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Abstract—In this paper, we present the Safe Control Systems
(SaCS) pattern language for the development of conceptual
safety designs and conduct an analytical evaluation of the
appropriateness of the language for its intended task. By a
conceptual safety design we mean an early stage specification
of system requirements, system design, and safety case for a
safety critical system. The SaCS pattern language can express
basic patterns on different aspects of relevance for conceptual
safety designs. SaCS can also be used to combine basic patterns
into composite patterns. A composite pattern can be instantiated
into a conceptual safety design. A framework for evaluating
modelling languages is used to conduct the evaluation. The
quality of a language is within the framework expressed by
six appropriateness factors. A set of requirements is associated
with each appropriateness factor. The extent to which these
requirements are fulfilled are used to judge the quality. We discuss
the fulfilment of the requirements formulated for the language on
the basis of the theoretical, technical, and practical considerations
that were taken into account and shaped the SaCS language.

Keywords–pattern language; evaluation; design; conceptualisa-

tion; safety.

I. INTRODUCTION

This paper presents the Safe Control Systems (SaCS)
pattern language and an evaluation of the suitability of the
language as support for the development of safety critical
systems. A shorter version of this paper is presented in [1].

A pattern describes a particular recurring problem that
arises in a specific context and presents a well-proven generic
scheme for its solution [2]. A pattern language is a language for
specifying patterns making use of patterns from a vocabulary
of existing patterns and defined rules for combining these [3].
The SaCS pattern language has been designed to facilitate
the specification of patterns to support the development of
conceptual safety designs. With a conceptual safety design,
we mean an early stage specification of system requirements,
system design, and safety case for a safety critical system.
A safety critical system [4] is a system “whose failure could
result in loss of life, significant property damage, or damage
to the environment”. The intended users of the SaCS pattern
language are system engineers, safety engineers, hardware and
software engineers.

According to McGrath [5], there are eight common meth-
ods for evaluation. However, there is no single evaluation
method that provides results that are valid across populations

(strong on generality), provides very precise measurements
(strong on precision), and at the same time is performed in
environments that are very similar to reality (strong on real-
ism). Based on the strengths and weaknesses of the different
evaluation methods and the questions that are required to be
answered, the researcher has to choose how different kinds
of methods should be combined. It is desirable to maximise
precision, realism, and generality simultaneously but, as argued
by McGrath, this is not possible with one single research
method.

The suitability of the SaCS pattern language for its intended
task is investigated by complementing kinds of evaluations;
two case studies and the analytic evaluation presented in this
paper. The two case studies, fully documented in [6] and
[7], can be seen as variants of what McGrath terms field
experiment, a method that scores high on realism. Accord-
ing to Eisenhardt [8], the case study approach is especially
appropriate in new topic areas and describes how to build
theories from case study research. The analytic evaluation is
most closely related to non-empirical evidence in the McGrath
classification, a method that scores high on generality.

A framework for analysing languages known as the Semi-
otic Quality (SEQUAL) framework [9] is used as a basis for
the analytic evaluation. The appropriateness of a language
for its intended task is in the framework characterised by
six appropriateness factors [9]: domain, modeller, participant,
comprehensibility, tool, and organisational. A set of require-
ments is presented for each appropriateness factor in order
to characterise more precisely what is expected from our
language in order to be appropriate. The requirements represent
the criteria for judging what is appropriate of a language
for conceptual safety design, independent of SaCS being
appropriate or not. We motivate our choices and discuss to
what extent the requirements are fulfilled.

The remainder of this paper is structured as follows: Sec-
tion II provides an introduction to the SaCS pattern language.
Section III demonstrates the applicability of the SaCS pattern
language in an example. Section IV discusses analytic evalu-
ation approaches and motivates the selection of the SEQUAL
framework. Section V presents the analytic evaluation of the
SaCS pattern language according to the SEQUAL framework.
Section VI presents related work on pattern-based develop-
ment. Section VII draws the conclusions.
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II. BACKGROUND ON THE SACS PATTERN LANGUAGE

The SaCS pattern language is an integrated part of the
SaCS method. In order explain the language, we outline the
SaCS method. The SaCS method consists of the following
three artefacts:

A. The SaCS process: defines the process for systemati-
cally applying SaCS patterns to support the develop-
ment of conceptual safety designs.

B. The SaCS library: defines 26 basic SaCS patterns on
best practices for conceptual safety design categorised
into six different kinds. A user defines composite
SaCS patterns on the basis of patterns in the library.
The user can extend the library by defining additional
basic and composite SaCS patterns.

C. The SaCS pattern language: defines how to express
basic SaCS patterns and includes a graphical notation
for specifying composite SaCS patterns.

In order to apply the SaCS method, an assumed user of
the SaCS process employs the patterns within the library as
guidance to problem solving. Furthermore, the user of the
process employs the language for expressing a solution to a
problem in the form of a pattern in order to extend the library.
The language has a formal syntax as well as a structured
semantics [10] that supports users in specifying patterns and
understanding what is expressed by a pattern.

Depending on the complexity of the problem that needs
to be solved in a given context, and to the extent available
patterns can be used to solve the problem, the user chooses
whether to address the problem with a single basic pattern or
rather by a combination of several patterns. The classification
structure for the patterns denotes the different kinds of patterns
offered by the library. As a basic pattern provides guidance
on a specific problem-solution concept with a limited scope,
the use of several and complementary kinds of basic patterns
is necessary for conceptual safety design. The combination of
several basic patterns for problem solving facilitates separation
of concerns.

A composite pattern is expressed graphically and specifies
how several patterns are combined. The visual presentation
facilitates the discussion between different kinds of users on
how conceptual safety design is intended to be approached
with patterns as guidance. The instantiation of a composite
that combines suitable patterns supporting the specification of
requirements, system design, and safety case in a given context
produces the conceptual safety design.

In the following sub-sections we briefly describe each of
the artefacts that are part of the SaCS method.

A. The SaCS process

The SaCS process interleaves three main activities, each of
which is divided into sub-activities:

• Pattern Selection: The purpose of this activity is to
support the conception of a design by selecting: a)
SaCS patterns for requirement elicitation; b) SaCS
patterns for establishing design basis; and c) SaCS
patterns for establishing safety case.

• Pattern Composition: The purpose of this activity is to
specify the use of the selected patterns by specifying:
a) compositions of patterns; and b) instantiations of
patterns.

• Pattern Instantiation: The purpose of this activity is
to instantiate the composite pattern specification by: a)
selecting pattern instantiation order; and b) conducting
stepwise instantiation.

The SaCS process is exemplified in Section III. The ex-
ample shows how a pattern selection map is used as support
for pattern selection, and how the pattern language supports
pattern composition. Pattern instantiation is supported by in-
stantiation rules defined for every basic pattern (fully defined
in [6][7]). The definition of one of the basic patterns in SaCS
is also presented in Section II-B.

B. The SaCS Library

The SaCS library consists of a set of basic patterns as
well as the composite patterns defined by a user on the basis
of pre-defined patterns. While a basic pattern is defined by
text and illustrations, a composite is defined graphically. In
the following, a slightly formatted version of the basic pattern
Establish System Safety Requirements documented in [6] is
reproduced as an example of the content of the library. The
pattern is described as a sequence of named sections. The
section names are presented in a bold font. The section named
“Pattern Signature” contains an illustration classifying the
pattern as well as its inputs and output parameters according to
the syntax of the SaCS pattern langauge [10]. The section “Pro-
cess Solution” contains a UML activity diagram with SaCS
language specific annotations, presented in Fig. 2. The SaCS
specific annotations are represented by: the dotted drawn frame
that encapsulates the activity diagram; the dotted drawn boxes
that appears on the dotted drawn frame; and the arrows that are
connected to the dotted drawn boxes. The dotted drawn boxes
represent either an input or an output. The identifier within a
box names a parameter. An arrow pointing away from a box
indicates that the identified parameter is an input. An arrow
pointing towards a box indicates that the identified parameter
is an output. The remaining diagram elements represent the
process solution in terms of a UML activity diagram. The SaCS
specific annotations in Fig. 2 indicate in what way inputs are
related to the different activities of the process for establishing
safety requirements and how the result of one of the activities
represents an output of applying the pattern.

Name: Establish System Safety Requirements

Pattern Signature: Establish System Safety Requirements is
defined with the signature illustrated in Fig. 1. In Fig. 1, the
following abbreviations are used for denoting the parameters
of the pattern:

• ToA is short for Target of Assessment.

• Reg is short for Regulations.

• Risks is not abbreviated; represents the documentation
of the risks associated with the application of ToA in
its intended context.

• Req is short for Requirements.
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Establish)
System)Safety)
Requirements

["ToA,"Reg,"Risks"] ["Req"]

Figure 1. Establish System Safety Requirements – Pattern Signature

Intent: Support the specification of system safety requirements
Req on the basis of a risk-based approach. The safety require-
ments describe the required measures to be satisfied by the
system ToA to assure the necessary safety integrity. The general
approach for defining safety requirements is to define them on
the basis of the result of a risk assessment Risks, especially the
mitigations identified as means to reduce risk to an acceptable
level. The pattern describes the general process of capturing
the requirements that must be satisfied in order to assure safety.

Applicability: The Establish System Safety Requirements pat-
tern is intended for the following situations:

• When the system under construction can negatively
affect the overall system safety.

• When there are identified measures that can mitigate
identified risks and can be used as input to the
specification of safety requirements.

Problem: The main aspects relevant to address when estab-
lishing the safety requirements are:

• Characteristics: To define the system characteristics
to be satisfied such that the occurrence of unwanted
events are minimised or avoided.

• Functions: To define the safety functions that assures
safe operations.

• Constraints: To define the functional constrains that
sufficiently delimit potentially hazardous operations.

• Environment: To define the operational environment
that ensures safe operations.

• Compliance: To define the requirements that are re-
quired to be satisfied in order to comply with laws,
regulation, and standards, as a minimum the manda-
tory requirements related to assurance of safety. These
requirements include requirements on applying some
specific development process, performing certain ac-
tivities, or making use of specific techniques.

Process Solution: Fig. 2 illustrates the Establish System Safety
Requirements process specified using a UML activity diagram.

The input parameters associated with the activity diagram can
be interpreted as follows:

• ToA (Target of Assessment): represents the target
system for which safety requirements should be es-
tablished.

• Reg (Regulations): represents any source of informa-
tion describing mandatory or recommended practices

Document safety 
requirements

Reg

Risks

Establish safety 
requirements qualitatively

Establish safety 
requirements quantitatively

qualitative safety requirements

quantitative safety requirements

Confer laws, regulations, 
and standards

Confer risk analysis 
regulatory specific

risk reducing measures

risk reducing measures

system specific 
risk reducing measures Req

ToA Identify target

Figure 2. Establish System Safety Requirements – Process Flow

(e.g. as provided in laws, regulations or standards)
valuable for identifying risk reducing measures.

• Risks: represents risks associated with the target sys-
tem.

The main activities serve the following purpose:

• Identify target: the intent of the activity is to identify
ToA. The description of the target should as a mini-
mum include a definition of the system and its bound-
aries, its operational profile, functional requirements,
and safety integrity requirements.

• Confer laws, regulations, and standards: the intent of
the activity is to capture all relevant data (requirements
for risk reducing measures) from relevant sources
(normative references) in order to outline the set of
risk reducing measures that shall be met by compli-
ance. Each source is inspected in order to identify, as a
minimum, the mandatory risk reducing measures that
shall be met in order to be compliant.

• Confer risk analysis: the intent of the activity is to
capture all the relevant data on risk analysis of the
system that is under construction in order to outline
the system specific risk reducing measures that shall
be met.

• Establish safety requirements qualitatively: the intent
of the activity is to define safety requirements on
the basis of those identified risk reducing measures
required applied, and which can be demonstrated
fulfilled with qualitative reasoning.

• Establish safety requirements quantitatively: the intent
of the activity is to define safety requirements on
the basis of those identified risk reducing measures
required applied, and which can be demonstrated
fulfilled with quantitative reasoning.

• Document safety requirements: the intent of the ac-
tivity is to detail all relevant information with respect
to the requirements in a system safety requirements
specification. For each requirement defined in the
requirement specification, information detailing what
influenced its definition should be provided, e.g., the
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associated risks, assumptions, calculations, and justi-
fications.

Instantiation Rule: An artefact Req (see Fig. 1 and Fig. 2)
is the result of a process that instantiates the Establish System
Safety Requirements pattern if:

• Req is a set of requirements.

• Req is a result of applying a process illustrated in
Fig. 2 and described in Section “Process Solution”.
The process is initiated by an activity on describing the
target ToA. Once a description of the target system and
its operational context is provided, the next activities
shall identify the risk reducing measures to be applied
to the target by conferring relevant laws, regulations
and standards as well as the result of target specific
risk analysis for guidance. Once all the relevant risk-
reducing measures are identified, these shall be used
as a basis to define the requirements to be met by the
target system or by the process to be followed while
developing the target. The requirements are defined
quantitatively or qualitatively depending on the nature
of the risk reducing measure that is addressed. The
requirements are documented in a requirement speci-
fication Req.

• Every requirement of Req is traceable to relevant
risks (identified by the instantiation of Risks), and/or
regulatory requirements (identified by the instantiation
of Reg).

• Every requirement of Req is justified such that any
assumptions, calculations, and assessments that sup-
port the specification of the requirement as a safety
requirement are provided.

Related Patterns: The Establish System Safety Requirements
pattern is related to other patterns in the following manner:

• can succeed the Risk Analysis pattern that supports
identifying risks. The Establish System Safety Re-
quirements can be applied as support for defining the
requirements to be fulfilled in order to reduce risk to
an acceptable risk level.

• can be used in order to detail requirements for the
design that is a result of an instantiation of a design
pattern.

C. The SaCS Pattern Language

Fig. 3 defines a composite pattern according to the syn-
tax of SaCS [10]. The composite described in Fig. 3 is
named Safety Requirements and consists of the basic patterns
Hazard Analysis, Risk Analysis, and Establish System Safety
Requirements. The contained patterns of Safety Requirements
are referenced graphically. The basic patterns are specified
separately in a structured manner comparable to what can
be found in the literature [2][3][11][12][13][14][15][16] on
patterns, e.g., as in the case of the pattern Establish System
Safety Requirements presented in Section II-B.

In Fig. 3, the horizontal line separates the declaration part
of the composite pattern from its content. The icon placed
below the identifier Safety Requirements signals that this is

[Risks][HzLg] [Req]

[ToA]

Establish)
System)Safety)
Requirements

Hazard)
Analysis

[ToA,1Haz]

Risk)
Analysis

[Risks][Haz]

[ToA]

Safety
Requirements

[1ToA,1Haz1] [1Req1]

Safety'Requirements'
Specifica3on

System'and'Context'
Descrip3on

System'Hazards
Descrip3on

Hazard'Log Risk'Assessment

Figure 3. A composite pattern named Safety Requirements

a composite pattern. Every pattern in SaCS is parameterised.
An input parameter represents the information expected to be
provided when applying a pattern in a context. An output
parameter represents the expected outcome of applying a
pattern in a given context. The inputs to Safety Requirements
are listed inside square brackets to the left of the icon, i.e., ToA
and Haz. The arrow pointing towards the brackets symbolises
input. The output of the pattern is also listed inside square
brackets, but on the right-hand side of the icon, i.e., Req. The
arrow pointing away from the brackets symbolises output. An
icon placed adjacent to a parameter identifier denotes its type.
The parameters ToA, Haz, HzLg, and Risks in Fig. 3 are of type
documentation, while Req is of type requirement. The inputs
and outputs of a composite are always publicly accessible.

A particular instantiation of a parameter is documented
by a relation that connects a parameter with its associated
development artefact. In Fig. 3, a grey icon placed adjacent
to an identifier of a development artefact classifies what kind
of artefact that is referenced. A dotted drawn line connecting a
parameter with an artefact represents an instantiates relation.
Instantiations of parameters expressed in Fig. 3 are:

• The document artefact System and Context Descrip-
tion instantiates ToA.

• The document artefact System Hazards Description
instantiates Haz.

• The requirement artefact Safety Requirements Specifi-
cation instantiates Req.

• The document artefact Hazard Log instantiates HzLg.

• The document artefact Risk Assessment instantiates
Risks.

A one-to-many relationship exists between inputs in the
declaration part of a composite and similarly named inputs
with public accessibility (those pointed at by fat arrows) in
the content part. The relationship is such that when ToA
of Safety Requirements is instantiated (i.e., given its value
by the defined relation to System and Context Description)
then every correspondingly named input parameter contained
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in the composite is also similarly instantiated. A one-to-
one relationship exists between an output parameter in the
declaration part of a composite and a correspondingly named
output parameter with public accessibility (those followed by
a fat arrow) in the content part. The relationship is such that
when Req of Establish System Safety Requirements is produced
then Req of Safety Requirements is similarly produced.

The arrows (thin arrows) connecting basic patterns in the
content part of Safety Requirements represent two instances of
an operator known as the assigns relation. The assigns relations
within Safety Requirements express that:

• The output HzLg of the pattern Hazard Analysis is
assigned to the input Haz of the pattern Risk Analysis.

• The output Risks of the pattern Risk Analysis is
assigned to the input Risks of the pattern Establish
System Safety Requirements.

That the three basic patterns are process patterns follows
from the icon below their respective identifiers. There are six
different kinds of basic patterns in SaCS, each represented by
a specific icon.

The notation for expressing composite patterns consists of
the following main modelling elements:

Pattern reference: Fig. 4 presents the icons for the different
kinds of patterns defined in SaCS. A pattern reference consists
of a unique identifier in a bold font and an icon classifying
the pattern referenced.

process'assurance
requirement'pa/ern'reference'
process'assurance
solu2on'pa/ern'reference
process'assurance
safety'case'pa/ern'reference

product'assurance
requirement'pa/ern'reference

product'assurance
solu2on'pa/ern'reference

product'assurance
safety'case'pa/ern'reference

composite'pa/ern'reference

iden%fier

iden%fier

iden%fier

iden%fier

iden%fier

iden%fier

iden%fier

Figure 4. The icons for the different kinds of pattern references in SaCS

Parameter: Fig. 5 presents the icons for the different kinds
of parameters defined in SaCS. A parameter consists of an
identifier and an icon classifying the parameter. Within a
composite, the parameters of a pattern are listed inside square
brackets and placed adjacent to the icon that classifies the
pattern. The documentation parameter is a general classifi-
cation and represent a parameter that cannot be classified
as a requirement parameter, design parameter or safety case
parameter.

Relation: Fig. 6 presents the symbols for different kinds of
relations defined in SaCS. A relation denotes a relationship

documenta*on+parameter

requirement+parameter

design+parameter

safety+case+parameter

iden%fier

iden%fier

iden%fier

iden%fier

Figure 5. The icons for different kinds of parameters in SaCS

between elements in a composite pattern. The instantiates
relation is used to associate an artefact with a parameter
indicating that the artefact instantiates the parameter. The
assigns relation models a data flow between patterns where
the output of one pattern is used as an input to a second
pattern. The combines relation is used to denote that the
outputs of the patterns that are related are combined into a
set consisting of the union of all outputs. The details relation
is used to denote that an output of a pattern is detailed by
the output of a related pattern. The satisfies relation is used
to denote that an output of a pattern (typically represented
by a requirement parameter) is satisfied by the output of a
related pattern (typically represented by a design parameter).
The demonstrates relation is used to denote that an output
(typically represented by a safety case parameter) is a safety
demonstration for the output of a related pattern (typically
represented by a design parameter).

assigns

combines

details

sa.sfies

demonstrates

instan.ates

Figure 6. The symbols for the different kinds of relations in SaCS

Artefact reference: Fig. 7 presents the different kinds of
artefact references defined in SaCS. An artefact reference
consists of an unique identifier in an italics font and an icon
classifying what kind of artefact that is referenced. Artefact
references are used for denoting a specific representation of
parameters.

Instantiation order: A composite pattern may include sym-
bols as guidance to the user on the proper instantiation order
of patterns. In the serial instantiation case of Fig. 8 there are
two composite patterns A and B, where A shall be instantiated
before B. A general rule is that patterns placed closer to the
starting point of the arrow are instantiated prior to patterns
placed close to the tip of the arrow. In the parallel instantiation
case of Fig. 8, no specific ordering of the patterns A and B is
assumed and thus the respective pattern references are placed
on two separate arrows.
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documenta*on+artefact+reference

design+artefact+reference

safety+case+artefact+reference

requirement+artefact+reference

iden*fier

iden*fier

iden*fier

iden*fier

Figure 7. The icons for different kinds of artefact references in SaCS

A

B

A

B
serial
instan)a)on

parallel
instan)a)on

Figure 8. The symbols for the different kinds of instantiation orders in SaCS

III. SACS EXEMPLIFIED

Fig. 9 exemplifies the integration of the three artefacts into
the SaCS method. In Fig. 9, arrows are used to indicate the flow
between the use of the SaCS process, the use of the library,
and the language as support in performing the activities of the
process. Filled arrows indicate the inputs and outputs from the
application of the SaCS method. The dotted arrow indicates
that a user may choose to feed the composite pattern provided
as a result of applying SaCS back into the library of patterns.

The SaCS process
The SaCS library

The SaCS pattern 
language

Pattern Selection
   a) Select SaCS Patterns for Requirement Elicitation
   b) Select SaCS Patterns for Establishing Design Basis
   c) Select SaCS Patterns for Establishing Safety Case

Pattern Instantiation
   a) Select Pattern Instantiation Order
   b) Conduct Stepwise Instantiation

Pattern Composition
   a) Specify Compositions of Patterns
   b) Specify Instantiations of Patterns

Input
Objective(s) for a system performing 
potentially safety critical operations

Output
Conceptual safety design

Output
Composite SaCS pattern(s)

(1)

(2)

(6)

(7)

(8)

(10)
(4)

(12)

(13)

(14)

(3) (9) (15)

(16)

 (5) (11) (17)

Figure 9. Example integration of the three artefacts into the SaCS method

In the following, the SaCS method is explained by ex-
emplifying the steps (1) to (17) from Fig. 9. The example
shows the main steps in the application of the SaCS method for
developing a conceptual safety design of a railway interlocking
system. A comprehensive explanation can be found in [7]; an
outline is given below.

Fig. 10 illustrates a train station with two tracks. The
station is connected in both ends of the station area to
neighbouring stations with a single track. There are eight
train routes possible with the track configuration illustrated
in Fig. 10. An interlocking system controls the movements
of trains along defined train routes. The interlocking system
actuates the different distant signals, main signals, and point
equipment according to defined rules in order to enforce
safe train movements. A distant signal gives the train driver
indication on the signalling to expect from the associated main
signal.

Fig. 11 presents references to development documents that
are available to an assumed user in the following example. In-
terlocking concept description is a document assumed to define
the main functionality of an interlocking system for separating
train movements at a train station as illustrated in Fig. 10.
Furthermore, Hazard log is a document assumed to describe
the result from an initial hazard analysis of the interlocking
concept. There are patterns in the library that facilitate the
definition of an initial concept as well as hazard identification
and analysis, but we nevertheless assume the presence of these
documents as a starting point in the exemplification of the
use of the SaCS method. The end result is expected to be a
conceptual safety design of a railway interlocking system.

Interlocking,
concept,descrip0on,

Hazard,log,

Figure 11. Representation of references to development documentation

Step (1): Fig. 12 illustrates a fragment of a larger pattern
selection map with the addition of annotations to indicate in
which steps of this example we use the map. A user traverses
the pattern selection map in the order indicated by the arrows
and considers whether a pattern is relevant for application
based on its definition. The diamonds represent choices. The
patterns below a diamond represent the alternatives associated
with a choice where more than one pattern can be selected.

Risk
Analysis

Establish.
System.Safety.
RequirementsD E

I&C.Func<on.
Classifica<on

SIL.Classifica<on

Trusted
Backup

Dual.Modular
Redundant

F

Overall.
Safety
Safety.Requirements
Sa<sfied

Step%(1)
Select%pa,erns%for%

requirement%eleicita6on

Step%(7)
Select%pa,erns%for%
establishing%design

Step%(13)
Select%pa,erns%for%

establishing%safety%case

Figure 12. Pattern selection map (simplified)

By the use of Fig. 12, the user starts the pattern selection
activity from the left and identify Risk Analysis as the first
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dA
dLN
mA mM

mO mN

mL

mB
dMO

mB

AX

AY
BX

BY
LM

O N

M,#A,#X,#Y,#B,#L:#####################Track#Sec1on
AX,#AY,#BX,#BY,#M,#O,#L,#N:###Train#Route

p1 p2
A X

Y

BM L

Legend
dA,#dB,#dLN,#dMO:# Distant#Signal
mA,#mB,#mL,#mM,#mN,#mO:# Main#Signal
p1,#p2: Point

Figure 10. Railway case (adopted from [7])

pattern that should be considered as support. By inspecting
the definition of Risk Analysis, the user identifies that the
pattern describes the process of performing risk analysis on
the basis of the results from hazard analysis. As a hazard log
is already present, the user selects the pattern as support for
the assessment of risks. In choice D, two patterns are identified
that offer guidance on alternative methods for the classification
of functions, named SIL Classification (SIL is short for Safety
Integrity Level) and I&C Function Classification (I&C is
short for Instrumentation and Control), respectively. The user
selects SIL Classification as support as it defines an approach
to the classification of functions commonly applied within
the railway domain whereas I&C Function Classification is
applicable within the nuclear power production domain. The
pattern Establish System Safety Requirements was presented in
detail earlier. The pattern describes how the result from risk
analysis should be used as input to the specification of safety
requirements. The user selects these three patterns as support
for the elicitation of requirements in Step (1). The user will
return to the selection map in Step (7) and Step (13) related
to the selection of patterns for establishing design and safety
case.

Step (2)-(3): Fig. 13 presents how an assumed user com-
bines the three patterns selected in the previous step according
to the syntax of the SaCS pattern language. The order in which
these patterns should be instantiated is indicated in the pattern
selection map presented in Fig. 12. The order can also be
found by inspecting the “Related Patterns” sections of the
pattern definitions. In Fig. 13, the order is specified by the wide
grey arrow in the background indicating that Risk Analysis and
SIL Classification can be instantiated in parallel and prior to
Establish System Safety Requirements. As described earlier,
the symbols [ ] embrace a parameter list. The parameters are
abbreviated as follows: ToA is short for Target of Assessment,
Haz is short for Hazards, Req is short for Requirements,
FncCat is short for Function Categorisation, ClsCr is short for
Classification of Criticality, and Risks is not abbreviated. The
small icons adjacent to the parameters classify the parameters.
The thin arrows represents three instances of an assigns
relation.

["ToA,"Haz"] ["Req"]

["Risks"]["ToA,"Haz"]

Example(
Composite

Risk(
Analysis

["Req"]["Risks"]

Establish(
System(Safety(
Requirements
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["ClsCr"]

["FncCat"]

["Risks"]["ToA"]

["ToA"]

Figure 13. Composite that can be instantiated into a specification of
requirements

Step (4)-(5): Fig. 14 is identical to Fig. 13 with the
addition of annotations indicating the instantiation of patterns.
In Fig. 14, the instantiation of the composite is documented
such that Interlocking concept description represents the docu-
mentation associated with the input parameter ToA and Hazard
log is associated with the input Haz. We have assumed that the
user has instantiated the composite to produce three different
documents. The outcome of instantiating the composite is
defined as being represented by a requirements specification
known as Safety requirements specification. Furthermore, two
intermediate documents to the requirements specification is
produced where Classification of functions is associated with
the output parameter FncCat of SIL Classification and Risk
analysis results is a document associated with the output Risks
of Risk Analysis. An example finding from the risk analysis is
that erroneously positioned points can cause train derailment
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or collision. Thus, the interlocking system is clearly a safety
critical system. Furthermore, the interlocking system must
assure that points are always positioned correctly. An example
of a safety requirement that addresses this is “SR.2: A train
route may not be locked unless all points belonging to the train
route are positioned correctly.”

["ToA,"Haz"] ["Req"]

["Risks"]["ToA,"Haz"]

Example(
Composite

Risk(
Analysis

["Req"]["Risks"]

Establish(
System(Safety(
Requirements

Risk%analysis%
results

Safety%requirements%
Specifica5on

Hazard%log%

SIL(
Classifica>on

["ClsCr"]

["FncCat"]

["Risks"]["ToA"]

["ToA"]

Classifica5on%
of%func5ons

Interlocking%
concept%descrip5on%

Figure 14. Composite specifying its instantiation into a specification of
requirements

Step (6)-(8): Once the user has specified the requirements
for the system under construction, enough information should
be available for selecting an appropriate design pattern to use
as a basis for establishing the system design. Thus, in Step (7)
the user continues the pattern selection activity from where it
was temporarily stopped in Step (1). In the pattern selection
map presented in Fig. 12, we have arrived at choice E. In
choice E, the design patterns Dual Modular Redundant and
Trusted Backup are indicated as alternatives. We assume that
the user finds Dual Modular Redundant to offer the most
beneficial design after an evaluation of the ability of the
respective design solutions described within these two patterns
to satisfy the relevant requirements. The user selects Dual
Modular Redundant as support for system design.

Step (9)-(11): Fig. 15 is identical to Fig. 14 with the
addition of annotations indicating the instantiation of the
design pattern named Dual Modular Redundant. The detailing
of the application of patterns for establishing design basis is
the concern of Step (9) and Step (11). However, the actual
instantiation of patterns for system design is the concern of
Step (10).

In Step (10), the user is supposed to make use of the
requirements derived earlier as input for detailing a system
design. We assume that the user instantiate Dual Modular Re-
dundant according to its instantiation rule to produce a system
design specification. Fig. 16 is a simplified UML component
diagram showing an excerpt of the system design specification
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Figure 15. Composite specifying its instantiation into a specification of
requirements and system design

that describes the interlocking system. The interlocking system
consists of dual controller components (Ctr 1 and Ctr 2) that
implements the interlocking rules. The command unit (Cmd) is
responsible for handling the interaction with the operator. The
interlocking system interacts with equipment like lights, points
and train detection equipment through dedicated interfaces. A
voter assures fail-safe behaviour (e.g., all lights indicate stop)
in the case of disagreement between the redundant controllers.

Opera&ons
System

Ctr
1

Ctr%
2

Cmd
Voter%%%

Interlocking4System
Train4
Detec&on

Point

Lights

Figure 16. Excerpt of the system design specification – The main
components

Fig. 17 is a simplified UML state machine diagram exem-
plifying the specification of the behaviour of the interlocking
system.

The diagram details the interlocking system behaviour
given a request for locking a train route AX (see Fig. 10).
In Fig. 17, details are only given for the state “Check Points
in Correct Position” as this is relevant for the example re-
quirement stated earlier (see SR.2). While Fig. 16 specifies the
main components of the system under construction according
to the guidance within Dual Modular Redundant, Fig. 17
specifies the behaviour of the system in accordance with the
requirements derived with the use of Establish System Safety
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[else]/conflictingTrainRouteLocked

[NoConflict]

Check Tracks 
in Train Route 
not Blocked

[else]/TracksOccupied

[TracksVacant]
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do/

if (p1.getState() == aligned)
   then correctPosition = true;

else correctPosition = false;
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[correctPosition]
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stm Lock Train Route AX

Figure 17. Excerpt of the system design specification – The behaviour
exemplified

Requirements.

Step (12)-(14): Once the system design is established,
enough information should be available for the user to start
the detailing of how safety will be argued. Thus, in Step (13)
the user continues the pattern selection activity from where
it was temporarily stopped in Step (7), leading to choice F in
Fig. 12. In choice F, the user inspects the pattern definitions of
the different proposed patterns. We assume that the user finds
Overall Safety as a suitable starting point. The pattern provides
guidance on arguing safety from a quality management, safety
management, as well as a technical safety perspective. This fits
well with the railway standard EN 50129 [17], which requires
that these three perspectives are explicitly addressed in a safety
case for railway signalling systems.

Step (15)-(16): While we postpone Step (15) for later
in order to avoid unnecessary repetitions of similar pattern
compositions (the result of the step can be seen in Fig. 19),
we assume in Step (16) that the user makes use of the system
design derived earlier as a definition of the target for which a
safety case shall be defined. We further assume that the user
instantiate Overall Safety selected in Step (13) according to
its instantiation rule to produce a safety case as presented in
Fig. 18.

The overall claim (expressed in a goal element) in the
safety case presented in Fig. 18 states that the proposed
“interlocking system is sufficiently safe for its intended use.”
The overall claim is decomposed into sub-claims, which at
some point is supported by evidence (referenced within an
evidence element). A diamond symbolises that the goal is not
developed. The claim structure is simplified to only account
for requirement SR.2, which was defined earlier. Furthermore,
the claim structure is also simplified to only reference evidence

Interlocking system 
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for its intended use 

Interlocking System:
Outlined in Fig. 16, 
defined in "System 

design specification"

demonstration of adequate quality 
management, safety management 
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All safety 
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Train route is not locked 
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"Lock Train 
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Fig. 17
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Note: reference to state machine
diagrams for the remaining train 
routes 

A

Figure 18. A safety case expressed with the GSN notation [15]

for the correct specification of required behaviour as is given
within this paper. The relevant specification of behaviour with
respect to arguing the fulfilment of requirement SR.2 is defined
in Fig. 17.

Step (17): In this step the user specifies the end result of
pattern composition. Fig. 19 extends Fig. 15 to also specify
the use of the pattern Overall Safety. Fig. 19 includes the
information intended to be specified at Step (15), which was
postponed.

In Fig. 19, the parameters of the patterns introduced are
abbreviated as follows: S is short for System, ToD is short for
Target of Demonstration, and Case is short for Safety Case.
The satisfies relation (see Fig. 6) expresses that a design S
(represented by the System design specification) shall satisfy
the requirements in Req (represented by Safety requirements
specification). Furthermore, S of Dual Modular Redundant
represents the target of demonstration as defined by the assigns
relation connecting S with ToD of Overall Safety. The outcome
Case (represented by Safety case specification) of Overall
Safety is related to S of Dual Modular Redundant with a
demonstrates relation. The demonstrates relation expresses that
Case is a safety demonstration for S.

In the example, the SaCS method is assumed applied for
developing a conceptual safety design of a railway interlocking
system. The result is here partly represented by the speci-
fications in Fig. 16, Fig. 17, and Fig. 18. The conceptual
safety design in the example is the result of instantiating the
composite pattern expressed in Fig. 19. In the composite, the
triple that represents the conceptual safety design is assumed
represented by the documentations referred to within Fig. 19 as
Safety requirements specification, System design specification,
and Safety case specification.
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Figure 19. Composite specifying its instantiation into a conceptual safety design

IV. THE FRAMEWORK USED AS SUPPORT FOR THE
ANALYTIC EVALUATION

Mendling et al. [18] describe two dominant approaches
in the literature for evaluating the quality of modelling ap-
proaches: (1) top-down quality frameworks; (2) bottom-up
metrics that relate to quality aspects. The most prominent
top-down quality framework according to [18] is SEQUAL
[9][19][20]. The framework is based on semiotic theory (the
theory of signs) and is developed for evaluating the quality
of conceptual models and languages of all kinds. Moody et
al. [21] report on an empiric study involving 194 participants
on the use of SEQUAL and concludes that the study provides
strong support for the validity of the framework. Becker et
al. [22] present a guideline-based approach as an alternative
to SEQUAL. It addresses the six factors: correctness, clarity,
relevance, comparability, economic efficiency, and systematic
design. Mendling et al. [18] also discuss a number of bottom-
up metrics approaches. Several of these contributions are
theoretic without empirical validation according to the authors.

We have chosen to apply the SEQUAL framework for our
evaluation as it is a general framework applicable to different
kinds of languages [9] whose usefulness has been confirmed in
experiments [21]. Furthermore, an analytic evaluation is pre-
ferred over a metric-based approach due to project limitations.
An analytic evaluation is also a suitable complement to the
experience-based evaluations of SaCS presented in [6] and [7].

According to SEQUAL, the appropriateness of a modelling
language for a specific task is related to the definition of the
following sets: the set of goals G for the modelling task; its
domain D in the form of the set of all statements that can
be stated about the situation at hand; the relevant knowledge
of the modeller Km and other participants Ks involved in the
modelling task; what persons involved interpret the models to

say I; the language L in the form of the set of all statements that
can be expressed in the language; relevant tool interpretation
T of the models; and what is expressed in the models M.

Fig. 20 is adopted from [23] and illustrates the relationships
between the different sets in SEQUAL. The quality of a
language L is expressed by six appropriateness factors. The
quality of a model M is expressed by nine quality aspects.

In the following, we will not address the different quality
aspects of a model M but rather address the quality of the
SaCS pattern language.

The appropriateness factors indicated in Fig. 20 are related
to different properties of the language under evaluation. The
appropriateness factors are [9]:

• Domain appropriateness: the language should be able
to represent all concepts in the domain.

• Modeller appropriateness: there should be no state-
ments in the explicit knowledge of the modeller that
cannot be expressed in the language.

• Participant appropriateness: the conceptual basis
should correspond as much as possible to the way
individuals who partake in modelling perceive reality.

• Comprehensibility appropriateness: participants in the
modelling should be able to understand all the possible
statements of the language.

• Tool appropriateness: the language should have a
syntax and semantics that a computerised tool can
understand.

• Organisational appropriateness: the language should
be usable within the organisation it targets such that
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Figure 20. The quality framework (adopted from [23])

it fits with the work processes and the modelling
required to be performed.

A set of requirements is associated with each appropriate-
ness factor. The extent to which the requirements are fulfilled
are used to judge the quality of the SaCS pattern language for
its intended task. The requirements are defined on the basis of
requirements found in the literature on SEQUAL.

V. THE ANALYTIC EVALUATION

A necessary step in the application of SEQUAL [9][19][23]
is to adapt the evaluation to account for the modelling needs.
This amounts to expressing what the different appropriateness
factors of the framework represent in the particular context of
the evaluation in question. In particular, the modelling needs
are detailed by the definition of a set of criteria for each of
the appropriateness factors.

Table I introduces the criteria for evaluating the suitability
of the SaCS pattern language for its intended task. In the
first column of Table I, the two letters of each requirement
identifier identify the appropriateness factor addressed by the
requirement, e.g., DA for Domain Appropriateness.

The different appropriateness factors are addressed succes-
sively in Section V-A to Section V-F according to the order
in Table I. Each requirement from Table I is discussed. A
requirement identifier is presented in a bold font when first
introduced in the text followed by the associated requirement
and an evaluation of the extent to which the requirement is
fulfilled by SaCS.

A. Domain appropriateness

DA.1 The language must include the concepts representing
best practices within conceptual safety design.

In the SaCS language, there are currently 26 basic patterns
[6][7] on different concepts within conceptual safety design.
Each pattern can be referenced by its unique name. The

TABLE I. OVERVIEW OF EVALUATION CRITERIA

ID Requirement
DA.1 The language must include the concepts representing best practices within

conceptual safety design.
DA.2 The language must support the application of best practices within concep-

tual safety design.
MA.1 The language must facilitate tacit knowledge externalisation within concep-

tual safety design.
MA.2 The language must support the modelling needs within conceptual safety

design.
PA.1 The terms used for concepts in the language must be the same terms used

within safety engineering.
PA.2 The symbols used to illustrate the meaning of concepts in the language

must reflect these meanings.
PA.3 The language must be understandable for people familiar with safety

engineering without specific training.
CA.1 The concepts and symbols of the language should differ to the extent they

are different.
CA.2 It must be possible to group related statements in the language in a natural

manner.
CA.3 It must be possible to reduce model complexity with the language.
CA.4 The symbols of the language should be as simple as possible with

appropriate use of colour and emphasis.
TA.1 The language must have a precise syntax.
TA.2 The language must have a precise semantics.
OA.1 The language must be able to express the desired conceptual safety design

when applied in a safety context.
OA.2 The language must ease the comprehensibility of best practices within

conceptual safety design for relevant target groups like system engineers,
safety engineers, hardware and software engineers.

OA.3 The language must be usable without the need of costly tools.

knowledge confined within SaCS patterns is extracted from
many sources, but is also, to a large extent, traceable to
a few important and influential sources within the field of
development of safety critical systems. We regard international
safety standards and guidelines as particularly suitable sources
of inspiration as these are:

• developed and matured over many years;

• defined on the basis of a consensus between an inter-
national group of domain and safety experts;

• defined according to established processes for quality
assurance within highly regarded organisations;
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• defined with the intention of addressing recurring chal-
lenges within development of safety critical systems;

• defined with the intention of describing acceptable
solutions for developing safety critical systems.

We find it fair to argue that a pattern that expresses a
concept in accordance with highly regarded international safety
standards and guidelines or otherwise authoritative documents
within a domain, expresses a practice that is commonly ac-
cepted. The knowledge captured within the patterns in the
library reflects the knowledge within the safety literature in
the following manner:

1) Establish Concept: The pattern captures the essence
of the first phase in the system life-cycle presented in
EN 50126 [24] and in IEC 61508 [25] that is sim-
ply named “Concept”. The phase is in the standards
concerned with how to establish the purpose and con-
straints associated with a system under development.

2) Hazard Identification: The pattern describes a process
for identifying hazards in accordance with the practise
defined in EN 50129 [17]. The pattern captures the
hazard identification part of the phase named “Hazard
and risk analysis” of the safety life-cycle presented
in IEC 61508 [25]. The identification of hazards is
essential for later steps concerned with the definition
of safety requirements.

3) Hazard Analysis: The pattern describes a process for
identifying the potential causes of hazards in accor-
dance with the practise defined in EN 50129 [17].
The patterns in 2), 3), and 4) captures the intent
expressed in the life-cycle phase named “Hazard and
risk analysis” in IEC 61508 [25].

4) Risk Analysis: The pattern describes a process for
assessing risk in accordance with the practises defined
in EN 50129 [17] and IEC 61508 [25].

5) Establish System Safety Requirements: The pattern
describes a process for specifying safety requirements
inspired by the fourth phase in the system life-cycle
presented in EN 50126 [24] named “System Require-
ments”. In EN 50129 [17], the safety requirements are
defined on the basis of results from hazard identifica-
tion and analysis, risk assessment, and the classifica-
tion of functions. Thus, the patterns in 2), 3), 4), 5),
and 9) may be used as a set of complementing patterns
supporting the elicitation of safety requirements in
a manner comparable to the practice described in
EN 50129. In a similar manner, the fourth phase of
the safety life-cycle presented in IEC 61508 [25] is
named ‘Overall safety requirements” and represents
a phase that is concerned with the specification of
requirements on the basis of hazard and risk analysis.

6) FMEA: The pattern captures the essence of the Failure
Modes and Effects Analysis (FMEA) method. The
FMEA method is widely used within domains de-
veloping safety critical systems and is described in
IEC 60812 [26].

7) FTA: The pattern captures the essence of the Fault
Tree Analysis (FTA) method as it is described in

IEC 61025 [27].

8) I&C Functions Categorisation: The pattern captures
the method for classifying nuclear Instrumentation and
Control (I&C) functions as defined within IEC 61226
[28].

9) SIL Classification: The pattern captures the railway
approach to the classification of functions as it is
defined in EN 50128 [29], applicable for software,
and EN 50129 [17], applicable for system functions.

10) Variable Demand for Service: The pattern is highly
specialised to support requirements elicitation for the
conceptualisation of a nuclear control system in a case
study described in [6]. The case study describes a
very specific development challenge and the pattern
describes a solution to that challenge. The pattern is
not defined on the basis of the knowledge confined
within the safety standards and guidelines literature. It
describes, however, a systematic approach for require-
ments elicitation according to principles for effective
requirements engineering. We cannot argue that the
pattern describes an effective solution to a recurring
challenge within conceptual safety design in general.

11) Station Interlocking Requirements: The pattern cap-
tures the essential requirements for building inter-
locking systems as defined by the Norwegian Rail
Authority in the technical rules JD 550 [30].

12) Level Crossing Interlocking Requirements: The pattern
captures the essential requirements for building level
crossing systems as defined by the Norwegian Rail
Authority in the technical rules JD 550 [30].

13) Trusted Backup: The pattern describes a system design
concept enabling the utilisation of adaptable control
systems for safety critical control tasks by the use of
a variant of the Simplex architecture proposed by Sha
[31]. Sha refers to the Boeing 777 flight control system
as an example of a system that uses the Simplex
architecture in practise.

14) Dual Modular Redundant: The pattern defines a vari-
ant of a generic design solution [32] consisting of two
redundant controllers and a voting unit that is imple-
mented in numerous kinds of systems for different
kinds of task.

15) Overall Safety: The pattern defines a structure for
providing an overall system safety demonstration in
a manner that is comparable to the overall structure
required for safety cases as presented in EN 50129
[17].

16) Technical Safety: The pattern describes a structure
for arguing safety with a focus on technical aspects
and represents a variant of Part 4 of the safety case
required by EN 50129 [17] addressing issues related
to technical safety.

17) Code of Practice: The pattern defines a structure for
arguing that safety objectives are met on the basis of
the application of well-proven practices. The strategy
of arguing safety on the basis of the application
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of a code of practice is expressed in the European
Regulation on common safety methods within the
railway industry [33] and its associated application
guideline [34].

18) Cross Reference [6]: The pattern describes a structure
for arguing that a system satisfies safety objectives on
the basis of a comparison between the system in ques-
tion with a similar and already accepted system. The
strategy is expressed in the European Regulation on
common safety methods within the railway industry
[33] and its associated application guideline [34].

19) Explicit Risk Evaluation: The pattern describes a struc-
ture for arguing that a target system is sufficiently safe
on the basis of risk being sufficiently addressed. The
strategy is expressed in the European Regulation on
common safety methods within the railway industry
[33] and its associated application guideline [34].

20) Safety Requirements Satisfied: The pattern describes a
structure for arguing that a target system is sufficiently
safe on the basis of evidence for safety requirements
being satisfied. The practice of demonstrating system
safety on the basis of demonstrating that safety re-
quirements are satisfied is one of the core principles
of EN 50129 [17] and IEC 61508 [25].

21) Deterministic Evidence: The pattern describes an argu-
ment structure where a claim is supported by evidence
that demonstrates the claim is fully predictable. One
example of the need for relying on deterministic
evidence is related to the recommendation expressed
in Table A.12 within Appendix A of EN 50128 [29]
where it is expressed that the software code of SIL 4
systems is expected to contain no dynamic objects, no
dynamic variables, and no conditional jumps.

22) Assessment Evidence: The pattern describes an argu-
ment structure where a claim is supported by evidence
derived on the basis of the application of a suitable
assessment method. One example of the need to
argue that suitable assessment techniques has been
applied can be seen in Appendix A of EN 50128 [29].
Appendix A of EN 50128 provides recommendations
on the application of specific techniques for assessing
software depending on their Software Safety Integrity
Level (SWSIL) classification.

23) Process Quality Evidence: The pattern describes an
argument structure where the evidence of compliance
to a particular process, as well as evidences of the
quality of the process, assures a claim being met.

24) Process Compliance Evidence: The pattern describes
an argument structure where the evidence of com-
pliance to a process that is argued widely known as
providing effective results assures a claim being met.
A typical use of this strategy is to claim that the
software in a given system is developed according to
the practices described in a relevant software standard
(e.g., [29][35]) and thus is developed according to
acceptable practices.

25) Probabilistic Evidence: The pattern describes an ar-
gument structure where the evidence supporting a

claim is derived on the basis of probabilistic methods.
Appendix A of EN 50128 [29] identifies some of the
recommended techniques that may be used to derive
probabilistic results such as reliability block diagram,
fault tree analysis, and Markov models.

26) Basic Assumption Evidence: The pattern describes an
argument structure where a claim is supported by
a form of rationale or a justified assumption such
that no further evidence is required. In any kind of
argumentation there are some axioms that are used as
base facts. The assumptions used as a basis in assuring
and justifying that safety objectives are met should be
justified [17][24][25][29][36].

The icons and symbols of the SaCS pattern language is
presented in Section II-C. Fig. 4 presents the icons used for
SaCS patterns within a composite pattern specification and
indicates a categorisation. The first three icons are used for
categorising patterns providing development guidance with a
strong processual focus. The next three icons are used for
categorising patterns providing development guidance with a
strong product focus. The last icon is used for categorising
composite patterns. Different kinds of patterns express differ-
ent concepts and best practices within development of safety
critical systems. The combined use of patterns from different
categories facilitates development of conceptual safety designs.

Habli and Kelly [37] describe the two dominant approaches
in safety standards for providing assurance of safety objectives
being met. These are: (1) the process-based approach; (2) the
product-based approach. Within the process-based approach,
safety assurance is achieved on the basis of evidence from
the application of recommended or mandatory development
practices in the development life cycle. Within the product-
based approach, safety assurance is achieved on the basis
of product specific evidences that meet safety requirements
derived from hazard analysis. The practice within safety stan-
dards, as described above, motivates our categorisation into the
process assurance and the product assurance pattern groups.

The safety property of a system is addressed on the basis
of a demonstration of the fulfilment of safety objectives. Seven
nuclear regulators [36] define a safety demonstration as “a set
of arguments and evidence elements that support a selected
set of dependability claims - in particular the safety - of the
operation of a system important to safety used in a given plant
environment”. Although it is the end system that is put into
operation, evidences supporting safety claims are produced
throughout the system life cycle and need to be systematically
gathered from the very beginning of a development project
[36]. The safety case approach represents a means for explicitly
presenting the structure of claims, arguments, and evidences
in a manner that facilitates evaluation of the rationale and
basis for claiming that safety objectives are met. The safety
case approach is supported by several authors [15][36][37][38].
What is described above motivates the need for patterns
supporting safety case specification in addition to patterns on
requirements elicitation and system design specification.

As indicated above, in the design of the SaCS pattern
language we have as much as possible described practices,
selected keywords, and designed icons in the spirit of leading
literature within the area. This indicates that we at least are
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able to represent a significant part of the concepts of relevance
for conceptual safety design.

DA.2 The language must support the application of best
practices within conceptual safety design.

Safety standards, e.g., IEC 61508 [25], typically demand a
number of activities to be performed in which certain activities
must be applied in a specific sequence. Furthermore, safety
standards can also describe the expected inputs and outputs
of different activities and in this sense describe what is the
expected content of deliverables that allows a transition from
one activity to the next. According to Krogstie [9], the main
phenomena in languages that accommodate a behavioural
modelling perspective are states and transitions between states.
In this sense, the language should support the modelling of
the application of best practices according to a behavioural
modelling perspective.

Fig. 5 presents the icons for the different kinds of pa-
rameters and Fig. 7 presents the artefact references in SaCS.
The documentation parameter and the documentation artefact
reference types (represented visually by the icons presented
in Fig. 5 and Fig. 7) are defined in order to allow a generic
classification of parameters and artefacts that cannot be clas-
sified as requirement, design, or safety case. An example can
be the result of risk analysis that is an intermediate result in
conceptual safety design and an input to an activity on the
specification of safety requirements [17][25]. The process of
deriving safety requirements on the basis of an assessment
of hazards is expressed by a chain of patterns as presented in
Fig. 3. The outcome of applying the last pattern in the chain is
a requirements specification. The last pattern cannot be applied
before the required inputs are produced.

Fig. 6 presents the symbolic representation of the different
relations in SaCS. Relations define transitions between patterns
or dependencies between elements within a composite pattern
definition. The reports [6][7] define the concepts behind the
different relations and exemplify the practical use of all the
concepts in different scenarios. Fig. 3 in Section II exemplifies
a composite pattern containing five instances of the instantiates
relation and two instances of the assigns relation.

The need for the different relations presented in Fig. 6
is motivated by the practices described in different standards
and guidelines, e.g., IEC 61508 [25], where activities like
hazard identification and hazard analysis are required to be
performed sequentially and where the output of one activity
is assigned as input to another activity. Thus, we need a
concept of assignment. In SaCS, this is defined by an assigns
relation between patterns. When performing an activity like
hazard analysis, the results from the application of a number
of methods can be combined and used as input. Two widely
used methods are captured in two different basic SaCS patterns
known as Failure Modes and Effects Analysis (FMEA) and
Fault Tree Analysis (FTA). A concept for combining results is
needed in order to model that the results from applying several
patterns such as FMEA and FTA are combined into a union
consisting of all individual results. In SaCS, this is defined
by a combines relation between patterns. A details relation
is used to express that the result of applying one pattern
is further detailed by the application of a second pattern.
Functional safety is an important concept in IEC 61508 [25].

Functional safety is a part of the overall safety that depends
on a system or equipment operating correctly in response to
its inputs. Furthermore, functional safety is achieved when
every specified safety function is carried out and the level
of performance required of each safety function is met. A
satisfies relation between a pattern for requirements elicitation
and a pattern for system design expresses that the derived
system satisfies the derived requirements. Safety case patterns
support documenting the safety argument. A demonstrates
relation between a safety case pattern and a design pattern
expresses that the derived safety argument represents a safety
demonstration for the derived system design.

Fig. 8 illustrates how the intended instantiation order of
patterns can be visualised. The direction of the arrow indicates
the pattern instantiation order; patterns (or more precisely the
patterns referred to graphically) placed closer to the starting
point of the arrow are instantiated prior to patterns placed close
to the tip of the arrow. Patterns can be instantiated in parallel
and thus have no specific order; this is visualised by placing
pattern references on separate arrows.

As argued above, the SaCS language facilitates the ap-
plication of best practices within safety design and mirrors
leading international standards within the area; in particular
IEC 61508. We therefore think it is fair to say that the language
to a large extent fulfils DA.2.

B. Modeller appropriateness

MA.1 The language must facilitate tacit knowledge exter-
nalisation within conceptual safety design.

As already mentioned, the current version of the language
contains 26 basic patterns. The basic patterns are documented
in [6] and [7]. The patterns are defined on the basis of
safety engineering best practices as defined in international
standards and guidelines [17][25][33][34][36][39] and other
sources on safety engineering. The limited number of basic
patterns currently available delimits what can be modelled in a
composite pattern. Defining more basic patterns will provide a
better coverage of the tacit knowledge that can be externalised.
A user can easily extend the language. A basic pattern, e.g.,
the pattern Hazard Analysis [6] referenced in Fig. 3, is defined
in a simple structure of named sections containing text and
illustrations according to a common format. The format is
thoroughly detailed in [10].

Table II compares the overall format of basic SaCS patterns
to pattern formats in the literature. We have chosen a format
that resembles that of Alexander et al. [3] with the addition
of the sections “Pattern signature”, “Intent”, “Applicability”,
and “Instantiation rule”. The signature, intent, and applicability
sections of basic patterns are documented in such a manner
that the context section provided in [3] is not needed. The
format in [3] is a suitable basis as it is simple, well-known, and
generally applicable for specifying patterns of different kinds.
The format provided by Gamma et al. [13] is also simple and
well-known, but tailored specifically for capturing patterns for
software design.

All in all, we admit that there can be relevant tacit
knowledge that is not easily externalised as the SaCS language
is today. However, the opportunity of increasing the number
of basic patterns makes it possible to at least reduce the gap.
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MA.2 The language must support the modelling needs
within conceptual safety design.

IEC 61508 [25] is defined to be applicable across all in-
dustrial domains developing safety-related systems. As already
mentioned, a key concept within IEC 61508 is functional
safety. Functional safety is achieved, according to [25], by
adopting a broad range of principles, techniques and measures.

A key concept within SaCS is that principles, techniques,
methods, activities, and technical solutions of different kinds
are defined within the format of basic patterns. A limited
number of concerns are addressed by each basic pattern. A
specific combination of patterns is defined within a compos-
ite pattern. A composite pattern is intended to address the
overall challenges that appear in a given development context.
Individual patterns within a composite only address a subset
of the challenges that need to be solved in the context. A
composite can be defined prior to work initiation in order to
define a plan for the application of patterns. A composite that
is defined as a representation of a work plan can be easily
reused for documentation purposes by adding information on
the instantiation of parameters. Another use can be to refine
a composite throughout the work process. This is exemplified
in [6] and [7]. A composite can also be defined once patterns
have been applied in order to document the work process.

C. Participants appropriateness

PA.1 The terms used for concepts in the language must be
the same terms used within safety engineering.

Activities such as hazard identification and hazard analysis
[34], methods such as fault tree analysis [27] and failure
mode effects analysis [26], system design solutions including
redundant modules and voting mechanisms [32], and prac-
tices like arguing safety on the basis of arguing that safety
requirements are satisfied [36], are all well known safety
engineering practices that can be found in different standards
and guidelines [17][25][39]. The different concepts mentioned
above are all reflected in basic SaCS patterns. Moreover,

TABLE II. PATTERN FORMATS IN THE LITERATURE COMPARED TO
BASIC SACS PATTERNS [10]

[11] [3] [13] [14] [15] [40] [41] [42] [10]
Name 3 3 3 3 3 3 3 3 3
Also known as 3 3
Pattern signature 3
Intent 3 3 3
Motivation 3 3
Applicability 3 3 3
Purpose 3
Context 3 3 3 3
Problem 3 3 3 3 3 3
Forces 3 3
Solution 3 3 3 3 3 3 3
Structure 3 3
Participants 3 3
Collaborations 3 3
Consequences 3 3
Implementation 3 3
Sample code 3
Example 3
Compare 3
Instantiation rule 3
Related patterns 3 3 3 3 3 3
Known uses 3 3 3 3 3

as already pointed out, keywords such as process assurance,
product assurance, requirement, solution, safety case, etc. have
all been selected based on leading terminology within safety
engineering.

PA.2 The symbols used to illustrate the meaning of con-
cepts in the language must reflect these meanings.

One commonly cited and influential article within psychol-
ogy is that of Miller [43], on the limit of human capacity to
process information. The limit, according to Miller, is seven
plus or minus two elements. When the number of elements
increases past seven, the mind can be confused in correctly
interpreting the information. Thus, the number of symbols
should be kept low in order to facilitate effective human
information processing.

Lidwell et al. [44] describe iconic representation as “the
use of pictorial images to make actions, objects, and concepts
in a display easier to find, recognize, learn, and remember”.
The authors describe four forms for representation of informa-
tion with icons: similar, example, symbolic, and arbitrary. We
have primarily applied the symbolic form to identify a concept
at a higher level of abstraction than what can be achieved
with the similar and example forms. We have also tried to
avoid the arbitrary form where there is little or no relationship
between a concept and its associated icon. Fig. 4, Fig. 5, Fig. 6,
Fig. 7, and Fig. 8 present the main icons in SaCS. In order
to allow a flexible use of icons and keep the number of icons
low, we have chosen not to define a dedicated icon for each
concept but rather define icons that categorises several related
concepts. A relatively small number of icons was designed in a
uniform manner in order to capture intuitive representations of
related concepts. As an example, the referenced basic patterns
in Fig. 3 have the same icons linking them by category, but
unique identifiers separating them by name.

PA.3 The language must be understandable for people
familiar with safety engineering without specific training.

The SaCS language is simple in the sense that a small set
of icons and symbols are used for modelling the application of
patterns, basically: pattern references as in Fig. 5, parameters
and artefact references as in Fig. 7, relations as in Fig. 6, and
instantiation order as in Fig. 8. Guidance to the understanding
of the language is provided in [10], where the syntax and the
semantics of SaCS patterns are described in detail. The SaCS
language comes with a structured semantics [10] that offers
a schematic mapping from syntactical elements into text in
English. Guidance to the application of SaCS is provided by
the examples detailed in [6] and [7]. Although we have not
tested SaCS on people unfamiliar with the language, we expect
that users familiar with safety engineering can comprehend the
concepts and the modelling on the basis of the descriptions in
[6][7][10] within 2-3 working days.

D. Comprehensibility appropriateness

CA.1 The concepts and symbols of the language should
differ to the extent they are different.

The purpose of the graphical notation is to represent a
structure of patterns in a manner that is intuitive, comprehen-
sible, and that allows efficient visual perception. According to
Larkin and Simon [45], the key activities performed by a reader
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in order to draw conclusions from a diagram are: searching;
and recognising relevant information.

Lidwell et al. [44] present 125 patterns of good design
based on theory and empirical research on visualisation. The
patterns describe principles of designing visual information for
effective human perception. The patterns are defined on the ba-
sis of extensive research on human cognitive processes. Some
of the patterns are commonly known as Gestalt principles of
perception. Ellis [46] provides an extensive overview of the
Gestalt principles of perception building upon classic work
from Wertheimer [47] and others. Gestalt principles capture
the tendency of the human mind to naturally perceive whole
objects on the basis of object groups and parts.

One of several Gestalt principles applied in the SaCS
language is the principle of similarity. According to Lidwell
et al. [44], the principle of similarity is such that similar
elements are perceived to be more related than elements that
are dissimilar.

The use of the similarity principle is illustrated by the
composite pattern in Fig. 3. Although each referenced pattern
has a unique name, their identical icons indicate relatedness.
Different kinds of patterns are symbolised by the icons in
Fig. 4. The icons are of the same size with some aspects of
similarity and some aspects of dissimilarity such that a degree
of relatedness can be perceived. An icon for pattern reference
is different in shape and shading compared to an icon used for
artefact reference, see Fig. 4 and Fig. 7, respectively. Thus,
an artefact and a pattern should be perceived as representing
quite different concepts.

CA.2 It must be possible to group related statements in the
language in a natural manner.

There are five ways to organise information according to
Lidwell et al. [44]: category, time, location, alphabet, and
continuum. The category refers to the organisation of elements
by similarity and relatedness. An example of the application
of the principle of categorisation [44] in SaCS is seen in the
possibility to reduce the number of relations drawn between
patterns when these are similar. Patterns in SaCS can have
multiple inputs and multiple outputs as indicated in Fig. 3.
Relations between patterns operate on the parameters. The
brackets [ ] placed adjacent to a pattern reference denotes an
ordered list of parameters. In order to avoid drawing multiple
relations between two patterns, relations operate on the ordered
parameter lists of the patterns by list-matching of parameters.

Fig. 21 exemplifies two different ways for expressing
visually the same relationships between the composite patterns
named A and B. The list-matching mechanism is used to reduce
the number of relation symbols drawn between patterns to
one, even though the phenomena modelled represents multiple
similar relations. This reduces the visual complexity and
preserves the semantics of the relationships modelled.

CA.3 It must be possible to reduce model complexity with
the language.

Hierarchical organisation is the simplest structure for visu-
alising and understanding complexity according to Lidwell et
al. [44]. The SaCS language allows concepts to be organised
hierarchically by specifying that one pattern is detailed by

["Out1,"Out2,"Out3"] ["In1,"In2,"In3"]

A
["Out1"] ["In1"]
["Out2"] ["In2"]
["Out3"] ["In3"]

A

B

B

Figure 21. Alternative ways for visualising multiple similar relations

another or by defining composite patterns that reference other
composite patterns in the content part.

Fig. 22 presents a composite pattern named Requirements
that reference other composites as part of its definition. The
contained pattern Safety Requirements is defined in Fig. 3.
The contained pattern Functional Requirements is not defined
and is referenced within Fig. 22 for illustration purposes.
Requirements can be easily extended by defining composites
supporting the elicitation of, e.g., performance requirements
and security requirements, and later model the use of such
patterns in Fig. 22. In Fig. 22, the output of applying the
Requirements pattern is represented by the parameter ReqSpec.
The ReqSpec parameter represents the result of applying the
combines relation on the output Req of the composite Safety
Requirements and the output Req of the composite Functional
Requirements.

Requirements

[ToA,&Haz] [&ReqSpec&]

&&[Req]

[Req]

Func-onal
Requirements

[ToA]

[ToA,&Haz]

Safety
Requirements

[ReqSpec]

Figure 22. Composition of composites

CA.4 The symbols of the language should be as simple as
possible with appropriate use of colour and emphasis.

A general principle within visualisation according to Lid-
well et al. [44] is to use colour with care as it can lead to
misconceptions if used inappropriately. The authors points out
that there is no universal symbolism for different colours.
As colour blindness is common the SaCS language applies
different shades of grey in visualisations.

Moody [48] defines 9 principles for designing cognitive
effective visual notations optimised for human understanding.
The principles are synthesised from theory and empirical
research from a wide range of fields. We firstly introduce
the set of principles. Secondly, we exemplify and discuss the
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implementation of the principles in the SaCS pattern language.
The principles are:

1) Semiotic clarity: concerns to which extent there is
a correspondence between semantic constructs and
graphical symbols [48].

2) Perceptual discriminability: concerns to which extent
different symbols are distinguishable [48].

3) Semantic transparency: concerns to which extent the
meaning of a symbol can be inferred from its appear-
ance [48].

4) Complexity management: concerns to which extent the
visual notation is able to represent information without
overloading the human mind [48].

5) Cognitive integration: concerns to which extent there
are explicit mechanisms supporting the integration of
information from different diagrams [48].

6) Visual expressiveness: concerns to which extent the
full range of and capacities of visual variables are used
[48].

7) Dual coding: concerns to which extent text is used to
complement graphics [48].

8) Graphic economy: concerns to which extent the num-
ber of different graphical elements are cognitively
manageable [48].

9) Cognitive fit: concerns to which extent visual dialects
are used to support different tasks and audiences [48].

Fig. 23 presents how the principles 1-9 outlined above
are implemented. Fig. 23 also presents how three of the
Gestalt principles of visual perception [47][46][44] known
as Figure-Ground, Proximity, and Uniform connectedness are
implemented. The Gestalt principles express mechanisms for
efficient human perception from groups of visual objects. In
Fig. 23, the coloured elements represent the annotations used
for explaining the implementation of principles, while the
remaining elements are SaCS notation. Below we give a further
description of the implementation of the 9 principles.

Regarding 1): We have deliberately applied a symbol
deficit approach, which influences semiotic clarity [48]. Sev-
eral concepts are expressed in natural language rather than by
symbols, e.g., names of patterns and parameters. Hence, there
is not a one-to-one mapping between concepts and symbols.
We believe an approach where all concepts are symbolised
with dedicated symbols is counter-productive. A one-to-one
mapping between concepts and symbols would likely lead
to symbol overload as well as violate the Gestalt principle
of simplicity [44]. There is also a limit of human capacity
to process information that motivates a small number of
symbols. The limit, which was mentioned earlier, is according
to Miller [43] seven plus or minus two elements. In order
to facilitate effective human information processing we have
defined a small set of symbols. The different icons are used
as classifiers instead of being associated with one specific
concept. However, any lack of clarity with our symbol deficit
approach is compensated by the use of other principles such
as dual coding explained later.

Regarding 2): We have approached perceptual discrim-
inability [48] by using the Gestalt principle of similarity to
balance the need for similarity with the need for dissimilarity.
The principle of similarity [44] is such that similar elements are
perceived to be more related than elements that are dissimilar.
The use of the similarity principle can be seen applied to the
icons for the different contained patterns in Fig. 3. Although
each referenced pattern has a unique name, their identical icons
indicate relatedness. Different kinds of patterns are symbolised
by the icons in Fig. 4. The icons are of the same size with
some aspects of similarity and some aspects of dissimilarity
such that a degree of relatedness may be perceived. Textual
differentiation is approached with different typefaces and font
size.

Regarding 3): We described earlier that our aim when
designing icons was to achieve a symbolic form according to
the classification of Lidwell et al. [44]. The effect is icons that
identify a concept at a higher level of abstraction than can
be achieved with the preferable similar and example forms,
but at least the arbitrary form is avoided where there is little
or no relationship between a concept and its associated icon.
Section II-C presents the main icons in SaCS and identifies
the result of our efforts to achieve semantic transparency [48].

Regarding 4): Several different mechanism are used for
complexity management [48] in SaCS. According to Lidwell
et al. [44], hierarchical organisation is the simplest structure for
visualising and understanding complexity. The SaCS language
offers different kinds of hierarchical organisation, e.g., the
details relation may be used to specify that one pattern is
detailed by another, and a composite pattern can use other
composites as part of its specification. The latter provides a
mechanism for modularisation.

Regarding 5): Different kinds of basic patterns are inte-
grated as support for conceptual safety design in SaCS. We
have applied UML [49], GSN [50], and Problem Frames [51]
to support modelling different kinds of concepts within basic
patterns. These three languages are widely known, and no
single language exists that serves the different modelling needs
these notations offer. In addition, a principle of good design
[52][44][53] is to balance the need for performance by the
importance of preference in designing solutions. However, the
choice of several languages challenges cognitive integration
[48]. Kim et. al [54] argue within their theory on cognitive
integration of diagrams that in order for a multi-diagram repre-
sentation to be cognitively effective, a mechanism that supports
conceptual as well as perceptual integration must be explicitly
included. The annotations added to the UML activity diagram
presented in Fig. 2 represents the SaCS specific mechanism
that allows cognitive integration. The annotations facilitates
the user in mapping parameters with diagram elements and
are briefly described in Section II-C, fully defined in [10].

Regarding 6): The degree of visual expressiveness is de-
fined by the number of visual variables used in a language [48].
Bertin [55] identifies 8 visual variables divided into 2 planar
variables and 6 retinal variables. The planar variables are
horizontal and vertical position. The retinal variables are shape,
size, brightness, orientation, texture, and colour. Every visual
variable besides colour is used either to encode information or
attract the visual attention of the user to what is important. A
general principle within visualisation is to use colour with care
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Figure'ground+(Gestalt):!Figures!are!the!objects!of!focus!(i.e.,!
icons,!arrows,!brackets,!and!iden8fiers),!ground!compose!
undifferen8ated!background!(i.e.,!the!white!background).

Uniform+connectedness+(Gestalt):+
connected!elements!are!perceived!as!
more!related!than!elements!that!are!not!
connected.

Proximity+(Gestalt):!
elements!close!to!each!
other!are!perceived!as!
forming!a!group.

[ToA] [Risks]

[HzLg][ToA]

Risk+
Iden>fica>on+
and+Analysis

Hazard
Iden>fica>on

[HzLg][Haz]

Hazard
Analysis

[Risks][Haz]

Risk
Analysis

[ToA] [ToA]

System'context'
descrip0on'

Hazard'log
version'1

Hazard'log
version'2

Hazard'log
version'3

Cogni>ve+fit+(9):!the!
iden8fied!parameter!maps!
to!a!similarly!named!
element!in!the!diagram!
within!the!associated!
paJern!that!explains!how!
the!parameter!is!used.!

Perceptual+discriminability+(2):!
different!categories!of!concepts!are!
dis8nguished!by!their!symbols,!
instances!are!dis8nguished!by!their!
iden8fier.

Seman>c+transparancy+(3):!Icons!
with!a!symbolic!form!that!
provides!a!metaphor!to!the!
concept!it!represents.

Complexity+management+(4):!
modularised!specifica8ons!may!be!
used!to!reduce!complexity.!The!
composite!may!be!used!as!a!part!of!
other!composites!and!it!consists!of!
specifica8on!parts.

Visual+expressiveness+(6):!the!use!
of!visual!variables!such!as:
M!shape
M!brightness
M!size
M!orienta8on
M!texture

Dual+coding+(7):!text!complements!graphics.

Cogni>ve+integra>on+(5):
the!iden8fied!parameter!
is!mapped!to!an!element!
within!a!UML,!GSN,!or!a!
Problem!Frames!diagram!
via!SaCS!specific!diagram!
annota8ons.

Semio>c+clarity+(1):!the!object!is!intended!to!be!
intui8vely!perceived!as!represen8ng!some!
documenta8on.

Graphic+economy+(8):!icons!
classifying!parameters!may!be!
omiJed!in!order!to!achieve!beJer!
graphic!economy.

Figure 23. Example composite pattern with annotations showing the implementation of principles for cognitive effective visual notations

as it may lead to misconceptions if used inappropriately [44].
Moody [48] points out that although color is one of the most
effective visual variables it should not be used as the sole basis
for distinguishing between symbols, but rather for redundant
coding. In this sense, colour coding can be added to our
models for redundant coding and for emphasising particularly
interesting information that requires immediate attention.

Regarding 7): Paivio [56] argues that within the dual coding
theory, text and graphics together is a more effective carrier of
information than using them separately. In SaCS, text is solely
used for identifiers, e.g., identifiers for parameters, patterns,
and development artefacts. Icons provide visual cues to what
an entity represent. We believe this is a suitable strategy as
identifiers are used in the verbal communication between users
to name the entities that are discussed.

Regarding 8): As mentioned earlier we have deliberately

applied a symbol deficit approach in composite patterns, which
reduces the number of graphical symbols and positively effect
graphic economy [48]. We have used the dual coding principle
to balance text with symbols, where symbols classify entities
and text provides supplementing information. Information is
primarily textual in basic patterns. Basic patterns provide
detailed guidance on different concepts that is difficult to fully
capture graphically. Thus, diagrams are used in basic patterns
to provide supplementing information.

Regarding 9): The intended users of SaCS represent differ-
ent engineering disciplines and roles. According to the cogni-
tive fit theory [48], different kinds of information representa-
tion should be used depending on task and audience. In order
to achieve an overall effective visual representation, visual
dialects suited to the individual tasks should be integrated
rather than providing one representation for all purposes. A
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requirements engineer is expected to be aware of the Problem
Frames [51] notation. A system engineer, hardware engineer,
or a software engineer is expected to be aware of the UML
[49] notation. A safety engineer is expected to be aware of the
the GSN [50] notation. The SaCS pattern language integrates
these visual dialects and facilitates the communication between
users on the development of conceptual safety design.

E. Tool appropriateness

TA.1 The language must have a precise syntax.

The syntax of the SaCS language (see [10]) is defined in
the EBNF [57] notation. EBNF is a meta-syntax that is widely
used for describing context-free grammars.

TA.2 The language must have a precise semantics.

A structured semantics for SaCS patterns is defined in [10]
in the form of a schematic mapping from pattern definitions,
via its textual syntax in EBNF [57], to English. The non-
formal representation of the semantics supports human inter-
pretation rather than tools, although the translation procedure
as described in [10] can be automated. The presentation of the
semantics of patterns as a text in English was chosen in order
to aid communication between users, possibly with different
technical background, on how to interpret patterns.

F. Organisational appropriateness

OA.1 The language must be able to express the desired
conceptual safety design when applied in a safety context.

The application of the SaCS pattern language produces
composite patterns that are instantiated into conceptual safety
designs. A composite pattern expresses a combination of basic
patterns. The basic patterns express safety engineering best
practices and concepts inspired by international safety stan-
dards and guidelines, e.g., [17][25][39]. International safety
standards and guidelines describe concepts and practices for
development of safety critical systems that can be perceived
as commonly accepted. The SaCS pattern language is tested
out in two cases. The first concerned the conceptualisation of a
nuclear power plant control system, while the second addressed
the conceptualisation of a railway interlocking system, fully
detailed in [6] and [7], respectively. In both cases it was
possible to derive a conceptual safety design using the SaCS
language as support as well as model how patterns were
applied as support.

OA.2 The language must ease the comprehensibility of best
practices within conceptual safety design for relevant target
groups like system engineers, safety engineers, hardware and
software engineers.

We have already explained how basic patterns represent
concepts and best practices inspired by safety standards and
guidelines. Each basic pattern addresses a limited number of
phenomena. Basic patterns are combined into a composite
pattern where the composite addresses all relevant challenges
that occur in a specific context. A composite pattern as the
one presented in Fig. 3 eases the explanation of how several
concepts within conceptual safety design are combined and
applied.

Wong et al. [58] reviewed several large development
projects and software safety standards from different domains
with respect to cost-effectiveness. Their conclusion is that al-
though standards provide useful and effective guidance, safety
and cost-effectiveness objectives are met by effective planning
and by applying safety engineering best practices evidenced
in company best practices throughout the development life
cycle. A composite pattern can be easily defined with the
SaCS pattern language in order to capture a company specific
practice. In order to capture different company practices,
different compositions of patterns can be defined.

OA.3 The language must be usable without the need of
costly tools.

Every pattern used in the cases described in [6] and [7] was
interpreted and applied in its context by a single researcher
with background from safety engineering. A conceptual safety
design was produced for each case. Every illustration in
[6][7][10] and in this paper is created with a standard drawing
tool.

VI. RELATED WORK

In the literature, pattern approaches supporting develop-
ment of safety critical systems are poorly represented. In the
following we briefly discuss some different pattern approaches
and their relevancy to the development of conceptual safety
designs.

Jackson [51] presents the problem frames approach for
requirements analysis and elicitation. Although the problem
frames approach is useful for detailing and analysing a problem
and thereby detailing requirements, the problem classes pre-
sented in [51] are defined on a very high level of abstraction.

The use of boilerplates [59][60] for requirement speci-
fication is a form of requirement templates but nonetheless
touches upon the concept of patterns. The boilerplate approach
helps the user phrase requirements in a uniform manner and to
detail these sufficiently. Although boilerplates can be useful for
requirement specification, the focus in SaCS is more towards
supporting requirement elicitation and the understanding of the
challenges that appear in a specific context.

Withall [61] describes 37 requirements patterns for as-
sisting the specification of different types of requirements.
The patterns are defined at a low level, i.e., the level of a
single requirement. The patterns of Withall can be useful,
but as with the boilerplates approach, the patterns support
more the specification of requirements rather than requirements
elicitation.

Patterns on design and architecture of software-based sys-
tems are presented in several pattern collections. One of the
well-known pattern collections is the one of Gamma et al.
[13] on recurring patterns in design of software based systems.
Without doubt, the different pattern collections and languages
on system design and architecture represent deep insight into
effective solutions. However, design choices should be founded
on requirements, and otherwise follow well established prin-
ciples of good design. The choice of applying one design
pattern over another should be based on a systematic process
of establishing the need in order to avoid design choices being
left unmotivated.
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The motivations for a specific design choice are founded
on the knowledge gained during the development activities
applied prior to system design. Gnatz et al. [62] outline the
concept of process patterns as a means to address the recurring
problems and known solutions to challenges arising during
the development process. The patterns of Gnatz et al. are not
tailored for development of safety critical systems and thus do
not necessarily reflect relevant safety practices. Fowler presents
[12] a catalogue of 63 analysis patterns. The patterns do not
follow a strict format but represent a body of knowledge on
analysis described textually and by supplementary sketches.

While process patterns and analysis patterns can be rel-
evant for assuring that the development process applied is
suitable and leads to well informed design choices, Kelly
[15] defines patterns supporting safety demonstration in the
form of reusable safety case patterns. The patterns expressed
are representative for how we want to address the safety
demonstration concern.

A challenge is to effectively combine and apply the knowl-
edge on diverse topics captured in different pattern collections
and languages. Henninger and Corrêa [63] survey different
software pattern practices and states “software patterns and
collections tend to be written to solve specific problems with
little to no regard about how the pattern could or should be
used with other patterns”.

Zimmer [64] identifies the need to define relationships
between system design patterns in order to efficiently combine
them. Noble [65] builds upon the ideas of Zimmer and defines
a number of relationships such as uses, refines, used by,
combine, and sequence of as a means to define relationships
between system design patterns. A challenge with the relations
defined by Noble is that they only specify relations on a very
high level. The relations do not have the expressiveness for
detailing what part of a pattern is used, refined, or combined.
Thus, the approach does not facilitate a precise modelling of
relationships.

Bayley and Zhu [66] define a formal language for pattern
composition. They argue that design patterns are almost always
to be found composed with each other and that the correct
applications of patterns thus relies on precise definition of the
compositions. A set of six operators is defined for the purpose
of defining pattern compositions. The language is exemplified
on the formalisation of the relationships expressed between
software design patterns described by Gamma et al. [13]. As
we want the patterns expressed in the SaCS language to be
understandable to a large community of potential users, we
find this approach a bit too rigid.

Smith [67] presents a catalogue of elementary software
design patterns in the tradition of Gamma et al. [13] and
proposes the Pattern Instance Notation (PIN) for expressing
compositions of patterns graphically. The notation uses simple
rounded rectangles for abstractly representing a pattern and its
associated roles. Connectors define the relationships between
patterns. The connectors operate on the defined roles of
patterns.

The notation of Smith [67] is comparable to the UML
collaboration notation [49]. The main purpose of a UML
collaboration is to express how a system of communicating

entities collectively accomplishes a task. The notation is par-
ticularly suitable for expressing system design patterns.

Several notations [68][69][70] for expressing patterns
graphically use UML as its basis. The notations are simple,
but target the specification of software.

VII. CONCLUSION

We have presented an analytical evaluation of the SaCS
pattern language with respect to six different appropriateness
factors. We arrived at the following conclusions:

• Domain: In the design of the SaCS language we have
as much as possible selected keywords and icons
in the spirit of leading literature within the area.
This indicates that we at least are able to represent
a significant part of the concepts of relevance for
conceptual safety design.

• Modeller: There can be relevant tacit knowledge that is
not easily externalised as the SaCS language is today.
However, the opportunity of increasing the number of
basic patterns makes it possible to at least reduce the
gap.

• Participants: The terms used for concepts have been
carefully selected based on leading terminology within
safety engineering. The SaCS language facilitates rep-
resenting the application of best practices within safety
design and mirror leading international standards; in
particular IEC 61508.

• Comprehensibility: The comprehension of individual
patterns and pattern compositions is supported by the
use of terms commonly applied within the relevant
industrial domains as well as by the application of
principles of good design in visualisations, such as
the Gestalt principles of perception [44][47].

• Tool: Tool support can be provided on the basis of the
syntax and semantics of the SaCS language [10].

• Organisational: Organisations developing safety crit-
ical systems are assumed to follow a development
process in accordance to what is required by standards.
Wong et al. [58] reviewed several large development
projects and software safety standards from differ-
ent domains with respect to cost-effectiveness and
concludes that although standards provide useful and
effective guidance, safety and cost-effectiveness objec-
tives are successfully met by effective planning and by
applying safety engineering best practices evidenced
in company best practices throughout the development
life cycle. SaCS patterns can be defined, applied, and
combined in a flexible manner to support company
best practices and domain specific best practices.

ACKNOWLEDGMENT

This work has been conducted within the OECD Halden
Reactor Project, Institute for Energy Technology, Halden,
Norway. The second author has partly been funded by the
ARTEMIS project CONCERTO.



673

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] A. A. Hauge and K. Stølen, “An Analytic Evaluation of the SaCS
Pattern Language – Including Explanations of Major Design Choices,”
in Proceedings of the International Conference on Pervasive Patterns
and Applications (PATTERNS’14). IARIA, 2014, pp. 79–88.

[2] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-Oriented Soft-
ware Architecture: On Patterns and Pattern Languages. Wiley, 2007,
vol. 5.

[3] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language:
Towns, Buildings, Construction. Oxford University Press, 1977, vol. 2.

[4] J. C. Knight, “Safety Critical Systems: Challenges and Directions,” in
Proceedings of the 24th International Conference on Software Engi-
neering (ICSE’02). ACM, 2002, pp. 547–550.

[5] J. E. McGrath, Groups: interaction and performance. Prentice-Hall,
1984.

[6] A. A. Hauge and K. Stølen, “A Pattern-based Method for Safe Control
Conceptualisation – Exemplified Within Nuclear Power Production,” In-
stitute for Energy Technology, OECD Halden Reactor Project, Halden,
Norway, Tech. Rep. HWR-1029 rev 2, 2014.

[7] A. A. Hauge and K. Stølen, “A Pattern-based Method for Safe Control
Conceptualisation – Exemplified Within Railway Signalling,” Institute
for Energy Technology, OECD Halden Reactor Project, Halden, Nor-
way, Tech. Rep. HWR-1037 rev 2, 2014.

[8] K. M. Eisenhardt, “Building theories from case study research,” The
Academy of Management Review, vol. 14, no. 4, 1989, pp. 532–550.

[9] J. Krogstie, Model-based Development and Evolution of Information
Systems: A Quality Approach. Springer, 2012.

[10] A. A. Hauge and K. Stølen, “Syntax & Semantics of the SaCS Pattern
Language,” Institute for Energy Technology, OECD Halden Reactor
Project, Halden, Norway, Tech. Rep. HWR-1052, 2013.

[11] A. Aguiar and G. David, “Patterns for Effectively Documenting Frame-
works,” in Transactions on Pattern Languages of Programming II, ser.
LNCS, J. Noble, R. Johnson, P. Avgeriou, N. Harrison, and U. Zdun,
Eds. Springer, 2011, vol. 6510, pp. 79–124.

[12] M. Fowler, Analysis Patterns: Reusable Object Models. Addison-
Wesley, 1996.

[13] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[14] R. S. Hanmer, Patterns for Fault Tolerant Software. Wiley, 2007.
[15] T. P. Kelly, “Arguing Safety – A Systematic Approach to Managing

Safety Cases,” Ph.D. dissertation, University of York, United Kingdom,
1998.

[16] B. Rubel, “Patterns for Generating a Layered Architecture,” in Pattern
Languages of Program Design, J. Coplien and D. Schmidt, Eds.
Addison-Wesley, 1995, pp. 119–128.

[17] CENELEC, “EN 50129 Railway Applications – Communications, Sig-
nalling and Processing Systems – Safety Related Electronic Systems for
Signalling,” European Committee for Electrotechnical Standardization,
2003.

[18] J. Mendling, G. Neumann, and W. van der Aalst, “On the Correlation
between Process Model Metrics and Errors,” in Proceedings of 26th
International Conference on Conceptual Modeling, vol. 83, 2007, pp.
173–178.

[19] A. G. Nysetvold and J. Krogstie, “Assessing Business Process Modeling
Languages Using a Generic Quality Framework,” in Proceedings of
the 17th Conference on Advanced Information Systems Engineering
(CAiSE’05) Workshops. Idea Group, 2005, pp. 545–556.

[20] J. Krogstie and S. D. F. Arnesen, “Assessing Enterprise Modeling Lan-
guages Using a Generic Quality Framework,” in Information Modeling
Methods and Methodologies. Idea Group, 2005, pp. 63–79.

[21] D. L. Moody, G. Sindre, T. Brasethvik, and A. Sølvberg, “Evaluating the
Quality of Process Models: Empirical Testing of a Quality Framework,”
in Proceedings of the 21st International Conference on Conceptual
Modeling, ser. LNCS. Springer, 2013, vol. 2503, pp. 380–396.

[22] J. Becker, M. Rosemann, and C. von Uthmann, “Guidelines of Business
Process Modeling,” in Business Process Management, ser. LNCS, vol.
1806. Springer, 2000, pp. 30–49.

[23] I. Hogganvik, “A Graphical Approach to Security Risk Analysis,” Ph.D.
dissertation, Faculty of Mathematics and Natural Sciences, University
of Oslo, 2007.

[24] CENELEC, “EN 50126 Railway Applications - The Specification and
Demonstration of Reliability, Availability, Maintainability and Safety
(RAMS),” European Committee for Electrotechnical Standardization,
1999.

[25] IEC, “IEC 61508 Functional Safety of Electri-
cal/Electronic/Programmble Electronic Safety-related Systems,
2nd Edition,” International Electrotechnical Commission, 2010.

[26] IEC, “IEC 60812 Analysis Techniques for System Reliability – Pro-
cedure for Failure Mode and Effects Analysis (FMEA), 2nd edition,”
International Electrotechnical Commission, 2006.

[27] IEC, “IEC 61025 Fault Tree Analysis (FTA), 2nd edition,” International
Electrotechnical Commission, 2006.

[28] IEC, “IEC 61226 Nuclear Power Plants – Instrumentation and Control
Important to Safety – Classification of Instrumentation and Control
Functions, 3rd Edition,” International Electrotechnical Commission,
2009.

[29] CENELEC, “EN 50128 Railway Applications – Communications,
Signalling and Processing Systems – Software for Railway Control
and Protection Systems,” European Committee for Electrotechnical
Standardization, 2001.

[30] Jernbaneverket, “Teknisk Regelverk, JD550 Prosjektering,”
https://trv.jbv.no/wiki/Signal/Prosjektering, 2014, [accessed: 2014-
08-31].

[31] L. Sha, “Using Simplicity to Control Complexity,” IEEE Software,
vol. 18, 2001, pp. 20–28.

[32] N. Storey, Safety-critical Computer Systems. Prentice Hall, 1996.
[33] European Commission, “Commission Regulation (EC) No 352/2009

on the Adoption of Common Safety Method on Risk Evaluation and
Assessment,” Official Journal of the European Union, 2009.

[34] ERA, “Guide for the Application of the Commission Regulation on
the Adoption of a Common Safety Method on Risk Evaluation and
Assessment as Referred to in Article 6(3)(a) of the Railway Safety
Directive,” European Railway Agency, 2009.

[35] IEC, “IEC 60880 Nuclear Power Plants – Instrumentation and Control
Systems Important to Safety – Software Aspects for Computer-based
Systems Performing Category A Functions, 2nd Edition,” International
Electrotechnical Commission, 2006.

[36] The Members of the Task Force on Safety Critical Software, “Licensing
of safety critical software for nuclear reactors: Common position of
seven european nuclear regulators and authorised technical support
organisations,” http://www.belv.be/, 2013, [accessed: 2014-08-31].

[37] I. Habli and T. Kelly, “Process and Product Certification Arguments –
Getting the Balance Right,” SIGBED Review, vol. 3, no. 4, 2006, pp.
1–8.

[38] C. Haddon-Cave, “The Nimrod Review: An Independent Review Into
the Broader Issues Surrounding the Loss of the RAF Nimrod MR2
Aircraft XV230 in Afghanistan in 2006,” The Stationery Office (TSO),
Tech. Rep. 1025 2008-09, 2009.

[39] IEC, “IEC 61513 Nuclear Power Plants – Instrumentation and Control
Systems Important to Safety – General Requirements for Systems, 2nd
Edition,” International Electrotechnical Commission, 2001.

[40] A. Ratzka, “User Interface Patterns for Multimodal Interaction,” in
Transactions on Pattern Languages of Programming III, ser. LNCS,
J. Noble, R. Johnson, U. Zdun, and E. Wallingford, Eds. Springer,
2013, vol. 7840, pp. 111–167.
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