
686

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Combined Simulation and Test Case Generation Strategy for Self-Adaptive Systems

Georg Püschel, Christian Piechnick, Sebastian Götz,
Christoph Seidl, Sebastian Richly, Thomas Schlegel, and Uwe Aßmann

Software Technology Group, Technische Universität Dresden
Email: {georg.pueschel, christian.piechnick, sebastian.goetz1,

christoph.seidl, sebastian.richly, thomas.schlegel, uwe.assmann}@tu-dresden.de

Abstract—With the introduction of self-adaptivity in software
architecture, it becomes feasible to automate tasks that are
performed under changing conditions. In order to validate
systems with such capabilities, the conditions have to be enforced
and reactions verified. An adequate set of scenarios must be
performed to assure the required quality level. In our previous
work, we investigated a set of requirements for a self-adaptive
system validation strategy as well as a high-level solution scheme.
In this paper, we instantiate this scheme and propose a set of
timed models that work together as black box test model for
our example SAS HomeTurtle. The model can be either used
for simulation or test case generation; for both approaches, a
unifying infrastructure is described. We further show an example
simulation run and present our implementation—the Model-
driven Adaptivity Test Environment. The proposed methodology
enables test experts to maintain the complex behavior of SAS
and cover an adequate part of it in testing.

Keywords—Self-Adaptive Systems; Service Robots; Model-
Based Testing; Simulation; Feedback Loops

I. INTRODUCTION

In our original work [1], we introduced a strategy for
creation and execution of timed simulation models for Self-
adaptive Systems (SAS). This kind of system adapts itself
according to changes in its environment [2][3]. The continu-
ous execution of sensor monitoring, analysis, planning, and
adaptation execution is organized in feedback loops [4]. Due
to the use of intelligent reasoning strategies, an SAS is capable
of fulfilling its tasks more efficiently or it even may find
solutions to tasks that were not explicitly defined at design
time. Potential adaptations encompass simple changes of certain
control variables, structural re-organization of components and
the exchange of behavioral strategies that might better fit for
the found environment situations.

In our work, we aim to provide solid SAS development
methods and, thus, we also require a validation approach that is
able to deal with the complexity of such self-adaptive behavior.
The mechanisms that decide autonomously have to be validated
extensively before deploying the system in a productive
environment. A limitation constitutes from the fact that an
SAS can be adapted externally or reason about unanticipated
events. These aspects can never be tested comprehensively
before delivery and, thus, are excluded from the scope of our
proposed solution.

However, even for these systems, the user’s trust has to
be gained by examining the system in an appropriate variety
of scenarios. Hence, validation methods can be performed
on different abstraction layers as, for instance, the German V-
Modell [5] proposes. On the lowest abstraction layer of modules,
knowledge of code and design models can be utilized. However,
due to the complexity and large variety of possible situations,

performing a comprehensive validation (e.g., by deriving and
executing test cases) on these levels is expensive.

In contrast, validating SAS applications on acceptance level,
based on requirements of a more abstract specification, is more
promising. For this purpose, the engineer no longer relies
on detailed knowledge of the system interior but on a black
box interface that is used to enforce situations and verify the
outcome. In contrast to white box testing, black box approaches
cannot locate faults. Thus, each found failure has to be analyzed
by additional means in a subsequent step.

Setting up a black box interface that provides all necessary
operations to interact with the system and to query information
that has to be examined is the first crucial task during the
validation phase. The expected behavior of the SUT can be
specified based on this interface. An appropriate method for
such specification is model-based testing (MBT, [6]). In this
approach, a test model is specified and test cases are generated
from it. In the most comprehensive variant of MBT, the model
captures all information about which test data is sent to the
tested system and which reactions are expected. In this way,
the test model serves as a test oracle, which determines the
correctness of observed reactions or predicts these reactions.

A further problem can arise when the SAS is deployed in
complex environments where not every property of a situation
can be enforced. For instance, the interaction with certain
entities (e.g., hardware controllers or physical objects) is
difficult to formalize. Instead, the test model designer may
specify some future decisions depending on the state that is
observed from these entities at test execution time (i.e., a
run-time-dynamic oracle). Test cases do not support decisions
on run-time information, as the generated actions cannot be
exchanged or reordered in case of adaptations depending on
such properties. Instead, the test model has to be executed
directly (i.e., without test case generation). Therefore, we
propose to perform simulation and capture the discussed non-
specifiable parts of the system or test environment “in-the-loop”.
In our concept simulation means to produce inputs that are
given to the real SUT and the test model and compare the
results of both. A drawback of simulation in comparison to the
test case generation is that there is no fixed set of test cases
to be replayed for regression. In consequence, both test case
generation or simulation may be employed depending on the
quality requirements and relevant context of a set of system
parts under test.

However, both methods rely on a common artifact—a test
or simulation model. A generic SAS testing framework has to
provide a respective metamodel that is expressive enough for
compact specification of all behavioral and adaptation-related

687

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Stereo
Camera

Computation
UnitDrive

Basket

Obstacle CabinetInhabitant

0

1

2

3

0 1 2 3 4

y

x

!
emergency

Illumintation System

Fig. 1. Scenario: HomeTurtle operating in a flat.

aspects. These aspects are given by several requirements that we
derived in our previous work [7]. The following requirements
were formulated as goals:

(1) Correct sensor interpretation
(2) Correct adaptation initiation
(3) Correct adaptation planning
(4) Consistent adaptation/system interaction
(5) Consistent adaptation execution
(6) Correct system behavior (especially actuator actions)

Goals (1) and (6) include the validation of the correctness
in sensor perception and actuator control. Both properties can
be checked in isolation by instrumenting the respective drivers.
In this paper, we focus on the goals (2)-(5), which directly deal
with the SAS feedback loop (sometimes referred to as MAPE
loop: monitor, analyze, plan, execute [4]). In order to match
the requirements, the test metamodel has to provide means for
defining in which situations an adaptation has to be initiated
(goal 2), how the system is expected to adapt (goal 3), how
the adaptation is expected to be scheduled with non-adaptation-
related behavior (goal 4), and how the result of the adaptation
must look like (goal 5).

In [1], we proposed a methodology to separate all these
aspects in components of a composite simulation model. Parts
of our model are enriched with assertions on the System Under
Test’s (SUT) interface in order to define how a simulation state
has to be verified. The complete modeling methodology is
illustrated using our HomeTurtle domestic robot application.
Throughout the paper, the Unified Modeling Language (UML)
and Object Constraint Language (OCL) are used for represent-
ing almost all details of the model by a widely-understood
standard syntax and semantics.

In the HomeTurtle scenario, a robot is deployed in a flat
of a handicapped person and is capable of delivering various
items, which are stored in a software-controlled cabinet. Besides
reciting this illustrative example as well as the introduced test
methodology, we contribute the following aspects in this paper:

1) Simulation- vs. generation-based validation: We
describe how the proposed modeling concepts
are used for simulation alternatively to test case
generation. For this purpose, an infrastructure is
proposed that unifies both approaches.

2) Details on implementation: All concepts have been
implemented in our integrated test environment
MATE. The components of this tool are presented.

3) Extended related work: We extend the discussion
on the body of knowledge in SAS testing.

The remainder of this paper is structured as follows: In
Section II, we introduce our example adaptive system. In
Section III, we present our approach based on this example.
In Section V, we illustrate an example simulation run. In
Section IV, we describe how the necessary infrastructure for
simulation and generation can be unified. In Section VI, we
present our implementation and experimental environment. In
Section VII, we discuss related work. In Section VIII, we
discuss conclusion and future work.

II. EXAMPLE APPLICATION: HOME TURTLE

In this section, we present an illustrative example of an SAS
controlling a robot that is instructed to support a handicapped
person at home. The scenario is depicted in Figure 1. A service
robot “HomeTurtle” (an extended version of the TurtleBot
platform [8]) is initially deployed in the flat. The task of the
robot is to locate and deliver a desired item to the user (i.e., the
inhabitant). Respective items can be dropped from a cabinet
into a basket mounted on top of the robot. For this purpose, the
cabinet contains several boxes with magnetically clamped flaps.
The magnets are triggered from a WiFi-enabled embedded
device.

Initially, an user instructs the robot by entering the desired
item (e.g., “towel”) using a Tablet PC that is accessible nearby.
Using a wireless network, the robot can query the flat’s map,

688

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

driver

<<interface>>

Environment
+setDaylight(daylight:boolean)
+placeObstacles(locations:Point[])
+setupCabinet(items:String[],location:Point)
+signalEmergency()

<<interface>>

HomeAutomationSystem
+request(item:String)
+poll()
+current(): Event

<<Singleton>>

Driver
+d: Driver

Event
+position(): Point
+velocity(): int
+collected(): String
+failed(): boolean
+illumination(): boolean

Point
+x: int
+y: int

+Point(x:int,y:int)

Fig. 2. Test driver interface.

available cabinets including their positions and contents. After
this information was gathered, the robot is able to inform the
user whether the desired item is available. Once the item was
located, a route is planned and the robot starts driving. In this
process, the robot has to avoid collisions with walls and other
obstacles (symbolized by office chairs). After approaching a
cabinet and parking in a predefined position underneath it, the
robot signals the cabinet to drop the requested item. Afterwards,
it drives back to the user. During the complete process, the
environment may signal an emergency (e.g., a fire or medical
emergency). In this situation, the robot is expected to drive to
its emergency position as labeled in our illustration. Thus, it
avoids obstructing access of human helpers to the inhabitant.

The following sensors and actuators are used to accomplish
the robot’s task:

• Robot drive: The robot drive has three modes for
stopping (0=stop) and driving in arbitrary directions
with two different velocities (1=slow, 2=fast).

• Stereo camera: Can be used to recognize walls and
obstacles.

• On-board computation unit: The robot runs its
operations on-board using a fix-installed netbook that
connects to all the hardware on the robot.

• Smart illumination system: The flat is equipped with
room lights that can be operated by the software system
to improve the flat’s illumination on demand. In this
way, the object recognition performed using the stereo
camera is supported.

• Local WiFi: The robot as well as the cabinet are
connected to a wireless network. Thus, the flat’s
map and information about the cabinet’s position and
contents can be shared.

Furthermore, to improve its behavior, assure safety and
minimize operation time, the following adaptations are possible:

• Improve illumination: If the robot enters a room and
daylight from the windows is not sufficient for object
recognition, the robot connects to the illumination
system and activates it. After delivery, the supporting
illumination is switched off again.

• Location-dependent velocity: While driving at fast
mode velocity, the robot is not able to stop in time if
an obstacle is detected. As the obstacles’ positions
may change, the robot is expected to run in slow
mode during the current request as long as the current
position was not explored during this request.

In order to send input data to the real system and to verify
its output during simulation or test case execution, a test driver
is required. For our example, we implemented such a driver
whose interface is depicted as UML Class Diagram in Figure 2.
The class Driver holds a static instance Driver.d and
implements two interfaces: Firstly, Environment provides
methods to enforce an emergency signal, mock a light state, and
setup obstacles and a cabinet. In order to reduce the scenario’s
complexity, we assume that the positions of the inhabitant and
emergency locations as well as the room’s layout are static.

Secondly, the interface HomeAutomationSystem can
be used to request a new item for delivery or to retrieve events
that can be verified during simulation. The driver’s event-based
architecture allows verifying changes of the system without
surveying it actively during the whole test execution. Changes
in the environment can be tracked by investigating multiple
events within one verification action. Therefore, events only
have to be produced when the environment changes. Each
instance of class Event captures information about the current
position, velocity, and illumination. It also informs whether an
item was collected or the search has failed.

Only a subset of the driver’s functionality can be automated.
Especially, for obstacle placement and cabinet setup, a dialog is
shown to the test engineer, which lists instructions on necessary
manual manipulations. All other functions are implemented
using the system’s sensors (brightness, velocity, etc.) and a
wireless-switchable light bulb for change of illumination.

III. VALIDATING SAS BY USING AN ADAPTIVE
SIMULATION MODEL

In this section, we present our methodology. The briefly
discussed challenges are tackled in different components of
a black box simulation model. These components, as well as
their dependencies, are depicted in Figure 3. Each component
matches a set of specific concerns that were separated in order
to decouple the responsibilities during the design process. The

689

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Process Model
uses

Adaptation
Model

Environment
Reconfiguration
Model

events

Real
environment
and system
(black box)

manipulates

validatesStructual
Simulation
Model

Configuration
Variability Model

initiates

validates

events

manipulates

initiates

depends on

Fig. 3. Concern-separated components of the simulation model.

model is as much as possible based on Unified Modeling
Language (UML) 2 [9], Object Constraint Language (OCL) [10]
and a special version of equivalence class trees [11]. Actions
are formulated as Java method calls.

The current state of the test execution is represented by
the Structural Simulation Model (i.e., a UML class model).
Based this state, the operational model of the running test
scenario is given by the Process Model that is represented
as state chart. The actions performed during execution are,
firstly, the requests that are sent to the test driver and, secondly,
assertions that determine whether the received events are correct
in the current state. Thus, the state of the simulation model
represents assumptions on the state of the real system. During
the initiation of the system, the environment is set up and,
synchronously, the Structural Simulation Model is configured
with information that reflects this initial environment setting.
As there may be different variants of initial configurations, the
Environment Variability Models defines an equivalence class
tree that allows to derive such configurations. The Environment
Reconfiguration Model contains state charts with actions that
define environment manipulations in order to trigger adaptation
in the real system. As it defines an operational order of
manipulations, requirement (3)–correct adaptation planning—
can be dealt with. Regarding the requirement (2) (cf. Section I),
it has to be validated whether system correctly adapts to
these changes. Therefore, the Environment Reconfiguration
Model produces events that are consumed by an Adaptation
Model that reflects adaptation modes and validates them using
assertions (requirement (5)–consistent adaptation execution).
This Adaptation Model is a state charts as well. Events can
also be produced by the Process Model and its behavior can
be tailored to the Adaptation Model’s state. Thus, requirement
goal (4)–consistent adaptation/system interaction–is matched.

Basically, data flow between all model components follows
the Counter Feedback Loop (CFL) that we claimed to be
a central requirement to SAS test approaches in [12]. CFL
proposes that a test system has to work vice versa to SAS
feedback loops: Instead of monitoring the environment and
deducing adaption decisions, an CFL-based based test workflow
triggers actively manipulations on environment properties and
monitors the SUT’s reaction. CFL separates the task of a test

driver simulation

<<Singleton>>

Simulation
+s: Simulation
+placedItems: String[]

obstacles

*

Point
+x: int
+y: int

+Point(x:int,y:int)

locationCabinet1

visited

*

destination

1

Fig. 4. Structural simulation model.

system into four periodically-executed steps that are all matched
within the proposed components:

1) Change: Environment configuration variability model
and environment reconfiguration model explicitly
define how environment properties can be changed in
order to stress to system.

2) Causal connection: By exchanging symptom events
between environment reconfiguration model and
adaption models, the causal connection between
change and self-adaption is modeled such that
state-dependent adaptations can be verified.

3) Adaptation plans: Within the adaption models,
accepted events can trigger multiple actions that can
be used to describe what parts of the system are
expected to be adapted and how. The adaptation
outcome must be able to be monitored using the test
interface.

4) Service specification: In the process model it has to
be specified how the performed services of the SUT
behaves from a black box perspective according to
the reached adaption mode.

In summary, all of our components are designed along
the CFL. The details of the individual model components are
explained in the following.

A. Structural Simulation Model

During the simulation, several assumptions on the real
system have to be managed that are represented by a sim-
ulation state. For our example application, the locations of
obstacles and the cabinet has be remembered as well as the
locations that were already visited. This state is captured by
a structural model as depicted in Figure 4. The singleton
object SimulationState.s holds attributes and aggregates
objects that can be manipulated or evaluated by the central
Process Model. All (two-dimensional) positions are stored in
form of instances of class Point.

B. Process Model

The Process Model defines the task-specific behavior of
the system and how it interacts with its adaptation feedback
loops. For our example, we defined these aspects in an

690

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[visited->includes(Driver.d.
current().position())]

[visited->includes(Driver.d.
current().position())]

[not(visited->includes(Driver.d.
current().position()))]

[not(visited->includes(Driver.d.
current().position()))]

entry/Driver.d.request(„tissue“)
exit/Driver.d.poll()

entry/assertTrue(Driver.d.current().failed())

[not(placedItems->includes(„tissue“))][not(placedItems->includes(„tissue“))]

entry/visited.add(Driver.d.current().position());
exit/Driver.d.poll()

[placedItems->includes(„tissue“)]
/assertTrue(not(Driver.d.current().failed()))

[placedItems->includes(„tissue“)]
/assertTrue(not(Driver.d.current().failed()))

NewLoc

OldLocentry/assertTrue(not(obstacles->
includes(Driver.d.current().position())
&& Driver.d.current().position().x<5
&& Driver.d.current.positon().x>=0
&& Driver.d.current().position().y<4

&& Driver.d.current().position().y>=0)

after(3s)after(3s)

context: Simulation.scontext: Simulation.s

S0

S1

S4

S3

S2

[olcInState(Emergency)
or Driver.d.currrent().position().equals(destination)]

[not(olcInState(Emergeny)
or Driver.d.current().position().equals(destination))]

[Driver.d.current().position().equals(destination) and
not(destination=null) and not(destination.equals(locationCabinet))]
/assertTrue(oclInState(Emergency) || collected = „tissue“)

[olcInState(Emergency)
and not(Driver.d.current().position().
equals(new Point(4,0))]
/destination = new Point(4,0)

[not(olcInState(Emergency))
and destination = null]
/destination = locationCabinet

[not(olcInState(Emergency))
not destination=null]
/destination = new Point(1,3)

Fig. 5. Process model.

UML State Chart as depicted in Figure 5. The representation
uses OCL constraints whose context is the static instance
Simulation.s. In state S0, a request for a towel is initiated
and the first event is polled. If the initial configuration set up
the cabinet with the desired item, S1 is reached, otherwise
S2. The action of the latter transition (i.e., the entry action
of S1) performs an assertion on whether the real system has
either failed or not. If any assertion in the models fails, the
simulation is cancelled and an error is signaled. Starting from
state S2, the robot’s destination is determined by evaluating
the previous destination value (either null, the start place, the
cabinet’s place or the emergency position).

States S3 and S4 form a feedback loop. When entering S3,
the current position is appended to the list of visited locations
and the next event is polled. In the next step, the loop sleeps
three seconds (indicated by the AcceptTimeAction, cf.
UML spec. [9]). Thus, the Adaptation Models are expected to
enforce changes to the environment that are interleaved with
the process. Subsequently, in S4 an assertion is performed in
order to ensure no obstacle has been hit and the robot did not
leave the boundaries of the scenario. Depending on whether
the current position is contained in the visited collection, a
signal OldLoc or NewLoc is produced. Therefore, we use the
SendSignalAction UML element. These signal events are
later used to synchronize with the adaptation models. At this
point, the feedback loop is restarted. As soon as the destination
is reached, the transition to state S2 is triggered. Another exit
possibility from the loop is triggered when the Emergency
adaptation mode is active. This information can be queried
by the oclInState(...) function, which is applied to the
Adaptation Models. In this way, an interaction between the

Environment

placeObstacles(X)
Simulation.obstacles=X

placeCabinet(X,Y)
Simulation.s.placedItems=X
Simulation.locationCabinet=Y

[]
[new Point(1,2)]

[new Point(0,3),
new Point(2,2),
new Point(4,3)]

[Inv: Simulation.s.obstacles->union(Set{new Point(4,0),
new Point(1,3),Simulaton.s.locationCabinet})->forAll(a,b|a<>b)]

X

[]
new Point(1,2)

new Point(0,3)
new Point(2,2)

X
[]

[„tissue“]
[„towel“]

[„tissue“,“towel“]

Y

Fig. 6. Environment configuration variability model.

task-related process and the adaptation mode of the SAS can
be modeled. The final state is enabled if the robot reaches a
destination that is not the location of the cabinet. The respective
transition checks an assertion whether either an emergency was
signaled or the correct item was collected.

C. Environment Configuration Variability Model

The state space of an environment situation can be enor-
mously large. In testing, this problem is usually dealt by
using classification. For instance, data ranges of the system’s
input parameters are split into equivalence classes and only
representatives are tested. All representatives of an equivalence
class are assumed to produce the same output. For our example,
we designed a dedicated model as depicted in Figure 6. The
hierarchical structure serves as a decision tree for determining
under which initial conditions a simulation can be started.

691

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Each one of the Environment child nodes performs multiple
operations: Firstly, the real system is initiated (e.g., the robot is
set up in its initial location) and secondly, the simulation state
is manipulated such that it reflects this initial configuration.
The operations are parameterized with one or two substitution
variables. Each variable can be replaced by one of the concrete
values in its leaf nodes. The latter ones are the equivalence class
representatives. Furthermore, the model contains an invariant
to prohibit configurations where the robot’s start position,
obstacles, or the cabinet are put in the same location.

Basically, this model represents the variability of possible
environment settings. Thus, more sophisticated models of
variability (e.g., attributed feature models [13]) can also be used
for the same purpose. Inherent invariants of such models can
restrict the configuration variability space to a manageable size.
However, a specific challenge of SAS is to validate whether
the system adapts correctly to changes of this configuration.
Therefore, in the next section, the configurations dynamics are
defined.

D. Environment Reconfiguration Models

The left part of Figure 7 depicts a model of environment
reconfiguration. In the upper chart, the entry point of the first
state sets the environment daylight to true. The driver is now
in charge of mocking the brightness sensor’s input data and, thus
,enforces the system to adapt. In order to reflect the expected
adaptation in the simulation model, a signal Day is produced
that later will be received by the Adaptation Model. After
five seconds, the daylight setting is inverted and the Night
signal is sent. After additional two seconds, the reconfiguration
loop restarts. The lower chart performs a loop that every three
seconds demands the simulation to decide of an emergency is
signaled or not. This decision can, for instance, be determined
randomly or by the user.

Using such environment reconfiguration models, scenarios
with different operational orders can be generated. Based on
these scenarios, the SUT is stressed and its reactions are
exhaustively validated. Using timing, the variety of interleaving
possibilities with actions from the Process Model can be
reduced.

E. Adaptation Model

Adaptation models define how a configuration has to be
altered in response to a received signal. Signals are produced
by either the Environment Reconfiguration Models or by the
Process Model in order to notify about a condition that may
cause an adaptation. The left part of Figure 7 depicts three state
charts for the velocity, illumination, and emergency adaptations.

States of an adaptation state chart may contain an entry op-
eration, which performs a validation on the system’s adaptation
mode. Using UML AcceptEventActions, the automaton
is designed to wait for the signals. After a signal was received, a
new system event is retrieved (poll()) such that the assertion
is performed on a fresh information basis. Each Adaptation
Model stores a specific aspect of the SUT’s adaptation mode.
Behavioral adaptations are defined using constraints on the
Adaptation Models’ states.

IV. A COMMON INFRASTRUCTURE FOR SIMULATION AND
TEST CASE GENERATION

The constructed model can be used for both test case
generation and simulation. For test case generation, generators
perform a reachability analysis, which produces a reachability
tree. The tree’s root node represents the initial system’s state;
child states can be discovered by state-changing actions. Each
path from the tree’s root to a terminal leaf (i.e., where no
new actions can be performed) forms a unique test case. The
depth of this tree can not only be enormously large but also
potentially infinite due to loops and actions without conditions
within the modeled control flow. Furthermore, the tree’s breadth
grows with the degree of indeterminism in each state (i.e., the
number of child states respectively applicable actions). Thus,
an adequacy criterion is applied that restricts the number of
deducible test cases by certain kinds of adequacy criteria in
form of quantitative measures on the model’s elements (e.g.,
number of states or transitions) or the resulting test cases (e.g.,
number or length). The benefit of the generation-based approach
is that the generated test suite can be re-run for new versions of
the examined SAS in the sense of regression testing. As a result,
test coverage and test results can be compared quantitatively.

Alternatively, in simulation, no fixed test suite is maintained.
In comparison to the generation approach, only one path through
the reachability tree is traversed. Therefore, the model is directly
executed by an interpreter. If multiple actions can be performed
in a single state (a path branches), this indeterminism can be
resolved by a human tester or an automatic mechanism (e.g., a
heuristic based on a coverage criterion). The major advantage
of simulation over generation is the ability the react to change
of sensed environment properties. This capability can be used
for elements, whose behavior cannot be modeled as precisely
as necessary for predicting output. For instance, the movement
of physical objects through space is such dynamic that steering
it according to generated test data is too expensive or even
not possible at all. If the tested system monitors the object’s
location and the expected reaction to this property has to be
tested, it is more effective to deploy the real object, monitor
its location and use this data as input for the prediction of
expected reaction. In this manner, the real object is taken ”in
the loop”. In generated test cases, a reaction to such properties
is not possible as assertions cannot be defined depending on
past observations.

For simulation, the metamodel only requires a small set of
additional concepts. The model must allow computing test input
from monitored data of the in-the-loop objects and for verifying
test output based on this run-time information. Therefore, access
to query operations of the test interface has to be provided. The
rest of the model’s capabilities is equivalent for simulation.

As presented, both approaches have their pros and cons.
Hence, we constructed an infrastructure that enables test
engineers to make use of both methods. Figure 8 depicts
involved artifacts, data flow and processing actions in this
infrastructure. SUT and environment are accessible via a test
interface as presented in Section II. The SUT was built from
a design model, which was constructed according to a set of
requirements. The requirements document is also the foundation
for the validation model (i.e., the test or simulation model). If
certain environment objects have to be tested in the loop, query
calls to the interface have to be embedded to the validation

692

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Day

Night

entry/setDaylight(true)

entry/setDaylight(false)

after(2s)after(2s)

after(5s)after(5s)

context: Driver.d

after(3s)after(3s)
entry/signalEmergency()

Emergency

entry/assertTrue(current().velocity()==1)

entry/assertTrue(current().velocity()==0) entry/assertTrue(current().velocity()==2)

NewLoc OldLoc

Stop

Night

Day

entry/assertTrue(current().illumination())

entry/assertTrue(not(current().illumination()));

context: Driver.dcontext: Driver.d

/poll()

/poll()

/poll()

/poll()

/poll()

Emergency

Emergency

NoEmergency

/poll()

Fig. 7. Left: Environment reconfiguration model. Right: Adaptation models.

Design
Model

Require-
ments

Validation
Model

Test Cases Reports

Generation

Execution

Simulation
oror

EnvironEnviron
‐mentSUT

against

against
/in-the-loop

Test interface

Fig. 8. Simulation and generation infrastructure.

model as well. After specifying the model, it is given as
input to either the generator or the simulation engine. The
generator produces a set of test cases, which can be run
manually or automatically against the exposed test interface.
The simulator instead only traverses one trajectory through the
state space. Both types of execution results contain the list
of performed steps as well as verdicts (e.g., PASS, ERROR,
INCONCLUSIVE). In this way, the output of both approaches
can be utilized in the following quality improvement.

V. SIMULATION EXAMPLE RUN

To clarify the models’ interactions, we illustrate an excerpt
of an example simulation run in Figure 9. The simulation
is indeterministic as there can be several execution paths.
Sequence (1) of operations is generated by the Environment
Variability Model. The simulator automatically selects a solution
of the model’s invariant such that no obstacle position equals the
positions of the inhabitant, cabinet, or emergency stop. When
the different state charts are initiated, operations sequence
(2) is performed as defined in the initial states. When the

placeObstacles(new Point(1,2));
Simulation.s.obstacles=new Point(1,2);
placeCabinet([„tissue“],new Point(0,3));
Simulation.s.placedItems=[„tissue“];
Simulation.s.locationCabinet=new Point(0,3);

Driver.d.request(„tissue“);
Driver.d.setDaylight(true); //signal Day sent
assertTrue(Driver.d.current().velocity()==0);
assertTrue(not(Driver.d.current().illumination()));

assertTrue(not(Driver.d.current().failed());

Simulation.s.visited.add(Driver.d.currentPosition());
Driver.d.poll();

Driver.d.signalEmergency(); //signal Emergency thrown

//signal Emergency received
poll();

3s3s

…

(1) initial values from
Environment Variability Model

(2) initial actions from Process Model and
Environment Reconfiguration Models

(3) transition S0 => S2

(5) entry and exit of state S3

Simulation.s.destination=Simulation.s.locationCabinet

(4) transition S2 => S3

(6) Environment Reconfiguration Model

(7) Adaptation Model

Fig. 9. Excerpt of an example simulation run.

Environment Reconfiguration Model sets the daylight property,
a signal Day is produced. However, as the respective Adaptation
Model has no matching outgoing transitions in its initial state,
this signal is ignored in this specific state. Sequences (3) and
(4) are generated when the transitions S0->S2 and S2->S3
are triggered. S0->S1 cannot be executed as the tissue item
was placed in the cabinet during operation of sequence (1).
Subsequently, in sequence (5) the entry and exit action of S3
are executed. After this point, the Process Model waits for three
seconds as defined and, consequently, there is an indeterministic
decision point in the Environment Reconfiguration Model where
either an emergency is signaled or not. We assume that the

693

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

simulation determines to generate the emergency such that in
sequence (6), the driver is called and the respective signal is
produced. In sequence (7), the Adaptation Model receives this
signal and switches to the emergency mode after polling a new
event. Afterwards, the simulation starts validating whether the
robot correctly drives to the emergency stop.

For test generation, all possible trajectories through the
state space would be searched and saved as test cases. The
number of these test cases is then restricted by a test adequacy
criterion such as state or transition coverage. The model of
our example is not appropriate for test case generation as it
introduces decisions based on runtime information. In particular,
the position of the robot is not predicted but constantly queried
as it cannot be modeled with an adequate precision. Therefore,
the location property has been taken ”in-the-loop” here.

VI. IMPLEMENTATION AND EXPERIMENTAL
ENVIRONMENT

Syntax and semantics of all used models were implemented
in our Model-driven Adaptivity Test Environment (MATE).
Figure 10 shows a screenshot of its graphical user interface.
MATE is an integrated test environment including the following
components:

Metamodel implementation: All models proposed here
require a metamodel containing concepts to be instantiated.
For this purpose, the Eclipse Modeling Framework (EMF, [14])
was used. Besides UML and OCL, a metamodel for creating
instances of environment variability models was required.

Model editors: Model construction is enabled by a set of
graphical editors. These editors not only support drawing UML
and the variability model but also include parsing of the textual
elements into their abstract syntax (cf. Figure 10, marking 1©).

Test case generator: Using the created models, test cases
can be generated. Therefore, an interpreter implements the
metamodel’s semantics, traverses through the state space and
produces one test case for each termination reached. In order to
restrict the generation time, the maximal number of test cases
can be specified as well as different adequacy criteria.

Interactive simulator: In order to run simulations, the
interpreter can be run synchronously with the system instead
of generation. Decisions can be either delegated to a heuristic
algorithm or performed manually. Heuristics can be imple-
mented project-specific using an appropriate interface. During
simulation, the user can visualize the current execution state
within the model editors and inspect the state’s constituting
variable assignments. The simulator’s user interface shows a
reachability tree, which can be inspected as well (cf. Figure 10,
marking 2©). Thus, the tester can interact with the interpreter
and find situations where variability multiplies the number of
sub-paths.

Automation framework: As our approach and tooling is
designed to be generic for SAS, it must be reusable. Due to this
reason, a framework is provided that allows mapping of actions
and queries to a concrete SAS platform. This framework can
be used for both executing generated test cases and simulation.

Obstacle

Emergency

Inhabitant

Robot

Cabinet

Illumination System
(on the ceiling)

Fig. 11. The HomeTurtle lab.

Reporting tools: The system’s quality can be evaluated
statistically by reports exported from either executed test cases
or simulation runs. Reports themselves are model-based and
include verdicts as PASS, FAIL, ERROR, or INCONCLUSIVE.
The relation of these verdicts among a set of test case reports
can be visualized in appropriate bar diagrams (cf. Figure 10,
marking 3©).

All these tooling components allow engineers to perform
the complete test modeling, execution, and reporting process
within a single integrated test environment.

In our previous work, we developed the Smart Application
Grid (SMAG) framework that can be used for architectural
run-time adaptation [15]. Based on SMAG, we created the self-
adaptive HomeTurtle software. An impression of the physical
experimental environment is given in Figure 11. In order to
show the feasibility of our validation approach, a platform-
specific HomeTurtle test driver was developed as well. It
directs the operation calls produced by the model to the real
system and, vice versa, generates events from the system’s
observed behavior. However, not every modeled operation can
be performed automatically. The initial configuration of the
environment (setting up the cabinet’s content, placing obstacles,
etc.) and the validation whether the correct item was collected
are performed manually by the test engineer. During phases,
in which test execution had to be automated, the validation
directly benefits from the model-driven nature of our approach.
Its advantage in manually performed action is given by the
reproducability of simulation paths. If any path fails during a
test, it can be recorded, analyzed and even be re-executed later
on.

VII. RELATED WORK

Comprehensive validation approaches for self-adaptive
systems are still rare in literature. According to Salehie et

694

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1

3

2

Fig. 10. Screenshot of MATE.

al., SAS leverage both self awareness and context awareness as
primitive concepts for higher-level self-adaptive behavior [3].
For context-aware systems, several proposals targeting testing
were made as well. The most basic approach in this sense
was proposed by Kakousis within the MUSIC project [16].
In order to test a mobile application, a domain specific
language was designed that allows for defining timed changes of
context information, logging, and evaluation of memory usage.
As already discussed, complex systems cannot be covered
appropriately with manually defined test cases. However, in the
set of inspected works, the MUSIC methodology is the only
one that includes means for dealing with time.

Wang et al. discussed in [17] how a context-aware system
can be tested by observing how certain context changes trigger
adaptation. The basic assumption in their work is that the
SUT is based on a context middleware and calls on this
middleware’s interface are enriched by calls to a dedicated
monitoring framework. The points where these calls are made
are called context-aware program points (capps). From the
monitored execution, a control flow model of capps can be
deduced. The context is then manipulated and manipulations
are correlated with capps. The resulting information on which
context changes trigger which capps can be utilized to generate
appropriate test cases. Wang et al.’s method is helpful for
stressing the system with good coverage. However, there is no
oracle included in the approach, i.e., it cannot be automatically
decided whether the triggering of capps was correct. Thus,
this approach is less-powerful then our proposal. Another
disadvantage is that the developer has to change the SUT’s code

as the monitoring framework has to be called. In consequence,
the approach cannot be considered a pure black box method.

A simulation-based approach was proposed Abeywickrama
et al. [18][19]. For SAS design, the authors created a modeling
environment SOTA (State of the Affairs) where feedback/control
loops can be specified directly in form of hierarchical state
charts. In order the examine such systems’ correctness, an
interactive simulator was added, which visualizes the execution
of these models. Thus, the system engineer can observe incor-
rect states and give manual input where context information is
expected. As this approach again does not include any automatic
oracle, it can rather be compared to debuggers that execute a
program step-wise in order to analyze it manually.

Fleurey et al. showed in [20] how an SAS can be built based
on variant models, context variables, and adaptation rules. They
also recognized the need for simulation when such systems
have to be validated. Thus, they derived a simulation graph
and validated it against invariants. In contrast to our black box
approach, their validation method is based on design models,
which makes it hard for testers to decide whether failures stem
from design or implementation.

An advanced strategy was proposed within the DiVA
project [21]. The validation of DiVA-based implementations can
be performed in two phases: (1) In the early phase, instances
of the context model are generated and associated with partial
solutions. Those describe how parts of the systems have to be
configured after a certain context instance was applied and the
corresponding adaptation was performed. (2) In an operational

695

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

validation phase, the system’s behavior is investigated during a
sequence of contextual changes. Sequences are automatically
built by a heuristic (so called Multi-Dimensional Coverage
Arrays, MDCA). The DiVA validation methods neither consider
any system/adaptation interaction, nor do they propose specific
test models for constructing an automatic test oracle. Further-
more, in [22], the DiVA authors Munoz and Baudry alternatively
propose using statistical models for generating sequences of
context changes. They also consider the possibility to define
formalized oracles based on direct associations between a
change history and an expected adaptation. For a rather complex
systems, the management of such associations is much more
expensive than with our model (i.e., each possible adaptation
has to be modeled separately).

Nehring and Liggesmeyer proposed in [23] a process for
testing the reconfiguration of adaptive systems. The validation
is performed in six iterations: In the first iteration, a system
model is derived and representative workload is prepared by
a domain expert and later executed by developers or system
engineers. In the second iteration, a system architect checks
if structural changes are performed correctly. Thereby, the
reconfiguration actions have to be in the correct order such
that the system ends in a valid state and the quality of service
is only affected minimally during reconfiguration. The third
iteration considers data integrity while stressing the system
with increasing load. In the fourth iteration step, state transfer
between replaced components is investigated. An interaction
issue between system transactions and the adaptation is tested
in the fifth iteration. The last iteration considers the identity of
components and component types before and after adaptation.
In comparison to our approach, Nehring and Liggesmeyer
assume the adaptive system to be component based and the
validation can be sufficiently investigated by a debugger-like
tool chain. Thus, their approach is exploratory and hard to use
for integration and system testing.

Furthermore, in the area of self-organizing systems, Eber-
hardinger et al. proposed an approach called Corridor Enforcing
Inrastructure (CEI) [24]. As MATE, the CEI concepts rely on
running a feedback loop that monitors the test object and
checks its validity continuously. In contrast to MATE, CEI is
more focused on non-functional qualities of the SUT as the
definition of validity is based on constraints. The constraints
indicate a corridor of correct behavior (CCB), which the
SUT is expected never to leave. By extracting environmental
variation scenarios (EVS) from the SUT’s specification, the
system is examined in different situations. EVS extraction
can also be automated by the use of a model checker that
finds sequences of interactions within communication protocols.
Eberhardinger et al.’s approach is well-suited for this kind of
system and especially for checking non-functional properties
of self-organizing systems. In comparison to MATE, it is not
yet clear, how the functional complexity of SAS can be tackled
and concisely modeled within the CEI concepts.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a concept to build black box
simulation models for validation of SAS. The models are
separated in different components, each matching a certain
step inside the proposed Counter Feedback Loop principle. We
showed how these interacting model artifacts can be employed

for both simulation and test case generation. For this purpose,
an enabling infrastructure was outlined. Both test case and
simulation execution can be reported in the same manner.
Furthermore, we illustrated an excerpt of a simulation run
along our example model. The system was implemented and
is deployed in our lab.

Our models are based on UML class models, state charts,
and equivalence class trees with invariants. Automata commu-
nicate by events such that the different concerns of the scenario
process and adaptation can be separated. Our approach does
not rely on any design model such that engineers are able
to build discrete simulation models of arbitrary self-adaptive
systems. The methodology comprises a process of classifying
environment variability and defining an explicit model on its
change. Using this toolset, we match the goals (2)-(5) as
stated in Section III. Goal (2)–Correct adaptation initiation
is considered by letting Adaptation Models receive signal
events from the Environment Reconfiguration Models. Thus, the
change in context can be causally connected with an adaptation
of the system. As Adaptation Models define an operational order
of adaptation actions, goal (3)-Correct adaptation planning is
dealt with. Goal (4)-Consistent adaptation/system interaction
can be validated as the Process Model accesses the state of the
Adaptation Models and defines conditions on this state. Thus,
the system’s adaptive behavior can be defined. As Adaptation
Models can also check an adaptation’s outcome by assertions,
goal (5)-Correct adaptation execution is addressed.

In our future work, we are going to enrich the employed
formalism (i.e., state charts, equivalence class trees, etc.) for
more compact definitions and experiment with more complex
scenarios in order to expand the evaluation. Concerning the
improvement of formalism, e.g., we consider using Petri
nets as they are more flexible in describing parallelism and
synchronization, which is especially important when multiple
widely-independent system parts interact.

Furthermore, we considered that it may be beneficial to
provide alternative environment reconfiguration model types.
While state charts can only model very less-complex and
explicitly specified states, data graphs, movement profiles, or
event differential formulas could provide a more dynamic rep-
resentation. For instance, with graphs and differential formulas,
data changes can be correlated with discrete simulation time
precisely. Instead, changing locations of objects that effect
the SUT could be modeled using pre-defined paths that are
triggered by simulation time as well.

In summary, we aim at providing a complete test generation
and simulation environment that can be employed for almost
arbitrary SAS. Our central assumption is that all considerable
SAS comply with the MAPE-K loop principle. In order to
evaluate this proposition, further case studies will be performed
in future work as well. Different scenarios with autonomous
systems are considered for this purpose, e.g., SAS-controlled
drones and automotive systems.

ACKNOWLEDGMENT

This work is funded within the projects #100084131 and
#100098171 (VICCI) by the European Social Fund as well as
CRC 912 (HAEC) and the Center for Advancing Electronics
Dresden (cfaed) by Deutsche Forschungsgemeinschaft.

696

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] G. Püschel, C. Piechnick, S. Götz, C. Seidl, S. Richly, and
U. Assmann, “A black box validation strategy for self-adaptive
systems,” in Proceedings of The Sixth International Conference
on Adaptive and Self-Adaptive Systems and Applications
(ADAPTIVE). XPS Press, 2014, pp. 111–116.

[2] B. H. C. Cheng et al., “Software engineering for self-adaptive
systems: A research roadmap,” in Dagstuhl Seminar 08031
on Software Engineering for Self-Adaptive Systems, 2008, pp.
1–26.

[3] M. Salehie and L. Tahvildari, “Self-adaptive software: Land-
scape and research challenges,” ACM Transactions on Autonon-
mous and Adaptive Systems, vol. 4, no. 2, May 2009, pp.
14:1–14:42.

[4] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” Computer, vol. 36, no. 1, Jan. 2003, pp. 41–50.

[5] IABG, “V-Modell XT 1.4,” http://v-modell.iabg.de, visited
04/01/2014, 2012.

[6] M. Utting and B. Legeard, Practical Model-Based Testing: A
Tools Approach. Morgan Kaufmann, 2010.

[7] G. Püschel, S. Götz, C. Wilke, and U. Aßmann, “Towards
systematic model-based testing of self-adaptive software,” in
Proceedings of The Fifth International Conference on Adaptive
and Self-Adaptive Systems and Applications (ADAPTIVE).
XPS Press, 2013, pp. 65–70.

[8] “TurtleBot 2,” http://turtlebot.com, visited 04/01/2014.
[9] Object Management Group (OMG), “Unified Modeling

Language (UML) specification, version 2.4.1,”
http://www.omg.org/spec/UML/2.4.1/, visited 04/01/2014.

[10] Object Management Group (OMG), “Object Constraint Lanu-
gage (OCL), version 2.3.1.”

[11] M. Grochtmann, “Test case design using classification trees,”
Proceedings of STAR, vol. 94, 1994, pp. 93–117.

[12] G. Püschel, S. Götz, C. Wilke, C. Piechnick, and U. Aßmann,
“Testing self-adaptive software: Requirement analysis and solu-
tion scheme,” International Journal on Advances in Software,
ISSN 1942-2628, no. vol. 7, no. 1 & 2, year 2014, 2014, pp.
88–100.

[13] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, “Feature-oriented domain analysis (FODA) feasibility
study,” DTIC Document, Tech. Rep., 1990.

[14] “Eclipse Modeling Framework Project,”
http://www.eclipse.org/modeling/emf/, visited 04/01/2014.

[15] C. Piechnick, S. Richly, and S. Götz, “Using role-based
composition to support unanticipated, dynamic adaptation -
smart application grids,” in Proceedings of The Fourth Interna-
tional Conference on Adaptive and Self-Adaptive Systems and
Applications (ADAPTIVE). XPS Press, 2012, pp. 93–102.

[16] K. Kakousis, N. Paspallis, G. A. Papadopoulos, and P. A. Ruiz,
“Testing self-adaptive applications with simulation of context
events,” Electronic Communications of the EASST, vol. 28,
2010.

[17] Z. Wang, S. Elbaum, and D. S. Rosenblum, “Automated gener-
ation of context-aware tests,” 29th International Conference on
Software Engineering (ICSE), 2007, pp. 406–415.

[18] D. B. Abeywickrama, N. Bicocchi, and F. Zambonelli, “SOTA:
Towards a general model for self-adaptive systems,” in Enabling
Technologies: , IEEE 21st International Workshop on Infras-
tructure for Collaborative Enterprises (WETICE). IEEE, 2012,
pp. 48–53.

[19] D. B. Abeywickrama, N. Hoch, and F. Zambonelli, “SimSOTA:
Engineering and simulating feedback loops for self-adaptive
systems,” in Proceedings of the International C* Conference
on Computer Science and Software Engineering, ser. C3S2E
’13. New York, NY, USA: ACM, 2013, pp. 67–76.

[20] F. Fleurey, V. Dehlen, N. Bencomo, B. Morin, and J.-M.
Jézéquel, “Modeling and Validating Dynamic Adaptation,” in
Models in Software Engineering. Springer, 2009, pp. 97–108.

[21] A. Maaß, D. Beucho, and A. Solberg, “Adaptation model and
validation framework – final version (DiVA deliverable D4.3),”
https://sites.google.com/site/divawebsite, visited 02/01/2014,
2010.

[22] F. Munoz and B. Baudry, “Artificial table testing dynamically
adaptive systems,” CoRR, vol. abs/0903.0914, 2009.

[23] K. Nehring and P. Liggesmeyer, “Testing the reconfiguration
of adaptive systems,” in Proceedings of The Fifth International
Conference on Adaptive and Self-Adaptive Systems and Appli-
cations (ADAPTIVE). XPS Press, 2013, pp. 14–19.

[24] B. Eberhardinger, H. Seebach, A. Knapp, and W. Reif, “Towards
testing self-organizing, adaptive systems,” in Testing Software
and Systems. Springer, 2014, pp. 180–185.

