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Abstract—The paper deals with the concrete planning problem – a
stage of the Web Service Composition in the PlanICS framework,
which consists in choosing the best service offers in order to
satisfy the user query and to maximize the quality function. We
introduce a novel planning technique based on a combination of
a Genetic Algorithm (GA) with a Satisfiability Modulo Theories
(SMT) solver, which allows to obtain better results than each
of the methods separately. We give three versions of a hybrid
algorithm. Two of them involve a modification of the standard GA
in such a way that after every couple of iterations of GA, several
top-ranked individuals are processed by the SMT-based algorithm
in order to improve them. The third one exploits an SMT-solver
in order to generate the initial populations for GA, which results
in a substantial improvement in the overall algorithm efficiency.
The paper presents experimental results, which seem to be very
encouraging.

Keywords-Web Service Composition; Concrete Planning; Ge-
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I. INTRODUCTION

This paper is an improved and extended version of the Ser-
vice Computation 2014 conference paper “Genetic Algorithm
to the Power of SMT: a Hybrid Approach to Web Service
Composition Problem” [1]. This work introduces the two new
versions of our hybrid algorithm, namely Semi-Random and
InitPop Hybrid. The former is a slightly modified variant of
the algorithm provided in the original paper, but due to the
introduced changes it is also much more powerful. The latter
implements our brand new concept of combining Satisfiability
Modulo Theories and Genetic Algorithms. This is our main
original contribution since the InitPop Hybrid algorithm is
presented here for the very first time. In comparison with [1],
this paper extends also the experimental results section and
widely discusses the related work.

One of the fundamental ideas of Service-Oriented Architec-
ture (SOA) [2] is to compose simple functionalities, accessible
via well-defined interfaces, in order to realize more sophisti-
cated objectives. The problem of finding such a composition
is hard and known as the Web Service Composition (WSC)
problem [2][3][4].

PlanICS [5] is a framework aimed at WSC, easily adapting
existing real-world services. The main assumption in PlanICS

is that all the web services in the domain of interest as well as
the objects that are processed by the services, can be strictly

classified in a hierarchy of classes, organised in an ontology.
Another key idea is to divide the planning into several stages.
The first phase deals with classes of services, where each
class represents a set of real-world services, while the other
phases work in the space of concrete services. The first stage
produces an abstract plan composed of service classes [6].
Next, offers are retrieved by the Offer Collector (OC), a
module of PlanICS, and used in the concrete planning (CP).
As a result of CP, a concrete plan is obtained, which is a
sequence of offers satisfying predefined optimization criteria.
Dividing the planning process into the two planning phases
allows to dramatically reduce the number of web services to
be considered and so the number of inquires for offers.

This paper deals with the Concrete Planning Problem
(CPP), shown to be NP-hard [7]. Our previous works employ
several techniques to solve it: a Genetic Algorithm (GA)
[8], numeric optimization methods [9] as well as Satisfiabil-
ity Modulo Theories (SMT) Solvers [7]. The results of the
extensive experiments show that the proposed methods are
complementary, but every single one suffers from some dis-
advantages. The main disadvantage of an SMT-based solution
often demonstrates in a long computation time, which is not
acceptable in the case of a real-world interactive planning tool.
On the other hand, a GA-based approach is relatively fast, but
it yields solutions, which could be far from optimum and are
found with a low probability. Thus, our aim is to exploit the
advantages of both methods by combining them into a hybrid
algorithm. This methodology and its implementation is the
main contribution of the paper. We present here three versions
of a hybrid algorithm. Two of them involve a modification
of the standard GA in such a way that after every couple of
iterations of GA, several top-ranked individuals are processed
by the SMT-based algorithm in order to improve them [10].
The third one exploits an SMT-solver in order to generate
the initial populations for GA, which results in a substantial
improvement of the algorithm efficiency. Such an approach is
novel, whereas several other “pure” and hybrid approaches to
CPP have been defined. We discuss them in the next section.

II. RELATED WORK

Over the last few years, the concrete planning problem has
been extensively studied in the literature. G. Canfora et al.
[11] use a simple GA to obtain a good quality concrete plan.
As optimization criteria the authors choose features commonly
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referred to as Quality of Service (QoS), like the response
time of a web service, its cost, availability, and reliability.
An individual of GA representing a concrete plan is encoded
as a vector of integer values, where each value identifies
an offer and each position of the vector corresponds to a
service type. While a concrete plan has to satisfy a number
of constraints, the concrete planning problem is transformed
to the constrained optimisation problem. The authors define
a penalty function, which decreases the fitness values of
the individuals not satisfying some constraints. Unfortunately,
experimental study concerns only 25 services and up to 25
offers for each service. However, our approach, where the user
is free to define an objective function using any of the available
attributes, seems to be much more flexible.

Y. Wu et al. [12] transform CPP to a multi-criteria op-
timization problem and exploit GA to find a concrete plan.
However, the authors present the experiments on a relatively
small search space that could not provide valuable conclusions.
Another version of GA is presented in [13], where special
genetic operators are applied in order to find a concrete
plan satisfying user constraints. Moreover, the individuals are
generated basing on a set of initially found concrete plans using
greedy heuristics. This idea allows to evolve only feasible
individuals within the population and the algorithm must
only assure that genetic operators do not provide unfeasible
potential solutions. Thus, the idea of generating the initial
population is somewhat similar to the one applied in our
InitPop Hybrid.

Solving CPP using GA with a new version of crossover
and mutation operators is presented in [14]. An adaptive
crossover and a mutation operator are designed to increase
convergence to a local minimum. Moreover, the idea of tabu
list, which comes from the Tabu Search algorithm is applied.
The experiments show that an applictaion of the modified
version of GA gives better results than using the standard one.

Besides many papers discussing an application of GA to
solve CPP [15][16][17], there are also papers applying more
advanced algorithms. The authors of the paper [18], where
CPP is viewed as a multi-criteria optimization problem, use
the NSGA-II algorithm to obtain a set of good quality plans.
Again, the attributes like the cost, the execution time, the
service availability and a reputation stand for the optimization
criteria. Instead of defining one fitness function with weights
for each feature, the authors propose four separate fitness
functions, each for a single attribute. Each plan obtained is
optimal according to one of the fitness functions defined in the
algorithm. Unfortunately, this result has been obtained thanks
to considering small state spaces only, generated by 3 types of
services and 15 instances of each type.

Different approaches of the Artificial Immune Systems
have also been applied to solve CPP. In [19] a modified
version of the CLONALG algorithm is used to a single-
phase planning. The algorithm finds simultaneously abstract
and concrete plans. Another modification of CLONALG is
presented in [20]. At the beginning of the algorithm antibodies
representing potential solutions are generated randomly, but it
is assured that all of them are feasible. Contrary to the other
works, in this algorithm an individual is encoded in a binary
way. Similarly to a number of other approaches the authors
use QoS features as the optimisation criteria.

Hybrid algorithms for WSC are also known in the lit-
erature. In [21] a modified version of the Particle Swarm
Optimization algorithm has been used as a method for solving
CPP. In this algorithm two additional genetic operators, namely
crossover and mutation, are applied to obtain better results than
in the standard algorithm.

Another approach consists in a combination of two evo-
lutionary algorithms, Tabu Search and GA [22]. Similarly to
ours, the experiments have been performed using randomly
generated benchmarks. The authors examine the performance
of the hybrid algorithm in comparison with the “pure” GA and
Tabu Search. Although, this hybrid method finds good quality
concrete plans, our hybrid algorithm allows for dealing with
much larger search spaces. A hybrid approach based on an
application of GA and the ant algorithm was proposed in [23].
The problem has been transformed to searching for the shortest
path in a graph. While the experimental results are better than
these obtained using a simple GA, the number of service types
and offers used are not sufficient to draw general conclusions
about the efficiency of this approach.

Thus, after a thorough analysis of the literature we can
state that the main novelty of our approach consists not only
in combining GA with SMT for solving CPP, but also in
providing experimental results for benchmarks of very large
state spaces.

The rest of the paper is structured as follows. In Section
III the PlanICS framework is introduced and CPP is defined.
Section IV presents the main ideas of our hybrid approach as
well as some technical solutions. The experimental results are
presented and discussed in Section V. The paper ends with
some conclusions.

III. PLANICS FRAMEWORK

In this section we give an overview of the PlanICS frame-
work. First, we briefly sketch the main concepts and the
consecutive planning phases in order to eventually focus on
the concrete planning stage. Then, we give all the definitions
necessary to formulate the concrete planning problem. The
section ends with an example planning scenario.

A. Overview of PlanICS

An ontology contains a set of classes describing the types
of the services as well as the types of the objects they process.
A class consists of a unique name and a set of the attributes.
By an object we mean an instance of a class. By a state of an
object we mean a valuation of its attributes. A set of objects
in a certain state is called a world. A key notion of PlanICS

is that of a service. We assume that each service processes
a set of objects, possibly changing values of their attributes,
and produces a set of new (additional) objects. We say that
a service s transforms a world w into another world w′. A
transformation sequence s1 . . . sn is a sequence of services
for which there is a sequence of worlds w0 . . . wn such that
si transforms wi−1 into wi, for each 1 ≤ i ≤ n. The types of
services available for planning are defined as elements of the
branch of classes rooted at the Service concept. Each service
type stands for a description of a set of real-world services of
similar functionality.
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The main goal of the system is to find a composition of
services that satisfies a user query. The query interpretation
results in two sets of worlds: the initial and the expected
ones. Moreover, the query may include additional constraints,
especially quality constraints, the sum of which is used to
choose the best solution from all the potential solutions. Thus,
the task of the system is to find such a set of services, which
transform some initial world into a world matching some
expected one in such a way that the value of the quality
function is maximized. Figure 1 shows the general PlanICS

architecture. The bold arrows correspond to computation of a
plan, the thin arrows model the planner infrastructure, while
the dotted arrows represent the user interactions.
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Figure 1. A diagram of the PlanICS system architecture.

The abstract planning is the first stage of the composition
in the PlanICS framework. It consists in matching services at
the level of input/output types and the abstract values. That is,
since at this stage it is sufficient to know if an attribute does
have a value or it does not, we abstract from the concrete
values of the object attributes, and use two special values set
and null.

Thus, for a given ontology and a user query, the goal of the
abstract planning is to find such a (multi)set of service types
that allows to build a sequence of service types transforming
an initial world of the user query into some final world. This
final world has to be consistent with an expected world, which
is also defined as a part of the query. The consistency between
a final world and an expected one is expressed using the
notion of the compatibility relation, formally defined in [6].
Intuitively, a final world Wf is compatible with an expected
world We if the following conditions are satisfied:

• for every object oe ∈We there exists a unique object
of ∈ Wf , such that both the objects are of the same
type or the type of of is a subtype of oe,

• both the objects agree on the (abstract) values of the
common attributes.

The result of the abstract planning stage is called a Context
Abstract Plan (CAP). It consists of a multiset of service
types (defined by a representative transformation sequence),
contexts (mappings between the services and the objects being
processed), and a set of final worlds. However, our aim is to
find not only a single plan, but many (significantly different,
and all if possible) abstract plans, in order to provide a number
of alternative ways to satisfy the query. We distinguish between
abstract plans built over different multisets of service types.
See [6][24] for more details.

B. Concrete Planning Problem

In the second planning stage, a CAP is used by the Offer
Collector, i.e., a tool, which in cooperation with the service
registry, queries real-world services. The service registry keeps
an evidence of real-world web services, registered accordingly
to the service type system. During the registration, the service
provider defines a mapping between the input/output data of
the real-world service and the object attributes processed by the
declared service type. OC communicates with the real-world
services of types presented in a CAP. It sends the constraints
on the data, which can potentially be sent to the service, and
on the data expected to be received in an offer. Usually, each
service type represents a set of real-world services. Moreover,
querying a single service can result in a number of offers.
Thus, we define offer sets as the main result of the second
planning stage.

Definition 1 (Offer, Offer set): Assume that the n-th in-
stance of a service type from a CAP processes some number
of objects having in total m attributes. A single offer collected
by OC is a vector P = [v1, v2, . . . , vm], where vj is a value
of a single object attribute processed by n-th service of the
CAP. An offer set On is a k × m matrix, where each row
corresponds to a single offer and k is the number of offers in
the set. Thus, the element oni,j is the j-th value of the i-th offer
collected from the n-th service type instance from the CAP.

The responsibility of OC is to collect a number of offers,
where every offer represents one possible execution of a single
service. However, other important tasks of OC are: (1) building
a set of constraints resulting from the user query and from
semantic descriptions of service types, and (2) a conversion of
the quality constraints expressed using objects from the user
query to an objective function built over variables from offer
sets. Thus, we can formulate CPP as a constrained optimization
problem.

Definition 2 (CPP): Let n be the length of CAP and let
O = (O1, . . . , On) be the vector of offer sets collected by OC
such that for every i = 1, . . . , n

Oi =

 oi1,1 . . . oi1,mi

...
. . .

...
oiki,1

. . . oiki,mi

 , and the j-th row of Oi is

denoted by P i
j . Let P denote the set of all possible sequences

(P 1
j1
, . . . , Pn

jn
), such that ji ∈ {1, . . . , ki} and i ∈ {1, . . . , n}.

The Concrete Planning Problem is defined as:

max{Q(S) | S ∈ P} subject to C(S), (1)

where Q : P 7→ R is an objective function defined as the sum
of all quality constraints and C(S) = {Cj(S) | j = 1, . . . , c
for c ∈ N}, where S ∈ P, is a set of constraints to be satisfied.

Finding a solution of CPP consists in selecting one offer
from each offer set such that all constraints are satisfied and
the value of the objective function is maximized. This is the
goal of the third planning stage and the task of a concrete
planner.

Example 1. Consider a simple ontology describing a fragment
of some financial market consisting of service types inheriting
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Figure 2. A graphical illustration of the context abstract plan given in the
example.

from the class Investment, which represent various types
of financial instruments. Moreover, the ontology contains
three object types: Money having the attribute amount,
Transaction having the two attributes amount and profit,
and Charge having the attribute fee.

Suppose that each investment service takes m - an in-
stance of Money as input, produces t and c - instances
of Transaction and Charge, respectively, and updates the
amount of money remaining after the operation, i.e., the
attribute m.amount.

Assume that a user would like to invest up to $100 in
three financial instruments, locating more than $50 in two
investments. Moreover, the user wants to maximize the sum
of profits and wants to use only services of handling fees
less than $3. The latter two conditions can be expressed as
an appropriate quality function and an aggregate condition.

Formally, the user query can be formulated as follows:
in = ∅, inout = {m :Money}, out = {t1, t2, t3 : Transaction}
pre= (m.amount ≤ 100), post = (t1.amount + t2.amount >
50), Qual = {(Transaction, true, profit, Sum)}, Aggr =
{(Charge, true, fee,Max,<, 3)}.

The meaning of the consecutive components of the query
is the following: in is a set of the read-only objects, while
inout is a set of the objects that could be modified - both are
available at the start of the composition; out is a set of the
objects that do not exist in the initial worlds, but they have to
be produced by services of the plan. Next, pre and post are
boolean formulae describing the states of the initial and the
expected worlds, respectively. Finally, Qual and Aggr are sets
of quality constraints, and additional aggregation constraints,
respectively.

Consider an exemplary CAP consisting of three instances
of the Investment service type depicted in Figure 2. The
boxes represent worlds, the round boxes are services, while
the arrows stand for transformation contexts.

A single offer collected by OC is a vector
[v1, v2, v3, v4, v5], where v1 corresponds to m.amount,
v2 to t.amount, v3 to t.profit, and v4 to c.fee. Since the
attribute m.amount is updated during the transformation, the
offers should contain values from the world before and after
the transformation. Thus v5 stands for the value of m.amount
after modification.

Assuming that instances of Investment return k1, k2, and
k3 offers in response to the subsequent inquiries, we obtain
three offer sets: O1, O2, and O3, where Oi is a ki × 5

matrix of offer values. The conditions from the query are
translated to the following constraints: C1 := (o1i1,1 ≤ 100)
and C2 := (o1i1,2 + o2i2,2 > 50), where i1, i2, and i3 are
variables ranging over 1 . . . ki. Moreover, the amount of money
left after the operation is an input for the next investment.
Thus, we have: C3 := (o1i1,5 = o2i2,1) and C4 := (o2i2,5 =
o3i3,1). The aggregate condition is translated to the following
constraint: C5 :=

(
max({o1i1,4, o

2
i2,4

, o3i3,4}) < 3
)
, while

the quality expression is translated to the quality constraint
Q :=

∑3
j=1 o

j
ij ,3

.

IV. HYBRID SOLUTIONS

So far, we have made the following observations of the
experiments with the “pure” SMT- and GA-based planners.
The main disadvantage of the SMT-based solution is often a
long computation time, which is not acceptable in the case of
a real-world interactive planning tool. On the other hand, the
GA-based approach is relatively fast, but it yields solutions
that are far from optimum, and of low probability. Thus, our
strategy is to delegate some sub-problems to be solved by
an SMT-solver in such a way that the computation time is
acceptable while the results allow to obtain better performance
of GA. In order to evaluate the efficiency of our new hybrid
algorithms, we use as benchmarks several CPP instances,
which can hardly be solved by “pure” planners. By comparing
the performance of several versions of the hybrid algorithm
(with various parameter combinations) on the same examples,
we can conclude whether the hybrid algorithm outperforms
each of the “pure” methods separately.

In this section we present the main ideas behind three
hybrid algorithms, named: Random Hybrid (RH) [1], Semi-
Random Hybrid (SRH) [10], and InitPop Hybrid (IPH). We
start with a description of their common features.

A. Overview

Our hybrid approach is based on the standard GA aimed at
solving CPP. GA is a non deterministic algorithm maintaining
a population of potential solutions during an evolutionary
process. A potential solution is encoded in a form of a GA
individual, which, in case of CPP, is a sequence of natural
values. In each iteration of GA, a set of individuals is selected
for applications of genetic operations, such as the standard one-
point crossover and mutation, which leads to obtaining a new
population passed to the next iteration of GA. The selection
of an individual, and thus the promotion of its offspring
to the next generation depends on the value of the fitness
function. The fitness value of an individual is the sum of
the optimization objective and the ratio of the number of the
satisfied constraints to the number of all the constraints (see
Definition 2), multiplied by some constant β:

fitness(I) = q(SI) + β ·
|sat(C

(
SI)
)
|

c
, (2)

where I stands for an individual, SI is a sequence of the
offer values corresponding to I , sat

(
C(SI)

)
is a set of the

constraints satisfied by a candidate solution represented by I ,
and c is the number of all constraints. The role of β is to
reduce both the components of the sum to the same order of
magnitude and to control the impact of the components on the



679

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

GA SMT GA SMT GA...

Initial
population

Top ranked
individuals

Improved
individuals

Result

Figure 3. The RH and SRH algorithm overview.

final result. The value of β depends on the estimation of the
minimal and the maximal quality function value.

B. Random and Semi-Random Hybrid Algorithms

The RH and SRH algorithms are based on the following
modification of the standard GA (see Figure 3). After every
couple of iterations of GA, several top-ranked individuals are
processed by the SMT-based algorithm. Given an individual I ,
the procedure searches for a similar, but improved individual
I ′, which represents a solution satisfying all the constraints and
having a greater value of the objective function at the same
time. The similarity between I and I ′ consists in sharing a
number of genes. We refer to the problem of finding such an
individual as to the Search for an Improved Individual (SFII).
Since there are many possible ways to exploit this idea, we start
from the one that randomly selects the genes to be changed.

The SMT procedure combined with GA is based on the
encoding exploited in our “pure” SMT-based concrete planner
[7][9]. The idea is to encode SFII as an SMT formula that is
satisfiable if such an individual exists. First, we initialize an
SMT-solver allocating a set V of all necessary variables:

• oidi, where i = 1 . . . n and n is the length of the
abstract plan. These variables are needed to store the
identifiers of offers constituting a solution. A single
oidi variable takes a value between 1 and ki.

• oi
j , where i = 1 . . . n, j = 1 . . .mi, and mi is the

number of offer values in the i-th offer set. We use
them to encode the values of S, i.e., the values from
the offers chosen as a solution. From each offer set Oi

we extract the subset Ri of offer values that are present
in the constraint set and in the quality function, and
we allocate only the variables relevant for the plan.

Next, using the variables from V , we encode the offer
values, the objective function, and the constraints, as the
formulas shared by all calls of our SMT-procedure. The offer
values from the offer sets O = (O1, . . . , On) are encoded as
the formula

ofr(O,V) =
n∧

i=1

ki∨
d=1

(
oidi = d ∧

∧
oid,j∈Ri

oi
j = oid,j

)
. (3)

The formulae ctr
(
C(S),V

)
and qual

(
Q(S),V

)
, denoted

as ctr and q for short, encode the constraints and the objective
function, respectively. Details are provided in [7].

Let I = (g1, . . . , gn) be an individual, M = {i1, . . . , ik}
the set of indices of genes allowed to be changed, and q(SI)
the value of the objective function where n, k ∈ N.

Hence, the SFII problem is reduced to the problem of
satisfiability of the following formula:∧
i∈{1,...,n}\M

(oidi = gi)∧ ofr
(
O,V

)
∧ ctr∧ (q > q(SI)) (4)

That is, the Formula (4) is satisfiable only if there exists
an individual I ′ = (g′1, . . . , g

′
n) satisfying all the constraints,

where ∀i/∈M gi = g′i and q(SI′) > q(SI), i.e., sharing with
I all genes of indices outside M and having the larger value
of objective function than I . If the formula is satisfiable, then
the values of the changed genes are decoded from the model
returned by the SMT-solver, and the improved individual I ′
replaces I in the current population.

Although, we have presented the general idea of a hybrid
algorithm, there are still a number of problems that need to
be solved in order to combine GA and SMT. Moreover, they
can be solved in many different ways. The crucial questions
that need to be answered are as follows. When to start the
SFII procedure for the first time? How many times and how
often SFII should be run? How many genes should remain
fixed? How to choose genes to be changed? Since there are
many possibilities to deal with the above problems, we started
from the simplest solution that randomly selects genes to be
changed. The solutions to the remaining questions we treat
as parameters in order to develop the first version of our
hybrid solution, called Random Hybrid (RH). Its pseudo-code
is presented in Algorithm 1.

After analysing the experimental results (see Section V)
we have found that the results are slightly better than these
obtained using GA and SMT separately, however they could
still be improved, especially in terms of a higher probability
and a lower computation time. Thus, we introduced several
improvements to the RH algorithm and we implemented the
Semi-Random Hybrid (SRH) algorithm. The most important
improvements introduced to SRH are as follows.

The selectGenes procedure (see the line 11 of Algorithm
1) is not completely random any more. In the first place the
genes violating some constraints are chosen to be changed.
Then, the additional gene indices are selected randomly until
we get a set of size gn. This change allows to increase the
probability of finding a solution.

The next improvement aims at reducing the computation
time. It consists in running the SFII procedure only if an indi-
vidual violates some constraints. Thus, in case of SRH the lines
from 11 to 15 in Algorithm 1 are executed conditionally, only
if the individual I violates some constraints. In Section V we
discuss the results obtained and compare both the approaches
with the third hybrid solution - the IPH algorithm.

C. The InitPop Hybrid Algorithm (IPH)

The third hybrid algorithm also combines GA with SMT,
but it does it in a different way. Our observations of the
behaviour of the RH and SRH algorithms have had a big
influence on the third hybrid algorithm. The first conclusion is
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1 Procedure RandomHybrid(st, ind, int, gn, N )
Input: st: when to start SFII for the first time,
ind: the number of individuals to pass to SFII during a single
GA iteration,
int: how often run SFII,
gn: the number of genes to be changed by SFII,
N : the number of GA iterations.
Result: an individual representing the best concrete plan

found, or null

2 begin
3 initialize(); // generate initial

population, initialize SMT solver
4 evaluate(); // compute fitness function for

all individuals
5 for (i← 1; i ≤ N ; i← i+ 1) do
6 selection(); crossover();mutation();

// ordinary GA routines
7 evaluate();
8 if (i ≥ st) ∧ (i mod int = 0) then
9 BI ← findBestInd(ind); // a set of

ind top individuals
10 foreach I ∈ BI do
11 M ← selectGenes(I, gn); // a set of

gene indices to be changed
12 I ′ ← runSFII(M);
13 if I ′ 6= null then
14 I ← I ′; // replace I by I ′ in

the current population
15 end
16 end
17 end
18 end
19 {best} ← findBestInd(1);
20 if constraintsSatisfied(best) then
21 return best; // if a valid solution has

been found
22 else
23 return null
24 end
25 end
Algorithm 1: A pseudocode of the RandomHybrid algorithm

that the larger number of constraints, the worse performance of
GA. However, a large number of constraints does not worsen
the efficiency of the SMT-based components. On the other
hand, searching for individuals of quality higher than a given
value is quite expensive for an SMT-solver, while this is a
natural application of GA. Therefore, the main idea is to divide
the tasks of both the modules so that each of them is doing
its best.

Now, the SMT-solver is used to generate (a part of) the
initial population for GA (see Figure 4). The individuals gen-
erated by the SMT-solver satisfy all constraints. Note that each
such individual is already a solution of CPP, but typically its

SMT GA

Initial
population Result

Figure 4. The IPH algorithm overview.

fitness value is not optimal. However, the individuals generated
by an SMT-solver provide an “easy start” for the genetic algo-
rithm. Moreover, since the initial population already contains
at least one solution, the algorithm should always return a plan.
On the other hand, if the collected offers do not allow to build
a solution (or the constraints are contradictory), then we get a
straight negative answer from the SMT-solver.

We have chosen a simple, but fast, strategy of generating
individuals. That is, an individual is a valuation of the oid1,
. . . , oidn variables satisfying the conjunction of the formula
encoding the offers and the formula encoding the constraints:
ofr
(
O,V

)
∧ ctr. Thus, in this case the sub-problem solved

by the SMT-solver is much simpler than in the RH and SRH
algorithms. In order to generate more than one individual, we
also construct a formula blocking all valuations previously
found, and this formula is conjuncted with the formula passed
to the SMT-solver. That is, in order to generate the i-th
individual the SMT-solver has to check the satisfiability of
the following formula:

ϕi = ofr
(
O,V

)
∧ ctr ∧Bi−1. (5)

Here, Bi stands for a blocking formula, which is defined
inductively as:

B0 = true, (6)

Bi+1 = Bi−1 ∧ ¬
( ∧
j=1..n

oidj = vali(oid
j)
)
,

where vali(oidj) is the value of the j-th gene returned by the
solver in the i-th step.

In the next section we provide the results of several exper-
iments and compare the results of all three hybrid algorithms.

V. EXPERIMENTAL RESULTS

In our previous experiments, discussed in [9], we have
applied several “pure” methods to the concrete planning. These
methods include the SMT-based approach, the standard GA,
and numeric algorithms implemented in the OpenOpt toolset.
The results of our experiments can be summarised as follows.
The SMT-based planner is always able to find the optimal
solution, provided that it is enough time and memory. In
contrast, GA can find sometimes the optimal solution of length
at most 5, but it consumes less time and memory. The ability
of GA to find a concrete plan depends on the number of
constraints. The more optimization constraints the smaller
probability of finding a concrete plan. These drawbacks of
GA are not common to our SMT-based approach. Moreover,
our experiments show that a large number of constraints helps
the SMT-solver to reduce the search space and to find the
optimal solution faster. Overall, both the approaches are com-
plementary and behave differently depending upon a particular
problem instance. Concerning OpenOpt, we have shown that
it can also be used for solving CPP. However, its effectiveness
is satisfactory only if no tuples of values are present in the
problem domain and much worse in the opposite case.

In order to evaluate the efficiency of our hybrid algorithms
on “difficult” benchmarks, we have used for the experiments
six instances of CPP that have been hardly solved with our
“pure” SMT- and GA-based planners [7]. All the instances
represent plans of length 15. Each offer set of Instance I,
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TABLE I. EXPERIMENTAL RESULTS FOR INSTANCES I AND II.

INSTANCE I INSTANCE II
Random Semi-Random Random Semi-Random

exp gn ind int t[s] Q P t[s] Q P t[s] Q P t[s] Q P
1 8 1 10 9.3 1305.0 3.3 9.3 1271.2 16.7 14.9 1382.0 6.7 15.9 1323.1 26.7
2 20 8.2 1331.5 6.7 7.9 1303.2 30.0 13.2 1371.5 13.3 12.3 1386.3 20.0
3 10 10 41.0 1386.7 53.3 25.7 1349.3 73.3 59.5 1437.6 36.7 40.0 1367.9 63.3
4 20 22.4 1389.0 26.7 17.9 1313.4 46.7 41.7 1414.0 33.3 31.4 1375.4 60.0
5 20 10 76.3 1405.8 70.0 36.4 1351.2 86.7 118.1 1441.0 73.3 66.3 1390.6 83.3
6 20 34.3 1356.5 43.3 24.9 1325.7 73.3 61.9 1420.3 40.0 43.5 1396.3 70.0
7 12 1 10 39.6 1363.1 66.7 19.5 1337.7 86.7 56.6 1405.3 93.3 30.0 1387.5 80.0
8 20 14.5 1326.9 46.7 11.0 1332.5 43.3 20.4 1380.0 40.0 17.4 1369.9 73.3
9 10 10 203.6 1417.6 100 74.8 1373.1 100 273.2 1455.8 100 108.1 1411.3 100

10 20 114.7 1362.2 100 54.0 1356.8 100 155.9 1431.3 100 76.5 1405.9 100
11 20 10 346.5 1424.2 100 122 1383.9 100 443.1 1460.5 100 166.4 1431.2 100
12 20 196.4 1416.5 100 71.9 1374.1 100 261.7 1455.3 100 96.9 1408.4 100

SMT 266.0 1443.0 100 388.0 1467.0 100
GA 5.0 1218.5 8.0 5.6 1319.9 10.0

TABLE II. EXPERIMENTAL RESULTS FOR INSTANCES III AND IV.

INSTANCE III INSTANCE IV
Random Semi-Random Random Semi-Random

exp gn ind int t[s] Q P t[s] Q P t[s] Q P t[s] Q P
1 8 1 10 13.0 2176.5 6.7 10.5 2077.4 16.7 22.1 2229.5 6.7 19.7 2124.4 33.3
2 20 12.4 2054.3 10.0 10.9 2144.6 16.7 22.0 2193.6 16.7 16.0 2141.2 16.7
3 10 10 121.7 2311.5 46.7 54.8 2217.8 83.3 248.3 2359.1 43.3 101.0 2226.6 70.0
4 20 54.2 2279.4 26.7 27.6 2217.8 83.3 151.9 2353.5 43.3 58.7 2224.4 53.3
5 20 10 324.9 2369.4 76.7 94.3 2284.3 76.7 566.8 2390.7 60.0 195.4 2284.8 90.0
6 20 175.7 2304.2 50.0 58.3 2233.0 70.0 290.8 2334.1 53.3 89.2 2215.2 73.3
7 12 1 10 208.1 2153.4 46.7 55.8 2205.6 90.0 239.7 2216.3 56.7 92.9 2223.2 83.3
8 20 54.1 2274.1 36.7 43.8 2131.7 53.3 64.1 2167.0 26.7 55.8 2226.3 60.0
9 10 10 1727.1 2377.9 100 327.3 2282.2 100 2205.2 2485.3 100 553.7 2328.8 100

10 20 1066.5 2327.7 96.7 213.0 2286.5 100 1325.1 2414.3 96.7 291.6 2246.1 96.7
11 20 10 2814.4 2447.1 100 650.8 2364.7 100 4455.6 2568.2 100 882.4 2408.3 100
12 20 2027.1 2387.3 100 337.8 2317.8 100 2477.0 2469.8 96.7 416.9 2338.2 100

SMT 500.0 2266.0 100 500.0 2409.0 100
GA 6.0 2085.4 10.0 6.6 2001.9 7.0

TABLE III. EXPERIMENTAL RESULTS FOR INSTANCES V AND VI

INSTANCE V INSTANCE VI
Random Semi-Random Random Semi-Random

exp gn ind int t[s] Q P t[s] Q P t[s] Q P t[s] Q P
1 8 1 10 12.0 560.0 36.7 16.3 546.1 66.7 25.4 584.1 63.3 20.5 572.1 100
2 20 8.8 486.0 16.7 10.8 509.5 66.7 17.4 585.3 33.3 16.4 564.3 90.0
3 10 10 55.0 704.1 93.3 34.1 648.0 96.7 156.1 804.8 100 81.9 699.9 100
4 20 36.2 638.2 80.0 22.7 596.1 93.3 96.8 722.8 93.3 40.6 660.1 96.7
5 20 10 94.9 777.9 96.7 51.8 687.1 96.7 298.7 888.1 100 131.8 783.0 100
6 20 52.0 667.3 83.3 28.2 634.1 100 165.9 808.9 100 81.5 694.4 100
7 12 1 10 69.8 620.2 96.7 31.8 569.6 100 124.4 660.3 100 42.2 546.8 100
8 20 30.4 561.1 93.3 23.0 532.6 96.7 75.1 608.8 90.0 42.5 588.6 96.7
9 10 10 420.0 852.8 100 139.9 731.4 100 1385.4 928.5 100 294.7 769.0 100

10 20 264.1 774.5 100 66.5 620.8 100 619.6 814.4 100 122.3 628.9 100
11 20 10 807.4 935.5 100 275.7 832.7 100 2614.5 993.3 100 643.2 874.4 100
12 20 461.9 852.6 100 100.7 675.7 100 1464.6 927.3 100 260.1 750.9 100

SMT 500.0 781.0 100 500.0 755.0 100
GA 5.1 436.0 8.0 5.9 537.8 12.0

III, and V contains 256 offers, which makes the number of
the potential solutions equal to 25615 = 2120. In the case of
Instance II, IV, and VI, each offer set consists of 512 offers,
which results in the search space size as large as 51215 = 2135.
The objective functions used for the Instances from I to IV are
as follows:

Q1,2 =

n∑
i=1

oiji,1, (7)

Q3,4 =

n∑
i=1

(oiji,1 + oiji,2). (8)

The set of the constraints of the Instances from I to IV is

defined as follows:

C1,2,3,4 = {(oiji,2 < oi+1
ji+1,2

) | i = 1, . . . , n− 1}. (9)

That is, for the Instances I and II our aim is to maximize
a sum of n values, while for the Instances III and IV the
sum of 2n values is to be maximized. Since the concrete
planning is reduced to the constrained optimisation problem
and it is clearly separated from the previous planning stages,
the concrete planners do not need to “know” what the planning
domain is, and what the particular variables mean. This al-
lowed us to generate the instances randomly using our software
Offer Generator.

In the case of the Instance V and VI, which are based on
Example 1, the objective functions and the constraints are as
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follows:

Q5,6 =

n∑
i=1

oiji,3, (10)

C5,6 = {(o1j1,1 ≤ 100), (o1j1,2 + o2j1,2 > 50),

(oiji,5 = oi+1
ji+1,1

) | i = 1, . . . , n− 1}. (11)

This time we can provide a clear interpretation of the objective
function and the constraints, as they follow the user query
given in the example. The objective functions Q5 and Q6

correspond directly to the function Q defined in Example 1.
Since the third value of an offer corresponds to the profit
attribute, the sum of the profits is to be maximized here.
Similarly, the constraint sets also correspond to these defined
in Example 1.

Besides the parameters introduced already in Section IV,
the standard parameters of GA, used in the hybrid algorithms,
have been set to the same values as in the pure GA, that is, the
population size – 1000, the number of iterations – N = 100,
the crossover probability – 95%, and the mutation probability –
0.5%. Moreover, all the experiments with the hybrid algorithms
have been performed using st = 20, that is, the first SFII
procedure starts with the 20th iteration. Every instance has
been tested 12 times, using a different combination of the
remaining parameter values (see Tables from I to III), and
every experiment has been repeated 30 times on a standard
PC with 2.8GHz CPU and Z3 [25] version 4.3 as the SMT-
solving engine.

The results of applying the RH and SRH algorithms to
Instances I - VI are presented in Tables I, II, and III, where
the columns from left to right display the experiment label, the
parameter values, and for each Instance and each hybrid variant
the total runtime of the algorithm (t[s]), the average quality
of the solutions found (Q), and the probability of finding a
solution (P). For reference, we report in the two bottom rows
(marked with SMT and GA, respectively) the results of the
pure SMT- and GA-based planner. The pure GA-based planner
was run with the same parameters values as the hybrid ones.
The test has been performed on the same machine.

One can easily see that the quality values obtained in
almost every experiment are higher than these returned by GA.
However, in several cases either the runtime or the probability
is hardly acceptable. On the other hand, for many parameter
combinations we obtain significantly better results in terms of
the runtime (comparing to the pure SMT) or the probability (in
comparison with the pure GA). We marked in bold the results
that we find the best for a given instance and a hybrid variant.

Although the results are very promising and encouraging,
as one could expect, the hybrid solutions are clearly a trade-
off between the three measures: the quality, the probability,
and the computation time of the pure algorithms. It is easy
to observe that for many parameter valuations the hybrid
algorithms outperform each pure planning method provided
one or two measures are taken into account only. Moreover, the
Semi-Random Hybrid algorithm outranks in almost all cases
the Random Hybrid one in terms of the computation time and
the probability of finding a solution. On the other hand, since
RH runs SMT-solver much more often than SRH, it also finds
solutions of better quality than SRH, but at the price of a much
longer computation time.

In order to compare the results obtained taking all the three
measures into account at the same time, we defined two simple
score functions:

scorei(P, t,Q) =
P

t
· (Q− consti)

scorep2(P, t,Q) =
P 2 ·Q
t

, (12)

where P , t, and Q stand for the probability, the computation
time, and the average quality, respectively, and consti is a
parameter, which value is selected for each Instance i from
I to VI, to make the scores of the pure GA- and SMT-based
algorithm equal. The values of the consti parameters used for
comparing the results for Instances I-VI are as follows: 1150,
1295, 2061, 1906, 386, 514, respectively.

These scores are then selected as the benchmarks for the
comparison given in Figure 5. The dark- and light-grey bars
correspond to the results obtained with the RH and SRH
algorithm, respectively.

The scorei function aims at comparing the results under
the assumption that both the pure planning methods are equally
effective as far as the three measures are concerned. On the
other hand, the scorep2 function gives priority to the solutions
having a high probability. Obviously, this way, one can define
a number of other score functions in order to compare the
results according to a personal preference. Notice that another
interesting remark can be made about the hybrid parameter
values. Namely, the bold values in Tables I, II, and III, as well
as the highest chart bars in Figure 5 most often correspond
to parameter combinations of the experiment 4, 7, and 8.
However, the study of only six instances does not allow us
to draw any broad conclusions. Therefore, in our future work
we are going to investigate whether these parameter values
guarantee to obtain good results in general.

Next, we use the same benchmarks in order to evaluate
the efficiency of the IPH algorithm. The results are presented
in Table IV. Its first column contains the number of the
individuals in the initial population generated by an SMT-
solver. While the total population size is equal to 1000, the
remaining individuals are created randomly.

The data in the next columns stand for the computation
time and the quality of solutions found given for each instance
from I to VI.

The most important advantage of the IPH algorithm over
the other algorithms is that the probability of finding solutions
in all cases is equal to 100%. This is the consequence of
generating at least one individual, which is already a solution
at the start of GA. Also, the computation time of IPH is much
smaller than in the case of the pure SMT as well as the RH and
SRH algorithms. On the negative side of the IPH algorithm,
the quality function value of the solutions found is lower.

The comparison of the results of all three algorithms based
on values of the score functions in shown in Figure 6. At the
X axis: 1, 100, 500, 1000 are the numbers of the individuals
generated by the SMT-solver in the initial population; SMT and
GA stand for the results obtained using the respective “pure”
planning methods while RH and SRH denote the best results
obtained with Random and Semi-Random Hybrid algorithms.
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Figure 5. The comparison of the RH and SRH algorithm performance based on two score functions.
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Figure 6. The comparison of the results of the three algorithms based on the values of the score functions.
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TABLE IV. EXPERIMENTAL RESULTS OF THE IPH ALGORITHM.

INSTANCE I INSTANCE II INSTANCE III
inds t[s] Q t[s] Q t[s] Q

1 5,6 1229,5 6,4 1248,8 6,4 1706,8
100 7,3 1183,2 9,5 1301,5 8,4 2059,9
500 13,9 1317,9 20,1 1382,4 14,6 2090,6

1000 21,8 1321,7 33,8 1387,4 23,0 2064,7

INSTANCE IV INSTANCE V INSTANCE VI
inds t[s] Q t[s] Q t[s] Q

1 7,5 1788,0 6,4 329,1 8,8 458,2
100 10,3 2098,5 19,3 469,2 37,6 491,7
500 20,9 2280,3 27,8 634,5 55,2 524,7

1000 35,2 2280,3 37,2 618,0 72,5 565,6

VI. CONCLUSION AND FUTURE WORK

In this paper three versions of the hybrid concrete planner
have been implemented and several experiments have been
performed. The experimental results show that even when
using a straightforward strategy of combining the SMT- and
GA-based approach, one can obtain surprisingly good results.
We believe that all of the proposed methods are of high
potential. However, the most promising approach seems to
be the InitPop Hybrid algorithm, due to its relatively low
computation time and the ability to always return a solution,
if there exists one. These advantages follow from dividing the
tasks of both the combined methods so that each of them is
doing its best. While the SMT-solver deals easily even with a
large number of constraints, the genetic algorithm copes with
the objective functions.

An important task to be addressed in a future work will
consist in investigating how to choose the parameter values in
order to get a trade-off between the quality, the probability, and
the computation time desired by the user. Moreover, using the
experience gained from the concrete planning, we intend also
to develop a hybrid solution for the abstract planning stage.
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