
Runtime Variability in Online Software Products: A
Comparison of Four Patterns

Jaap Kabbedijk, Slinger Jansen, and Thomas Salfischberger
Department of Information and Computing Sciences

Utrecht University, The Netherlands
Princetonplein 5, 3584 CC, Utrecht

J.Kabbedijk@uu.nl, Slinger.Jansen@uu.nl, Tomas@salfischberger.nl

Abstract—Business software is increasingly moving towards
the cloud. Because of this, variability of software in order to fit
requirements of specific customers becomes more complex. This
can no longer be done by directly modifying the application for
each client, because of the fact that a single application serves
multiple customers in the Software-as-a-Service paradigm. A new
set of software patterns and approaches are required to design
software that supports runtime variability. This paper presents
two patterns to solve the problem of dynamically adapting
functionality of an online software product; the Component
Interceptor Pattern and the Event Distribution Pattern. Addi-
tionally, it presents two patterns to dynamically extent the data
model; the Datasource Router Pattern and the Custom Property
Object Pattern. The patterns originate from case studies of
current software systems and are reviewed by domain experts. An
evaluation of the patterns is performed in terms of security, per-
formance, scalability, maintainability and implementation effort,
leading to the conclusion that the Component Interceptor Pattern
and Custom Property Object Pattern are best suited for small
projects, making the Event Distribution Pattern and Datasource
Router Pattern best for large projects.

Keywords—architectural patterns, quality attributes, software
architecture, variability.

I. INTRODUCTION

This research has previously been published as conference
paper [1] and is extended with a pattern description method
and presentation and comparison of two dynamic datamodel
extension patterns.

Software as a Service (SaaS) is a rapidly growing deploy-
ment model with a clear set of advantages to software vendors
and their customers. SaaS allows vendors to deploy changes to
applications more rapidly, which increases product innovations
while reducing support-costs as only a single version is to be
supported concurrently [2]. In the SaaS deployment model, a
single application serves a large number of customers. These
customers are called tenants, which can be a single user or an
organisation with hundreds of users. Because all tenants use
the same application, the cost of development and setup of the
application can be amortized over all contracts.

The multi-tenant deployment model requires the appli-
cation to be aware of different tenants and their users, for
example in separating the data visible to different groups of
users. We define multi-tenancy as: “the property of a system
where multiple varying customers and their end-users share
the system’s services, applications, databases, or hardware
resources, with the aim of lowering costs”. Database designs

for multi-tenant aware software require specialized architecture
principles to accommodate multiple tenants [3]. One of the
challenges in multi-tenant application architectures is the im-
plementation of tenant-specific requirements [4]. Variability of
software to fit requirements of specific customers can no longer
be done by directly modifying the application for each client or
product group, as is customary in Software Product Lines [5].
Because a single application serves multiple customers, only
one instance of a product exists, making SPL approaches
unusable.

Runtime variability in online software products needs to be
enables by a degree of configurability. A new set of software
patterns and approaches are required to design software that
supports runtime variability. The patterns vary in impact on
the technical properties of the software like performance and
maintainability, impact on the cost-drivers of the SaaS business
model, and the requirements they can fulfil. New patterns
are needed for both the data level and instance level of the
application. We propose two dynamic functionality adaptation
patterns to implement variability at instance level and two
dynamic datamodel extension patterns to enable variability at
data level. All patterns are evaluated and compared in terms
of situational suitability.

The concepts of variability and quality attributes are ex-
plained in Section II, after which the expert evaluation used
is explained in Section III. Section IV explains how patterns
are described in this paper, i.e., functional, system and imple-
mentation level. The COMPONENT INTERCEPTOR PATTERN
and the EVENT DISTRIBUTION PATTERN, two patterns both
solving the problem of dynamically adapting functionality
of online business software, are presented in Section V.
Section VI presents the DATASOURCE ROUTER PATTERN
and CUSTOM PROPERTY OBJECT PATTERN, which introduce
variability in the datamodel of online software products. All
patterns are compared in terms of security, performance, scala-
bility, maintainability and implementation effort. A concluding
overview, presenting the best suitability for all patterns van be
found in Section VII.

Please note; in the text we set pattern names in SMALL
CAPS according to the convention by Alexander et al. [6].

II. RELATED WORK

Software Patterns - Object oriented design patterns were
first introduced by Gamma, Helm, Johnson and Vlissides [7]
who define design patterns as recurring patterns of classes

101

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



and communicating objects in many object-oriented systems.
They state “each design pattern systematically names, explains,
and evaluates an important and recurring design in object-
oriented systems”. We distinguish the patterns described in this
research from the original object oriented design patterns by
using the name software design patterns. We intend to describe
software design patterns for variability techniques in a multi-
tenant context in a similar manner to the object oriented design
patterns described by Gamma et al. [7].

Others have, based on the first set of design patterns,
researched the best methods for describing and communicating
design patterns for later reuse. Evits and Hinchcliffe [8], for
example, apply UML to design patterns and proposes a mod-
eling technique based on UML-modeling. The same approach
is taken by Mapelsden, Hosking and Grundy [9] in their
proposal for the Design Pattern Modeling Language (DPML).
DPML provides a method for the specification of design
patterns as well as a notation linking the elements of design
patterns in DPML to UML model elements. They consider
three forms, the pattern specification, the pattern instantiation
and the final UML object model of the instantiation. In a
later publication, Mapelsden et al. present tool-support for the
DPML to automatically transform a pattern specification into
a pattern instantiation and to maintain consistency between
pattern specification, pattern instantiation and the UML object
model [10].

[11] discuss the need of a more formal design pattern
description language to support Computer Aided Software
Engineering (CASE) tools. They describe previous pattern de-
scription languages based on generic UML diagrams annotated
with natural language constraints as a problem for CASE
tools. However, their main concern is the fact that previous
pattern description approaches tend to describe a single im-
plementation of the pattern where the true meaning of the
pattern is lost to a description of implementation details. The
running example is the Abstract Factory Pattern as described
by Gamma et al. [7]. The proposed solution is to apply three
separate layers of modeling, the role-model, type-model and
class-model. At the highest level of modeling the role-model
only describes the parts of a design pattern and their relative
roles and interaction. The type-model is a refinement of the
role-model where details like implemented methods are added.
The type-model should according to Lauder and Kent [11] be
supplemented by a textual description of the motivation, trade-
offs and known uses. The final refinement of the type-model is
the class-model, where a concrete implementation is described
as is the case in previous pattern description languages.

Variability - The field of software variability has been
the subject of research from both the modeling perspective
as well as the technical perspective [12]. The application of
variability modeling as used in product line variability [13]
to software as a service environments has been described by
Mietzner, Unger, Titze and Leymann [14]. Variability modeling
as discussed in the aforementioned works contributes to the
understanding of where the application architecture needs to
be able to accommodate change or extension. Patterns play an
important role in modeling and solving variability in software
products [15].

Svahnberg, van Gurp and Bosch [16] propose feature
diagrams as a modeling technique to describe the different

variants of feature in a software product. They use their feature
diagrams as the basis for a method to identify variability
in a product, constrain this variability, pick a method of
implementation for the variability and further manage this
variability point in the application lifecycle. The main differ-
ence from the objectives of our research is that Svahnberg
et al. describe implementation techniques for variability per
installation instance of the software, whereas we focus on
runtime variability in a multi-tenant context.

Quality Attributes - Benlian and Hess [17] identify se-
curity as one of the most important risk-factors perceived,
followed by performance risks. To assess security risks, SaaS
vendors need to include security as a quality attribute in their
design of the architecture. This leads to security as the first
desired quality attribute for business SaaS. Performance as
an important factor to SaaS users is closely related to the
most important factor, i.e., cost [17]. When performance is
insufficient, clients are lost, when the system uses too many
resources to gain an acceptable level of performance, cost
is increased. A SaaS vendor must thus assess the possible
performance impact of changes to the software. To control
cost in business SaaS, the SaaS vendor needs to utilize its
opportunities for scalability to decrease the cost of hardware
or hosting fees (e.g., using scalable software to make optimal
use of cloud-hosting).

Another cost driver in SaaS is the cost of development
and maintenance of the software product. Maintenance cost is
generally decreased by having to maintain only a single version
instead of multiple previous releases. On the other hand, this
maintainability cost-saving must not be lost while implement-
ing runtime variability. Thus, scalability and maintainability
are also desired quality attributes for business SaaS. Another
way the implementation of runtime variability will influence
product cost is through implementation-cost. Development is a
cost-driver for SaaS, thus if one or more specialized developers
are required to implement a certain pattern this will influence
the final product cost.

The identified quality attributes are the following:
Security - The ability to isolate tenants from each other and
the possible impact of security breaches in custom components
on other parts of the system.
Performance - The utilization of computing, storage and
network resources by the application at a certain level of usage
by clients.
Scalability - The relative increase in capacity achieved by the
addition of computing, storage and network resources to the
system as well as the flexibility with which these resources
could be added to the system.
Maintainability - The ease with which the system can be
extended and potential problems can be solved.
Implementation Effort - The effort required to implement and
deploy a specific system.

III. RESEARCH APPROACH

In order to gather the patterns in this research, a design
science approach [18] was used in which the initial solutions
are observed in case studies in which one of the authors took
part as a consultant. The solutions are implemented in current
commercial software products. The architecture description

102

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



and source code off the software products is examined and
checked if runtime variability in functionality or datamodel
is supported. Whenever this is the case, the solution used is
documented and the consequences of the solution analyzed.
Solutions observed in at least three products are presented as
patterns and are evaluated by two domain experts to ensure
correctness and usefulness. The evaluation of the cases by
experts enhances the validity of the cases [19]. During each
evaluation session, patterns are discussed with an expert, in a
semi-structured way. Standard questions related to the quality
attributes are asked, after which issues are freely discussed per
quality attribute.

The first expert selected is a senior software architect in
an international software consulting firm specialized in large
scale development of Enterprise Java applications. His role is
to investigate technologies and methodologies to help design
better architectures resulting in faster development and more
extensible software. A recent project includes a multi-tenant
administrative application storing security sensitive data for
multiple organizations. The second expert is a technology
director and lead architect for an application used in distributed
statistics processing of marketing data, previously working in
software performance consulting for web-scale systems. His
experience lies in the field of high-performance distributed
computing. The application his company works on focuses
of low-latency coordinated processing of large volumes of
data to calculate metrics used for marketing. Performance and
scalability are important areas of expertise for their product.

IV. PATTERN DESCRIPTION METHOD

The use of patterns in order to describe multi-tenant
systems is different from the way object oriented design pattern
are commonly applied. An object oriented design pattern
describes common solutions to problems in object oriented
software design. The most important difference between ob-
ject oriented software design and the design of multi-tenant
systems is that the problem scope in multi-tenant systems is
not limited to only the objects in object oriented software.
The software system is considered not only to be a set of
source files, but to include supporting systems like databases,
message-bus and infrastructure.

The needs for a description language for the discussed de-
sign patterns thus includes the need to describe any necessary

Workflow

+ Name

Step

+ Order

VariableStep

+ SituationDescription

DefaultStep

+ Description

Fig. 1: Example UML class diagram

Fig. 2: Example UML Deployment Diagram

characteristics of the supporting systems and auxiliary materi-
als. When considering design patterns for software systems we
propose a combination of description techniques at different
levels similar to Lauder and Kent [11]. Instead of modelling
different levels of detail and abstraction within only object
oriented design, different levels of the software architecture
including supporting systems have to be modelled. The levels
we propose to describe online systems are:

1) Functional level
2) System level
3) Implementation level

Functional level - This level describes the functional in-
tention of the pattern in a technical context. Multiple different
patterns can share the same model at functional level, because
several patterns can be designed to reach the same functional
effect with, for example, different performance and scalability
characteristics. For the graphical modelling of the functional
level, UML class diagrams are used as shown in Figure 1.
This diagram captures the functional situation resulting from
application of the pattern without considering implementation
of pattern instantiation details.

System level - This level models the overview of the
software including supporting systems after the application of
the pattern. Interaction among different components within and
between systems as a result of the implemented pattern are

Fig. 3: Example Sequence Diagram

103

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



StandardComponent

+ Name

+ Function ExtensionComponent

+ Name

+ Function

+ Behaviour

ExtensionPoint

Fig. 4: Functional Model for adapting functionality

shown. A UML deployment diagrams [20] is used to describe
this level (see Figure 2 for an example).

Implementation level - The third level describes the
potential implementation of the pattern. These diagram depicts
a specific implementation of the components of the pattern.
The implementation diagram is closely related to the system
model, but depicts the method of application of the components
in the system model on a more detailed level. Within this
research we use a sequence diagram as shown in Figure 3
to illustrate the implementation. This description level should
be regarded as a possible way to implement the pattern, but it
does not prescribe a specific implementation.

V. DYNAMIC FUNCTIONALITY ADAPTATION PATTERNS

A. Problem Statement

Software product vendors not only need to offer a data
model that fits an organisation’s requirements, software func-
tionality also has to meet an organisation’s processes [21].
When tailor-made software is developed, it is possible to set
the requirements to exactly match the processes of a specific
organisation. For standard online software products this is not
possible and differences between requirements of organisation
have to be addressed at runtime.

A requirement for the ERP system of a manufacturing
company could be to send a notification to the department
responsible for transportation if tomorrow’s batch will be larger
than a certain size. If this requirement is not met by the
software product selected, the company could either decide
to select another software product or develop a tailor-made
application that does meet their requirements.

To allow for the addition of extra functionality in the ap-
plication, a solution that allows to configure this functionality
is needed. This functional situation is modeled in Figure 4, the
envisioned functional situation. The StandardComponent is a
normal component of the software with default functionality,
this component has a set of ExtensionPoints. An Extension-
Point is a location within the normal workflow where there is
a possibility to add or change functionality. This functionality
is specified in an ExtensionComponent, which contains the
actual functionality that is to be executed at the specified
ExtensionPoint.

Two different patterns are identified, both offering a solu-
tion to dynamically adding functionality to a software product.

Fig. 5: Component Interceptor Pattern: System Model

B. Component Interceptor Pattern

The COMPONENT INTERCEPTOR PATTERN as depicted in
Figure 5 consists of only a single application server. Inter-
ceptors are tightly integrated with the application, because
they run in-line with normal application code. Before the
StandardComponent is called the interceptors are allowed to
inspect and possibly modify the set of arguments and data
passed to the standard component. To do this the interceptor
has to be able to access all arguments, modify them or pass
them along in the original form. Running interceptors outside
of the application requires marshalling of the arguments and
data to a format suitable for transport, then unmarshalling by
the interceptor component and again marshalling the possibly
modified arguments to be passed on to the standard component
that was being intercepted. This is impractical and involves a
performance penalty [22].

Running the extension components inside the application-
server while supporting runtime variability requires support
for adding and changing interceptors at runtime. The system
model depicts this requirement in the form of a reloadable
container. In some implementations this could be as simple
as changing a source file, because the programming platform
used will interpret source code on the fly. Other platforms
require special provisions for reloading code, such as OSGi
for the Java platform or Managed Extensibility Framework for
the .NET platform.

Figure 6 depicts the interaction with interceptors involved.
Interaction with standard components that can be extended
goes through the interceptor registry. This registry is needed

Fig. 6: Component Interceptor Pattern: Sequence Diagram

104

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



to keep track of all interceptors that are interested in each
interaction. Without the registry the calling code would have
to be aware of all possible interceptors. As depicted, multiple
interceptors can be active per component. It is up to the
interceptor registry to determine the order in which interceptors
will be called. An example strategy would be to call the first
registered interceptor first or to register an explicit order when
registering the interceptors.

Each interceptor has the ability to change the data that is
passed to the standard component, modify the result returned
by the standard component, execute actions before or after
passing on the call or even skip the invocation of the next
step all together and immediately return. Immediately returning
would for example be used when the interceptor implements
certain extra validation steps and refuses the request based on
the outcome of the validation. As a result of these possibilities
the interceptors must be invoked in-line with the standard com-
ponent, the application cannot continue until all interceptors
have finished executing.

C. Event Distribution Pattern

In the event distribution pattern the application generates
events at extension points, which are distributed by a broker. At
each extension point the standard component is programmed to
send an event indicating the point and appropriate contextual
data (e.g., which record is being edited) to a broker. For exam-
ple in a CRM system the standard component for editing client-
records sends a ClientUpdated event with the ID of the client
that was edited. Extension components listen for these events
and take appropriate actions based on the events received. In
the example of a ClientUpdated event, an extension component
could be developed that sends a notification to an external
system to update the client details there.

The system model in Figure 7 depicts the distributed nature
of the EVENT DISTRIBUTION PATTERN. Standard components
run in the application server, sending events to a central broker,
which can be run outside of the application. Extension com-
ponents are isolated and can be on a separate physical server
or run as separate processes on the same server depending
on capacity and scale of the application. Components are
loosely coupled, sharing only the predefined set of events.
The standard components are unaware of which extension

components listen for their events, execution of extension com-
ponents is decoupled from the standard components. Executing
the extension components separately allows for independent
scalability of these components. Depending on system load
and the volume of events each component listens for, it is
possible to allocate the appropriate amount of resources to each
component. Because there is no interaction between listeners,
it is possible to execute all listeners in parallel if appropriate
for the execution environment.

Standard components publish events to the broker as de-
picted in the sequence diagram in Figure 8. The activation
of the standard component not necessarily overlaps with its
listeners. After publishing the event, a standard component is
free to continue execution. Depending on the fault tolerance
and nature of the events it is up to the standard component
to make a trade-off between guaranteed delivery at a higher
latency by waiting on the broker system to acknowledge
reception of the event or continue without waiting for such
an acknowledgement. If, for example, an event is only meant
to prime a cache for extra performance the loss of such a
message would not impact critical functionality of the system
while waiting for the message might mitigate any performance
gains. On the other hand, if an event is used for updating an
external system for which no other synchronization method
is available the system needs guaranteed delivery to function
correctly. At design time this decision can be made on an event
by event basis depending on the capabilities of the messaging
system used.

Because of the one-way nature of events and decoupled
execution of extension components it is not possible for
an ExtensionComponent to stop standard functionality from
happening. In the observed system this was solved by allowing
ExtensionComponents to execute a compensating action in
their listener. The compensating action is sent from the listener
component back to the system independently of the original
action that caused the event. An example of such a compen-
sating action is an extension component that monitors changes
to certain records and reverts the change in case special
conditions are met. This approach has the added benefit that
any changes made by extension components are clearly visible
in audit logs, which simplifies tracing possibly unexpected
system behaviour back to an ExtensionComponent.

Fig. 7: Event Distribution Pattern: System Model

105

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 8: Event Distribution Pattern: Sequence Diagram

D. Pattern Comparison

This section presents an analysis of both patterns on the
five presented quality attributes.

1) Security: When adapting functionality of an application,
there is always the possibility of introducing new security
vulnerabilities. This is an inherent risk of extending an ap-
plication. The variability patterns do, however, influence how
much larger the attack surface becomes and how well a breach
in one of the components is isolated from other components. In
the COMPONENT INTERCEPTOR PATTERN, the code handling
the new functionality becomes part of the application and will
have the ability to execute arbitrary code within the context of
the main application as depicted in Figure 5. It will also have
full access to any parameters passed to intercepted functions
as well as any returned values. A security breach in the ex-
tension components (interceptors) is not isolated to only those
components, unless extra security measures are implemented
to separate the components from the main application. Adding
extra security measures, however, does have an impact on the
performance efficiency of the application.

The EVENT DISTRIBUTION PATTERN isolates the extension
components from the application by executing them in a
separate context based on incoming events as depicted in
Figure 6. This execution in a separate context allows for
more isolation between extension components and the main
application components. The components also have far more
limited access to standard functionality, because any change
the component wants to make has to go through explicitly
exported APIs or messages. Combined with event-sourcing,
any change to data as a result of custom functionality is fully
traceable including the original values [23].

2) Performance: The COMPONENT INTERCEPTOR PAT-
TERN executes interceptors within the context of the appli-
cation. This results in little overhead when executing the
extension components, because data does not need to be mar-
shalled, unmarshalled and transferred between applications.
However, for security reasons it could be necessary to separate
the interceptors from the main application as described in
the previous section. This removes one of the performance
advantages of the component interceptor pattern because data
must be transferred between the different contexts.

Applications implementing the EVENT DISTRIBUTION PAT-

TERN require the setup of a message broker that handles
all events coming from the application and going into the
extension components. This requires extra processing and
network resources and in the case of durable message delivery
mechanisms also storage resources reading and writing the
messages. To transfer the events from the application via a
message broker to the extension components the events must
be marshalled into a format suitable for transferring over a
network and unmarshalled upon reception by the extension
component, these steps add non-trivial cost to the operations.

3) Scalability: Applications using the COMPONENT IN-
TERCEPTOR PATTERN will execute interceptors within the
context of the application. This has performance advantages
described in the previous section, however, the interceptors
cannot be scaled independently of the application. When a high
number of interceptors exists requiring significant resources
the application as a whole needs more application servers to
execute. The interceptors must be available to all application
servers in that case.

On the other hand, the EVENT DISTRIBUTION PATTERN
decouples the execution of the event handlers from the applica-
tion by running them on a logically separate application server.
Because events are handled outside the execution flow of the
standard components they can also be distributed to multiple
systems. Adding extra application servers subscribing to the
same events in the message broker the processing capacity of
events could increase linearly. For the EVENT DISTRIBUTION
PATTERN this requires a message broker system that is able
to handle the increasing numbers of messages. Those systems
are available off the shelf from open source projects like Fuse
Message Broker, JBoss Messaging, RabbitMQ and commercial
offerings like Microsoft BizTalk, Oracle Message Broker or
Cloverleaf.

4) Maintainability: When adapting the functionality of an
application, maintainability is also affected by the necessity to
make sure future extensions and modifications are compatible
with any custom functionality implemented for tenants. This
is a trade-off between the flexibility and depth with which
ExtensionComponents can affect the application and the impact
that changes to the application will have on the Extension-
Components. As an example of the aforementioned trade-off,
a simple system with only a single ExtensionPoint will have a
much lower impact on maintainability than a complex system
with a very high number of ExtensionPoints. This however
affects both patterns equally.

The way the patterns decouple ExtensionComponents from
StandardComponents is however a differentiating factor. In the
COMPONENT INTERCEPTOR PATTERN the ExtensionCompo-
nent is more tightly integrated with the StandardComponent
because calls to a StandardComponent at an ExtensionPoint
go through the interceptor providing all parameters and re-
turn values of the call. When changing calls by adding or
removing parameters this will directly affect the input of
each ExtensionComponent registered from that ExtensionPoint.
When applying the event distribution pattern the integration
is more decoupled because calls to StandardComponents are
not directly affected by the ExtensionComponents. Instead the
ExtensionComponent receives a standardized event-message
and uses a provided API to send any changes or other
actions back to the application. This allows for changes to

106

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



the StandardComponent without changing the event-messages
going to the ExtensionComponent. At the same time the API
used by ExtensionComponents to influence the application
can be kept stable for small changes or versioned to support
future compatibility using methods like the one described by
Weinreich, Ziebermayr, and Draheim [24].

5) Implementation Effort: When implementing a pattern
for adding functionality to an application we distinguish two
factors determining the implementation effort. The first factor
is the direct effort required to implement the pattern in the
system, e.g., adding ExtensionPoints to the StandardCom-
ponents of the application. The second factor is the effort
necessary to implement ExtensionComponents. Later changes
to the components might also require development effort, this
is however excluded from implementation effort because it
is covered under maintainability. Both patterns require the
definition and implementation of ExtensionPoints, the way
these points are implemented differs per pattern. When im-
plementing the COMPONENT INTERCEPTOR PATTERN it is
necessary to setup an Interceptor Registry and modify calls to
StandardComponents to go through the Interceptor Registry.

In the EVENT DISTRIBUTION PATTERN, a message broker
system must be setup to handle the event-messages flowing
from StandardComponents to ExtensionComponents. The ap-
plication still has to be modified at the ExtensionPoints to
send the event-messages belonging to that ExtensionPoint. A
larger difference between the two patterns emerges in the
way they influence the system. Using component interceptor
pattern each interceptor has full access to the application
because it executes within the same context. Communication
with StandardComponents from within ExtensionComponents
could use normal function-calls just like any other part of the
system. This differs from the event distribution pattern where
the ExtensionComponents execute in a separate environment
outside the context of the StandardComponents. Any interac-
tion between ExtensionComponents and StandardComponents
needs to go through an external interface. Depending on
the type of system and the requirements for interaction this
requires the development of some sort of (webservice-)API
for the ExtensionComponents to use.

The second factor of implementation effort, the effort
required to implement ExtensionComponents, affects both
patterns. In the COMPONENT INTERCEPTOR PATTERN the
implementation requires the development of an interceptor,
which executes the correct behaviour when certain conditions
are met. The EVENT DISTRIBUTION PATTERN requires the
development of ExtensionComponents, which listen for the
right messages and execute the correct functionality when
certain conditions are met.

Please see Table I for an overview of the evaluation of both
patterns. Plus and minus signs are used to indicate whether a
characteristic is positive or negative. Keep in mind all scores
are relative scores compared to the other pattern.

VI. DYNAMIC DATA MODEL EXTENSION PATTERNS

A. Problem Statement

Organisations within the same or different market all strive
to differentiate themselves, which results in numerous different

working processes each with specific requirements for the
supporting software systems. Additionally, across markets and
jurisdictions differences exist in regulations and standards
which require the storage and reporting of different data for
each organisation. Organisations will thus set varying require-
ments to store data specific to their needs. These requirements
could be met by software specifically designed for the market
in which this organisation operates or even software tailored to
the needs of one specific organisation. Specializing software of
a small market or even single organisation decreases the num-
ber of possible clients for the software vendor and increases
the cost per client. A software product that provides enough
variability on the data model to meet organisation specific
requirements will decrease cost and attract clients that cannot
currently be serviced by software products unable to meet their
specific requirements. Extension of the data model by creating
additional fields to store data that are specific to an organisation
or their working processes is a common requirement [25].

DynamicProperty

+ Name

+ Type

+ Entity

DynamicPropertyValue

+ Property

+ Value

Entity

+ ID

+ Collection of properties

Fig. 9: Functional Model for datamodel extension

In case of standardized software, where this requirement
is not met by the default installation of the software, an
extension of the existing data model is required. Figure 9
depicts the envisioned functional situation, storing custom
properties of entities in the domain model. The depicted Entity
is the original entity in the application domain model which
contains a DynamicPropertyValue and has a relation to a
DynamicProperty. This property is configured for a specific
tenant and holds settings like for example a name and expected
data-type.

B. Datasource Router Pattern

In this pattern, the application uses a different database
instance (or schema) for each tenant. Custom properties are
then added to the database as normal fields. Each component in
the application accesses this database through the Datasource
Router. The Datasource Router component determines which
database is to be used (based on the tenant the current
user belongs to) and routes all access to the right database
automatically. The other components can thus work without
being aware of the fact that the application is actually serving
multiple tenants using different databases.

The system model, which is shown in Figure 10, describes
the overview of the system when implementing the DATA-
SOURCE ROUTER PATTERN. As shown, the application uses

107

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE I: OVERVIEW OF BOTH DYNAMIC FUNCTIONALITY ADAPTION PATTERNS

Component Interceptor Pattern Event Distribution Pattern

Security - Extension components execute within application scope + Isolation of extension components and full traceability of actions by
extension components

Performance + Direct execution of extension components - Network overhead for calling extension components
- The broker system requires extra resources

Scalability - No independent scaling of extension components + Independent scaling of extension components
- Does not scale to high number of extension components + Extension components cannot delay standard components

- Requires scalable message-broker system

Maintainability - Tight coupling of extension components + Loose coupling of extension components

Implementation Effort + Direct communication with standard components - Requires the setup of a message broker system
+ Access to all data by design. - Requires a separate mechanism to communicate with the application

Fig. 10: Datasource Router Pattern: System Model

multiple separate databases (i.e., Database 1 and Database 2 in
the figure) to store data for different tenants. Each component
accesses the database through a Datasource Router, which
determines to which database the queries are sent. Due to
this isolation the components that access the database never
encounter data for multiple tenants at once, since a query will
always return results for one and only one tenant, because it is
sent to a database that contains only data for a single tenant.
This means the components do not need to be multi-tenancy
aware in querying the data.

Fig. 11: Datasource Router Pattern: Sequence Diagram

The interaction between tenant-unaware components and
the database goes through the Datasource Router. The se-
quence diagram in Figure 11 depicts the interaction from com-
ponent through Datasource Router to the actual database. First,
the user interacts with a component, this component requires
access to data, which is done through the Datasource Router.
The Datasource Router is then responsible for determining
which tenant the current user belongs to, this responsibility is
delegated to the User Context. It is implementation dependant

how this User Context is implemented, the only requirement is
that it is able to tell the Datasource Router, which tenant is to
be used in the context of the current request. After determining
which tenant is active the Datasource Router executes the
query on the right database (selected based on the active
tenant), the results are then returned to the component, which
originally needed access to the data. In this sequence, it is
clear that from the perspective of a component requesting data
it does not matter how multi-tenancy is implemented in deeper
layers. The component is isolated from these choices and the
possible complexity involved in selecting the right datasource
to use for the current user.

C. Custom Property Object Pattern

When implementing the CUSTOM PROPERTY OBJECT PAT-
TERN, data from all tenants is stored in a single database with
a single schema. Any additional data like custom properties is
modeled in the design of the application as separate custom
property objects, which are stored in the existing static schema.
Because all data is stored in a single database components
using that data need to be aware of multi-tenancy and explicitly
query for data of a specific tenant.

Fig. 12: Custom Property Object Pattern: System Model

This pattern prescribes the storage of all data in a single
database, which is accessed by components that are aware of
how to filter data for each tenant. In the system model, as
depicted in Figure 13, components are aware of multi-tenancy
and directly access a single database to query for the data
necessary to complete requests. When querying the data it is
the responsibility of each component to only query data related
to the requested tenant or filter data while processing, to get
results only for the current tenant.

As a result of using a single database for all tenants, the
other components need to be aware of the context in which

108

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 13: Custom Property Object Pattern:Sequence Diagram

they operate. When retrieving data the components need to
filter the results to only show data for the current tenant. The
resulting interaction from component to database is depicted
in Figure 13. The component first determines which tenant is
currently active, this is done by using the User Context. It is
implementation dependant how this User Context determines
this, the only requirement is that it is able to tell a component
which tenant is to be used in the context of the current request.
The component then generates a query that is specific to
the current tenant and sends this to the database. It is the
responsibility of the component to ensure that the generated
query only accesses data for the current tenant and to avoid
retrieving data outside of tenant boundaries.

D. Pattern Comparison

1) Security: Comparing the different data storage structures
of the DATASOURCE ROUTER PATTERN and the CUSTOM
PROPERTY OBJECT PATTERN shows that the DATASOURCE
ROUTER PATTERN separates data from each tenant in a sepa-
rate schema or database. This separation also guarantees that
when a query is executed it will only return data for a single
tenant without extra efforts from the developer. Because the
datasource router component is the only component involved
in selecting the datasource for a query, the changes of acciden-
tally mixing data from multiple tenants due to programming
errors are low. Failing to select a datasource would simply
crash the application instead of mixing data from other tenants.

On the other hand, the CUSTOM PROPERTY OBJECTS
PATTERN relies on the developers to write queries to only
return data from the appropriate tenant. When no precautions
are taken in the development and testing process the possibility
of accidentally mixing data from multiple tenants is higher than
when the DATASOURCE ROUTER PATTERN is used. When a
correct filter is not applied in this pattern, users will receiving
data from other tenants that should never be visible to them.
When implementing this pattern it is critical to implement a
strong test and quality assurance system as well as methods for
automatically detecting queries that fail to filter data correctly.

At the system level the DATASOURCE ROUTER PATTERN
requires a separate database or schema per tenant, these
separate instances must all be monitored, updated and secured
separately. Automation of security related system administra-
tion tasks is important, to ensure that all instances are always

in the required state. Failing to implement proper procedures
might result in tenant instances being in different states of
updates and security related configuration settings. Security
procedures for the custom property objects pattern can be
simpler, because only a single database needs to be monitored
and secured. This single database system is however a more
high value target from a security perspective because data from
all tenants is stored in a single place.

2) Performance: The CUSTOM PROPERTY OBJECTS PAT-
TERN uses only a single large database or schema, which
allows the database server to allocate all resources to one
entity. The DATASOURCE ROUTER PATTERN requires a sep-
arate database or schema for each tenant, which, depending
on the database system used, can result in partitioning of
available resources like memory and caches and requiring more
network resources to connect to all databases separately. Query
efficiency in the custom property objects pattern is dependent
upon the design of the database schema.

If the schema is generic, storing all data in field types
without type information, the database engine will not be able
to apply optimizations for specific datatypes. For example,
storing fixed length integers in a variable length BLOB-
field does not allow the database engine to make use of the
known length of the field for faster searching through the
storage structures. Designing the schema to partition data by
tenant allows the database to limit the amount of data that
is necessary to retrieve when executing a query for a single
tenant. This limitation comes naturally for the DATASOURCE
ROUTER PATTERN, because the data for each tenant is stored
separately.

3) Scalability: Two types of scalability exist; vertical scal-
ability and horizontal scalability. In vertical scalability we con-
sider the amount of added capacity available when increasing
the resources of a single system, e.g., adding more memory,
more storage or more processing power to a single server.
This is naturally limited by the available hardware options and
associated costs of those components. Horizontal scalability
concerns the scalability of adding more instances instead of
increasing capacity in a single system. Horizontal scalability
does not have the implied limits of available hardware that exist
in vertical scalability, however, achieving perfect horizontal
scalability has several challenges in coordination of nodes in a
system. In practice this coordination costs resources, which
makes it hard to achieve linear scalability in systems that
require coordination of their workload.

By applying the CUSTOM PROPERTY OBJECTS PATTERN
the application will only use a single database system. This
impacts scalability in the application that requires a database
system that is able to scale by itself to achieve scalability
of the system as a whole. For example, a database system
that supports clustering is appropriate to support scalability
of the custom property objects pattern. In the DATASOURCE
ROUTER PATTERN adding additional sources by moving part
of the databases to separate servers is possible and does not
require a database system capable of clustering.

The DATASOURCE ROUTER PATTERN is easier to scale
out when the amount of tenants increases. An example case
is a system currently using two database systems. In this
example system, new tenants subscribe to the service and the

109

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE II: OVERVIEW OF BOTH DYNAMIC DATAMODEL EXTENSION PATTERNS

Datasource Router Pattern Custom Property Object Pattern

Security + Natural separation of datasets + Only a single datasource to secure and maintain
+ Single point of selecting correct datasource - Risk of losing data separation with programming errors
- More datasources to secure and maintain

Performance + Correct data-types allow for optimizations + Full resource utilization across all schemas
- Resource partitioning across separate schemas - Loss of optimizations due to lack of type information

Scalability + Natural scalability due to separate schemas - No inherent scalability in pattern structure
+ No need for scalability support in database - Requires database system capable of scaling

Maintainability - Large number of possible database schemas must be tested + Single static database schema
- Problem solving requires schema variants to be included + Custom properties can be handled with generic shared code

Implementation Effort + Central component to handle all data-access - Requires adaption of data-access in all components
- Custom properties must be handled in all components - Custom properties must be handled in all components

capacity becomes insufficient to service all tenants. Horizontal
scalability is possible by adding two more database systems,
effectively doubling the database capacity by allowing the data
for new tenants to be stored on the new systems. There is
virtually no overhead involved in this addition, because no
extra coordination is required between the database systems
servicing data for separate tenants.

The CUSTOM PROPERTY OBJECTS PATTERN requires a
database system that is able to store all data for all tenants. The
database system must in that case support vertical scalability
by increasing the capacity of a single system instead of
horizontal scalability. The application of a database system
that provides a scalability capability is necessary for large
deployments of this pattern. The results are dependant upon
the effectiveness with which the database system deals with
scalability challenges.

4) Maintainability: When extending the application with
new functionality both patterns require that the new function-
ality is aware of any customized objects. For the DATASOURCE
ROUTER PATTERN this involves creating a solution able of de-
termining all database schema variations and correctly copying
these values. The code involved can be complex because of the
need to support various database modifications supported by
the underlying database system. In the CUSTOM PROPERTY
OBJECTS PATTERN, the extra properties are stored as prede-
fined database objects, which can be handled the same as any
other object stored in the database of the application. This
means the code to handle the custom properties can be much
simpler. A generic system could always handle the custom
properties in the same way agnostic of their contents because
they are abstracted as normal database objects. For problem
solving a similar difference exists.

A problem affecting a single tenant in an application
using the DATASOURCE ROUTER PATTERN can be harder to
reproduce because of the various schema changes that could
be done to the schema for that specific tenant. Because the
changes, it is harder to isolate the root-cause of the problem.
The CUSTOM PROPERTY OBJECTS PATTERN deals with a fully
standardized database schema where the possible types of
custom properties are explicitly visible in the design of the
system. Because of this it is easier to create correct test-
cases for the CUSTOM PROPERTY OBJECTS PATTERN, whereas
the DATASOURCE ROUTER PATTERN has much more potential
schema-variations, which must be explicitly handled correctly

and tested.

5) Implementation Effort: For the DATASOURCE ROUTER
PATTERN the initial implementation requires the development
of the router component as well as systems to manage and
automatically deploy new database instances for new tenants.
The other components can however be left unchanged because
awareness of the multi-tenant environment is not required. Us-
ing the CUSTOM PROPERTY OBJECTS PATTERN, on the other
hand, does not require the development of new components or
management systems. For this pattern the existing components
need to be adapted to query the right data and use appropriate
filtering methods. Both patterns require the implementation of
code handling the existence of custom properties for entities
in the applications data model. This is equal for both patterns
and thus of no influence in a comparison on implementation
effort.

VII. CONCLUSION

Within this paper two problem domains related to imple-
menting runtime variability in online business software are
discussed. Also a pattern description method is proposed,
suggestion the use of the following description levels: 1) Func-
tional level, 2) System level and 3) Implementation level.

First, two dynamic functionality adaptation patterns, which
are the COMPONENT INTERCEPTOR PATTERN and the EVENT
DISTRIBUTION PATTERN are compared in terms of security,
performance, scalability, maintainability and implementation
effort. Both patterns offer a solution for dynamically adapting
functionality of an online software product, but do so in
different ways. The COMPONENT INTERCEPTOR PATTERN
performs less in terms of scalability, because the interceptors
can not scale independently of the application. When scaling
up in terms of number of servers, the interceptors need to be
available to all servers. Related to this issue, the maintain-
ability of the COMPONENT INTERCEPTOR PATTERN is also
less than that of the EVENT DISTRIBUTION PATTERN. This is
caused by the fact the interceptors can not be decoupled from
the rest of the system, creating a software product that will
be difficult to maintain. The EVENT DISTRIBUTION PATTERN
offers more isolation in terms of security than the other
pattern, but requires more processing and network resources
in terms of performance. Related to implementation effort, the
COMPONENT INTERCEPTOR PATTERN is easier to implement,
because no message broker or related services are required.

110

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



In general, the COMPONENT INTERCEPTOR PATTERN serves
best for adapting functionality of small projects, where the
EVENT DISTRIBUTION PATTERN is better for large projects,
considering the quality attributes described in this paper.

Second, two dynamic data model extension patterns, being
the DATASOURCE ROUTER PATTERN and CUSTOM PROPERTY
OBJECT PATTERN are presented and evaluated. We conclude
that the DATASOURCE ROUTER PATTERN has advantages on
security by naturally isolating the data for all tenants, scal-
ability by allowing for the distribution of tenants across
datasources and implementation by not requiring all queries
and components to be adapted but providing a single router
component instead. The custom property objects pattern holds
an advantage on performance by allowing better resource
utilization, however, extra care is necessary to design an ap-
propriate database schema. The CUSTOM PROPERTY OBJECTS
PATTERN also scores better on maintainability by allowing
standardized handling of the dynamic properties and using
a static data model avoiding the need to test every possible
variation when adapting the software.

For future work we are currently setting up larger evalua-
tion sessions in which different patterns will be evaluated using
experts. The evaluation of patterns is particularly difficult,
because you should evaluate an abstract solution instead of
a specific implementation. We are working on a structured
method for comparing sets of patterns and making use of
the implicit knowledge of experts. By doing this, we aim at
evaluating the solution, instead of just an implementation.

ACKNOWLEDGMENT

The authors would like to thank Allard Buijze and Koen
Bos for helping in reviewing the results of the research.

REFERENCES

[1] J. Kabbedijk, T. Salfischberger, and S. Jansen, “Comparing two architec-
tural patterns for dynamically adapting functionality in online software
products - best paper award,” in Proceedings of the 5th International
Conferences on Pervasive Patterns and Applications (PATTERNS 2013),
2013, pp. 20–25.

[2] A. Dubey and D. Wagle, “Delivering software as a service,” The
McKinsey Quarterly, vol. 6, pp. 1–12, 2007.

[3] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger, “Multi-
tenant databases for software as a service: schema-mapping techniques,”
in Proceedings of the 2008 ACM SIGMOD international conference on
Management of data. ACM, 2008, pp. 1195–1206.

[4] S. Jansen, G. Houben, and S. Brinkkemper, “Customization realization
in multi-tenant web applications: case studies from the library sector,”
Web Engineering, pp. 445–459, 2010.

[5] K. Pohl, G. Böckle, and F. van der Linden, Software product line
engineering: foundations, principles, and techniques. Springer-Verlag,
New York, 2005.

[6] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-
King, and S. Angel, A pattern language. Oxford University Press,
1977.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: el-
ements of reusable object-oriented software. Addison-wesley Reading,
MA, 1995, vol. 206.

[8] P. Evitts and D. Hinchcliffe, A UML pattern language. Macmillan
Technical Publishing, 2000, vol. 201.

[9] D. Mapelsden, J. Hosking, and J. Grundy, “Design pattern modelling
and instantiation using dpml,” in Proceedings of the 40th International
Conference on Tools Pacific: Objects for internet, mobile and embedded
applications. Australian Computer Society, Inc., 2002, pp. 3–11.

[10] D. Maplesden, J. G. Hosking, and J. C. Grundy, “A visual language
for design pattern modelling and instantiation.” in Design Pattern
Formalization Techniques, 2007, pp. 338–339.

[11] A. Lauder and S. Kent, “Precise visual specification of design patterns,”
in ECOOP98Object-Oriented Programming. Springer, 1998, pp. 114–
134.

[12] M. Jaring and J. Bosch, “Representing variability in software product
lines: A case study,” Software Product Lines, pp. 219–245, 2002.

[13] J. Bayer, . Gerard, O. Haugen, J. Mansell, B. Møller-Pedersen, J. Old-
evik, P. Tessier, J. Thibault, and T. Widen, “Consolidated product line
variability modeling,” in Software Product Lines. Springer, 2006, pp.
195–241.

[14] R. Mietzner, T. Unger, R. Titze, and F. Leymann, “Combining Different
Multi-tenancy Patterns in Service-Oriented Applications,” in Proceed-
ings of the IEEE International Enterprise Distributed Object Computing
Conference, 2009, pp. 131–140.

[15] J. Kabbedijk and S. Jansen, “The role of variability patterns in multi-
tenant business software,” in Proceedings of the WICSA/ECSA 2012
Companion Volume. ACM, 2012, pp. 143–146.

[16] M. Svahnberg, J. van Gurp, and J. Bosch, “A taxonomy of variability
realization techniques,” Software: Practice and Experience, vol. 35,
no. 8, pp. 705–754, 2005.

[17] A. Benlian and T. Hess, “Opportunities and risks of software-as-a-
service: Findings from a survey of it executives,” Decision Support
Systems, vol. 52, no. 1, pp. 232–246, 2011.

[18] A. Hevner and S. Chatterjee, Design research in information systems:
theory and practice. Springer, 2010, vol. 22.

[19] P. Runeson and M. H’́ost, “Guidelines for conducting and reporting
case study research in software engineering,” Empirical Software En-
gineering, vol. 14, no. 2, pp. 131–164, 2009.

[20] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language
Reference Manual, The. Pearson Higher Education, 2004.

[21] W. Van der Aalst, A. ter Hofstede, and M. Weske, “Business process
management: A survey,” Business Process Management, pp. 1019–
1019, 2003.

[22] B. Carpenter, G. Fox, S. Ko, and S. Lim, “Object serialization for
marshalling data in a java interface to mpi,” in Proceedings of the ACM
1999 conference on Java Grande. ACM, 1999, pp. 66–71.

[23] M. Fowler, Patterns of enterprise application architecture. Addison-
Wesley Professional, 2003.

[24] R. Weinreich, T. Ziebermayr, and D. Draheim, “A versioning model for
enterprise services,” in Advanced Information Networking and Applica-
tions Workshops, 2007, AINAW’07. 21st International Conference on,
vol. 2. IEEE, 2007, pp. 570–575.

[25] W. Sun, X. Zhang, C. Guo, P. Sun, and H. Su, “Software as a service:
Configuration and customization perspectives,” in Congress on Services
Part II. IEEE, 2008, pp. 18–25.

111

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


