
Implementation Variants for Position Lists

Andreas Schmidt∗†, Daniel Kimmig†, and Steffen Scholz†
∗ Department of Computer Science and Business Information Systems,

Karlsruhe University of Applied Sciences
Karlsruhe, Germany

Email: andreas.schmidt@hs-karlsruhe.de
† Institute for Applied Computer Science

Karlsruhe Institute of Technology
Karlsruhe, Germany

Email: {andreas.schmidt, daniel.kimmig, steffen.scholz}@kit.edu

Abstract—Within “traditional” database systems (row store),
the values of a tuple are usually stored in a physically connected
manner. In a column store by contrast, all values of each single
column are stored one after another. This orthogonal storage
organization has the advantage that only data from columns
which are of relevance to a query have to be loaded during
query processing. Due to the storage organization of a row
store, all columns of a tuple are loaded, despite the fact that
only a small portion of them are of interest to processing.
The orthogonal organization has some serious implications on
query processing: While in a traditional row store, complex
predicates can be evaluated at once, this is not possible in
a column store. To evaluate complex conditions on multiple
columns, an additional data structure is required, the so-called
Position List. At first glance these Position Lists can easily be
implemented as a dynamic array. But there are a number of
situations where this is not the first choice in terms of memory
consumption and time behavior. This paper will discuss some
implementation alternatives based on (compressed) bitvectors.
A number of tests will be reported and the runtime behavior
and memory consumption of the different implementations
will be presented. We additionally extended the existing WAH
library for compressed bitvectors by a number of new methods
to be used for the purpose of implementing the functionality of
Position Lists based on (compressed) bitvectors. Finally, some
recommendation will be made as to the situations in which
the different implementation variants for Position Lists will be
suited best. Their suitability depends strongly on the selectivity
of a query or predicate.

Keywords–Column stores; PositionList implementation vari-
ants; bitvector; compression; run length encoding; performance
measure

I. INTRODUCTION

This article is an extended version of a paper entitled
Considerations about Implementation Variants for Position
Lists [1] presented at the Fourth International Conference on
Advances in Databases, Knowledge, and Data Applications
in Sevilla, Spain. Some important extensions include the
extension of the WAH library by a number of transformation
functions between different representation forms of a Posi-
tion List as well as the implementation of a special append-
based bitset function on compressed bitvectors, which allows

the usage of compressed bitvectors in the typical Position
List generation process when evaluating a single predicate.

Nowadays, modern processors utilize one or more cache
hierarchies to accelerate access to main memory. A cache
is a small and fast memory which resides between the main
memory and the CPU. In case the CPU requests data from
the main memory, it is first checked, whether these data are
already contained in the cache. In this case, the item is sent
directly from the cache to the CPU, without accessing the
much slower main memory. If the item is not yet in the
cache, it is first copied from the main memory to the cache
and then sent to the CPU. However, not only the requested
data item, but a whole cache line, which is between 8 and
128 bytes long, is copied into the cache. This prefetching
of data has the advantage of requests to subsequent items
being much faster, because they already reside within the
cache. Depending on the concrete architecture of the CPU,
the speed gain when accessing a data set in the first-level
cache is up to two orders of magnitude compared to regular
main memory access [2]. This means that when a requested
data item is already in the first-level cache, the access time is
much faster compared to the situation, when the data item
must be loaded from the main memory (this situation is
called a cache miss). The use of special data structures which
increase cache locality (the preferred access of data items
already residing in the cache) is called cache-conscious
programming.

Column stores take advantage of this prefetching behavior,
because values of individual columns are physically con-
nected. Therefore, they often already reside in the cache
when requested, as the execution of complex queries is
processed column by column rather than tuple by tuple. This
difference between a “traditional” row store and a column
store is illustrated in Figure 1. In the upper part of the figure,
a relation, consisting of six tuples, each with five columns,
is shown. The lower part of the figure shows the physical
layout of this relation on disk or in the main memory. On
the left side, the row store layout is represented. The row
store stores all values of one tuple in a physically connected

391

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ID Name Firstname date-of-birth sex

31 Waits Tom 1949-12-07 M

45 Benigni Roberto 1952-10-27 M

65 Jarmusch Jim 1953-01-22 M

77 Ryder Winona 1971-10-29 F

81 Rowlands Gena 1930-06-19 F

82 Perez Rosa 1964-09-06 F

Ro
w-
St
or
e Column-Store

31 Waits Tom 1949-12-07 M

31
45 Benigni Roberto 1952-10-27 M

65 Jarmusch Jim 1953-01-22 M

77 Ryder Winona 1971-10-29 F

81 Rowlands Gena 1930-06-19 F

82 Perez Rosa 1964-09-06 F

45

65

77

81

82

Benigni

Jarmusch

Ryder

Rowlands

Perez

1952-10-27

1953-01-22

1971-10-29

1930-06-19

1964-09-06

M

M

F

F

F

 Waits Tom 1949-12-07 M

Roberto

Jim

Winona

Gena

Rosa

Figure 1. Comparison of the layouts of a row store and a column store (from [3])

manner. In contrast to this, a column store contains all values
of each single column one after another.

This also means that the decision whether a tuple fulfills
a complex condition on more than one column is generally
delayed until the last column is processed. Consequently,
additional data structures are required to administrate the
status of a tuple in a query. These data structures are referred
to as Position Lists. A Position List stores information about
matching tuples. The information is stored in the form of a
Tuple IDentifier (TID). The TID is nothing more than the
position of a value in a column. Execution of a complex
query generates a Position List with entries of the qualified
tuples for every simple predicate.

Complex predicates on multiple columns can be evaluated
in two different ways. First, as shown in Figure 2, the pred-
icates can be evaluated separately, and in a subsequent step,
the resulting Position Lists can be merged. The advantage
of this variant is, that the evaluation of the predicates can
be done in parallel. A drawback of this solution is, that all
column values must be evaluated.

In contrast to this, the evaluation of the query can also
be done sequentially, as shown in Figure 3. In this case, a
Position List representing the result of a previously evaluated
predicate is an additional input parameter for the evaluation
of the second predicate. Not all column values have to be
evaluated, but only those for which an entry in the first
Position List exists. The drawback of this solution is the
strict sequential program flow and a slightly more complex
execution, which may probably cause more cache misses
compared to the parallel version. Which of the variants is
better suited depends on the boundary conditions of the
query.

In previous work, we developed the Column Store Toolkit
(CSTK) [3] and used it as a starting point for further research

birthdate

1949-12-07

1952-10-27

1953-01-22

1971-10-29

1930-06-19

1964-09-06

sex

 M
 M

 M

 F

 F

 F

PL2

4

6

5

PL1

1

3

5

2

sex=’F’birthdate < ’1960-01-01’

PL3

5

and

Figure 2. Isolated evaluation of predicates on their corresponding Position
Lists and subsequent merging of the resulting Position Lists (from [3])

in the field of optimizing SQL queries based on a column
store architecture [4].

The main objective of this paper is to present an in-depth
analysis of different implementation variants of Position
Lists and to demonstrate their advantages and disadvantages
in different situations in terms of runtime behavior and
memory consumption.

The paper is structured as follows. After giving an
overview over related work in the next section, we will
discuss some specific details of Position Lists. Then, the
most important components of the CSTK will be introduced.
After that, a number of experiments with respect to runtime
behavior and memory consumption will be performed in

392

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

birthdate

1949-12-07

1952-10-27

1953-01-22

1971-10-29

1930-06-19

1964-09-06

sex

 M
 M

 M

 F

 F

 F

PL1

1

3

5

2

birthdate < ’1960-01-01’

PL3

5

and sex=’F’

Figure 3. Iterative evaluation of predicates, using Position Lists as
additional parameters

the main part. Finally, results will be summarized, and an
outlook will be given on future research activities.

II. RELATED WORK

First work addressing column stores (vertical storage
orientation) is dated back into the 80th [5], [6]. During the
last decade, a number of new research prototypes, based
on a vertical partitioning of data, appeared and did show
some advantages. From these systems, C-Store [7] and
MonetDB [8] are the most notably ones. On the commercial
side, Infobright [9], SAP-Hana [10], Sybase IQ [11], and
Vertica [12] (a commercial version of C-Store), amongst
others, appeared. Today, also big players like Oracle and
Microsoft implemented columns store technologies into their
database systems [13], [14]. Various publications compare
the performance of column stores with that of row stores
for different workloads [7], [15], [16]. In contrary, [17]
examines different execution plan variants for column stores,
while [18] considers the impact of compression. Following
the work in [17], we examine different implementation
variants for the underlying data structures and algorithms
of the operations used in the execution plan of a query.

Abadi et. al. in [19] mention different implementation
variants for Position Lists, i.e., a simple array, a bitstring or a
set of ranges of positions, but did not compare these different
solutions with respect to runtime behaviour. In contrast
to the previous mentioned work, we do not use a fixed
structure for implementing the Position Lists, but compare
the runtime and memory consumption behaviour of different
implementation variants with respect to the selectivity of a
predicate.

III. POSITION LISTS

From a logical point of view, a Position List is nothing
more than an array or list with elements of the data type
unsigned integer (UINT) as far as structure is concerned.
However, it has a special semantics. The Position List stores
TIDs. A Position List is the result of a query via predicate(s)
on a Column, where the actual values are of no interest,
whereas the information about the qualified data sets is
desired. Position Lists store the TIDs in ascending order
without duplicates. In other words, a Position List stores the
information for each tuple no matter whether it belongs to
a result (so far) or not.

A. Operations on Position Lists

The fundamental logical operations on Position Lists are
appending TIDs at the end (write operation), iterating over
the list of TIDs (read operation), and performing and/or
operations on complete lists.

Further operations that are mainly based on this basic
functionality, include the materialization [17] of the corre-
sponding values from the requested columns, the storage of
the whole list or parts of it in a file, and the import from a
file.

B. Implementation Variants

Based on the logical structure and behavior discussed
above, the first intuitive implementation of a Position List
is using a dynamic array (an array of flexible size) of
unsigned integer values. The advantage of this variant is,
that the implementation is straight forward and the storage
of the TIDs is cache-conscious [20], [21] in the context of
the above-mentioned operations like iterating, storing, and
and/or operations.

As Position Lists store the TIDs in ascending order
without duplicates, typical and/or operations are very fast,
as the cost for both operations is O(|Pl1|+ |Pl2|).

One big drawback of the implementation as a dynamic
array is the fact, that the lists may be very large. This is
especially true for predicates over multiple columns, where
no predicate has a high selectivity. In this context, high
selectivity means, that only a small number of tuples qualify
the condition. A low selectivity, by contrast, means that
a lot of tuples satisfy the condition. Typical predicates of
low selectivity are the “family status” or the “gender” of a
person. Let us consider a conjunctive query consisting of
6 predicates on different columns. Each single predicate has
a selectivity of up to 50% (i.e., gender, family status, etc.).
The overall selectivity of the query is about 1.5% of the
original number of tuples, but the size of the cardinality of
the individual Position Lists is up to 50% of the original
table. Starting with the predicate of the highest selectivity
and iteratively examining the values of tuples from the sub-
sequent columns which qualified previously (see Figure 3)
can reduce this problem. However, if no or only vague

393

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

information about the selectivity of the different predicates
is available, this can be a serious problem. Figure 4 shows
the size of a Position List in megabytes with respect to the
selectivity of the predicate for a 100 million tuple table. In
the worst case, the resulting Position List can be bigger than
the original column (e.g., for columns with binary values or
a small number of possible values only).

 0

 50

 100

 150

 200

 0.0001 0.001 0.01 0.1 0.5

m
em

or
y

co
ns

um
pt

io
n

(in
 M

B
)

selectivity

Static array

Figure 4. Memory consumption of a Position List implemented as array
(logarithmic scale on x-axis)

The problem of the unpredictable size of the intermediate
Position Lists can be prevented by using a bitvector to
represent the Position List. Here, every tuple is represented
by one bit. A value of ’1’ means that the tuple belongs to
the (intermediate) result, a value of ’0’ means that the tuple
does not belong to the result.

This has the advantage of the size of a Position List being
exactly predictable, independently of the selectivity of the
predicate. The selectivity only has impact on how many bits
are set to ’1’. Moreover, the two important operations and
and or can be mapped on the respective primitive processor
commands, which makes the operations fast. If Position
Lists are sparse, bitvectors can also be compressed very well
using run length encoding (RLE) [22]. The idea behind RLE
encoding is that if only a small number of bits are one, the
’0’ bits are not stored physically, but only the number of ’0’
bits are stored.

Figure 5 presents a simple example of this principle.

000000000000000100000000000001000000010000000000000001

17 X ’0’ 1 13 X ’0’ 1 7 X ’0’ 1 15 X ’0’ 1

Figure 5. Principle of run length encoding (RLE)

The Word Aligned Hybrid algorithm (WAH) [23] uses this
principle and distinguishes between two word types: fills and

literals. The two word types are distinguished by the most
significant bit, so 31 (63) bits remain for the stored bits per
word or the length field. A literal is a word consisting of 31
(63) bits, of which at least one bit is ’1’. A 0-fill consists of
a multiple of 31 (63) ’0’ bits which are stored in one word.
The maximum number of ’0’ bits which can be stored in
one word is 31 ∗ 231 (resp. 63 ∗ 263 for the 64-bit version).

The necessary operations like iterating, and, or can be
performed on the compressed lists, thus avoiding a tempo-
rary decompression of the compressed representation. In the
context of this paper, the bitvector implementation of the
WAH algorithm and a simple plain uncompressed bitvector
implementation are used. The WAH algorithm is considered
to be one of the fastest algorithms for performing logical
and/or operations on compressed bitvectors.

IV. THE COLUMN STORE TOOLKIT

The Column Store Toolkit (CSTK) was deveolped as
a toolkit with a minimum amount of basic components
and operations required for building column store appli-
cations. These basic components were used as catalysts
for further research into column store applications and for
building data-intensive, high-performance applications with
minimum expenditure.

The main focus of our components is on modeling the
individual columns, which may occur both in the secondary
store as well as in main memory. Their types of representa-
tion may vary. To store all values of a column, for example,
it is not necessary to explicitly store the TID for each value,
because it can be determined by its position (dense storage).
To handle the results of a filter operation, however, the TIDs
must be stored explicitly with the value (sparse storage).

Another important component is the already discussed
Position List. Just like columns, two different representation
forms are available for main and secondary storage. In this
paper, it is concentrated on the main memory behavior of
the Position Lists.

To generate results or to handle intermediate results con-
sisting of attributes of several columns, data structures are
required for storing several values (so-called multi-columns).
These may also be used for the development of hybrid
systems as well as for comparing the performance of row
and column store systems.

The operations mainly focus on writing, reading, merging,
splitting, sorting, projecting, and filtering data. Predicates
and/or Position Lists are applied as filtering arguments.

Figure 6 presents an overview of the most important
operations and transformations among the components. The
arrows show the operations among the different components
(ColumnFile, Dense-/Sparse ColumnArray, PositionList, and
PositionListFile). For a detailed description of the opera-
tions, see [3].

394

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Dense ColumnArray

 ColumnFile

 PositionList

 PositionListFile

 Sparse ColumnArray

load

filter

filter/split/sort(project)

filter

 load

 store

split/sort/(project)
filter/split/sort

store

store

filter/sort

filter/extract

merge

sort

Figure 6. CSTK: Components and operations (from [3])

V. MEASUREMENTS

A. Elemental Operations

1) Experimental setup: All tests were performed on a 64-
bit laptop running Windows 7 Enterprise with an Intel(R)
Core(TM) i7-3520M CPU @ 2 x 2.90 GHZ and 8 GB of
RAM. The used C++ compiler was gcc 4.5.3.

2) Memory consumption: In a first experiment, we com-
pare the size of the different data structures with respect to
memory consumption. As shown in Figure 7, the behavior
of the array implementation is quite good for very high
selectivities (0.01 and below), but changes for the worse
at medium and low selectivities. Uncompressed bitvectors
(plain bitvector, WAH-uncompressed) behave independently
for all selectivities, their size is determined by the number
of tuples in a table only. Compressed bitvectors show a very
good behavior for all selectivities. If the selectivities get low,
they behave like uncompressed bitvectors (compared to a
pure uncompressed implementation of a bitvector, there will
be a slight overhead of 1/32 resp. 1/64.). From a selectivity
of about 3%, the array has a higher memory consumption
than the uncompressed bitvector.

 0

 5

 10

 15

 20

 0.0001 0.001 0.01 0.1 0.5

m
em

or
y

co
ns

um
pt

io
n

(in
 M

B
)

selectivity

Plain Bitvector, 64 bit
WAH-Bitvector, compressed, 32 bit

WAH-Bitvector, uncompressed, 32-bit
WAH-Bitvector, compressed, 64 bit

WAH-Bitvector, uncompressed, 64-bit
Array

Figure 7. Memory consumption of different implementation alternatives
for Position Lists

3) Iterating over TIDs: In the next experiment, we ex-
amine the runtime behavior of the two elemental operations:

• Appending TIDs on a Position List
• Iterating over the TIDs in a Position List.

These two operations are heavily used in the implementation
of the CSTK components.

We implement a simple bitvector class on our own (with-
out compression facility) and also use the well-known WAH
algorithm. The overhead of the uncompressed representation
of WAH is quite small in terms of both runtime and memory
consumption.

In contrast to the original implementation of the WAH
algorithm, we also use hardware support for special opera-
tions. The Leading Zero Count Instruction (LZCNT) is used
to find the ’1’ bits inside a processor word. This leads to
a performance advantage of a factor of 3 compared to the
orginal WAH version.

In our first experiment, we take a table of 100 million
tuples and formulate predicates with different selectivities
between 0.0001 and 0.5. The TIDs of the qualified tuples
are then stored in the different representation forms (plain
bitvector, WAH bitvector uncompressed/compressed with 32
and 64 bit word size, array). After that, we measure the time
to iterate over all the stored TIDs.

Figure 8 presents an overview of the runtime behavior for
our different implementations:

The fastest implementation for all selectivities is the
dynamic array. In contrast to this, the worst runtime behavior
is reached by the standard WAH iterator (both 32- and 64-bit
version), which therefore will not be considered any further.
More interesing values come from the iterators which use
the builtin clzl instruction from the gnu compiler family,
which is mapped on the LZCNT instruction, if available (the
plain bitvector implementation is the fastest).

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.0001 0.001 0.01 0.1 0.5

tim
e

(s
ec

.)

selectivity

WAH-uncompressed 32 bit
WAH-compressed, 32 bit

WAH-hardware support, uncompressed, 32 bit
WAH-hardware support, compressed, 32 bit

WAH-uncompressed 64 bit
WAH-compressed, 64 bit

WAH-hardware support, uncompressed, 64 bit
WAH-hardware support, compressed, 64 bit

Plain Bitvector, uncompressed 64 bit
Array

Figure 8. Measured time to iterate over 100 million data sets with different
selectivities

395

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Two more detailed graphs are given in Figure 9 and
Figure 10. Here the static array implementation and the
LZCNT-supported iterators are considered for high and low
selectivity, respectively.

While Figure 9 shows the details for selectivities between
0.0001 and 0.05, Figure 10 shows the lower selectivities
between 0.05 and 0.5. One interesting point is, that with
low selectivity (Figure 10) the hardware-supported iteration
behaves differently for the 32- and 64-bit WAH version.
While the compressed version is faster for the 32-bit version,
the opposite is true for the 64-bit version. This behavior
can be found with the better compression ratio of the 32-
bit version for lower selectivities, which leads to a smaller
amount of memory which has to be loaded into the CPU.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.0001 0.001 0.01

tim
e

(s
ec

.)

selectivity

Hardware support, uncompressed, 32 bit
Hardware support, compressed, 32 bit

WAH-hardware support, uncompressed, 64 bit
WAH-hardware support, compressed, 64 bit

Plain Bitvector, uncompressed 64 bit
Array

Figure 9. Measured time to iterate over 100 million data sets with high
selectivity

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.01 0.1 0.5

tim
e

(s
ec

.)

selectivity

WAH-hardware support, uncompressed, 32 bit
WAH-hardware support, compressed, 32 bit

WAH-hardware support, uncompressed, 64 bit
WAH-hardware support, compressed, 64 bit

Plain Bitvector, uncompressed 64 bit
Array

Figure 10. Measured time to iterate over 100 million data sets with low
selectivity

It is obvious that the time for the uncompressed bitvector
versions is the least dependent on the selectivity. This

can be explained by the dominating time for loading the
data from the main memory into the CPU. For all other
implementations the influence of the descending selectivity
is higher.

Although the static array implementation is faster by
a factor of five for some selectivities, we also have to
consider that in absolute values, the time of iterating over
a bitlist of 50 million entries (selectivity: 0.5) is between
0.08 seconds (array) and 0.26 (64-bit, hardware-supported,
uncompressed). This is not bad and probably not such a
dominating factor compared to the memory consumption of
the different implementations shown in Figure 7.

4) Writing TIDs: In our next experiment, we analyze the
time to write TIDs in the different implementation variants.
This operation is done every time, when a predicate is
evaluated against a column value and found to be “true”.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.0001 0.001 0.01 0.1 0.5

tim
e

(s
ec

.)

selectivity

Bitvector, uncompressed, 32-bit, append
Array, append/random

Bitvector, compressed, 32 bit, append
Bitvector, compressed, 32 bit, random

Bitvector, uncompressed, 32 bit, random

Figure 11. Measured time to write TIDs in different implementation
variants for Position Lists

As a basic condition we can assume that writing of TIDs
is mostly done in the append mode. The reason is that when
evaluating a predicate on a column, this is done sequentially
value by value with increasing TID values. In some complex
situations, however, TIDs must be written in random order
(i.e., after a previous sort operation on a column).

The results for this experiment are shown in Figure 11.
We assume 100 million datasets and measure the time

to set a number of TIDs for different selectivities. So for
example for a selectivity of 0.5, we have to write 50 million
TIDs.

Again, the storage as an array of UINT values is the fastest
solution for all selectivities. This is true for the append
mode and the random order mode (from the implementation
point, there is no difference between the two variants). The
uncompressed bitvector turned out to be the second best
solution. Based on the implementation, the solution in the
append mode needs about half the time as the random write
mode. This can be motivated by the fact that the number

396

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of cache misses is lower in the append mode, than in the
random mode. This characteristic increases with decreasing
selectivity (0.05 and above), because the probability of the
next TID being close enough to the previous TID and the
corresponding memory segment (the bit) being already in
the cache increases.

Compressed bitvectors behave worse. The reason for
random access is that with every insertion of a TID, the
compressed bitvector must be reorganized, which often has
an influence up to the end of the whole compressed bitvector.
This behavior occurs in the append and random modes for
the WAH implementation (the WAH implementation has no
special append mode, but only a setBit(uint pos, bool value)
method to set a bit at an arbitrary position). However, the
append mode could be implemented in a much more efficient
way. The basic concept for the algorithm is represented in
Figure 12. The idea of this implementation is that in the
append mode only the last two words (LL: Last Literal, LF:
Last Fill) must be considered: The last but one word, which
is a literal, and the last, which is a 0-fill. Either the TID sets
a bit in the last literal word, or the last fill must be split into
two fills, with a literal in between (with holds the TID).

Literal 0-Fill(n)

. . .

Literal 0-Fill(n)

Case 1: Set bit in last literal

Case 2: Split last fill and separate it with a literal

1 1 1

1 1 1 1

0-Fill(n-k) Literal 0-Fill(k-1)

 1

Literal 0-Fill(n)

. . .
1 1 1

Literal

1 1 1

LL LF

LL LF

LL LF

LL LF

LL LF

Figure 12. Appending TIDs in a compressed bitvector

To study writing of TIDs in the append mode, we
extended the WAH library by the functionality described
above. Figure 13 compares the time behavior for the un-
compressed plain bitvector, the uncompressed WAH imple-
mentation, and our append-optimized implementation of the
compressed append mode. The behavior of the append-only
optimization is quite promising. It is about 25% better than
using the uncompressed bitvector. The dynamic array still is
the fast implementation, but, as we saw in Figure 7, memory
consumption is highest, if the selectivity is low (high density
values).

5) AND operations on Position Lists: Next, we perform
an experiment to measure the time for AND operations. This
is one of the basic operations performing the “WHERE” part
of a query on a column store, where two or more Position
Lists are ANDed (same with OR).

Figure 14 shows the results for the AND operation. As
you can see, the time for AND’ing two uncompressed

 0

 0.05

 0.1

 0.15

 0.2

 0.0001 0.001 0.01 0.1 0.5

tim
e

(s
ec

.)

selectivity

Bitvector, uncompressed, 32-bit, append
Array, append/random

Bitvector, compressed, 32-bit, append-optimized

Figure 13. Comparision of appending TIDs to compressed and uncom-
pressed bitvectors

bitvectors (both the plain bitvector implementation and the
uncompressed WAH bitvector) is mostly independent of the
selectivity. This can be understood, because the length of the
vector is also independent of the selectivity and so the AND
operation consists of a constant number of and instructions
in the CPU. Comparing the uncompressed WAH bitvector
and the plain bitvector, we are a little surprised. A slight
overhead of the WAH implementation can be explained by
the more complex algorithm and the additional memory
consumption of 1/32 compared to the plain uncompressed
bitvector. But our results show a significiant difference of
more than 100% time penalty for the uncompressed WAH
bitvector.

Also interesting are the results for the compressed bitvec-
tor and the array. While the array performs best for selec-
tivities of 0.02 and higher, it degrades for lower selectivities
(0.3 sec. for a density of 0.5). This is a little surprising,
because the array implementation was one of the fastest in
the previous experiments (iterating and writing TIDs). The
degeneration can be explained by the caching strategies of
modern CPUs. In the case of low selectivities, the two arrays
grow and there is a cut-throat competition for places in the
processor cache, which is why many cache misses result.

The compressed bitvector outperforms the uncompressed
version for high selectivities (0.007 and above) because of
its more compact representation and the ability to skip all
the fill words completely. With lower selectivities, the fills
get shorter and disappear later on. Hence, there is no advan-
tage compared to the uncompressed representation. In this
situation, the more complex algorithm is another drawback
and leads to more instruction cache misses compared to the
uncompressed version.

Again, the behavior for the array implementation is the
most sensitive one. While the runtime behavior is the best
for high selectivities, it completely degrades for lower se-

397

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

lectivities (density 0.03 and more).

 0.0001

 0.001

 0.01

 0.1

 0.0001 0.001 0.01 0.1 0.5

tim
e

(s
ec

.)

selectivity

WAH-Bitvector, compressed, 32 bit
WAH-Bitvector, uncompressed, 32-bit

Plain bitvector, uncompressed
Array

Figure 14. Measured time for ANDing two Position Lists with different
implementations

6) Predicate Evaluation: In this experiment, we use
Position Lists with different implementations (compressed
bitvector, plain bitvector, array) and densities and compare
their runtime behavior in evaluating the following expres-
sion:

column_1 = <value_1>
and

column_2 = <value_2>
and

column_3 = <value_3>
and

column_4 = <value_4>

Each column contains 100 million datasets. In a first
experiment, we formulate predicates that have the same
selectivity for all four columns. In this case, the order of
the evaluation of the predicates is irrelevant. We repeat this
experiment with predicates of different selectivity. Figure 15
shows the execution time for the different implementations
with eight different densities from 0.0001 to 0.5 (consider
that the y-axis is logarithmic). The first observation is, that
for densities of 1% and above the implementation of a Posi-
tion List based on an array is about two orders of magnitude
slower compared to the bitvector implementations. Also,
it can be seen that for these densities, the uncompressed
bitvector is the best implementation.

Additionally, we can see that the uncompressed bitvector
has the same runtime behavior for all different densities. This
can be explained easily by the fact that the uncompressed
bitvectors have the same length for all densities and the same
operations to perform. Especially for low selectivities (densi-
ties between 0.5 and 0.01), this is the preferred solution (also
from the memory consumption point as shown in Figure 7).

From a selectivity of 0.1%, the two other implementations
perform better.

For selectivities greater than 1%, the compressed bitvector
has an inferior performance compared to the uncompressed
bitvector and the array implementation. This can be ex-
plained by the fact that the compression algorithm still com-
presses the bitvector, but only with a small compression ratio
compared to the uncompressed version. The additional time
results from the more complex operations while performing
the AND operation. Starting with a density of 0.1% and
lower, the compressed bitvector is the superior implemen-
tation. With a density of 0.01%, the compressed version is
one order of magnitude faster than the array implementation
and two orders of magnitude faster as compared to the
uncompressed bitvector.

 0.0001

 0.001

 0.01

 0.1

 1

 10

[0.5, 0.5, 0.5, 0.5]

[0.2, 0.2, 0.2, 0.2]

[0.1, 0.1, 0.1, 0.1]

[0.01, 0.01, 0.01, 0.01]

[0.001, 0.001, 0.001, 0.001]

[0.0001, 0.0001, 0.0001, 0.0001]

Sequential execution of 4 predicates on different columns

WAH-bitvector, compressed 32 bit
plain bitvector, uncompressed 32 bit

Array

Figure 15. Measured time for the execution of 4 predicates on different
columns using different implementaions for the Position Lists

So, as a rule of thumb, it can be said:
• If no information about the selectivity of a predicate

is given, choosing an uncompressed bitvector for the
implementation of the Position List is the best choice.

• If the density is expected to be 0.01 or higher, also use
the uncompressed bitvector implementation.

• If the density is expected to be 0.01 or lower, use the
compressed bitvector.

In the next experiment, we choose different selectivities
for the predicates of the query. Again, we run multiple tests
with different sets of selectivity. In this experiment, we vary
the order in which the Position Lists are used to evaluate the
expression. As expected, the runtime for the uncompressed
bitvector is nearly independent of the density and the order
of the Position Lists. Also expected, the runtime behavior for
low selectivity queries (high density values) is bad for the
array implementation (first two histogram groups). Arrays
are also sensitive to the order of the Position Lists. The
runtime behavior of the order [0.1, 0.2, 0.3, 0.4] is more

398

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

than twice as fast than the order [0.4, 0.3, 0.2, 0.1] (0.45
sec. vs. 1.0 sec.). This qualitative behavior holds for all
densities. Interestingly, the behavior is inverse for densities
greater than or equal to 0.1 in the case of the compressed
bit vector. The reason for this behavior can be found in the
implementation of the WAH algorithm. If no compression
can be achieved, WAH switches automatically to the uncom-
pressed representation. And as we have seen in Figure 14,
using an uncompressed version is a little bit faster than using
the compresssed version. For all lower densities, starting
with the lowest density is faster. The runtime difference
between the different orders degrades with lower densities
(high selectivity). The last two histogram blocks also show
that in the case of a first low density column, the order of
the following columns is no longer critical. Nevertheless, the
runtime behavior in these two last cases is determined by
the low selectivity of the successive Position Lists and not
by the first high selctivity Position List. If this would have
been the case, the behavior of the third block (also starting
with a density of 0.0001) should be expected.

 0.0001

 0.001

 0.01

 0.1

 1

 10

[0.1, 0.2, 0.3, 0.4]

[0.4, 0.3, 0.2, 0.1]

[0.0001, 0.0002, 0.0003, 0.0004]

[0.0004, 0.0003, 0.0002, 0.0001]

[0.000001, 0.000002, 0.000003, 0.000004]

[0.000004, 0.000003, 0.000002, 0.000001]

[0.0001, 0.4, 0.3, 0.2]

[0.0001, 0.2, 0.3, 0.4]

WAH bitvector, compressed 32 bit
plain bitvector, uncompressed 32 bit

Array

Figure 16. Measured time for the execution of 4 predicates on different
columns using different implementaions for the Position Lists

B. Transformation between Different Representation Forms

Due to the strong influence of the selectivity, different
representation forms of a Position List inside a complex
query can be beneficial. This leads to the question how
fast transformations between different representation forms
can be performed. Therefore, we implement a number of
transformation algorithms

(compressed → array, array → uncompressed,
uncompressed → array, array → compressed) and run
a number of experiments, measuring the time of a Position
List to change its internal representation. The tests are
performed with different selectivities ranging from 0.0001
to 0.5. Figure 17 shows the results of these tests.

 0.001

 0.01

 0.1

 1

 10

 1e-05 0.0001 0.001 0.01 0.1

tim
e

(s
ec

.)

density (selectivity)

compressed->uncompressed
uncompressed->compressed

uncompressed->array
array->uncompressed

array->compressed
compressed->array

Figure 17. Time to transform different representation forms for Position
Lists

Every line in the figure represents a concrete transforma-
tion. The x-axis represents the different densities and the
y-axis the time for a transformation. Each transformation is
done on a 100 million dataset Position List. One basic, but
not surprising finding is that the transformation is faster for
lower density values (high selectivity). This is based on the
fact, that less TIDs must be transformed. In this case, the
overall transformation time is determined by the memory
footprint of the Position List representation, which is much
smaller for the compressed representation (see Figure 7).
As the transformation rules are more complex for the com-
pressed representation, the growth in time with rising density
is higher compared to the uncompressed representations
(uncompressed bitvector and array). For densities greater
than 0.2, WAH typically cannot compress the bitvector,
because it needs at least 62 consecutive ’0’ values to achieve
a compression. This is the reason why the transformations
compressed →<x> and <x>→ compressed are not shown
for densities greater than 0.2. The transformation to a
compressed bitvector is implemented using the append-
optimized algorithm from Figure 12.

Based on the results shown in Figure 14, where the array
was the fastest implementation for an AND operation with
high selectivity Position Lists (density lower than 0.02),
but also the worst for densites greater than 0.035, we can
conclude:

• For small densities (< 0.005), where the array and the
compressed bitvector are the favorable implementations
with respect to runtime behavior (AND/OR operations),
the transformation from an uncompressed bitvector has
nearly constant cost for all densities and is determined
by the memory footprint of the uncompressed bitvector.
Nevertheless, the transformation time is the same as
when performing a single AND operation with two
uncompressed bitvectors.

399

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• For higher densities (> 0.01), where the cost of
performing AND operations is up to two orders of
magnitude higher when using an array implementation
compared to the uncompressed bitvector, the transfor-
mation often makes sense (transformation time between
0.001 and 0.1 sec.).

VI. CONCLUSION AND FUTURE WORK

The choice of the right data structure and algorithm
for implementing Position Lists is not an easy task. It
largely depends on the selectivity of the predicates and the
operations to perform. Especially for low selectivities, the
choice of the right solution is critical as was shown by the
experiments.

The data structure of an array of unsigned integer values
is outperformed by the uncompressed bitvector implementa-
tions by up to two orders of magnitude for low selectivities.
On the other hand, it is a very good choice at high selectiv-
ities.

Uncompressed bitvectors have a predictable behavior for
all selectivities, but are again outperformed by compressed
bitvectors and arrays for very high selectivities.

If no information about the expected selectivity is avail-
able, using an uncompressed bitvector probably is a good
choice. Depending on the selectivity and the used algorithm,
the execution time is about three orders of magnitude and
the uncompressed bitvector is of moderate performance.

Next, we will integrate the different implementations
into our Column Store Toolkit (CSTK) [3] and perform
experiments using the different implementations together
with our toolkit components to measure the time behavior of
our components with more complex queries like those from
the TPC-H [24] benchmark.

Another interesting point is the implementation of
AND/OR operations which allow Position Lists with different
datastructures (i.e., array, compressed bitvector) as input
(and output). These results can then be compared with the
execution time of the version with an explicit transformation
step before.

It has to be kept in mind that the ultimate goal is the
development of a query optimizer for a column store [4].

REFERENCES

[1] A. Schmidt and D. Kimmig, “Considerations about imple-
mentation variants for position lists,” in DBKDA’13: Proc-
ceedings of the Fourth International Conference on Advances
in Databases, Knowledge, and Data Applications. IARIA,
2013, pp. 108–115.

[2] P. A. Boncz, M. Zukowski, and N. Nes, “Monetdb/x100:
Hyper-pipelining query execution,” in CIDR, 2005, pp. 225–
237.

[3] A. Schmidt and D. Kimmig, “Basic components for building
column store-based applications,” in DBKDA’12: Procceed-
ings of the Fourth International Conference on Advances in
Databases, Knowledge, and Data Applications. IARIA,
2012, pp. 140–146.

[4] A. Schmidt, D. Kimmig, and R. Hofmann, “A first step
towards a query optimizer for column-stores,” 2012, Poster
presented at the Fourth International Conference on Advances
in Databases, Knowledge, and Data Applications.

[5] I. Karasalo and P. Svensson, “An overview of cantor - a
new system for data analysis,” in Proceedings of the Second
International Workshop on Statistical Database Management,
Los Altos, California, R. Hammond and J. L. McCarthy, Eds.
Lawrence Berkeley Laboratory, 1983, pp. 315–324.

[6] G. P. Copeland and S. N. Khoshafian, “A
decomposition storage model,” SIGMOD Rec., vol. 14,
no. 4, pp. 268–279, May 1985. [Online]. Available:
http://doi.acm.org/10.1145/971699.318923

[7] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cher-
niack, M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil,
P. O’Neil, A. Rasin, N. Tran, and S. Zdonik, “C-store: a
column-oriented dbms,” in VLDB ’05: Proceedings of the 31st
international conference on Very large data bases. VLDB
Endowment, 2005, pp. 553–564.

[8] P. A. Boncz, M. L. Kersten, and S. Manegold, “Breaking the
memory wall in monetdb,” Commun. ACM, vol. 51, no. 12,
pp. 77–85, 2008.

[9] J. A. Khan and A. P. Shiralkar, “Article: Infobright enterprise
edition analytic data warehouse technology ? an overview,”
IJCA Proceedings on National Conference on Innovative
Paradigms in Engineering and Technology (NCIPET 2012),
vol. ncipet, no. 15, pp. –, March 2012, published by Founda-
tion of Computer Science, New York, USA.

[10] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg,
and W. Lehner, “Sap hana database: Data management for
modern business applications,” SIGMOD Rec., vol. 40,
no. 4, pp. 45–51, Jan. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2094114.2094126

[11] R. MacNicol and B. French, “Sybase iq multiplex
- designed for analytics,” in Proceedings of the
Thirtieth International Conference on Very Large
Data Bases - Volume 30, ser. VLDB ’04. VLDB
Endowment, 2004, pp. 1227–1230. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1316689.1316798

[12] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver,
L. Doshi, and C. Bear, “The vertica analytic database:
C-store 7 years later,” Proc. VLDB Endow., vol. 5,
no. 12, pp. 1790–1801, Aug. 2012. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2367502.2367518

[13] “Oracle Database In-Memory Option — Feature — Oracle,”
2013, [Online; accessed 5-May-2014]. [Online]. Avail-
able: http://www.oracle.com/us/corporate/features/database-
in-memory-option/index.html

400

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[14] “Columnstore Indexes for Fast Data Warehouse
Query Processing in SQL Server 11.0,” 2010,
[Online; accessed 5-May-2014]. [Online]. Avail-
able: download.microsoft.com/download/8/C/1/8C1CE06B-
DE2F-40D1-9C5C-3EE521C25CE9/Columnstore Indexes for
Fast DW QP SQL Server 11.pdf

[15] D. J. Abadi, S. R. Madden, and N. Hachem, “Column-stores
vs. row-stores: How different are they really,” in SIGMOD,
2008.

[16] N. Bruno, “Teaching an old elephant new tricks,” in CIDR
2009, Fourth Biennial Conference on Innovative Data Systems
Research, Asilomar, CA, USA. www.crdrdb.org, 2009.

[17] D. J. Abadi, D. S. Myers, D. J. Dewitt, and S. R. Madden,
“Materialization strategies in a column-oriented dbms,” in
Proc. of ICDE, 2007, pp. 466–475.

[18] D. J. Abadi, S. R. Madden, and M. Ferreira, “Integrating com-
pression and execution in column-oriented database systems,”
in SIGMOD, Chicago, IL, USA, 2006, pp. 671–682.

[19] D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, and S. Mad-
den, “The design and implementation of modern column-
oriented database systems,” Foundations and Trends in
Databases, vol. 5, no. 3, pp. 197–280, 2013.

[20] T. M. Chilimbi, B. Davidson, and J. R. Larus, “Cache-
conscious structure definition,” in PLDI ’99: Proceedings
of the ACM SIGPLAN 1999 conference on Programming
language design and implementation. New York, NY, USA:
ACM, 1999, pp. 13–24.

[21] S. Manegold, P. A. Boncz, and M. L. Kersten, “Optimizing
database architecture for the new bottleneck: memory access,”
The VLDB Journal, vol. 9, no. 3, pp. 231–246, 2000.

[22] M. Nelson, The Data Compression Book. New York, NY,
USA: Henry Holt and Co., Inc., 1991.

[23] K. Wu, E. J. Otoo, and A. Shoshani, “Optimizing bitmap
indices with efficient compression,” ACM Trans. Database
Syst., vol. 31, no. 1, pp. 1–38, 2006.

[24] “TPC Benchmark H Standard Specification, Revision 2.1.0,”
Transaction Processing Performance Council, Tech. Rep.,
2002.

401

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

