
A Detailed Description of the EC2M Project:
Exploiting Ontologies for the Automatic and Manual

Documents Classification in Industrial Enterprise
Content Management Systems

Daniela Briola
DIBRIS, Genoa University

Via Dodecaneso 35, 16146 Genoa, Italy
daniela.briola@unige.it

Alessandro Amicone
GFT Italia S.r.l.

Via Cesarea, 2/45, 16121 Genoa, Italy
alessandro.amicone@gft.com

Abstract—Enterprise Content Management (ECM) systems rep-
resent a crucial aspect in the efficient and effective management of
large-scale enterprises, in particular for those made up of several
sites distributed all over the world. The increasing number of
documents to be managed, the problems related to the sharing
of private information between commercial partners, the need
for semantically describing the contents of shared documents
have pushed researchers to find new techniques and solutions
to deal with these challenges. We already presented the high
level description of a joint project of the Department of Infor-
matics, Bioengineering, Robotics and System Engineering of the
University of Genoa, Italy, and two companies, Nacon (member
of Sempla Group, now part of the GFT Group) and Nis, to create
an improved ECM system (named EC2M) exploiting ontologies to
better classify, retrieve and share documentation among different
sites of the involved companies: in this paper, we give a more
detailed description of the project, with respect to its modules
and to the underlying ontology used to classify documents. We
present the automatic documents classification algorithm too,
with an example of its execution. The developed system, which
was born from a real industrial need, is currently used by GFT
Italy to manage and share its documents among more than 600
users distributed in many different geographical locations and,
thanks to the ontology, the semantic tagging process and the
automatic documents forwarding have been successfully achieved.
This joint project proves how a more formal representation of the
documents domain can effectively improve the standard way of
classifying and retrieving documents in real industrial scenarios,
representing a winning collaboration between university and
industry.

Keywords– Ontologies, Semantic Classification, Knowledge Rep-
resentation, Industrial Application, Automatic Documents Classifi-
cation.

I. INTRODUCTION

This paper presents in detail the “Enterprise Cloud Content
Management (EC2M)” system, that was previously described
in [1]: it is an “Enterprise Content Management” system
deployed over a cloud platform, improved with the capability
of semantically tagging the documents using an ontology and
exploiting context information from mobile devices. This paper
is an extended version of the previous one, and presents new
information about the architecture and the implementation

of the system modules, about the underlying ontology and
about the classification algorithm used to automatically tag
documents. Figures and results have been updated too, to
reflect the actual running system.

The international Association for Information and Image
Management (AIIM), the worldwide association for enterprise
content management, defined the term “Enterprise Content
Management” in 2000, but it has been updated many times
to adhere to the continuous new market needs. The more
recent definition is: Enterprise Content Management (ECM)
is the strategies, methods and tools used to capture, manage,
store, preserve, and deliver content and documents related
to organizational processes. ECM covers the management of
information within the entire scope of an enterprise whether
that information is in the form of a paper document, an
electronic file, a database print stream, or even an email [2].
ECM is an “umbrella term” covering document management,
web content management, information search, collaboration,
records management and many other tasks, but it is primarily
aimed at managing the life-cycle of information, from initial
publication or creation to its disposal, to preserve a company’s
internal (often unstructured) information, in all of its forms.

Therefore, most ECM solutions focus on Business-to-
Employee (B2E) systems, but nowadays, thanks to the im-
provement of the IT capabilities and because of the increasing
users’ need to classify documents according to their meaning,
these systems have grown in complexity and often integrate
modules to exploit more structured information, taxonomies,
dictionaries and so on.

This trend is identified both in the industrial area ([3],
[4]), where the focus is usually on improving already exist-
ing products and on increasing their usability, efficiency and
functionalities, both in the academic field, where the focus is
more on studying new knowledge representation formats and
their exploitation in automatic data analysis, classification and
storage for automatic reasoning or user centric services (see
next Section).

Many vendors are offering products in this area, start-
ing from the commercial ones (Microsoft, IBM and Oracle)
moving to many powerful open source solutions (for example

63

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Alfresco [5], Plone [6] and SenseNet [7]). The new trend in this
field is to create ECM systems that can automatically extract
information from documents to classify them or add a semantic
layer to tag documents in a more structured and interesting
way: this is the area where the EC2M project is located.

The problem of classifying, retrieving and sharing docu-
ments among users and companies pertains to the research field
of knowledge sharing, whereas the problem of semantically
tagging documents pertains to that of the knowledge repre-
sentation. Both fields are relevant both from an academic and
an industrial viewpoint, and this motivates the joint academic-
industry EC2M project. In EC2M, we used ontologies as a
way to structure information describing documents and their
content.

Many similar studies and projects have been conducted in
this area: an example of a commercial ECM system seman-
tically enriched is SmartLogic [8], which offers an automatic
classification, based on an automatically-extracted taxonomy
of documents. Many open source systems have been developed
to integrate semantic services in the document/information
management, among which H-DOSE [9], OPEN-CALAIS [10]
and APACHE STANBOL [11]. Even if they are not ECM
systems according to the standard definition, they deal with
very similar problems.

We decided to exploit for our system some of these
open-source systems (as described later), to be able to freely
combine them to get an improved ECM system. None of the
available systems offered a complete solution to our problem,
so we adopted a mesh-up approach, based on open source
softwares, and we then integrated in it an ad hoc ontology,
shared among the different nodes of the network, to model the
documents types and their content.

The system offers a publish/subscribe service and is based
on a cloud platform. It also takes exploits contextual in-
formation on the location and device used by the user to
implement context-awareness. In this way, the resulting system
takes advantage of well known and high quality open source
softwares and of a powerful cloud platform, and enriches the
available solutions with new techniques not used in standard
ECM systems.

EC2M is thus a concrete industrial-academic example of
how these technologies can be composed and improved to
create a new powerful system, which can be actually used
by enterprises.

The rest of the paper is organized in six sections: Section II
presents the state of the art regarding similar academic systems,
Section III describes the EC2M system, Section IV presents the
ontology, Section V shows the actual implemented system,
Section VI describes the automatic classification algorithm
used in the system and, finally, Section VII concludes the
paper.

II. STATE OF THE ART

If we look at academic research, many studies underline
how a semantic and structured representation of the domain
(with ontologies or similar techniques) can improve systems
like CMSs, where documents and data must be stored and

classified, manually or automatically, so that users can easily
find what they are looking for.

For example we can cite [12], describing the Rhizomer
CMS, which tags its items using semantic metadata semi-
automatically extracted from multimedia sources, or [13],
which proposes a framework to manage and share written
information contents using an ad-hoc knowledge model for
an industrial research center, or [14], which presents an
open architecture framework based on the open-source CMS
OpenCMS and a Java-based web management system for
learning objects, which were derived from the instructional
materials used in several postgraduate courses.

More recently, many other analyses and examples have
been realized.

In [15], a set of tools have been developed to semi-
automatically explicate the semantics of a content repository
into a knowledge-base and to establish semantic bridges be-
tween this knowledge-base and the content repository (the
tools set is complemented with a search engine that makes use
of the explicated semantics). In [16], a semantic-based content
abstraction and annotation approach is proposed: based on this
approach, a semantic-driven content management environment
has been developed to deliver the right content to the right
user at the right time. According to the authors of [17],
dealing with problems and possible architectural solutions in
managing heterogeneous oceanographic data are reported, a
careful employment of ECM systems may be beneficial in that
setting, with no need to adopt complex ad hoc solutions that
are difficult to maintain by personnel not specifically skilled
in data-handling techniques. A data model to support the
storage of refined data in structured repositories is developed
and presented in that paper as well. In [18], the described
approach is to model context (the public documents of a Public
Administration) in an ontology and to use that ontology to infer
content-related metadata to be associated to the documents,
avoiding to do this operation manually.

Our project is mainly focused on the knowledge represen-
tation and sharing research areas, but it takes into account
software design problematics too, like those found in user-
centric and context aware systems development: many aca-
demic research works dealing with these topics exist, propos-
ing different solutions and approaches.

For example, in [19] the Multiagent paradigm is used
as underlying architecture to develop distributed intelligent
ubiquitous systems where applications and services can com-
municate in a distributed way with intelligent agents, even from
mobile devices, while in [20] the authors present a framework
to develop context-aware dialogue systems that dynamically
incorporate user specific requirements and preferences as well
as characteristics about the interaction environment, in order
to improve and personalize web information and services. In
[21], a distributed architecture called inContexto, which uses
mobile phones, is used to infer physical actions performed by
users starting from user context information. Starting from the
assumption that the human context within which a software
system will operate is fundamental for its requirements, in
[22] a framework based on the socio-psychological Activity
Theory and its analysis of human contexts is presented.

64

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



We also found systems that exploit ontologies to im-
prove knowledge sharing, but dealing with domains that are
completely different from ours (for example [23], which is
a semantic television content management system based on
ontologies) or relying on different architectures (for example
[24], where an Ontology Server (OS) component is created
to be used in a distributed content management grid system):
even if the domains or the proposed solutions are different,
the underling problem still remains the same, proving that it
is still open and studied.

III. THE EC2M SYSTEM ARCHITECTURE

The Enterprise Cloud Content Management (EC2M) sys-
tem was born from the collaboration among the Department of
Informatics, Bioengineering, Robotics and System Engineering
of the University of Genoa and two outstanding IT Italian
enterprises, namely Nacon (member of the Sempla Group,
now GFT Italy, specialized in the design and implementation
of complex systems, ECMs, and process management) and
Network Integration & Solutions (Nis), specialized in the
design and development of network products and services for
businesses, public administration and end-users.

The developed system is a Content Management System
that aims to automatically classify documents with respect
to an ontology defining the possible predefined tags (and,
at the same time, to help users in semantically tagging
documents that they are manually inserting in the system):
these documents will be then shared among different partners
(called “Nodes of the EC2M network”, which are companies or
companies’ sites, which need to collaborate and agree on using
the common ontology to tag documents), located in various
physical locations, in an automatic way.

The types of documents and their possible contents are
modeled using an ontology that formally describes them; the
ontology instances are used to tag the documents with semantic
information. Every user in the system is able to subscribe to a
set of “interests” (chosen from the instances in the ontology)
so that when a new document is inserted in the EC2M network
and tagged (manually or automatically) with terms from the
ontology, those users that are interested in those terms are pro-
actively informed that a new document is available.

The routing process, which in our case is the process
of informing the Nodes in the EC2M network about the
existence of new documents and of consequently sharing them,
is demanded to a Central Router Node.

A software module manages the context (location and
device) where the user is acting, to give the user a subset of
the information he needs considering the device he is working
on.

The system is deployed over the Cloud Amazon Web
Services (AWS) platform (using it as an “Infrastructure as a
Service”), which is a good compromise between cost and per-
formances. This solution allows to simply scale the number of
nodes in the EC2M network or to scale the physical resources
used to manage the network, to get better performances, and at
the same time grants a reliable Central Router implementation,
avoiding the standard “single point of failure” problem related
to the centralized routing architecture.

Anyway, the EC2M system has been designed to run on a
private physical network too.

The EC2M system offers “internal services” to individual
nodes (corresponding to an enterprise site) and “external
services” to let nodes interact. Looking at individual nodes,
the so called “semantic publish/subscribe” service allows every
user to declare the arguments he is interested in, chosen from
those described in the ontology, and then makes available
(globally on the network and locally to the node) the docu-
ments matching the subscribed interests.

Looking at the complete network, that is, at the services
connecting different nodes, the aim of the system is to allow
users from different nodes to be informed of documents, on
other nodes, which are interesting for them. This is where the
ontology comes into play: sharing interesting documents across
nodes is in fact possible because the nodes share a common
ontology (or a subpart of it).

Every node in the network may have privacy policies,
because not every document of a node should be read by all the
other nodes: maybe only some information as title, abstracts,
etc. can be shared. These policies are managed by the Nodes.
Issues related to policy management are out of scope of this
paper and are not described here.

Every document is characterized by a set of standard
attributes (or tags), like its Name, Creation date, Abstract and
so on, whereas the document type is chosen from the ontology:
then the user can add other tags in a manual or semi-automatic
way (see more details in Section V), selecting the values from
the instances of the ontology and driven by their relationships.

The EC2M system can be “instantiated” many times, to
be useful for different groups of enterprises (that is, for new
enterprises’ networks): a new ontology, describing types of
documents and their possible contents must be created, but
the overall structure and behavior remain the same. In this
sense, EC2M is “parametric” in the used ontology.

The core portion of the functional requirements (services)
specification of EC2M system has been created using the
method proposed in [25], and consisted of: (1) an UML Use
Case Diagram, (2) the Use Case descriptions, (3) a glossary,
and (4) the screen mockups (sketches of the future GUIs).
During the project meetings, the industrial partners found the
screen mockups (and the glossary) very effective in improving
the comprehensibility of the use cases and useful to identify
early ambiguities in the requirements specification.

We do not list here the Use Cases, but the services of the
system are presented in the next Sections, with information
about their implementation and coordination.

The main services are those related to the documents
management, and are associated to the GUIs described later.
The algorithm for automatically tagging a new document is
explained in Section VI. The manual insertion of a new
document is described with a concrete example in Section V.
Lastly, the system offers services reserved to the administrator
of the Node, for example those regarding the approval of
the automatically tagged documents, the management of the
ontology, users and of the rules for distributing documents over
the network: those are cited while describing the Modules that
use them.

65

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 1. The high level architecture of the EC2M system.

Looking at the system architecture from a high level point
of view, the system is divided into different modules (see
Figure 1):

• Graphical User Interface (GUI): front end of the
system, where users can log in from a local terminal
and can insert/retrieve/manage documents (based on
the ontology);

• Soap and Rest Services: used by the GUIs and by the
mobile application which, exploiting context informa-
tion, lets the user access the system from a remote
device;

• Crawler: software that explores predefined hard disk
sectors to find documents that are sent to the Loader;

• Loader (or Classifier): module that automatically ex-
tracts from the documents tags corresponding to those
in the ontology and that enriches the documents with
tags related to those already manually associated with
the document, using the instances in the ontology and
their relationships;

• Ontology Manager: module that queries and manages
the ontology;

• Content Manager: module that stores the documents
and manages their sharing and retrieval;

• (Local) Router: module that manages the sharing of
documents between nodes;

• Rules manager: module that the Router uses in order
to define, and dynamically create, routing rules.

On the right side of Figure 1, the arrow points to the EC2M
Central Router, reported in Figure 2. In Figure 3, the reader
can see which (existing or new) software modules have been
used to implement the EC2M system: in the next subsections
we give more details on the functionalities and implementation
of the different modules.

On each Node Apache ServiceMix is installed: the Crawler,
the Classifier and the Router Modules exploit many of its
services to implement their functionalities, as described later.

Figure 2. The software architecture of the Central Router.

Figure 3. The software architecture of the EC2M system.

A. Graphical User Interface (GUI)

At design time, we decided to create GUIs simply change-
able with respect to the user desires, so that any user can
adapt its interfaces. To achieve this goal, we adopted Liferay
[26], which is a well known Portal Server. With this platform,
the GUIs are portlets that can be plugged into any pre-existing
portal. To develop these portlets we used AJAX Vaadin, which
is already integrated in the version 6 of Liferay.

Starting from the Use Cases describing the services that
must be provided by the system, many GUIs (portlets) have
been implemented. The main ones are:

• UploadPortlet: this GUI lets the user insert a new
document. As shown later in Section V, from this
GUI the user can manually associate tags, selected
from the ontology, to the document. Furthermore, as
last step before confirming the insertion, the system
will suggest the user some more tags to be related to
the document;

• SearchPortlet: this GUI lets the user search for docu-
ments. This GUI helps the user specifying the search
criteria, which will be based on the ontology and on
standard document properties (author, creation date
and so on);

66

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



• ApprovePortlet: users can also put documents in a
shared folder and let the Classifier automatically clas-
sify them (that is, adding tags from the ontology).
These documents must be analyzed by a super user
before they are really inserted into the system and
shared among users. From this GUI the super user
can analyze the automatically associated tags (with the
algorithm shown in Section VI), can modify them and
lastly can move on with the insertion of the documents
in the system;

• SubscribePortlet: from this GUI the user can subscribe
to a set of arguments that he is interested in. These
arguments are chosen from those in the shared ontol-
ogy, so that when a new document tagged with one
of these arguments is inserted in the network, the user
can be automatically informed by the Router Module.

Other GUIs exist to manage the administrative data, such as
the users list, the current used ontology, the users permissions
and so on.

GUIs exploit the SOAP/REST interfaces, described later,
to invoke the services offered by the system.

B. The Crawler and the Classifier Modules

Apache ServiceMix offers many services and components:
some of them help polling the file system, also using the FTP
protocol. The Crawler Module is a plugin of the local instance
of ServiceMix and exploits these services to cyclically search
for new documents in predefined shared folders, where users
can put documents.

These documents are then sent to the Classifier, which is
again a plugin of ServiceMix (but is installed on the cloud):
for each document received from the Crawler, it automatically
selects related tags (as shown in Section VI) from the ontology
and associates them to the document. Then these documents
can be analyzed by the superuser to be definitively inserted
into the Content Manager.

C. Ontology Manager

To create and manage the ontology we adopted the Web
Ontology Language (OWL [27]) and Protégé [28]. The on-
tology is not subject to frequent changes: if it needs to be
modified, this is done using Protégé and then the new version
is again made available to the framework for queries.

D. SOAP/REST service

To let different clients interact with the system (from
outside of the local Node or from the Node itself), we created
a SOAP and a REST interfaces for the main services:

• uploadDocument: it is invoked to add a new document,
with its tags, to the content manager;

• search: it lets the invoker searching for a document,
specifying as input a list of tags;

• getDocument: it returns the document with the iden-
tification number given in input;

• getOntology: it returns the ontology used in the sys-
tem;

• updatePosition: it is used to send the current position
of a mobile device to the Node;

• getTicket: it takes as inputs a username and a password
and returns an “authorization token” to let the user be
identified in the system;

• subscribeUserFeed: it stores the user interests, given
as input;

• retrieveUserFeed: it returns the list of user interests.

E. Content Manager

To physically manage the documents, we adopted Alfresco,
a well known open source Java Content Management System:
this system allowed us to exploit all the facilities of a high
performances business platform with the good property of
being an open source software. Furthermore, Alfresco takes
advantage of many other well known open source systems like
Spring, Hibernate, Lucene and MyFaces, helping developers in
creating high quality software in a cost and time limited way.

F. Router

The Router Module is a plugin of ServiceMix, and manages
the distribution of the documents in and out of the Node.
There is a Router Module on each Node: this module is in
charge of informing the node’ users of the presence of new
documents (local documents or on other nodes) and then of
informing the other nodes (thank to the Central Router) of
the existence of new documents. The local Router knows
the users interested in the new documents (considering the
subscribed interests of each user) and, thanks to the Rules
Manager Module (described later), can inform them of their
existence. Furthermore, it knows the documents exchange rules
so it will also distribute the document (or only some parts,
for example the title and abstract) to the Central Router (that
will spread it to the other interested nodes). The local Router
receives the documents from the Central Router too: then it
sends these new documents to its Classifier so that they can
be inserted into the local CMS.

G. Rules manager

Drools [29] is a well known open source system to create
and manage business policies. Being this tool really stable,
powerful and already integrated into ServiceMix, we decided
to exploit it instead of developing a new module from scratch.
The Drools rules are created thanks to an Eclipse plugin and
then are read by the Router Module.

For example these are some of the rules regulating the
documents notification to users:

• A Notification regarding a new document is sent only
to users that subscribed to a topic that appears among
the document tags.

• If a requested document is bigger than 1MB, only a
link to the document is sent to the Mobile Users (not
physically present in the Node), while the complete
document is sent if it is smaller than 1MB.

67

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



• When a new document is inserted on a Node, only
a link to it is to be sent to all the interested local
standard (not-mobile) users (because they can directly
download it from the local repository).

H. The central Router

The central Route, described in Figure 2, is developed ex-
ploiting again Apache ServiceMix as platform, whit the same
plugin used for the Router Module, since their functionality is
quite the same. As for the other modules, Drools is used to
manage the routing rules and Jena is used to interface with the
ontology. This Node manages the interaction among the Nodes
in the network, distributing the new documents with respects
to the subscribed interests of the Nodes. It owns the list of the
Nodes in the network, and knows for each Node which are the
topics, chosen from the common ontology, they are interested
in (that are those the users of that Node are interested in): in
this way the Central Router is able to correctly forward new
documents among Nodes, avoiding flooding them with useless
documents.

Its availability is assured by the cloud platform where it is
deployed, reducing the risk of a single point of failure and of
low performances.

I. Context Awareness

A mobile application for smartphones was developed for
the system: it is able to identify the location of a user currently
away from its company node and to act consequently, to let
the user be informed of new documents or to let him search
for documents in the system from a mobile device.

A “Fingerprint” (a set of information characterizing the
Node) was calculated once for each Node and saved in the
mobile application, so that it is able to identify when the
user is near to its company Node and to move on with the
automatic check-in (precondition to use the system). This
context awareness algorithm for automatic check-in is called
LRACI and is described in details in [30]: its performances
are device independent, it is based on GPS/HPS information
and is able to exploit Wi-Fi access points in an opportunistic
way.

Thanks to this module, that interacts with the system using
to the REST/SOAP interfaces developed for it, users can
exploit the EC2M system services from mobile devices in a
transparent and automatic way.

IV. THE ONTOLOGY

The EC2M system was designed to work with any ontology
describing the documents to be shared and their contents. To
start with a concrete example, we decided to design, implement
and use an ontology modeling the Sempla’s business proposal.
With respect to [1], the ontology structure has been changed a
little, while some more instances have been created. Further-
more, we added many labels that are used in the automatic
classification algorithm and in the GUIs, as described in the
next Sections.

Sempla, as a brand, was founded in 2009 and operates
in System Integration and Information Technology consulting.
It has nearly three decades of experience with the most
important Italian groups from the Financial, Production and
Public sectors. Now Sempla has been transformed into GFT
Italy, member of the GFT Group: we will anyway refer in the
paper to Sempla, to keep consistence with [1].

This domain was chosen because Sempla is a very large
enterprise, covering different business areas, so its documenta-
tion presents many types of documents and a large set of terms
that are of interest for different users. These terms and types of
documents are quite common in this business area, so modeling
the Sempla domain is the best choice because the emerging
ontology is correct also for Nacon (that now is member of
the Sempla Group) and for Nis (that often collaborates with
Nacon so can easily adhere to the ontology), which are the
other Nodes in the system.

A. The Ontology Design

To model the domain with an ontology (as defined in [31]),
we adopted the Noy and McGuinness methodology [32], which
being an agile method is very suitable for collaborating with
industrial partners. This methodology foresees these stages:

1) determine the domain and scope of the ontology;
2) consider reusing existing ontologies;
3) enumerate important terms in the ontology;
4) define the classes and the class hierarchy;
5) define the properties of classes-slots;
6) define the facets of the slots;
7) create instances.

The first step was quite simple to follow: the domain of the
ontology was the Sempla’s business proposal. It is translated
into a complex organization of the logic concepts that describe
what Sempla offers to its costumers, in terms of products and
high technical and management consultancy.

Documents must be tagged to describe, with instances
found in the ontology, their structure (some type of documents
can have many attachments) and above all their technical
and business items: for every business market Sempla has a
“portofolio” of products and consultancy services that is well
organized and defined.

We searched for similar ontologies, but we were not able to
find one that was useful for modeling our domain. Maybe other
companies own a similar ontology, but they are not public. We
also considered existing ontologies, for example Bibo ontology
[33], but we did not use them because they share only very few
terms with those used in our domain. We could use the already
exiting Sempla’s documentation, which offered us an already
well-defined set of terms describing the domain, although in
natural language and not structured in any standard format.

The third step was conducted with the collaboration of the
domain experts, which were the scientists from Sempla, Nacon
and Nis. The majority of the terms was collected analyzing
the brochures describing Sempla’s business proposal (one is
summarized in Table I) as well as a large set of documents
selected as example from the real ones and a list of terms
created by the “users-to-be” of the system, which listed the

68

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE I. THE SEMPLA BUSINESS PROPOSAL (BUSINESS ITEMS) FOR THE “FINANCIAL SERVICES” MARKET, GROUPED BY BUSINESS AREAS.

Business IT Consulting Digital Marketing &
Design

Business Solution IT Solutions IT Services BPO

BPR;
Studi di fattibilitá;
Enterprise
architecture planning;
Program management
consulting;
Organizzazione
processi IT;
Project portfolio
management.

Web & Content
Design;
User Experience;
Community
management;
Digital Advertising;
Augmented
Experience.

Credit & Risk
Management;
Credito Lab;
Credito al consumo;
Filiale a CRM;
Contact center;
Pagamenti, Monetica,
ATM/POS;
Finance & Wealth
Planning;
Controlli e
compliance;
Sicurezza e
Antifrode;
Tesoreria;
Human Resources;
Reporting & Business
Intelligence;
Leasing & Factoring;
Banca Virtuale;
Project Portfolio;
General ledger.

System Integration
Framework;
Application
Frameworks;
Metodologie di
Delivery;
Multicanalitá;
Enterprise Content
Management;
DB Administrator.

Application
Management;
Application
Modernization;
IT Infrastructure
Management;
ITIL Implementation.

Contact Centre;
Back Office;
Fiscalitá Locale;
Postalizzazione;
Business travel
management;
Formazione, RollOut,
Help Desk.

terms (corresponding to logic concepts used in their work)
that they would like to use to classify a document.

To define the classes and their structure, we asked the
domain experts to describe in details the types of documents
they use, the most relevant information characterizing them
and how they model the different business markets. We also
took inspiration from the file system where documents were
stored: the directories were partially organized as the business
areas, and this organization reflected the way Sempla divides
its business proposal.

The definition of the properties was done following a
similar process.

As a last step, we manually inserted the instances in the
ontology: the instances are named using some of the terms
listed before, and the properties join them to completely
describe the domain. It should be noted that in this process,
stating what had to become a class and what an instance
was a complex task, because some logical concepts of the
domain may be mapped into a class (if we foresee a possible
future extension) or into an instance as well (because they are
something already stable and with different properties values),
for example for Market instances. In these cases, we must
consider that only instances will be used to tag documents, so
it was an obliged decision to model those terms as instances.

Since the ontology is aimed at being used by Italian users,
it was created in Italian but some terms (in particular the
instances’ names) are in English, to maintain a link with
the existing documentation and Sempla’s internal standards:
we are aware that having an ontology with both Italian and
English terms was not a perfect solution, but since Classes
and Instances should be used as tags for many already ex-
isting documents, and considering that their names should be
searched inside the text of the documents, we adopted anyway
this solution.

B. The ontology details

The Sempla business proposal is organized considering
different business markets, to propose ad hoc solutions for
each area. Each high level business market is called Mercato
(Market), and each Mercato is characterized by some distinct
Settore (Sectors) (see Figure 4). To give and explanation of
what we assume to be a market, consider that its instances are
“Product”, “Financial Services” and “Insurance”, describing
the main activities of the costumers operating in each market.
Starting from this macro division of areas, all the other classes
are related and organized considering these three sectors. For
example, each costumer (class Cliente o Prospect) refers to
one sector, so that his market is uniquely identified.

The Sempla business proposal is created combining
different items, identified with the class Business Item,
which are divided into different types (subclasses) and that
refer to six different Business Areas (as shown in Table I),
modeled with the class Area Business, with instances: “Busi-
ness IT consulting”, “Business project outsourcing (BPO)”,
“Digital Marketing And Design”, “Business Solution”,
“IT services”, “IT solutions”.

Figure 4. Class Mercato (Market) and its main relationships.

69

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 5. Class Business Item and its main relationships.

Every Business Item can be associated with only one
Area business but can be offered to different Markets. A busi-
ness item that is offered in many markets is called “cross mar-
ket”. The class that groups these items is defined with a neces-
sary and sufficient condition, and is called BI Cross Mercato.
In a similar way, the class AB cross mercato is defined with
the necessary and sufficient condition that it collects the
business areas offering at least one “cross market” item.

The business items are divided into four disjoint subclasses:
Prodotto (Product), which can be developed by a Partner,
Soluzione (Solution), Servizio (Service), Attivitá professionale
(Professional Activity). These classes are related with class
Ambito Tecnico (Technical Area) describing at high level the
IT area they refer to (for example “Client Server Application”,
“Mobile Application” and so on).

The relationships between the classes described above are
shown in Figure 5.

The documents that must be classified are divided into
different types, modeled with the classes (subclasses of Do-
cumento (Document)):

• Proposal (class Documento offerta), which describes
a business proposal to a costumer;

• Technical attachment (class Allegato tecnico offerta),
which is a technical attachment describing at least one
Business item and one Ambito Funzionale;

• Presentation (class Presentazione), that describes the
Sempla business proposal to a specific Market, and
that must be related to at least one Business item.

Class Ambito Funzionale, with its three subclasses, repre-
sents a further classification of the business services from a
commercial viewpoint. With respect to [1], the subclasses of
Documento have been slightly simplified.

In Figure 6, a detailed view of the relationships among
Proposal and the other classes is shown: class Proposal has one
string property (“Id Proposal”) not shown in Figure 6, which
uniquely identifies the proposal. In Figure 7, an overview of
the relationships among the different types of documents is
reported.

Class Partners represents a list of possible third parties
companies involved in the proposal.

We only show Object properties in figures and do not report
instances of every class. In Section V, the reader can find some
of these instances shown in figures and tables, while they are
used by the EC2M interface to help user tagging a document.

C. Exploiting the ontology

As described before, the main goal of the ontology is to
formally model the domain and to store the common informa-
tion needed to tag documents, using the ontology instances, in
the system.

But the ontology has been also used to store other infor-
mation related to Classes and Instances that will be used by
the GUIs and by the automatic classification module.

Regarding the exploitation of the ontology by the GUIs,
please consider that the EC2M system was created to help dif-
ferent users, from different companies, to share documents. It
is possible that users speak different languages: consequently,
the GUIs should adapt to the desired language. Similarly, some
classes or instances names suffer of a formalism that is due to
OWL, but that could create confusion to the end users. Since
GUIs read from the ontology the possible tags and have to
show the users them plus the ontology class the tags refer

Figure 6. Class Documento offerta (Proposal) and its main relationships.

70

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 7. Relationships among classes starting from Documento (Document) and its subclasses.

to, we added to ontology classes some rdfs:labels to store the
value that must be visualized in the GUIs. For example, as
shown in Section V and Section VI, to Italian users the class
Business Item is shown with the name “Elemento d’offerta”,
read from the label associated to that class.

Regarding the exploitation of the ontology by the automatic
classification module, we improved the information stored in
the ontology by adding more synonyms, acronyms, equivalent
definitions and generic information to classes and instances,
storing them into rdfs:labels: these terms are the elements of
the “synsets” that will be read and used by the automatic
classification module, as shown in Section VI.

V. THE RUNNING SYSTEM

A first prototype of the EC2M system has been developed
at the end of 2012, based on the ontology described in Section
IV of [1], and has been tested concretely by Nacon, Nis
and Sempla to manage the documents created in 2012 (3200
documents), with 31 users. Now the system is completely
updated and running (using the new version of the ontology
presented in this paper), serving more than 600 users, and
manages a documents set that grows each year approximatively
of 3000 new items.

Some images of the GUIs are reported to give an example
of usage. The GUI form in Figure 8 is the one where the
user can add a new document, specifying: what kind of
document he is inserting (a “Presentazione”), the market (in
this case “Insurance”) and the business items the document
is about (selecting these values using drop down lists that

Figure 8. First GUI form for inserting a new document with some first tags.
Screen shot.

group the business item instances in their subclasses). In the
example, the user chooses the instances “User Experience”,
“Web development” and “Digital media strategy” from class
Attivitá professionale (instances of class Attivitá professionale
are shown in Table II). Finally, the user chooses the language
(“Italiano”).

In Figure 9, the system presents to the user the list of
the current tags that he selected plus the tags that have
been automatically added: in this case only the tag “Digi-
tal Marketing Design” from class Business Area, because all
the selected business items refer to this area, as shown in Table
III.

Note that in the ontology, labels have been added to classes
to store the term to be shown in the GUIs, because sometime
the class names are not “good to be visualized” (for example
they contain the “ ” character, or are in a different language
from the GUI one). For example, in Figure 9 the tags from
class Business Item are called “Elemento d’offerta” instead of
the standard class name.

Then, the system asks the user if he wants to add some
more tags, choosing from those connected to the already se-
lected ones. In the example, the user chooses to add more tags
starting from the business area “Digital Marketing Design”.
So the system shows the user the possible tags, choosing from
the instances related to “Digital Marketing Design” (conside-
ring the properties with domain Business Area) in the ontology
(Figure 10). The user can add some of those tags and then
saves the document.

TABLE II. INSTANCES OF THE Attivitá professionale CLASS (SUBCLASS
OF Business Item).

User Experience Web development Digital media
strategy

ADV Campaign

Program
management
consulting

IT infrastructure
management

Project
portfolio
management

Enterprise archi-
tecture planning

ITIL Implementa-
tion

Business driven
development

Delivery
Methodologies

IT Processes Or-
ganization

Application Mod-
ernization

Digital
Marketing

Feasibility Study Visual Graphic
Design

BPR Brand Identity Time Material Movie Design

71

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 9. List of a manually selected tags plus those automatically added.
Screen shot.

TABLE III. Business Item INSTANCES ASSOCIATED TO THE
“DIGITAL MARKETING DESIGN” BUSINESS AREA.

User experience Movie Design ADV Campaign Brand Identity
Digital Media
Strategy

Visual Graphic
Design

Digital
Marketing

Web
Development

Figure 10. Possible new tags (left) and already associated tags (right). Screen
shot.

VI. THE AUTOMATIC CLASSIFICATION ALGORITHM

The EC2M system is equipped with the Loader/Classifier
module, able to automatically classify a document given as
input: it is based on Lucene [34] (to interact with Alfresco for
getting the indexes and to analyze the documents, searching for
terms) and on Jena [35] (to read the ontology classes, instances
and labels). It follows an algorithm based on [36], and is used
to automatically identify the type of the input document and
the possible related tags (chosen from the ontology). These
automatically associated tags are then presented to the user
who can confirm or change them.

The UML activity diagram in Figure 11 (created following
the methodology described in [37], as for that in Figure 12)
shows the Classifier’s algorithm devoted to the identification
of the document type:

• It asks the Ontology Manager (that uses Jena) the list
of Document Types (that are the subclasses of the
ontology class Documento (Document)) with their re-
lated synsets (that are the sets of rdfs:labels associated
to each class);

• For each document type, it:
◦ searches in the document title the terms in the

document type synset;
◦ searches in the document body the terms in the

document type synset;
◦ If at least one correspondence is found, the

type is considered in the list of possible can-
didates, and a score is calculated based on the

frequency of the synset terms found in the
previous steps. If the term is found in the title,
it is multiplied for a predefined “boost value”.

• At the end of the loop, the document type with the
highest score (that is, the uniquely found document
type or that with a score exceeding of a predefined
value, called “DELTA”, those of the other document
types) is associated to the document. If there are many
types with similar scores, none type is associated to
the document.

The algorithm that automatically extracts the semantic tags
is described with an activity diagram in Figure 12:

• It asks the Ontology Manager (that uses Jena) the
properties list of the document type chosen in the
previous phase of the algorithm (if any);

• For each datatype property, it calculates the possible
value analyzing with Lucene the document, searching
for the property name (or for the terms in its synset,
stored again as rdfs:labels related to the property)
followed by a value of the correct property type. This
couple is added to the set of indexes related to the
document (indexes are “not semantic” standard tags
that can be related to a document in a CMS: they
are managed directly by Alfresco apart those created
in this step, which are automatically calculated as
described and added to this set);

• For each Object Property, it asks the Ontology Man-
ager the instances of that Class with their related
synsets (that are the sets of rdfs:labels associated to
each instance) and for each instance:

◦ searches in the document title the terms in the
synset;

◦ searches in the document body the terms in the
synset;

◦ If at least one correspondence is found, the
instance is considered in the list of possible
candidates, and a score is calculated based on
the frequency of the synset terms found in the
previous steps. If the term is found in the title,
it is multiplied for a predefined “boost value”;

• At the end of the loop, if the property has sin-
gle cardinality, the instance with the highest score
(that is, the uniquely found instance or the instance
with a score exceeding of a predefined value, called
“DELTA”, those of the other instances) is associated
to the document while, if it has multiple cardinality,
all the instances with a score higher than a predefined
“threshold” are associated to the document;

• Lastly, considering each instance associated to the
document in the previous steps, its data properties with
a value are added as indexes, and other instances (if
any) related by object properties are added as tags to
the document too.

The “boost value” is a parameter used to give some more
importance (that, in this case, is an higher score) to a term
if it has been found in the title of a document. Its value may
range between 1 and 2. After many tests to identify the most

72

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 11. Activity Diagram describing the algorithm to identify the document type.

correct value for this parameter, we now use it with value 1.5.
In general, if you have a domain with documents with relevant
titles, an higher value of this parameter is recommended.

The “DELTA” parameter, as explained before, is used to
select only the instance with a score really higher then that
of the other candidates, and again has been tuned during the
tests: its value may range between 0 and 1, and we use it set
to 0.2.

Lastly, the “threshold” parameter is used to select only
a subset of the identified candidates to be proposed to the
user: at the end of the algorithm we have a list of candidates
with a score, which ranges from 0.1 (the lowest value) to 1
(the highest one), reflecting the confidence that the candidate
is really associable to the document. We use the “threshold”
parameter to choose, between them, only those with a reliable
score. Its value may range between 0 and 1, and currently this
value is set to 0.3 (as explained later in this Section).

An example is reported in Figure 13: the document in
input, “06-Portale del Credito-CR2 - Revisione PDC GOR -
MS.pptx”, is automatically correctly identified as a Presen-
tazione (Presentation).

This class has two properties, as shown in Figure 7:
“Scritto In (Written In)” (single, with range Lingua (Lan-

guage)), and “Descrive Business Item (visualized as “De-
scribe” in Figure 13)” (multiple, with range Business Item).
The algorithm correctly identifies the language (instance “Ital-
ian”) and selects three related Business Item for the property
“Describe” (“Credito al consumo”, “Credito lab”, “Credit and
risk management”).

As last step, considering that all the three Business Items
are related to the “Business Solution” instance of Busi-
ness Area class (see Table I) thanks to the property
”Item appartiene ad areaB” (see Figure 5), the tag “Business
Solution” is associated to the document.

The first tests, presented in [1], gave already promising
results: considering the automatic tags extraction, those with
a threshold higher than 0.3 were correctly associated with the
document in the 95% of the executed tests. In the following
months the system has been tuned to achieve better results:
the algorithm was not modified, while the ontology has been
changed to create more complete synsets (in fact many wrong
tags associations were due to poor synsets). Now that the
ontology has been updated and revised, the percentage of
correct tags is 100% with threshold higher than 0.5, and 97%
with threshold between 0.3 and 0.5.

73

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 12. Activity Diagram describing the algorithm to identify the document tags.

Figure 13. Automatically identified tags (highlighted rows) in the document used for example.

74

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



VII. CONCLUSION AND FUTURE WORK

The solution that we adopted is based on a mesh-up of
many different technologies and softwares, where an ad hoc
ontology is integrated into an open-source CMS and then
deployed over a cloud platform, following the new trends
in different research areas. As shown in Sections I and II,
many solutions exist that are in some way similar to ours
(considering the adoption of a formal representation of the
domain, or for the similar overall structure) but are really
far for other aspects (different domain, different semantic
representation and expressiveness, or simply being only a
study, not a real and applied tool). It is impossible to make a
precise comparison with the other mentioned systems, because
they are commercial or not available to the community, or
because a completely new system, using the other approaches
or technologies, should be developed to be tested and com-
pared, and this solution is not feasible. As far as we were
able to do, we adopted the open-source softwares recognized
by the users and by the research community as very reliable
and efficient ones (for example Lucene and Alfresco), while
our industrial partner chose the cloud platform making again
a detailed analysis of the available platforms (Eucalyptus and
Amazon Web Services by Amazon, OpenStack by Rackspace,
AppScale by Google), to adopt the best one for our project.
To develop our ontology, considering that it was the core of
the system, we adopted OWL, since it is one of the most
expressive language for developing ontology and that some
well working libraries to interface and manipulate it from an
external program exist (like Jena).

The EC2M project has been fully tested in 2012 and 2013,
and showed very good results with respect to a standard
ECM system: it really helped users from different companies
better collaborate, exploiting a semantic classification of their
documentation and consequently offering a simpler searching
phase and a better support in sharing information, which was
impossible to obtain without a similar system.

The ontology is now complete and models all the document
types and contents. It has been equipped with labels to store
both “visualization information” (that are the labels that must
be visualized in the GUIs) both “synsets”. This solution was
definitely good for our system because:

• it lets the system administrators simply modify some
parts of the GUIs only modifying the ontology, re-
ducing the chance of an misalignment between the
terminology and the GUIs, and reducing the time-to-
market too

• it lets simply modify the instances and their synsets, so
that the automatic classification algorithm can conse-
quently improve its results thanks to a more complete
ontology

keeping the independence between the domain representation,
the GUIs and the automatic classification algorithm itself.

The notification of new documents to subscribed users
is done in quasi real time, as requested by these types of
applications, for the remote and mobile users too. Furthermore,
with the deployment over the cloud platform, the performances
can be enhanced with a new purchase of cloud services: with

this architecture and deployment solution the system is really
scalable.

The system has been adopted by GFT (previously Sempla),
and related companies, as their new content management
system, since it showed very good performances (thanks to the
cloud architecture), great accessibility (thanks to the mobile
access and context awareness module), high reliability in
the automatic tagging process, and high adaptability (thanks
to the adoption of the ontology as an independent domain
representation). So, it is not only a prototype, but a real and
running system that shows how these solutions coming from
the research fields (ontologies, context awareness, cloud and
CMS composed together) can actually and effectively work in
real industrial scenarios.

Furthermore, the adoption of open source technologies and
the chance of exploiting the system as a service over the cloud
platform (with a pay-per-use solution) allowed a reasonable
initial budget and a high scalability in the overall architecture,
which from the industrial viewpoint is a good “Return Of
Investment”: that is another evidence of the applicability of
these technologies in industrial systems.

As last future work, we will investigate how dealing with
the scenarios where the nodes in the EC2M network use
different ontologies to describe and tag their documentation: in
this case, the common ontology must be anyway chosen and
defined, but ontology matching techniques may be adopted to
align the common and private ontologies before tagging and
when receiving notifications from the other nodes, to let them
keep on using their private ontology but also being able to
share documents with common tags.

ACKNOWLEDGMENT

The research described in this paper has been funded by
the “EC2M system (Enterprise Cloud Content Management)”
Programma Operativo Regionale (POR) project.

The authors would like to thank Maurizio Ferraris from
Nacon and Viviana Mascardi and Gianna Reggio from DIBRIS
that led the industrial and the DIBRIS academic components,
respectively, involved in the EC2M project. Thanks also to
Maurizio Leotta for the activity Diagrams shown in this article.

A special thanks goes to Dante Laudisa, from Sempla,
who actively participated in the domain explanation and in
the ontology definition.

REFERENCES

[1] D. Briola, A. Amicone, and D. Laudisa, “Ontologies in Industrial En-
terprise Content Management Systems: the EC2M Project,” in COGNI-
TIVE 2013, The Fifth International Conference on Advanced Cognitive
Technologies and Applications, 2013, pp. 153–160.

[2] Association for Information and Image Management, “What is Enter-
prise Content Management (ECM)?” 2010, URL: http://www.aiim.org/
what-is-ecm-enterprise-content-management.

[3] A. P. Sheth and C. Ramakrishnan, “Semantic (Web) Technology In
Action: Ontology Driven Information Systems for Search, Integration
and Analysis,” IEEE Data Eng. Bull., vol. 26, no. 4, 2003, pp.
40–48. [Online]. Available: http://dblp.uni-trier.de/db/journals/debu/
debu26.html#ShethR03

[4] R. Andersen, “The Rhetoric of Enterprise Content Management (ECM):
Confronting the Assumptions Driving ECM Adoption and Transform-
ing Technical Communication,” Technical Communication Quarterly,
vol. 17, no. 1, 2008, pp. 61–87.

75

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[5] “The Alfresco Homepage,” 2014, URL: http://www.alfresco.com/ [ac-
cessed: 2014-03-01].

[6] “The Plone Homepage,” 2014, URL: http://plone.org/ [accessed: 2014-
03-01].

[7] “The Sensenet Homepage,” 2014, URL: http://www.sensenet.com/ [ac-
cessed: 2014-03-01].

[8] “The smartlogic Homepage,” 2014, URL: http://www.smartlogic.com
[accessed: 2014-03-01].

[9] “The H-Dose Homepage,” 2014, URL: http://dose.sourceforge.net/ [ac-
cessed: 2014-03-01].

[10] “The OpenCalais Homepage,” 2014, URL: http://www.opencalais.com/
[accessed: 2014-03-01].

[11] “The Apache Stanbol Homepage,” 2014, URL: http://stanbol.apache.
org/ [accessed: 2014-03-01].

[12] R. Garcı́a, J. M. Gimeno, F. Perdrix, R. Gil, and M. Oliva,
“The Rhizomer Semantic Content Management System,” in WSKS
(1), ser. Lecture Notes in Computer Science, M. D. Lytras,
J. M. Carroll, E. Damiani, and R. D. Tennyson, Eds., vol.
5288. Springer, 2008, pp. 385–394. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/wsks/wsks2008.html#GarciaGPGO08

[13] C. Frank and M. Gardoni, “Information Content Management with
Shared Ontologies-at Corporate Research Centre of EADS,” Int. J.
Inf. Manag., vol. 25, no. 1, Feb. 2005, pp. 55–70. [Online]. Available:
http://dx.doi.org/10.1016/j.ijinfomgt.2004.10.009

[14] D. M. Le and L. M. S. Lau, “An Open Architecture for
Ontology-Enabled Content Management Systems: A Case Study
in Managing Learning Objects,” in OTM Conferences (1), ser.
Lecture Notes in Computer Science, R. Meersman and Z. Tari,
Eds., vol. 4275. Springer, 2006, pp. 772–790. [Online]. Available:
http://dblp.uni-trier.de/db/conf/otm/otm2006-1.html#LeL06

[15] G. Laleci, G. Aluc, A. Dogac, A. Sinaci, O. Kilic, and F. Tuncer, “A
Semantic Backend for Content Management Systems,” Knowl.-Based
Syst., vol. 23, no. 8, 2010, pp. 832–843. [Online]. Available:
http://dblp.uni-trier.de/db/journals/kbs/kbs23.html#LaleciADSKT10

[16] H.-C. Chu, M.-Y. Chen, and Y.-M. Chen, “A Semantic-based Approach
to Content Abstraction and Annotation for Content Management,”
Expert Syst. Appl., vol. 36, no. 2, Mar. 2009, pp. 2360–2376. [Online].
Available: http://dx.doi.org/10.1016/j.eswa.2007.12.067

[17] A. Bechini and A. Vetrano, “Management and Storage of in
Situ Oceanographic Data: An ECM-based Approach,” Inf. Syst.,
vol. 38, no. 3, May 2013, pp. 351–368. [Online]. Available:
http://dx.doi.org/10.1016/j.is.2012.10.004

[18] B. Thönssen, “An Enterprise Ontology Building the Bases for
Automatic Metadata Generation,” in MTSR, ser. Communications in
Computer and Information Science, S. S. Alonso and I. N. Athanasiadis,
Eds., vol. 108. Springer, 2010, pp. 195–210. [Online]. Available:
http://dblp.uni-trier.de/db/conf/mtsr/mtsr2010.html#Thonssen10

[19] J. Corchado, D. Tapia, and J. Bajo, “A Multi-Agent Architecture
for Distributed Services and Applications,” Computational Intelligence,
vol. 24, 2008, pp. 77–107.

[20] D. Griol, J. M. Molina, and Z. Callejas, “Providing Personalized
Internet Services by means of Context-Aware Spoken Dialogue
Systems,” JAISE, vol. 5, no. 1, 2013, pp. 23–45. [Online]. Available:
http://dblp.uni-trier.de/db/journals/jaise/jaise5.html#GriolMC13

[21] G. Blázquez, A. Berlanga, and J. M. Molina, “inContexto: Mobile
Phone Multi-Sensor Architecture to Obtain People Context,” Journal
of Ambient Intelligence and Smart Environments, vol. 5, 2013, pp. 23–
45.

[22] R. Fuentes-Fernández, J. Gómez-Sanz, and J. Pavón, “Understanding
the Human Context in Requirements Elicitation,” Requirements
Engineering, vol. 15, no. 3, 2010, pp. 267–283. [Online]. Available:
http://dx.doi.org/10.1007/s00766-009-0087-7

[23] J. L. R. Garcı́a and A. L. Tello, “Ontotv: an Ontology-Based System
for the Management of Information about Television Contents,” Int.
J. Semantic Computing, vol. 6, no. 1, 2012, pp. 111–. [Online].
Available: http://dblp.uni-trier.de/db/journals/ijsc/ijsc6.html#GarciaT12

[24] A. Aiello, M. M. Furnari, A. Massarotti, S. Brandi, V. Caputo, and
V. Barone, “An Experimental Ontology Server for an Information
Grid Environment,” International Journal of Parallel Programming,

vol. 34, no. 6, 2006, pp. 489–508. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/ijpp/ijpp34.html#AielloFMBCB06

[25] G. Reggio, F. Ricca, and M. Leotta, “Improving the Quality and the
Comprehension of Requirements: Disciplined Use Cases and Mock-
ups,” in Proceedings of the 40th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA 2014). IEEE, 2014.

[26] “The Liferay Homepage,” 2014, URL: http://www.liferay.com/ [ac-
cessed: 2014-03-01].

[27] “The OWL Language Overview Homepage,” 2014, URL: http://www.
w3.org/TR/owl-features/ [accessed: 2014-03-01].

[28] “The Protégé Homepage,” 2014, URL: http://protege.stanford.edu/ [ac-
cessed: 2014-03-01].

[29] “The Drools Homepage,” 2014, URL: https://www.jboss.org/drools/
[accessed: 2014-03-01].

[30] I. Bisio, F. Lavagetto, M. Marchese, and A. Sciarrone, “GPS/HPS-
and Wi-Fi Fingerprint-Based Location Recognition for Check-In Ap-
plications Over Smartphones in Cloud-Based LBSs,” Multimedia, IEEE
Transactions on, vol. 15, no. 4, June 2013, pp. 858–869.

[31] T. R. Gruber, “A Translation Approach to Portable Ontology
Specifications,” Knowl. Acquis., vol. 5, no. 2, Jun. 1993, pp. 199–220.
[Online]. Available: http://dx.doi.org/10.1006/knac.1993.1008

[32] N. F. Noy and D. L. Mcguinness, “Ontology Development 101: A Guide
to Creating Your First Ontology,” Tech. Rep., 2001.

[33] “The Bibliographic Ontology Homepage,” 2014, URL: http://
bibliontology.com/specification [accessed: 2014-03-01].

[34] “The Apache Lucene Homepage,” 2014, URL: https://lucene.apache.
org/ [accessed: 2014-03-01].

[35] “The Jena Homepage,” 2014, URL: https://jena.apache.org/index.html
[accessed: 2014-03-01].

[36] K. S. Jones, “A Statistical Interpretation of Term Specificity and its
Application in Retrieval,” Journal of Documentation, vol. 28, 1972, pp.
11–21.

[37] G. Reggio, M. Leotta, F. Ricca, and E. Astesiano, “Business Process
Modelling: Five Styles and a Method to Choose the Most Suitable One,”
in Proceedings of the Second Edition of the International Workshop
on Experiences and Empirical Studies in Software Modelling, ser.
EESSMod ’12. New York, NY, USA: ACM, 2012, pp. 8:1–8:6.
[Online]. Available: http://doi.acm.org/10.1145/2424563.2424574

76

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


