be established to be classified into two generalization
groups: (1) simple and composite terms, and (2) what they call
simply Terms (see Figure 2). On the one hand, Formula defines
simple terms and compound terms. A simple term is repre-
sented by means of a type identifier containing variables, con-
stants, or other simple terms as arguments, within parenthesis.
As a way of example, in line 7 of Figure 1 we show the simple
term Association(name1,_,_,_,_,_,_), which rep-
resents all instances of the Association term, where the first
parameter is set to the name1 property. The other fields of
this type (e.g., the srcType, srcLower, srcUpper,
dstType, dstLower and dstUpper fields) are filled
with a do not-care symbol (‘ ’), so that Formula will find
valid assignments. A compound term, on the other hand, is
represented by means of a type identifier with a list of Terms
within parenthesis. As for the other generalization group, on
the other hand, the building blocks of Terms are atoms (for
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Figure. 2: Several of the Formula structural elements.

example the identifiers of variables and queries, explained
later), arithmetic or aggregation expressions among other
terms (sum, count, max, min, etc.), or compound terms.

All these different types of terms are, directly or indirectly,
the basis for constructing predicates, which constitute the basic
units of data, used for defining queries and rules. Among
the different kind of predicates, we can note (see Figure 2):
(1) compound terms, (2) binding terms (that is, gluing a
variable to either a type expression or a compound term)
and (3) constraints, which are defined by applying relational
operators <,>=, !=, etc. among terms. An example of a
binding term can be seen in line 7 of Figure 1, a1 is
Association(name1,_,_,_,_,_,_), where the vari-
able a1 is bound to the type expression Association. A
constraint between terms is also shown in line 7, particularly
in the expression a1 != a2.

Rules. They are specified by the operator :-, indicating, in
the left hand, a simple term and, in the right hand, the list of
predicates specifying the rule. A rule behaves like a universally
quantified implication; whenever the relations on the right
hand hold for some substitution of the variables, then the left
hand holds for that same substitution [10], [11]. The intuition
of rules is production; they create new entries in the fact-
base of Formula, populating previous defined types with facts
representing the members in the collection given in the rule.

Queries. Formula reserves a new syntax element for rules
where left–hand side is a nullary construction [10], [11].
A query behaves like a propositional variable that is true
if and only if the right hand side of the definition is true
for some substitution [10], [11]. Queries are constructed by
the operator :=, and can be also used like propositional
variables to construct other queries. In particular, Formula
defines in every domain the conforms standard query, where
all constraints come together, and which defines how a valid
instance of the domain have to look like. Based on the
existential quantification semantics of queries, the universal
quantification can be achieved by verifying the negation of a
query representing the opposite of the original predicate. For
example, in order to ensure that upper bounds of associations’
multiplicities are upper than or equal to lower bounds, we

firstly need to define a query representing the existence of
associations verifying the opposite (see the definition of the
query errorBadMultInterval in line 6 of Figure 1). With
this query, we are considering such incoherent situation as
a valid state. Thus, in order to verify that such situation is
invalid, we include the negation (‘!’) of the query in the
conforms query (line 9).

III. ENCODING UML/OCL MODELS INTO FORMULA

As we have advanced previously, our proposal follows
a MOF-like metamodeling approach, which is based on the
framework the developers of the Formula tool give in [11].
In particular, the framework provided in [11] gives a repre-
sentation in Formula of part of the key concepts defined both
at the MOF meta–level [3], representing the M2 level, and at
the instance–level [3], representing the M1 level for the object
diagram. The resulted Formula expressions are grouped in an
only Formula domain, which is used by the Formula solver
to find, if it exists, a valid set of instances of arbitrary class
diagrams at the M1 level (conforming with their MOF meta–
level representation) and its corresponding instances at the M0
level (conforming with their instance–level representation). We
remark that the authors in [10], [11] do not give a specific
approach for the translation of OCL constraints.

Based on this proposal, we have extended and modified it
giving weight to four main aspects. Firstly, we have mainly
focused on obtaining a more faithful representation of the
MOF structural distribution, specifying a richer metamodeling
framework. Our extended proposal is materialized into four
different Formula units distributed along the MOF meta levels,
which ease the application and the understandability of our
approach, while promoting units reutilization. Secondly, we
provide an approach based on the CLP paradigm for analyzing
model instances of specific class diagrams, and not arbitrary
ones as authors in [10], [11] do, which we consider not
enough when needed to reason about specific class diagrams.
Thirdly, in contrast to [10], [11], we give an approach for
translating OCL constraints to Formula by; (1) identifying a
significantly expressive fragment of OCL, and (2) providing
its translation into Formula. Finally, we have implemented part
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Figure. 3: Case study.

of our translation approach based on MDA, by means of the
development of our CD2Formula Eclipse plug–in.

Each Formula unit defined in our approach contains two
blocks of Formula expressions, related to the translation of the
UML class diagram structural aspects (see Section IV) and its
OCL constraints (see Section V), respectively. Our approach
is illustrated with the case study of Figure 3, designed for
explanation purposes covering basic aspects. In particular, this
model describes both the contractual relationship between a
“Company” and a “Person”, and the family recursive relation-
ship connecting the class “Person”.

IV. TRANSLATION OF A CLASS DIAGRAM STRUCTURAL
ELEMENTS

In this section, we present a brief introduction of the
rules we have defined to transform a class diagram (CD),
conforming with the UML metamodel [3] (M), into Formula.
Due to space reasons, in this paper we mainly focus on a set
of basic structural UML class diagram features (UML class,
attribute, association) for being frequently used for modeling
structural aspects of systems, and also provide the translation
of the UML Classifier element and Association classes. Next,
we briefly explain their translation classifying the generated
Formula instructions into the different MOF levels. For the
explanation, we lean on Table I.

A. Classes, Associations and Properties

The translation of UML Classes, Associations and Proper-
ties into Formula follows the following proposal.

Level M2. For each meta model element Class, Association
or Property ϵ M, we define a primitive Formula data type
with the same name and with specific fields (see level M2 in
Table I). For example, in the case of classes, we define the data
type Class(;) ϵ CPS, with two String fields (name and
isAbstract). The definition of these data types allows For-
mula to create Formula instances representing specific UML
classes, associations and types of properties, respectively, at the
M1 level. In the case of the Property element ϵ M, we define
a type for each build-in type, called typeNameProperty,
with specific fields (see Table I). In addition to Integer,
String and Boolean, included in [11], we also give support
to Real, LiteralNull and UnlimitedNatural types. The
data type HasProperty(;)ϵ CPS is also defined to represent
the possession of a property by a classifier.

Level M1. Two groups of expressions are defined at this level.
[M1a.] Each specific class, association and property ϵ CD,

is represented by a Formula instance of the corresponding
constructor (Class, Association or Property ϵ CPS de-
fined at level M2). By these Formula instances, we are ex-
plicitly representing, in contrast to [10], [11], not arbitrary
classes in a class diagram but specific ones. For example,
the elements ClassPerson and family defined in M1a of
Table I correspond to two Formula instances of the constructor
Class and Association, respectively, defined at M2. In par-
ticular, specific properties ϵ CD are represented by a Formula
instance of the corresponding Property constructor (e.g.,
namePersonP is StrProperty(...) in M1a of Table I),
and by an instance of the data type HasProperty ϵ CPS,
representing the property’s ownership (see Table I).

[M1b.] In order that Formula is able to generate instances of
specific class, association and property ϵ CD to explore the
concrete design–space, we need to create specific Formula data
types representing each type of instance. For their definition,
we have based on the description of the Instances package [3],
in particular, on the InstanceSpecification element, for classes
and associations, and on the Slot element, for properties. On
the one hand, the definition of the UML InstanceSpecification
element includes the classifier of the represented instance and
the associated InstanceValue [3]. Taking this into account, for
each class c ϵ CD, we define a primitive Formula data type
called Instancec.name(;)ϵ CPS, with two fields, represent-
ing the associated classifier and instance value, respectively
(see level M1b in Table I). As a way of example, see the
primitive data type InstancePerson in Table I. When the
classifier is an association, the UML instance specification
describes a link [3], so in this situations we name the created
data types with the Link prefix. Since links connect class
instances [3], for each association a ϵ CD, we define a
primitive Formula data type called Linka.name(;;;) ϵ CPS,
which includes, additionally, the instance specifications of the
associated classes (see for example LinkFamily in Table I).
So that Formula can generate property’s specific values, we
define specific data types representing the property’s slots,
based on the specifications of the Slot element [3]. Taking this
into account, for each property ϵ CD, we define a primitive
type called p.name+p.owner.nameSlot(;;) ϵ CPS (e.g.,
namePersonSlot in Table I), which registers the owner, the
property type and its value.

Level M0. Finally, in order that Formula can reason and
search for valid instances of the specific classes, associations
and properties of the source class diagram, we include the
Introduce(f,n) command (used to add n terms of the
element type f) with the corresponding Instancec.name,
Linka.name or p.name+p.owner.nameSlot data type, as f,
and a specific number as n, to indicate the number of valid
instances of such data type we want Formula to generate as part
of the resulted object class diagram. For example, we define the
[Introduce(InstancePerson,2)] command, so that For-
mula searches two valid instances of InstancePerson (see
level M0 in Table I).

B. Classifier and Association Classes

A special remark have to be made regarding the Classifier
element ϵ CD at the M2 level, and association classes ϵ CD.
On the one hand, the Classifier element is defined by means of
a derived data type ϵ Π ⊂ CPS, as the union of the Class and
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Table. I: Excerpt of the CD to Formula mapping.

primitive Association ::= (name: String,
srcType: Class, srcLower: Natural, srcUpper: UpperBound,
dstType: Class, dstLower: Natural, dstUpper: UpperBound).

Translation pattern:

a.name is Association(“a.name”,

Class("a.memberEnd.at(1).type.name", a.memberEnd.at(1).type.isAbstract

a.memberEnd.at(1).lowerValue, a.memberEnd.at(1).upperValue,

Class("a.memberEnd.at(2).type.name", a.memberEnd.at(2).type.isAbstract

a.memberEnd.at(2).lowerValue, a.memberEnd.at(2).upperValue)

Example:

family is Association(“family”,Class(“Person”,false), 0, 2,
Class(“Person”,false), 0, star)

Translation pattern:

primitive Linka.name ::=(id: Integer, type: Association,

a.memberEnd.at(1).name: Instancea.memberEnd.at(1).type.name,
a.memberEnd.at(2).name: Instancea.memberEnd.at(2).type.name).

Example:

primitive LinkFamily::=(id:Integer,type:Association,
child:InstancePerson, parent:InstancePerson).

Formula instructions pattern:

[Introduce(Linka.name, number )]

Example:

[Introduce(LinkFamily,2)]
Example of the Formula generated instances:

LinkFamily(5,
Association(“family”,Class(“Person”,false),0,2,

Class(“Person”,false),0,star),
InstancePerson(93, Class(‘‘Person’’,false)),
InstancePerson(96, Class(‘‘Person’’,false)))

primitive Class ::= (name: String,
isAbstract: Boolean).

Translation pattern:

Classc.name is Class(“c.name”, c.isAbstract)

Example:

ClassPerson is Class(“Person”, false)

Translation pattern:

primitive Instancec.name ::= (id: Integer,

type: Class).
Example:

primitive InstancePerson::=(id: Integer,
type: Class).

Formula instructions pattern:

[Introduce(Instancec.name, number )]
Example:

[Introduce(InstancePerson,2)]
Example of the Formula generated instances:

InstancePerson(93,Class(“Person”,false))
InstancePerson(96,Class(“Person”,false))

primitive StrProperty::=(name:String, def:String,
lower:Natural, upper:UpperBound).

...
primitive LiteralNullProperty::=(name: String, def: Null,...).
primitive UnlimitedNaturalProperty::=(name:String, def: UpperBound,.)
Property::= StrProperty + ...+ userDataTypeProperties.
primitive HasProperty ::= (owner: Classifier, prop: Property).

Translation pattern:

p.name+p.owner.nameP is p.typeProperty(“p.name”,p.default,

p.lowerValue,p.upperValue)

HasProperty(Class("p.owner,.name", p.owner.isAbstract),

p.typeProperty(“p.name”,p.default, p.lowerValue,p.upperValue))

Example:

namePersonP is StrProperty(“name”,“”,1,1)
HasProperty(Class(“Person”,false),StrProperty(“name”,“”,1,1))

Translation pattern:

primitive p.name+p.owner.nameSlot ::= (owner:Element,

prop:p.typeProperty, value: valueType)

Example:

primitive namePersonSlot::= (owner: Element, prop: StrProperty, value:String).

Formula instructions pattern:

[Introduce(p.name+p.owner.nameSlot, number )]

Example:

[Introduce(namePersonSlot,2)]
Example of the Formula generated instances:

namePersonSlot(InstancePerson(93,Class(“Person”,false)),
StrProperty(“name”,“”,1,1),202)

namePersonSlot(InstancePerson(96,Class(“Person”,false)),
StrProperty(“name”,“”,1,1),201)

Level Class Association Property

M2

M1

a

b

M0

Association primitive data types so that we can generally
refer to classes and associations. On the other hand, association
classes ϵ CD are translated in the same way than associations
but with the particularity of that they can have associated
properties. In particular, since they are translate as associations,
they can register the associated classes. Additionally, in our
proposal we have defined slots in such a way that their owners
are of type Element (see M1b translation of properties). This
Element data type is defined as the union of Instance and
Link, in such a way that we allow not only classes to have
properties but also association classes.

Finally, the Formula expressions resulted from the transla-
tion of a CD are distributed into four different Formula units.
On the one hand, Formula expressions defined at the meta–
model level (M2) are included into a Formula domain called
MetaLevelFD. Since the representation of the meta–level M2
is the same whatever CD is considered, this Formula domain
is defined once and used for each CD. An excerpt of the
MetaLevelFD domain has been presented in Figure 1. On the
other hand, Formula expressions defined at the model level
(M1) are distributed into two different units; the CDModelFM

model, which is constituted by the Formula expressions defined
in M1a, conforming with the MetaLevelFD domain, and the
InstanceLevelFD domain, constituted by the expressions de-
fined in M1b. Finally, the Formula expressions at the instance
level (M0) are included in the CDInstanceFPM partial model.
Starting from these units, Formula can reason about the valid
object class diagram, represented as instances of the elements
of the InstanceLevelFD domain, conforming the given CD,
represented by means of the CDModelFM model.

V. TRANSLATION OF CLASS DIAGRAM CONSTRAINTS

OCL integrity constraints undecidability has been tackled
in the literature by defining methods that allow UML/OCL
reasoning at some level. Examples of such methods are [6],

[14]; (1) those that allow only specific kinds of constraints,
(2) those that consider restricted models, (3) methods that do
not support automatic reasoning, or (4) those that ensure only
semi–decidable models. Our approach, which would fit within
the first type, identifies a significantly expressive fragment
of OCL and provides its translation to Formula for OCL
constraints’ decidable reasoning. In this section, we show that
our OCL fragment can be formally encoded in Formula, thus,
we guarantee finite reasoning for every OCL CD’s constraint
expressed using the constructors of our OCL fragment.

Our OCL to Formula translation relies on two foundations.
Firstly, an OCL expression can be represented by means of
First-Order Logic (FOL) expressions, taking into account that
FOL, although less expressive than OCL, is commonly used
for reasoning about the world using rules of deduction (see for
example [15]). Secondly, a FOL expression can be translated
into a logic constraint program P. More specifically, as stated
in [16], each constraint logic program P can be translated in
polynomial–time into first-order logic (FOL) according to its
Clark Completion (from now on, we refer to the result of this
translation as P∗). Roughly speaking, the Clark Completion
of a program P corresponds to the completion of every atom
or predicate symbol p in P. The Clark Completion captures
the reasonable assumption that the rules for each atom or
predicate symbol cover all of the cases where the atom is
true. Taking this into account, the Clark Completion of an
atom or predicate symbol can be represented as a combination
of term expressions and rules, evaluated in variables, giving
a true result. The inverse translation, that is, from the
FOL representation of P (P∗) to P can be carried out by
applying inverse versions of the Clark Completion algorithm,
which compile specifications into the logic program it directly
specifies, such as the one given in [17].

Based on these foundations, our proposal for the translation
of OCL constraints is presented in Figure 4. Firstly, the
OCL expression is translated to an equivalent FOL formula
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Formula

Constraint Logic

program

Figure. 4: Our approach for translating OCL constraints

(see step label 1 in Figure 4). Secondly, the predicates and
expressions of the resulted FOL formula are rewritten in terms
of Formula elements used to represent the class diagram as
stated in our approach described in Section IV, obtaining the
Clark Completion version of the final Formula logic program
corresponding to the OCL constraint, from now on FOL* (see
step label 2 in Figure 4). Thirdly, supported by the inverse
algorithm of Clark Completion, we obtain the Formula logic
program (see step label 3 in Figure 4). Finally, we can use
the Formula automated tool for reasoning about the Formula
model with the resulted expressions. Additionally, we note
that it is not necessary to have the OCL constraint initially
represented using the elements included in our OCL fragment,
but, when possible, we can carry out a preliminary step where
such OCL expression is redefined applying OCL equivalence
rules (see step label 0 in Figure 4), resulted in other OCL
expression whose constructs fit within our OCL fragment.

Next, we introduce the chosen OCL fragment and go on
to explain our approach for translating it. More specifically, in
order that the reader can get a better idea of such translating
approach, firstly we will explain the translation of a simple
OCL constraint, to serve as a reference explanation for the
translation of the remainder elements of our OCL fragment.

A. Introduction to the Chosen OCL Fragment

Each OCL constraint is defined in the ‘context’ of a specific
instance of the corresponding UML element, reserving the
‘self’ word to refer to the instance of the classifier on which the
expression is evaluated. Taking this into account, an OCL in-
variant I has the form: context C inv: expr(self),
where C is the class ϵ CD to which the invariant is applied and
expr(self) is an OCL expression resulting in a Boolean
value for each self ϵ C. In particular, this invariant states
that, for every instance self of C existing in a system state,
the property described by expr holds for self.

An OCL expression can be defined as a combination of
navigation paths with OCL operations, which specify restric-
tions on those paths. A navigation path can be defined as a se-
quence of roles’ names in associations (such as p.children,
being p a Person instance in Figure 3), attributes’ names
(such as c.name, being c a Company instance in Figure 3),
or operations (for example, c.hireEmployee(p)). Tak-
ing this into account, in Figure 5 we represent the syntax
of our specific fragment, where OCLExpr is defined in a
recursive manner. For example, an OCLExpr can be the result
of applying relational operations to AddExpr expressions.
Additionally, an OCLExpr can be the result of applying a
boolean operation BoolOper to a Path, or a Path to
which a SelectExpr is applied. An OCLExpr can be also
constituted by boolean combinations of these OCL expres-
sions (not, and and or). A Path expression represents the
structural way of defining navigation paths, starting from a

OCLExpr RelExpr |Path BoolOper  |Path SelectExpr

            not OCLExpr | OCLExpr1  and OCLExpr2

OCLExpr1  or OCLExpr2

Path PathItem  | PathItem.Path

PathItem    role | classAttr  | operation

roleName.role  | roleName.classAttr

roleName.oper  | roleName.transClosuOper

RelExpr AddExpr <,<=,>,>=,=,!= AddExpr

AddExpr MulExpr | AddExpr +/- AddExpr

MulExpr     Path | MulExpr * Path | MulExpr/Path

SelectExpr  -> select( OCLExpr) BoolOp|

            -> select( OCLExpr) SelectExpr

BoolOper       -> size()| -> forAll(OCLExpr)

Figure. 5: Syntax of the OCL fragment.

PathItem, by combining roles’ names, attributes’ names or
operations, with the dot operator. For an explanation of OCL,
we refer to [4].

B. Our Translation Approach

Formula does not have a concept similar to that of OCL
invariants but gives the possibility of defining queries, which
provide a way to represent invariant semantics. As way of
example of our approach, in this section we introduce the basic
rule for translating OCL invariants where the OCLExpr corre-
sponds to a simple relational expression RelExpr. We explain
this rule by applying it to the invariant context Person
inv: self.age >=18, which formalizes the constraint
“The people registered in the system must be older than 18
years old” (see Table II).

First–step. This step is carried out by means of an interpre-
tation function FOL(), which translates each OCL expression
expr(self) defined in an instance self ϵ C, into a First–
Order Logic (FOL) formula defined in the variable self (see
label (1) in the first step of Table II). Basis in first order logic
states that the universal quantifier corresponds to a negated
existential, so the previous expression is equivalent to the one
label (1’), where FOL(not expr(self)), corresponds to
the mapping of not expr(self) into First–Order Logic.

Second–step. As described previously, each constraint logic
program P can be translated into first-order logic (FOL)
according to its Clark Completion P∗ [16]. Roughly speaking,
the Clark Completion of an atom or predicate symbol can be
represented as a combination of term expressions and rules,
evaluated in variables, giving a true result.

Taking this into account, the second step is devoted to
represent the semantics given by the affirmative evaluation
of FOL(not expr(self)) in the collection of instances
self ∈ C, by means of Formula expressions. Since paths in
OCL are defined in terms of instances of the class diagram,
and in our approach such instances are defined by means
of the data types defined in the CDInstanceFPM partial
model, such Formula expressions are written in terms of the
InstanceclassName, LinkassociationName and/or proper-
tyName+ownerNameSlot data types. Based on this premise,
in this second step we rewrite the FOL expression FOL(not
expr(self)) in terms of Formula expressions by applying a
second function called FOL∗(). This function FOL∗() basically
represents the predicate FOL(not expr(self)) by using
the corresponding Formula terms and predicate symbols ∈
InstanceLevelFD, and Formula constraints, in such a way that
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Table. II: Translation of an invariant and example of use.

Translation of a RelExpr invariant
OCL Invariant: context C inv: expr(self)

First–step: ∀self ∈ C FOL(expr(self)). (1)
¬(∃self ∈ C FOL(not expr(self)). (1’)

Second–step: ¬(FOL∗(C) FOL∗[FOL(not expr(self))]) (2)
Third–step: query:=CLP(FOL∗[FOL(not expr(self))])

conforms := ! query. (3)
Example of application
OCL Invariant: context Person inv: self.age >=18

First–step: ∀self ∈ Person age(self)>=18. (1)
¬(∃self ∈ Person age(self)<18). (1’)

Second–step: ¬(∃self ∈ InstancePerson(id,type)
agePersonSlot(self,def,val)
val<18).(2)

Third–step: query:=agePersonSlot(self,_,val),
val<18.
conforms := ! query. (3)

Table. III: Translation of part of our OCL fragment.

OCL expression Translation approach
E1 and E2 CLP(FOL∗(FOL(E1)))&CLP(FOL∗(FOL(E2)))
E1 or E2 CLP(FOL∗(FOL(E1)))|CLP(FOL∗(FOL(E2)))
not E CLP(FOL∗(FOL(not E)))
C-> size() count(CLP(FOL∗(FOL(C)))).
C-> query:=CLP(FOL∗(FOL(not exp(c)))).
forAll(c|exp(c) conforms:= ! query.
C-> SC,exprType::=(self:Tself,sele:Tsele)
select(c|exp(c) SC,exprType(self,sele):-

CLP(FOL∗(FOL(exp(c))))

the resulted expression is evaluated to true (see step labeled
(2) in Table II). In particular, the application of this step to our
constraint consists of representing age(self)<18 in terms
of the agePersonSlot whose val property is less than 18.

Third–step. Taking into account the semantics of queries in
Formula, the FOL expression given in the second step is finally
represented by means of the definition of a query and the
verification of its negation in the conforms query (see step
labeled (3) in Table II). This step is materialized by means of
the application of the function CLP(), which basically rewrites
the terms resulted from (2), and joins them by ‘,’.

To sum up, the translation of an invariant I is carried out
by means of the composition of the three functions, CLP ◦
FOL∗ ◦ FOL().

C. Translation Approach of More Complex OCL Expressions

Having presented our approach for the translation of a
simple OCL invariant, next we make some remarks regarding
the translation of the remainder elements in our OCL fragment.
More specifically, in Table III we present the translation rules
we define for the conjunction, disjunction and the negation
operators considered in the OCL fragment. For example, we
describe the translation of an OCL expression with the con-
junction operator E1 and E2 as: CLP(FOL∗(FOL(E1)))
& CLP(FOL∗(FOL(E2))), where each expression is trans-
lated recursively using the translation rules presented in the
rest of this paper by applying the defined functions. In

particular, if CLP(FOL∗(FOL(E1))) results in the verifi-
cation of a query !query1 in the conforms one, and
CLP(FOL∗(FOL(E2))) results in the verification of an-
other query !query2, the result of translating the conjunc-
tion is the expression !query1 & !query2 specified in
the conforms query (that is, conforms:= !query1 &
!query2). The translation of the disjunction operator, on the
other hand, results in the expression conforms:= !query1
| !query2, being !query1 and !query2 the translations
of E1 and CLP(FOL∗(FOL(E2))), respectively. Finally, the
translation of the negation operator results in the expression
conforms:= !query, being !query the translation of
not E1.

The remainder OCL expressions in our framework in-
clude operations in collections. Excluding the select and
transitive closure elements, whose translation re-
quires extra attention, we consider that the translation of the
remainder OCL elements (forAll [4](p. 29, Section 7.7.3)
and size [4] (p. 157, Sec. 11.7.1)) can be easily understood
by considering our previous explanations. Next, we briefly
describe our approach for their translation into Formula.

Select operation. Since this operation refers to obtaining a
subcollection from a set of elements ([4] pp. 27, Sec. 7.1.1),
its translation consists of defining a new Formula data type
and populate it with the facts representing the members in
the collection we want to select (see the first and second
lines, respectively, of the translation of the select op-
eration in Table III). As a way of example, if we want
to collect the female employees of a company, we define
the type: FemaleEmp::= (self: InstanceCompany,
sele:InstanceEmployee), and populate it by means of
the following rule, which gathers only female employees:

FemaleEmp(self,sele) :-
LinkContract(_,_,sele,self),
genderPersonSlot(sele,_, val),
val=female.

Transitive closure. Transitive closure is normally needed to
represent model properties which are defined in a recursively
fashion. The translation of closures is not straightforward since
they are not finitely axiomatizable in first order logic, and OCL
also does not support them natively [18]. Nevertheless, it is
possible to define the transitive closure of relations that are
known to be finite and acyclic. In particular, for its translation
we have based on both, the definition of transitive closure
provided in [18], and the representation in CLP of acyclicity
constraints provided in [11] (p. 3), and proposed a translation
based on defining Formula rules, considering the fact that CLP
exposes fixpoint operators via recursive rules. Additionally, the
translation of this operation allows us to support aggregation.

Finally, the Formula model resulted from the translation of
a class diagram model annotated with OCL constraints (that
is, the 4 Formula units including the Formula translation of the
OCL constraints), is used by Formula for reasoning about it.
More specifically, the tool inspects the Formula model looking
for a valid and non–empty instantiation of the CD/OCL model
to proof its satisfiability. If the result is empty, the defined
CD/OCL model is not satisfiable. Otherwise, Formula proposes
a conforming instantiation model of the defined CD/OCL
model, according to the desired software system settings.
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1

3

2

Figure. 6: A snapshot of the CD2Formula plug–in.

VI. AUTOMATIC TRANSLATION

In order to manually transform a class diagram into the
Formula language, a professional with both UML and Formula
skills may be required. Additionally, such an encoding process
may entail a big effort depending on the class diagram used.
The challenge is to perform such a transformation in a viable
and cost–effective way. The complexity of some software
designed models together with their possibility of change over
time, make the manual transformation of every class diagram
representing a software model into the input language of a
model finder tool, a cumbersome and costly endeavor. To
overcome these challenges, we have based on an MDA tool-
approach to automatically carry out the translation of a class
diagram to Formula. More specifically, we have developed
an Eclipse plug–in, called CD2Formula plug–in, which gives
support for the class diagram to Formula transformation as
stated in our proposal (see in Figure 6 a snapshot of the
plug–in). The idea is that the defined plugin together with
the Formula tool, constitute the complete proposed framework
for class diagram to Formula specification. Firstly, by means
of the CD2Formula plugin we automatically generate, from a
class diagram, the Formula specification, which is taken by
the Formula model finder for reasoning about the input class
diagram model.

The core of our plug–in is that it itself uses a MDA–
based plug–in that gives support for customizable model–to–
text (M2T) transformations. Among the large amount of MDA-
based tools in the literature, we have chosen the MOFScript
Eclipse plug-in, which we have already used in previous
works [19], [20]. MOFScript is an Eclipse plug–in [21], [22]
that implements the MOFScript language, which was one of
the candidates in the OMG RFP process on MOF Model-to-
Text Transformation [23]. As input models, MOFScript can
use any model that complies with the EMF [24] metamodel.
From these input models, the tool can generate any arbitrary
text (such as Java code or XML) by using a defined set of
MOFScript transformations. Each MOFScript transformation

consists of transformation rules that are basically the same as
functions, and which define the behavior of the transformation.
The transformation rules are defined based on the metamodel
and subsequently compiled and executed on the model.

In our particular case, we use the UML 2.0 metamodel
and a class diagram that represents the software design as the
model. To create class diagram models, we can use any UML
2.0 compliant tool that can create models, as .uml extension
files, in the XMI format supported by EMF (e.g., the UML2
Eclipse plug-in [25]).

As far as the Formula program generation is concerned,
an important remark must be made. In our proposal for the
Formula representation of a UML class diagram, we need to
include specific Formula instructions to tell the Formula solver
the number of valid instances (for example, the number of class
and association instances), we would like for the final solution.
Such number of instances is set by means of the Introduce
Formula instructions, which, in our particular case, are in-
cluded in the CDInstanceFPM partial model defined for each
class diagram. Since such number of instances should be estab-
lished by the user before carrying out the transformation from
the class diagram to the Formula specification, we firstly need
to ask the user for such information, which is specific for each
class diagram. Taking this into account, we have defined two
sets of MOFScript transformations, devoted respectively to: (1)
generate a java GUI (Graphical User Interface), which ask the
user for the required information, and (2) create the Formula
specification for the class diagram (whose CDInstanceFPM

partial model is generated taking into account the values
inserted by the user by means of the previously generated
GUI interface). Both sets of MOFScript transformation files are
devoted to produce the print statements that generate the java
GUI interface and the different Formula units, respectively.

Particularly, in the definition of the MOFScript transfor-
mations, we have followed a concrete idea, which consists on
defining two kinds of transformation rules: (1) those that tra-
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Figure. 7: An extract of a Mofscript rule.

verse the model and collect the information in it and (2) those
that generate actual code (java print statements or Formula
structures, respectively). The first kind gathers data and records
them in collections (such as lists or hashtables) or other built-
in types. Finally, the code generation rules use this information
in print statements. As a way of example, an extract of one of
the defined rules is shown in Figure 7. In particular, this rule
called CDToCDModel will create the Formula expressions that
constitute the CDModelFM model (such as classPerson
is Class(’Person’, ’false’)).

Regarding the MOFScript transformation files defined
to generate the Formula units, we have created 3 files:
main.m2t, helpers.m2t, and FormulaUnits.m2t.
The transformation file main.m2t contains the main rule
that actually generates the complete Formula specification of
the class diagram by using specific rules from the rest of the
defined transformation files. The file helpers.m2t has been
defined to be used as a library, containing commonly used
rules that are required by other rules during the transformation
process. Finally, the FormulaUnits.m2t file contains the
rules devoted to finally produce the print Formula structures
that constitute the three Formula units in our approach, which
depend on the specific class diagram.

As for the generation of the GUI interface for a specific
class diagram, we have defined an only MOFScript transfor-
mation file called main.m2t. This file defines MOFScript
rules that mainly traverse the class diagram and generate the
java print statements that define the different labels and
text fields of the form, together with a button to send
the inserted data (see the GUI interface CD2Formula labeled
2 in Figure 6) to be used for the second transformation.
In particular, the second group of MOFScript files gets the
data given by the user through the GUI interface, thanks to
a specific MOFScript’s functionality. MOFScript allows the
possibility of invoking java methods from MOFScript rules and
retrieving the returned information. Taking this functionality

into account, the java GUI interface file contains a specific java
method in such a way that, when the form in the java GUI
interface is filled out, such method returns a hashtable with
the pairs (type of instance–number of instances desired). In
this way, the second group of MOFScript transformation files
takes such information to print the corresponding Introduce
Formula instructions of the final Formula specification.

We want to highlight that since the MOFScript transfor-
mation rules are defined based on our transformation rules
between a class diagram and the Formula model, and these
transformation rules are defined independently of the class
diagram used, the MOFScript transformations do not have to
be modified to translate a different class diagram.

Having defined the two sets of MOFScript transforma-
tion files, we have developed an Eclipse plug–in called
CD2Formula in such a way that it integrates such MOFScript
rules so that the transformation from a class diagram to
its Formula specification can be generated in an automatic
fashion. More specifically, the plug–in provides a menu option
available for each UML class diagram (specified as .uml
extension files), which allows the execution of the MOF-
Script transformations. The transformation process encom-
passes three steps. Firstly, the user chooses the menu option
the plug–in provides, which executes the first set of MOFScript
transformations that lead to the dynamic creation of the GUI
interface. Secondly, the plug–in refreshes the Eclipse project
so that the corresponding interface java class can be created
and instantiated. Thirdly, the second set of MOFScript trans-
formations is executed, which (1) leads to the invocation of the
java method that shows the interface, asking the user for the
required values, (2) retrieves the values inserted by the user in
the interface, and (3) generates the Formula specification (that
is, the FormulaSpecifications.4ml file), using such
values. Finally, the resulted file is used by the Formula tool
for reasoning about the class diagram.
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About the usability of the proposal and the developed plug–
in, we have to say that it is only required a professional with
OCL skills in order to be able to apply our OCL to Formula
translation proposal to the OCL constraints defined in the
specific class diagram. Excluding it, no specific knowledge
would be required for managing the plug-in since its interface
has been developed so that it is simple and easy to use.

VII. DISCUSSION AND RELATED WORK

As described previously, the formalization and analysis of
UML class diagrams can be done by means of translating
the model to other language that preserves its semantics,
and finally, using the resulted translation to reason about the
design. Taking into account that there is not an only language
for materializing such translation, and that several translation
approaches can be established using a same language, a
discussion about the semantic support of the language, together
with the strengths and weaknesses of the particular translation
approach, is worthwhile. Our work bets on using Formula
for the semantics preserving translation of the models to be
verified. As for the use of Formula instead of other analyzers,
in particular, Formula authors present in [11] a comparison
with other tools, both SAT (Boolean Satisfiability) solvers and
alternatives such as ECLiPSE and UMLtoCSP, focusing mainly
on Alloy [26], for being the closest tool to Formula. Although
the Formula authors provide a careful comparison with Alloy
in [11], it is worth noting the strengths of Formula, such as a
more expressive language or its model finding problems, which
are in general undecidable.

Our approach follows a multilevel MOF-like framework
based on the one proposed in [11]. On the one hand, we
propose a more faithful representation of the basic UML
metamodel and instance domain elements [3]. We consider that
providing a translation that captures the structural distribution
of the MOF architecture can contribute to ease the application
and understandability of the representation of a CD/OCL
model into Formula. We also give support for the translation of
more metamodel elements (such as full support to generaliza-
tion, property types other than Integer, String and Boolean,
including user defined data types, property’s multiplicities,
etc.), thus providing a richer framework. Additionally, we
enhance the proposal given in [11] by identifying an expressive
fragment of OCL, which guarantees finite satisfiability and
providing a formalization of the transformations from such
OCL fragment to Formula. At this respect, several related
works can be cited, being one of the most complete proposals
the one given in [14]. In [14], the authors define a fragment
of OCL called OCL–lite, and prove the encoding of such a
fragment in the description logic ALCI, so that Description
Logic techniques and tools can be used to reason about class
diagrams annotated with OCL–lite constraints. A difference of
this approach with ours is the fact that, although the chosen
fragment is quite similar than ours, we have tried to identify
a simplest fragment so that no element included in it can be
inferred from other constructors in the fragment by applying
direct OCL equivalences (such as the implies operator). In
our particular case, there are several OCL operations and
expressions whose representation in Formula is straightforward
by applying equivalences (such as the exists [4] (p. 30, Sec.
7.7.4), isEmpty/notEmpty [4] (p. 157, Sec. 11.7.1), xor [4]
(p. 153, Sec. 11.5.4), or reject [4] (p. 27, Sec. 7.7.1)).

On the other hand, there are other elements, such as
oclIsTypeOf, which is considered in the OCL–lite fragment
but that can not be represented into formula. More specifically,
Formula does not support the translation of, for example,
the following OCL properties [4] (p. 146, Sec. 11.3); (1)
oclIsTypeOf(t : OclType), which is used to know
whether the object to which it is applied is of type t, and
(2) oclIsKindOf(t : OclType), which returns true
whether t is either the direct type of the object to which the
operation is applied or a supertype of the object. As for the
representation in Formula of the oclIsTypeOf operation,
there is no way to know the type of a variable by using the
Formula syntax, but the mismatch among variables and types
is verified by the Formula checker. The same argument is
applied to the OclIsKindOf operation. Similarly happens
with OCL operations that are state dependent (such as the op-
erations oclIsInState(t: OclType), which evaluates
whether the object is in a specific state, and oclIsNew(t:
OclType), which checks whether the object does not exist in
the previous state of the system but exists in the current state).
In both cases, a UML statemachine diagram is required, and
although representing UML statemachines in Formula could
constitute an interesting issue for future work in order to give
support to reason also about dynamic system models, it is
out of the scope of this work. Focusing on reasoning about
static class diagrams models, in spite of these operators, we
give support to other not straightforward operators, such as
transitive closure, not normally included in related works.

VIII. CONCLUSION AND FUTURE WORK

We present an overall framework to reason about
UML/OCL models based on the CLP paradigm, using For-
mula. Our framework provides a way to translate a UML
model into Formula, following a MOF-like approach. We also
identify an expressive fragment of OCL, which guarantees
finite satisfiability and we provide an approach for translating
it to Formula. We also provide an implementation of our UML
to Formula proposal by the development, following a Model
Driven Architecture (MDA) approach, of the CD2Formula
plug–in. Particularly, starting from a UML class diagram
representing the static structure of a software system, our plug–
in carries out the automatic generation of the Formula specifi-
cation corresponding to such UML model, by simply choosing
a menu option the plug–in provides. The proposed framework
can be used to reason, validate and verify UML software
designs by checking correctness properties and generating
model instances using the model exploration tool Formula.

Although we support the automatic translation from a
UML class diagram to Formula by means of our plug–in, the
automatic translation to Formula of specific class diagram’s
OCL constraints specified using our OCL fragment constitutes
a remaining work.
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