
697

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The OM4SPACE Activity Service

A semantically well-defined cloud-based event notification middleware

Marc Schaaf∗, Irina Astrova†, Arne Koschel‡, and Stella G. Grivas∗

∗University of Applied Sciences and
Arts Northwestern Switzerland

Olten, Switzerland
Email: {marc.schaaf|stella.gatziu-grivas}@fhnw.ch

†Institute of Cybernetics
Tallinn University of Technology

Tallinn, Estonia
Email: irina@cs.ioc.ee

‡Faculty IV, Department of Computer Science
University of Applied Sciences and Arts Hannover

Hannover, Germany
Email: akoschel@acm.org

Abstract—OM4SPACE provides a cloud-based event notification
middleware. This middleware delivers a foundation for the de-
velopment of scalable complex event processing applications. The
middleware decouples the event notification from the applications
themselves, by encapsulating this functionality into a component
called Activity Service. This paper presents the architecture
of the Activity Service, its application scenario, its semantic
parameters, the implemented prototype of the Activity Service
and the preliminary results of the performance evaluation of the
prototype. The contribution of the paper is threefold: (1) we
identified a new use case for the application scenario; (2) we
extended a list of semantic parameters; and (3) we presented an
implemented prototype of the Activity Service.

Keywords–OM4SPACE; Activity Service; Cloud computing;
Complex event processing (CEP); Active database management
systems (ADBMSs); Smart grids.

I. INTRODUCTION

This paper provides an in-depth overview of the Activity
Service, including details of its implementation and perfor-
mance evaluation. The Activity Service was developed as part
of the OM4SPACE (Open Mediation for Service-oriented ar-
chitecture and Peer-to-peer Active Cloud Components) project
[1], [2], [3], [4], [5], [6], [7], [8], which was started as a
joint project of the University of Applied Sciences and Arts
Hannover Germany and the University of Applied Sciences
and Arts Northwestern Switzerland.

The idea behind the OM4SPACE project was to merge
an event-driven architecture (EDA), a service-oriented archi-
tecture (SOA), complex event processing (CEP) and cloud
computing together to provide a semantically well-defined
cloud-based event notification middleware for decoupled com-
munication between CEP application components on all the
layers of a cloud stack, including IaaS (Infrastructure-as-a-
Service), PaaS (Platform-as-a-Service) and SaaS (Software-as-
a-Service). By decoupled, we mean that events are posted to

the middleware without knowing if and how they are processed
later.

The remainder of this paper is organized as follows. Section
II gives an overview of a possible application scenario for
the Activity Service. Section III presents the motivation for
the Activity Service. Section IV describes the architecture
of the Activity Service; it is followed by a discussion of
its semantic foundation (Section V). Section VI gives an
overview of transport technologies supported by the Activity
Service. Section VII presents the implementation of the Ac-
tivity Service. Section VIII evaluates the performance of the
(implemented) Activity Service. Section IX gives an overview
of the related work. Finally, Section X draws the conclusion,
whereas Section XI discusses the future work.

II. APPLICATION SCENARIO

The OM4SPACE project defines an application scenario
for CEP in a cloud environment. Such a scenario is placed
in the domain of smart grids, whose main goal is to reduce
peak energy consumption and energy wastage. This should
be enabled, by dynamically controlling energy generation
and consumption using active components. The application
scenario covers the definition of actors, who participate in
a smart grid, and event-based communication between them.
Also, it details use cases, which constitute the background for
defining semantic parameters later.

The Activity Service suits the requirements of smart grids
very well because, on the one hand, smart grids provide active
components producing and consuming events and, on the other
hand, smart grids are targeted towards heterogeneous dis-
tributed cloud environments involving diverse transport tech-
nologies. Therefore, the application scenario for the Activity
Service was settled into the domain of smart grids.

A smart grid is an electricity network that can intelligently
integrate the actions of all users connected to it – generators,

698

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Bulk
Generation

Transmission &
Distribution

Customer

Grid
Operations

Activity Service Activity Service Event Monitor

Activity Service

Electrical Interface
Communication Interface
Activity Service Event Communication

Energy
Market

Event Monitor

Figure 1. Smart grid actors and relationships among them (adapted from [9]).

consumers and those that do both – in order to efficiently
deliver sustainable, economic and secure electricity supplies.
Smart grids try to provide all these features with basically three
approaches. First, they add dynamics to a power grid. This
is done, by replacing passive components with active ones.
Second, they add ‘intelligence’ to the power grid, meaning
that the active components are able to communicate with each
other and react to changes in the demand of energy. Third, they
make the energy-related infrastructure flexible. As a result, new
energy sources can easily be added to the power grid, whereas
the transmission enables flexible routing.

Today’s energy grids are based on mid-20th technologies
and concepts. With the lasting gain of energy consumption,
the existing infrastructures do not meet future requirements
of energy generation, transmission, regulation and availability.
Smart grids are ‘intelligent’ power grids as they are in devel-
opment by power suppliers and public agencies. With green
aspects in mind, smart grids aim to reduce the overall energy
consumption and energy wastage.

Basically, there are two parties with interest in smart
grids. On the one hand, there are utility providers, such as
power authorities. They get enabled to provide stable power
grids, get more control over the grids and reduce costs, by
avoiding wasting the energy. Providers aim to produce a
steady amount of energy, which means no peak or low levels
in energy production. Further, the level of energy produced
should dynamically fit the current demand of energy. Next to
this, the transmission of energy should be minimized. On the
other hand, there are customers who can benefit from reliable
power grids, energy monitoring and saving, flexible pay scales
and convenience features, like remote controlling of electric
devices.

In the next subsections, the application scenario will be
defined by a set of actors, relationships and use cases.

A. Actors
Actors have certain tasks and interests. In the context

of the application scenario, we distinguish four actors: Bulk
Generation, Customers, Transmission and Distribution,
Operations and Energy Markets [9].

Bulk Generation simply produces energy. It can be, e.g.,
generating plants, wind power stations and solar energy plants.
In a smart grid, Bulk Generation acts as one virtual power
plant.

Customers are the consumers of energy. Customers may
also be part of a virtual power plant as they can generate
energy themselves (e.g., using photovoltaic cells). On the
Customers side, a smart meter is of major importance. Smart
meters can be considered as ‘intelligent’ electricity readers,
which are capable of monitoring the energy consumption of
attached devices in real time. Furthermore, they provide a
history and evaluation of the recorded data. Smart meters are
able to control attached and prepared electric devices, e.g., by
switching on a washing machine.

Transmission and Distribution is the infrastructure for
the grid’s power transmission. It is directly connected to Bulk
Generators and Customers.

Operations are a higher controlling and monitoring actor.
Operations watch the smart grid’s state continuously and pro-
vide information to the other actors. Furthermore, Operations
are enabled to actively control the other actors in reaction to
certain states of the smart grid.

Energy Markets are commodity markets that deal specif-
ically with the trade and supply of energy (e.g., electricity).

B. Relationships
Basically, in a smart grid, there can be two different kinds

of relationships between actors. These are energy transmission
and information communication. But the application scenario
focuses on the latter only, since this is where events are
actually generated. Figure 1 shows all the actors along with the
relationships between them. The actor Operations represents
a smart grid to external partners. Therefore, it is connected
to all other actors, thereby enabling to monitor and control
the entire smart grid. Transmission and Distribution is the
connector between Bulk Generation and Customers for both
energy transmission and data transfer.

In the application scenario, two different mechanisms for
information communication are defined: events and messages.
Events are data that are actively provided by the actors to
the smart grid. Events have no dedicated receiver, but are
available to other actors as long as they are interested in
certain events (this is a simplified view, with no respect to
security aspects). Events themselves do not affect the behavior
of single actors or smart grids. In fact, events can be collected
and processed, which may result in reaction to an event (or
a certain set of events). In the application scenario, events
are used to add an activity to the actors. With events, actors
broadcast information, which indicates their state. Examples of
events are the current energy consumption by Customers, the
current workload of an energy transmission route or the current
percentage of ‘green’ energy produced by Bulk Generation.

Messages are data, which are sent from one distinct actor
(a sender) to one or more other distinct actors (receivers).
Messages are used to directly send commands from one actor
to another. The sending of a message may be a reaction to
the interpretation of events that currently happened. Examples
of messages are Operations instructions to Bulk Generation
to start Customers electric devices due to a low energy price
or to reduce the energy production due to a lower demand of
energy in the smart grid.

In addition to relationships between actors within a sin-
gle smart grid, the application scenario defines relationships
between smart grids. An example of such a relationship is a

699

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

situation where one smart grid offers its excessive energy for
sale or purchase to another smart grid.

C. Use Cases
Tables I and II illustrate uses cases of various complexity

to demonstrate the event-driven behavior of smart grids. A
common precondition for all the use cases is that all the actors
are completely ”smart-grid-ready,” meaning that the mandatory
infrastructure, such as smart meters and remotely controllable
devices, is available.

III. MOTIVATION

Cloud computing is a new paradigm, which quickly finds
its way into many IT areas. It offers vast resources and
highly dynamic scalability while reducing the required upfront
investment costs to a minimum [10]. However, the deployment
of CEP applications into the cloud is still a hard task, especially
when the applications should benefit from specialized cloud
services. This is, however, often required in order to allow for
high scalability as for example in case of the event-based com-
munication among the various application components. Many
cloud services exist from the various cloud providers as for
example Amazon SNS. These services are highly optimized for
the cloud as they are providing automatic scaling mechanisms
and tight integration with the other provider services. However,
their usage typically comes with the price of a vendor lock-in,
because they have their own proprietary APIs. As such, they
are highly provider-specific.

Current standardization approaches as for example Open-
Stack are mostly focused on infrastructure aspects and do
not cover any standardized support for cloud-based CEP ap-
plications. This hampers with interoperability between cloud
providers and the outside world because these approaches do
not feature well-defined semantics [2], [3].

One simple example from the application scenario, which
illustrates the need for well-defined semantics, is an attribute
time in the following event definition:

Event :
s o u r c e : s 298
t ime : 0 4 : 3 7 : 2 1
t e m p e r a t u r e : 30
h u m i d i t y : 45

A time 04:37:21 given in the example above as part of
the event definition is problematic, when considered that the
time depends on the location where it was made. Thus, a
precise time specification needs additional information, such
as according to UTC. Furthermore, additional information is
needed for the correct processing of the time as for example
if the given time value represents the point in time when
the reported event occurred or when it was detected. In
case where an attribute temperature represents some form of
an accumulated value, like the average temperature over ten
minutes, does the time represent the start, the end or some
other point in the time during the accumulation period? Does
the time indicate that the event has already happened or it
will happen soon? For example, the temperature could have
a warning character. If the measuring sensor is approaching
a certain threshold, it might send an event upfront to notify
about an expected change.

The time is only one attribute of an event. But as the exam-
ple above illustrated, since the semantics of event payload were
not explicitly described in the event, further knowledge was
required for the correct processing of the event. Unfortunately,
cloud services being used to build CEP applications today
lack the capability of explicitly specifying such semantics.
As a result, when building a CEP application based on those
services, the application becomes tightly linked to the provider-
specific semantics, which results in a high risk of a vendor
lock-in. In many cases, this is also true if measures are taken
to hide the service-specific API, because quick abstraction
approaches typically do not cover a specification of the overall
semantic parameters, which are implicitly provided by the
underlying transport technology.

IV. ARCHITECTURE

Resulting from the motivation and application scenario
requirements, we generally aimed at helping application de-
velopers to overcome the following challenges when building
cloud-based CEP applications:
• Making CEP applications scalable, while minimizing

changes to be done to the application design when
deploying the applications into the cloud.

• Reducing the risk of vendor lock-in caused by the
usage of provider-specific service offerings.

• Dealing with further complexity when crossing the
border of a single cloud provider.

• Compensating for lack of semantics.
Within the OM4SPACE project, we developed the Activity

Service as the combination of an event notification system
and an event processing system to allow for easy event-based
communications as well as for event based-rule evaluation and
action triggering. In particular, the Activity Service monitors
events. After the detection of an event, it notifies the compo-
nent responsible for executing the corresponding rules (event
signaling), which in turn triggers (or fires) these rules into
execution. Rule execution incorporates condition evaluation as
a first step and, if successful, action execution as the second
step. Rules can temporarily be enabled or disabled.

In general, events occur within transactions, whereas rules
are executed within transactions. A variety of execution models
exist for the coupling of the transactions that raise events,
evaluate conditions and execute actions, some giving rise
to quite complex behavior. The adaption of such coupling
mechanisms will be one of the major challenges in the later
phases of the OM4SPACE project.

The general architecture concept follows the unbundling
approach introduced in [11]. As such, we divided the Activity
Service into three separate components: Event Service, Rule
Execution Service and Event Monitor (EM). Each of these
components provides one or more well-defined interfaces with
a clear definition of their semantics. Thereby the concrete
implementation of the different components is interchangeable.
The communication between all the components in the archi-
tecture is done through events, where an event is any kind
of information sent as a notification from one component to
another.

Figure 2 illustrates the components of the Activity Service
in relation to cloud-based event sources (also called event
producers) and event consumers.

700

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. Use Case 1 overview

Use Case 1: Dynamically adjust the bulk energy generation
Actors: Bulk Generation, Transmission and Distribution, Customer
Preconditions: none
Outcome: The amount of produced bulk energy is adjusted to the actual energy demand
Trigger: Calculated changes of the RouteWorkload triggered by EnergyConsumption events
Description: To allow for an efficient operation of the whole smart grid, the overall production should

be adapted to the actual consumption to reduce overproduction and losses. Modern bulk
energy generation is often capable of quickly adjusting its energy production (e.g., gas turbine
power plants). Smart meters can provide measurements on their energy consumption patterns
allowing for a better estimation of the overall energy need. As such, the measurements
generated by the smart meters shall be used to calculate the overall power consumption
so that the bulk energy generation can adapt its production schedule.

Procedure: 1. Smart meters installed at the Customer premises produce EnergyConsumption events based
on the accumulated actual energy consumption.
2. The Transmission and Distribution provider consumes the EnergyConsumption events,
calculates the overall route workload for a given time interval and publishes it as an event.
3. The Bulk Generation consumes the RouteWorkload event and decides if adjustments in
its production schedule are required and executes them if needed.

TABLE II. Use Case 2 overview

Use Case 2: Intelligent energy production / purchasing
Actors: Operations, Bulk Generation, Energy Market
Preconditions: none
Outcome: The cost for providing the required energy in the near future is optimized
Trigger: The energy price on the Energy Market falls below a given threshold
Description: The Operations use available energy from the Energy Market to optimize its energy cost

during periods of high energy consumption.
Procedure: 1. The Energy Market raises an EnergyPrice event based on the current market situation.

2. The Operations receive the EnergyPrice event and evaluate it against a given threshold. If
the price is below, the Operations use the most recent information received from the weather
forecast provider as well as the most recent route workload (Use Case 1) to make a prediction
for the near future energy consumption and publishes this as an EnergyConsumtionForecast
event.
3. The Bulk Generation consumes the EnergyConsumptionForecast event, calculates its
own energy production cost for a given time interval and publishes the result as an
EnergyProductionCostEstimate event.
4. The Operations receive the EnergyProductionCostEstimate event and correlate the cost
with the prices available on the Energy Market. If the prices are lower, the Energy Market
buys the required energy and issues an ExternalEnergyFeed event.
5. The Bulk Generation consumes the ExternalEnergyFeed event and reduces its production
schedule accordingly.

Figure 2. High-level architecture of the Activity Service [8].

701

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Event Service
An Event Service represents the central component for

the event-based communication. It provides all means nec-
essary to be informed about the occurrence of events from
the different event sources and to deliver the events to the
subscribed receivers. To receive events from the Event Service,
an event consumer has to implement an appropriate Event
Handler Service, which needs to be published to the Service
Registry. The Event Service discovers those services through
the Service Registry and considers them as event subscribers.
This mechanism stands in contrast to the commonly used
subscriber mechanism where an event consumer needs to know
the address of an event source or the event/message broker to
directly register the subscription to them.

In the Activity Service, such a direct subscription is not
required. Instead we follow the Whiteboard pattern [12] where
the Service Registry acts as a ’whiteboard’ to allow event
consumers to advertise their interest in particular events. We
consider this mechanism to be particularly suitable for a
dynamic environment, such as the cloud, where the number
of instantiated components can change frequently due to
automatic scaling activities, making it a hard task to keep all
available components up-to-date.

The Event Service further provides the capability to medi-
ate among heterogeneous transport technologies. As part of
this mediation process, it interprets semantic parameters to
ensure that all participating transport technologies follow the
specified behavior, e.g., they all use the requested level of
encryption.

In addition to its mediation responsibilities, the Event Ser-
vice also provides the CEP capabilities. The incoming events
are stored into an Event History to support the monitoring of
complex events. Its subcomponent Complex Event Detector
(CED) evaluates the events and derives new complex events,
which are fed back into the processing mechanism so that they
can be delivered to registered subscribers or used again as
input for the CED. The technical details of the complex event
detection process are hidden from the event producers and
consumers and can, thus, easily be changed without impacting
the rest of the system.

B. Rule Execution Service
A Rule Execution Service extends the CEP capabilities of

the Event Service by allowing for more complex rules, which
are allowed to access additional background knowledge as part
of their processing. The outcome of these extended rules is not
required to be a new complex event, but can also represent
the execution of an external action, like a remote service
invocation. In detail, the rules result in the execution of action
handlers. Such an action handler needs to be implemented by
each of the components that are to be called from within rules.

The Rule Execution Service receives events from the Event
Service to evaluate them against sophisticated rules. Therefore,
it acts as an event consumer of the Event Service when reg-
istering an appropriate Event Handler Service. The evaluated
rules are stored in a Rule Base, which can be managed by a
special Rule Management Service.

C. Event Monitors
The Activity Service needs to obtain and process events

from heterogeneous event sources that might even be spread

across a single cloud. On the one hand, we consider active
event sources, such as sources supporting triggers and callback
mechanisms typically found in active database management
systems (ADBMSs) or sources with internal triggers. On
the other hand, we consider passive event sources, such as
protocoled sources, which write all their actions into log files.
For example, a smart meter usually realizes both types of event
sources.

With the requirement to support different types of hetero-
geneous and highly distributed event sources, we designed
a subcomponent called Capsule that hides from the Event
Service all the details of a raw event source producing the event
payload in a provider-specific format. In particular, the Capsule
is responsible for converting the provider-specific format to the
format used by the Event Service (e.g., web service calls) and
annotating events with semantic parameters.

Figure 3 gives an overview of the architecture of a Capsule.
This figure illustrates the raw event source together with the
matching Capsule as part of the event producer (each producer
has exactly one Capsule). The event producer can reside on any
layer of the cloud stack (e.g., IaaS, PaaS and SaaS). Not shown
in the figure is the unique capability of the Capsule to utilize
event sources outside of the cloud as for example in case of
an incoming shipment into a warehouse.

V. SEMANTIC PARAMETERS

The OM4SPACE project aimed at bringing the Activity
Service into a cloud environment. Clouds are highly hetero-
geneous distributed environments, in which multiple different
transport technologies can be used. Furthermore, clouds are
likely to contain a plenty of heterogeneous event producers
and event consumers. Thus, the Activity Service running in a
cloud should be able to deal with any kind of events from any
kind of event source (both active and passive). It should also
provide the CEP capabilities across multiple proprietary and
non-proprietary cloud environments.

Beside the issues concerning the transportation of events,
the events themselves have to be more meaningful to be
processed properly. Multiple different event producers and
event consumers may have different requirements on how to
interpret the meaning or context of events. Therefore, the
events need to be enriched with semantic parameters.

The general concepts of event-based rule evaluation and
action triggering have been established in the context of
ADBMSs [13]. Therefore, we defined semantic parameters
based on those typically found in ADBMSs. In particular,
semantic parameters for the Activity Service ASSP = ESP∪
TSP ∪DSP fall into three categories:

1) Event semantic parameters (ESP)
Event semantic parameters describe the interpretation
of events and their payload from a non-domain spe-
cific perspective. They describe general aspects of
an event as for example the exact semantics of a
given event timestamp or the lifetime of the event.
In the Activity Service, these parameters are heavily
influenced by the semantic parameters known from
ADBMSs.

2) Transport semantic parameters (TSP)
Transport semantic parameters describe how data are
transferred within the Activity Service and enable

702

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. The Capsule annotating events with semantic parameters [3].

TABLE III. The defined event semantic parameters

Signaling point sp ∈ {pre, post, instead}
Granularity g ∈ {instanceoriented,

setoriented}
Net effect ne ∈ {yes, no}
Life Span ls ∈ {explicit, implicit}
Consumption policy cp ∈ {recent, chronicle,

continuous, cumulative}
Coupling mode cp ∈ {coupled, decoupled,

immediate, deferred}
Strategy s ∈ {parallel, arbitrary,

priority, static, dynamic}

the usage of heterogeneous transport technologies
as they appear in cloud environments due to the
various provider-specific services. In other words,
transport semantic parameters define in a technology-
independent way all the information that must be
provided by the underlying transport technology, like
the need for confidential event communication or the
guarantee that events are delivered exactly once.

3) Domain-specific parameters (DSP)
Domain-specific parameters describe the meaning of
all relevant information in the application domain that
uses the Activity Service. Although being defined
separately, these parameters allow for the delivery
of domain-specific information as part of the event
signaling.

A. Event Semantic Parameters
We took event semantic parameters from ADBMSs and

adapted them to the Activity Service. These parameters are
defined as ESP = {sp, g, ne, ls, cp, cm, s} where each pa-
rameter represents the following aspects (Table III):

The signaling point describes if an event was raised before
the triggering state change happens (pre), after the state has
already taken place (post) or the event replaces the actual state
change by giving this notification only (instead). We consider
all these values as valid options with the change that for
the signaling point pre, we cannot guarantee that given rules
are actually triggered by such an event before the triggering
activity has been executed.

The granularity indicates the granularity of an event,
viz., it can represent a simple singular state change or an
aggregation of multiple initial events or state changes, thereby

having another granularity. From the perspective of the Ac-
tivity Service, we support the same granularities as they are
typically defined in ADBMSs: instance-oriented where each
single state change is considered as a single event and set-
oriented where multiple state changes are considered as one
event.

The net effect indicates if the event triggering activity
had any actual effect and is strongly motivated by transaction
handling in ADBMSs. As we are currently not supporting
transaction handling, the Activity Service does not handle this
parameter yet.

The life span defines how long an event is valid for
processing. We consider two values (implicit, explicit) for the
specification of the life span.

The consumption policy describes the order how events
are processed. In the context of ADBMSs, four policies are
defined: chronicle where events should be processed by the
order of the event creation; recent where the last received
event should be processed only; continuous where the order
of receiving is the order of processing (FIFO); and cumulative
where events are processed as one whole group. We consider
the same values but have a special focus on the details of
ordered handling as it requires some effort in a distributed
system where events are prone to arrive unordered.

The coupling mode is also one parameter for transactional
behaviors in ADBMSs. It indicates if an event happened
within the transaction (coupled) or not (decoupled). It defines
also if an event is thrown immediately or at the end of the
transaction (deferred). Currently, the Activity Service does not
cover transaction handling explicitly and thus, consider only
the deferred decoupled value.

The strategy defines how the rule execution is triggered if
multiple rules would be triggered by an event. The ADBMS
semantic definition considers the following values: parallel
where all matching rules are fired in an unpredictable order;
arbitrary where one matching rule is picked randomly; priority
where the rules have priorities and the rule with the highest
priority is fired; static where a static order is given by an
administrator; dynamic where the order is generated at runtime.
In general, we aim to support all of the available parameters but
with one important difference. As for smart grids it is usually
the case that multiple rule execution components exist, a global
ordering of the rule executions would be hard to achieve. Thus,
we consider the given attributes per processing component and
not on a global scope. So on a global scope, we only support

703

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV. The defined transport semantic parameters

Priority p ∈ {low, normal, high}
Order of delivery od ∈ {ordered, unordered}
Transport reliability tr ∈ {bestEffort,

atLeastOnce,
exactlyOnce}

Confidentiality c ∈ {yes, no}
Integrity i ∈ {yes, no}
Authentication ae ∈ {yes, no}
Authorization ao ∈ {yes, no}
Transport technology ts ∈ {...}

specific

the parallel strategy and allow for a detailed specification per
component.

B. Transport Semantic Parameters
The original ADBMS model does not cover distribution.

Therefore, to reflect the distributed nature of cloud-based CEP
applications, we invented transport semantic parameters. These
parameters are defined as TSP = {p, od, tr, c, i, ae, ao, ts}
where each parameter represents the following aspects (Table
IV):

The priority allows for the specification of the event
importance with regard to its transport. Events with higher
priority will be transported more quickly compared to lower
priorities if the Activity Service is under heavy load. The
current model supports a fixed set of three priority levels
low, normal, high, which allows for easy mapping to various
transport technologies.

The order of delivery specifies how events are to be
delivered relative to their occurrence. If the ordered delivery is
requested, the order in which the events have been published by
the corresponding event producer will be kept. The ordering is,
however, only guaranteed within the scope of each of the event
producers separately. Ordering of the event publications be-
tween multiple event producers is not provided. The alternative
unordered mode makes no guarantees for the event ordering.

The transport reliability parameter enables to specify the
need for level of reliability for the event transport level. In
general, two categories can be defined: no reliability (best-
Effort) where no guarantees are given that an event will be
correctly transported and guaranteed delivery. The guaranteed
delivery is further divided into the categories: atLeastOnce
where events are guaranteed to be delivered but might be
delivered multiple times and exactlyOnce where events are
guaranteed to be delivered only once.

As cloud-based CEP applications often need to integrate
external data sources potentially via an unsecured network like
the Internet, the specification of basic security mechanisms
is part of transport semantic parameters. In particular, the
confidentiality parameter enables to specify that events shall
be transmitted in such a way that a third party is not able to
eavesdrop on them. The integrity parameter enables to specify
that transmitted events shall be protected from unnoticed
modification by a third party. Typically both parameters require
some form of authentication and authorization mechanism to
be active. The authentication parameter enables to specify
that an authentication of the communicating parties is re-
quired. Based on this, the authorization parameter can be

used to request that communicating parties are authorized for
accessing the transmitted events. As the authorization is only
possible once an authentication has been done, it implies that
the authentication is active.

In addition to the generally defined parameters, the trans-
port technology specific parameter allows for the specification
of parameters that are specific to a certain transport technology
and thus, understood only by this technology. This parameter
can be used, e.g., to optimize a transport technology for lower
latency if fast communication is required.

C. Domain-specific Parameters
Domain-specific parameters give the meaning to domain-

specific attributes. As an example, consider an event Route-
Workload with an attribute workload from the application
scenario. This attribute has a self-explaining name, which
is easy to understand by a human, but not by a software
system. Thus, the attribute could be misunderstood by the
other components of the system. The attribute needs a domain-
specific parameter as for example measure with a value of
percent, thereby explaining that the value of the attribute is
given in percent so that all the actors in a smart grid can know
the meaning of that attribute.

VI. TRANSPORT TECHNOLOGIES

The general communication between the Activity Service
components is realized based on the concept of SOA. However,
the actual method of message transportation is provided by
technology-specific extensions as for example the usage of
web services trough an enterprise service bus (ESB) or the
use of messaging-based communication trough Amazons SNS
or a common message-oriented middleware, like Apache Ac-
tiveMQ. This way the Activity Service enables the transparent
use of different transport technologies.

The Activity Service is focused on providing a semantically
well-defined abstraction from diverse transport technologies to
reduce the risk of a vendor lock-in. Consequently, one of the
main advantages of the Activity Service is its independence of
service providers, such as WebLogic, Amazon and Google. In
detail, once an event producer has sent events to the channel,
the Activity Service located in the cloud will forward the
events to the channel of an event consumer that is subscribed
for those events. A decision on which channel to use for
sending events is left solely to the event producer. Similarly,
a decision on which channel to use for receiving events is left
solely to the event consumer. For example, the event producer
can select a JMS topic because it is not chargeable, whereas
the event consumer can select an SQS queue because it is
highly available (i.e., the availability of an SQS queue is not
affected if the cloud instance fails). To be used in such sce-
narios, the Activity Service provides a generalized API along
with semantic parameters. The actual transport technology is
integrated into the Activity Service as an extension (plug-in),
which has the responsibility to map the requested semantic
parameters to its technology-specific configuration.

The Event Service as the central component for the event
communication is designed to act as a mediator between
different transport technologies. This allows the Activity Ser-
vice to bridge the gap between multiple different provider-
specific environments. Due to the explicit definition of the
semantic parameters, application developers can rely on the

704

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

specified behavior even in complex setups where the event
communication needs to be handled with multiple different
transport technologies. Figure 4 illustrates such a scenario
where event data are received from event producers outside
a cloud through two transport technologies: Web Services
Eventing (WSE) and web services (WSs). The event data
are received by an Event Service, which is also located
outside of the cloud that mediates between the aforementioned
technologies and JMS-based communications link to another
Event Service, which is located in the cloud. In its turn, this
second Event Service mediates between JMS and the cloud
internal communication service, Amazon SNS/SQS, which is
used by the event consumers in the cloud.

In the current version, the Activity Service supports the
following transport technologies: JMS and Amazon SNS/SQS.

A. Java Message Service
Java Messaging Service (JMS) provides an API that con-

tains the abstraction of interfaces and classes, which are to
be implemented by channel service provider on the basis of
a Service Provider Interface (SPI) Adapter. The basic idea
behind JMS is that an application can communicate over the
JMS API through message-oriented middleware with any other
(including non-Java) applications.

We selected JMS as an example of a topic channel from
a “native” provider. As a native provider, Apache ActiveMQ
was used. JMS was chosen also because the prototype of the
Activity Service was implemented in Java.

B. Amazon SNS/SQS
Amazon provides a Simple Queue Service (SQS) and a

Simple Notification Service (SNS). SQS is a web service for
Amazon Elastic Compute Cloud (Amazon EC2) to decouple
applications with message passing. It provides a distributed
queue. Messages sent to an SQS queue are stored there
until they are received and deleted by the consumer. SNS is
another web service that lets endpoints subscribe for a topic
and publish messages to that topic. SNS supports different
endpoints, including SQS.

There are advantages of coupling SQS with SNS. SQS
is a distributed queuing system, where messages are polled
by consumers. Polling inherently introduces some latency in
the delivery of messages in SQS unlike SNS where messages
are immediately pushed to consumers. By coupling SNS with
SQS, this latency can be avoided because SNS enables to send
messages via an SQS queue to more than one consumer at the
same time.

We selected SNS/SQS as an example of a queue channel
from a foreign provider. Because of the decision to support
SNS/SQS, EC2 was used as the cloud.

C. JMS vs. Amazon SNS/SQS
Table V summarizes our comparison of JMS and SNS/SQS.
JMS is a component of Java Enterprise Edition (JEE),

whereas Amazon SNS/SQS abstracts the JEE-specific details
of JMS. The main advantage of JMS over SNS/SQS is its
independence of a channel service provider. But this also
means that there has to be an administrator responsible for
setting up the whole infrastructure. On the other hand, the
main advantage of SNS/SQS over JMS is the high availability

of a channel, which is not affected if a particular Amazon EC2
instance becomes unavailable. Messages waiting in queues for
their delivery are stored redundantly on multiple servers and in
multiple datacenters. Another big advantage of SNS/SQS over
JMS is that there is no limit on the number of messages or the
size of a particular queue. One message body can be up to 64
KB of text in any format (default is 8 KB). Large messages
can be stored somewhere else reliably (e.g., in Amazon S3)
and passed around a reference to the storage location instead
of passing the message itself.

However, because of the dependency of Amazon, SNS/SQS
is chargeable. There is a free usage tier for up to 100,000
requests per month. Beyond that, Amazon adds $0.01 per
10,000 requests to the bill. In addition, there is a need to
pay for the data transfer. Data are transferred free of charge
between SNS/SQS and an EC2 instance but within a single
region only. Moreover, an SQS queue is distributed. Due to
this fact, there is no guarantee that messages are delivered in
the same order as they were sent. A sequence number can be
added to every message in order to recover the original order
of the messages. However, since SNS/SQS saves copies of
messages at different servers of the queue, it might happen that
in case of a server breakdown, single copies cannot be deleted
and are sent twice to the consumer. Therefore, the consumer
needs to be implemented in a way that it can handle these
redundant messages. On retrieve-message-request, SNS/SQS
delivers messages to some of the servers only. This means
that it might happen that not all the messages in the queue
are delivered or even no messages are delivered at all, if the
number of messages is too low. But if the command is executed
often enough, all the messages will be delivered step-by-step.

VII. PROTOTYPE

Based on the architecture of the Activity Service, we
implemented its prototype in Java. The prototype was mostly
focused on overcoming the technological gaps between differ-
ent environments and cloud providers, by providing support for
two different transport technologies (viz., JMS and SNS/SQS)
and implementing the capability to mediate between them.

For the actual CEP, both the Event Service and the Rule
Execution Service utilized the Esper CEP engine. The action
handling was implemented based on web service calls against
the defined action handler interface. Furthermore, the architec-
ture was extended with a Registration Service, which provides
a discovery mechanism, and a Mediation Layer, which pro-
vides the flexibility for different transport technologies.

A. Registration Service
To provide the required service discovery functionality for

available event producers and consumers as well as the Event
Service instances, a Registration Service was implemented
that acts as the central service repository (Figure 5). The
Registration Service offers its API based on a web service.
Each Event Service registers itself via the offered API to
announce its presence. Furthermore, all event consumers and
producers register themselves via the API to announce either
the events they offer or the events they want to receive.

Once the Registration Service has been informed about
new event consumers and producers, or about changes in their
registrations, it informs the available Event Services about
those registrations. The communication with the Event Service

705

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. The Activity Service mediating among different transport technologies.

TABLE V. JMS vs. SNS/SQS

Feature JMS SNS/SQS
Max queue size Limit depends on JVM heap and persistence store Unlimited
Best Quality-of-Service (QoS) Exactly once At least once
Channel Both topics and queues Queues
Configurable retries Supported No
Persistence Optional Always
Scalability Yes, depending of Message Broker Inherent
Availability Yes, depending of Message Broker Inherent
Message order Supported Not guaranteed
Auto acknowledge Supported No
Message expiry 1 ms to unlimited 1 h to 14 d
Max message size Unlimited 64 KB (default 8 KB)
Compression / Encryption Yes No
Language binding Java Java, PHP, Perl and C#

Figure 5. The Registration Service provides service discovery functionality.

is based on special management events. Figure 6 illustrates the
registration process of a new event consumer. (The registration
process of an event producer is done in a similar way.)

1) A new event consumer first requests a unique id from
the Registration Service in order to label all further
interactions.

2) Once the id has been assigned, the consumer informs
the Registration Service about the type of events it
is interested in via a registerEventInterest() call. In
addition to the ID and the event type, the call contains
a prioritized list of transport technologies that are
accepted by the consumer for that event subscription.

3) The Registration Service forwards this information
to an Event Service that selects suitable transport
technologies supported on its side for the requested
events.

Figure 6. Registration of new event consumer.

4) The Event Service then generates the intersection of
the list of transport technologies supported by the
consumer and the list generated by itself, and selects
from the ’common’ transport technologies the one
with the highest priority.

5) The Event Service then offers a transport technol-
ogy specific URL, which can be used by the event
consumer to receive events from the Event Service.
Similarly to the initial call, this information is re-
layed by the Registration Service to the calling event
consumer.

Based on the assigned id, the event consumer could later
change or terminate its registration.

In the prototype, the Registration Service has to be started
as the first component in order for the Event Service instances
to discover and connect to the event consumers and producers.

706

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Also, the Registration Service needs to be implemented as
a highly available subsystem, because it is the backbone of
the Activity Service dynamic behavior with regard to new or
changed event subscriptions.

B. Mediation Layer
One of the main goals of the Activity Service is to

bridge the gap between the various communication middleware
systems around. Therefore, we designed and implemented a
Mediation Layer, which is used by all the components of the
prototype and hides the details of the underlying transport
technology. In the prototype, the Mediation Layer supports
the usage of both JMS and SNS/SQS-based messaging. How-
ever, the implementation of additional transport technologies
especially from other cloud providers is also planned in the
future. To ease such additions, we designed the Mediation
Layer as a pluggable system that can easily be extended. Figure
7 gives an overview of the Mediation Layer, which consists of
ReceiveMediator and SendMediator.

A ReceiveMediator handles different transport technolo-
gies for receiving events from heterogeneous event producers.
Therefore, it is expandable for different transport technologies
by different plug-ins. In addition, the ReceiveMediator trans-
forms the messages it receives from the event producers to a
generic format for the Event Service. This is necessary if the
transport technologies keep the messages in different formats
in their channels (either topics or queues). As an example,
consider the smart meter in a private household that sends its
real-time consumption to the distribution network via JMS.
The ReceiveMediator receives JMS messages, but the Event
Service might know only SNS/SQS because the instance is
deployed in Amazon EC2. Therefore, the ReceiveMediator
transforms the JMS messages to the XML structures that can
then be forwarded to the Event Service via SNS/SQS for
further processing.

After the processing, the Event Service sends the (new
complex) events to a SendMediator, which distributes the
events to heterogeneous event consumers. The SendMediator
is a complement of the ReceiveMediator. Like the ReceiveMe-
diator, the SendMediator is expandable for different transport
technologies by different plug-ins. In addition, the SendMedi-
ator transforms the events it receives from the Event Service
to a specific format for the event consumers (e.g., SNS/SQS
messages).

The Activity Service does not have to know which of the
event producers send events to it. But the Activity Service
has to know which of the event consumers want to receive
events from it. Therefore, the SendMediator needs an Event
Consumer Repository. With such a repository, there is the
possibility to store and query information about the event
consumers. In the simplest case, this repository could be a
database table with one entry for each event consumer. In
particular, the Event Consumer Repository has to store the
following information:

• The supported transport technologies for each event
consumer.

• The values for each transport semantic parameter per
event consumer.

• For each event consumer, the event types it is inter-
ested in. Not every event consumer wants to receive

Figure 7. High-level architecture of the Mediation Layer.

every kind of events. There are only certain types of
events of interest. These types have to be stored in the
repository. For example, the distribution network is in-
terested in the real-time consumption of the connected
households only.

With this information, the SendMediator knows if and
how it should forward the events to the (registered) event
consumers.

For the registration, an event consumer has to send a
registration event to the SendMediator. This event must contain
information like the used transport technologies and subscribed
events. It must also contain the information about the channels
of each event consumer so that the SendMediator knows where
it has to forward the events later.

C. Capsule
A Capsule acts as the bridge between foreign (i.e., non-

Java) applications and the Activity Service, by providing the
functionality to forward events from a non-Java application
to the Event Service as well as to forward events from the
Event Service to the application. As such, the Capsule is
implemented as a Java library that can directly be used by
the event producing or consuming software. The Capsule also
uses the Mediation Layer for supporting multiple transport
technologies, while hiding the details from the application that
uses the Capsule. The required configuration of the transport
technology is possible via a separate XML configuration file
and thus, independent of the application:

<Event t r a n s p o r t T y p e =” jms”>
<t s p>

<key name=” c h o o s i n g P r i o ”>90</key>
<key name=” c o n f i d e n t i a l i t y ”> t r u e </key>
<key name=” i n t e g r i t y ”> t r u e </key>
<key name=” a u t h o r i z a t i o n ”> t r u e </key>
. . .

</ t s p>
</Event>

However, the provided configuration does not contain the
values for typical configuration parameters, like the address
of the JMS message broker, because these parameters are
dependent of the actually used Event Service. Thus, such
connection-specific configurations are provided as part of the

707

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

registration process, which results in a URL describing the
actual endpoint that is to be used (Section VII-A).

In general, the Capsule implementation can support three
different modes of operation:

• Event Consumer Capsule where the Capsule is used
to receive events from one or more Event Services.

• Active Event Source Capsule where the event source
itself actively notifies the Capsule about new events
that shall be transmitted by the Capsule to one or more
Event Services.

• Passive Event Source Capsule where the Capsule has
to detect that new events occurred in the event source,
which is not capable to actively notify the Capsule
itself.

In the current implementation, we only support the Event
Consumer Capsule and the Active Event Source Capsule.

To support the semantic parameters defined by the Activity
Service, the Capsule implements the event enrichment process,
when it acts as an active event source. In this mode, it
annotates each forwarded event with semantic parameters that
can be specified in a separate XML configuration file. In
particular, the Capsule receives the “raw” events, detects their
type and enriches them with the correct values for event
semantic and domain-specific parameters. However, not all
of the event semantic parameters are set within the Capsule.
In particular, event semantic parameters such as for example
consumption policy and strategy cover parts of the rule
execution and, thus, require knowledge about the used rules.
This knowledge should not be placed into the Capsule because
of the maintenance reasons. Therefore, these parameters are set
within the Activity Service instead.

Furthermore, the Event Handler Service is responsible
for the enrichment of the events with the correct values for
transport semantic parameters. This task is not performed by
the Capsule either because the transport technologies should
be independent of a specific Capsule and, thus, the decisions
how to transport the events are done later on within the Event
Handler Service.

VIII. PERFORMANCE EVALUATION

As the Activity Service introduces an additional layer of
abstraction, we suggested that the Activity Service is likely to
have an impact on the overall communication performance. To
check if our suggestion is true and to determine if a significant
performance impact exists, we measured the Activity Service
communication performance and compared the results against
measurements taken by direct usage of the underlying transport
technology. Each measurement was done with a different
number of events (viz., 100, 500 and 1000) to see how
the event number affects the performance. Next, we give an
overview of these results, which were initially published in
[1].

Figure 8 summarizes the test results for the direct usage of a
JMS topic (Figure 9.A) and the usage of the Activity Service as
a mediator between two JMS topics (Figure 9.B). As expected,
the communication via the Activity Service was slower than
the direct communication. But JMS still demonstrated a very
good performance in all the tests even being interconnected
with the Activity Service. For example, sending and receiving

100 events via JMS interconnected with the Activity Service
took only 1286 msecs.

We expected that the time would increase with an increase
of the number of events. Indeed, for sending and receiving 500
events, JMS interconnected with the Activity Service needed
3184 msecs more than for sending and receiving 100 events.
However, of peculiar interest is the fact that for sending and
receiving 1000 events, JMS interconnected with the Activity
Service needed only 305 msecs more than for sending and
receiving 500 events. In both cases, the average time was about
4500 msecs. Therefore, we suggested that extra time needed
for sending and receiving 100 events was the time that the
Activity Service needed for initialization.

Figure 8. Comparison of event throughput via direct JMS communication
and JMS communication through the Activity Service [1].

Figure 9. Test set-up for comparison of direct JMS to the Activity Service
based JMS communication.

We conducted the same tests with SNS/SQS as the other
currently supported transport technology. As expected, due
to the distributed nature of an SQS queue, SNS/SQS alone
was much slower than JMS alone. Furthermore, due to higher
network delays caused by the usage of the cloud service and
a less efficient implementation of the event consumer in the
prototype, it resulted in a drastic reduction of the relative
overhead of the Activity Service.

In general, the test results proved that the additional ab-
straction layer introduced by the Activity Service also intro-
duces additional performance overhead. This certainly poses
a problem for high performance/high throughput application
scenarios such as smart grids that need to address the chal-
lenges related to the constantly increasing number of events
and near real-time reaction on those events. However, the
impact becomes less severe once the communication takes
place over the across the border of a single cloud or network
due to the added latency.

IX. RELATED WORK

The foundation for the Activity Service can be found in
the previous work on ADBMSs [14], [15], [16], [17]. An
ADBMS provides a rule and execution model with well-
defined proven semantics. It also provides a rule definition

708

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

language to specify event types, conditions, actions, and their
assembly into rules. Much work has been done in the ADBMS
context regarding the detection of so called complex events
[18], [19]. Complex events are expressions of an event algebra,
which are formulated over primitive or complex event types
by means of algebraic operators (e.g., say E1 and E2 are
event instances, conjunction (E1 ˆ E2) means that E1 and
E2 occurred independently of their sequence. A number of
technologies for the discovery of complex events are used,
such as finite state automates, Petri nets and event trees [14].

In addition to the common database functionality, an
ADBMS offers the capability to react to predefined events,
by executing the appropriate rules. It provides connectors for
event detection, condition evaluation and action execution; all
of these are exposed as an overall functionality of an active
mechanism. In ADBMSs, the active mechanism is usually
closely tied to the systems as a whole. (This is due to the
monolithic architecture of ADBMSs.) Therefore, one step
beyond the work in ADBMSs go approaches to unbundling
the active mechanism from ADBMSs and making it usable
in other contexts [11]. For example, in [20], it was prosed to
integrate the active mechanism into a rule service for CORBA-
based distributed environments. In fact, this work formed a
solid starting point for the development of the Activity Service.

Furthermore, we used the original ADBMS model for
the definition of semantic parameters for the Activity Service
(viz., event semantic parameters). However, the ADBMS set
of semantic parameters does not yet cover central aspects
that arise from the distributed nature of cloud-based CEP
applications. Moreover, they do not cover domain-specific
parameters, which can greatly ease the development of cloud-
based CEP applications. Therefore, we greatly extended the
ADBMS set of semantic parameters with transport semantic
parameters and domain-specific parameters for the Activity
Service.

Being an important part of the Activity Service, distributed
event monitoring systems [19], [21] are an excellent instrument
for (distributed) monitoring systems and can contribute to the
general monitoring principles of the Activity Service. How-
ever, such systems mainly focus on primitive (mostly pure)
event sources, like operating system level signals. The Activity
Service, on the other hand, has to deal with event sources
that are typically found in heterogeneous cloud environments.
Event modeling aspects and semantics often lack precision
[19] when compared to ADBMSs. Nevertheless, general work
on the design of monitoring services for distributed event
monitoring systems is valuable for a transfer into the cloud.

Some event monitoring and propagation within the cloud
in conjunction with CEP are discussed in [22]. However, rule
processing with precisely defined semantics was not the focus
there either. On the other hand, several approaches to bringing
the CEP technology into the cloud computing domain exist as
for example [23], [24]. However, in contrast to the Activity
Service, they are application-specific. The first attempt to rule
processing within the cloud in conjunction with CEP has been
done in [24]. At least some combination of EDA and SOA
for the cloud was discussed there. However, the work remains
quite high-level and mainly focuses on policy-driven CEP in
the cloud. It does not really adapt the active mechanism of
an ADBMS to the cloud, in particular, not with well-defined
ADBMS semantics.

Web service development standards, such as the business
process execution language WSBPEL [25], usually operate on
a higher level than the Activity Service. However, they are
an excellent example of web services-based systems, which
can generate events as for example ”a process or an activity
has started or ended.” Such events can then be monitored and
acted upon, by using the Activity Service across the whole
(heterogeneous) cloud.

X. CONCLUSION

In smart grids, diverse transport technologies are often
involved and a large number of events occur on different layers
of the cloud (e.g., IaaS, PaaS and SaaS). This paper provided
an in-depth overview of the Activity Service starting from its
application scenario, motivation and high-level architecture,
and ending with its implementation and performance evalu-
ation. Continuing our successful previous work [1], [2], [3],
[4], [5], [6], [7], [8], this paper made additional contributions
to the Activity Service. These are a new use case for the
application scenario, an extended list of semantic parameters
and an implemented prototype.

The Activity Service was developed as a transport technol-
ogy independent event notification middleware to reduce the
risk of a vendor lock-in. It offers an approach to managing
events from heterogeneous event sources, processing these
events in near real time and triggering appropriate actions on
the events. In addition, the Activity Service can be used for
monitoring events occurred in the cloud and for scaling CEP
applications deployed in the cloud (e.g., starting new virtual
machine instances when a certain threshold for the CPU load
has been exceeded). A particular highlight of the Activity
Service compared to the other work in that area is that the
Activity Service is based upon a semantically well-defined rule
and execution model. This model is a significant extension of
the work originating from the ADBMS area into nowadays
distributed, heterogeneous, cloud-based world.

XI. FUTURE WORK

In the future, the Activity Service seeks to support more
transport technologies, including Web Services Notification,
Web Services Eventing and Google App Engine.

A. Web Services Notification and Web Services Eventing

Both Web Services Notification (WSN) and Web Services
Eventing (WSE) define a standard web service approach to
exchanging notification messages. Both are based on an event-
driven or notification-based architecture and use a topic-based
publish-subscribe pattern. The difference between the two is
that WSN is an OASIS5 standard, whereas WSE is a W3C6
standard. In other words, they are competing specifications
with exactly the same idea. However, for the Activity Service,
WSN could be a better choice because it supports small devices
(with a restricted set of mandatory features) and enables direct
and brokered notifications. Also, it offers transformation and
aggregation of topics. Furthermore, there are semantic param-
eters (e.g., available subscription types and broker federations)
that are important for high scalability.

709

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Google App Engine

Google App Engine’s API allows for a persistent con-
nection between a client (HTML or JavaScript) and a server
(Python, Java or Go). New information for clients will be
pushed through a channel. The clients can subscribe to that
channel in order to receive the new information from servers.

A server creates a unique channel for each client and sends
a unique token to each client. The server side also receives
update messages of the clients and sends those updates to the
clients via their channels. A client is primarily responsible for
the connection with the channel over the received token. It
listens to the channel for updates, makes use of the data and
sends the updates to the server. The client id identifies each
client on the server. The tokens are responsible for allowing
the client to connect and listen to the channel, which is the
one-way communication path for the server to send updates to
the client.

XII. ACKNOWLEDGEMENTS

We would like to thank all team members of the
OM4SPACE project for their work.

Irina Astrova’s work was supported by the Estonian Centre
of Excellence in Computer Science (EXCS) funded mainly
by the European Regional Development Fund (ERDF). Irina
Astrova’s work was also supported by the Estonian Ministry
of Education and Research target-financed research theme no.
0140007s12.

REFERENCES

[1] I. Astrova, A. Koschel, A. Olbricht, M., Popp, and M. Schaaf, ”Perfor-
mance evaluation of OM4SPACE’s Activity Service,” In Proceedings
of the 6th International Conferences on Advanced Service Computing,
IARIA, pp. 58-61, 2014.

[2] R. Sauter, A. Stratz, S. Grivas, M. Schaaf, and A. Koschel, ”Defining
events as a foundation of an event notification middleware for the
cloud ecosystem,” In Proceedings of the 15th International Conference
on Knowledge-Based and Intelligent Information and Engineering Sys-
tems, LNCS, vol. 6882, pp. 275-284, 2011.

[3] M. Schaaf, A. Koschel, and S. Grivas, ”Towards a semantic definition
for a cloud-based event notification service,” In Proceedings of the 3rd
International Conference on Cloud Computing and Services Science,
pp. 345-349, 2013.

[4] M. Schaaf, A. Koschel, S. Gatziu, and I. Astrova, ”An ADBMS-
style Activity Service for cloud environments,” In Proceedings of
the 1st International Conference on Cloud Computing, GRIDs, and
Virtualization, IARIA, pp. 80–85, 2010.

[5] I. Astrova, A. Koschel, S. Grivas, M. Schaaf, I. Hellwich, S. Kasten, N.
Vaizovic, and C. Wiens, ”Active mechanisms for cloud environments,”
In Proceedings of the Sixth International Conference on Digital Society,
IARIA, pp. 109–114, 2012.

[6] I. Astrova, A. Koschel, L. Renners, T. Rossow, and M. Schaaf, ”In-
tegrating structured peer-to-peer networks into OM4SPACE project,”
In Proceedings of the 27th International Conference on Advanced
Information Networking and Applications Workshops, pp. 1211–1216,
IEEE, 2013.

[7] M. Schaaf, A. Koschel, and S. Grivas, ”Event processing in the cloud
environment with well-defined semantics,” In Proceedings of the 1st
International Conference on Cloud Computing and Services Science,
pp. 176–179, 2011.

[8] A. Koschel, A. Hödicke, M. Schaaf, and S. Grivas, ”Supporting smart
grids with a cloud-enabled Activity Service,” In Proceedings of the
27th International Conference on Environmental Informatics for Envi-
ronmental Protection, Sustainable Development and Risk Management,
Berichte aus der Umweltinformatik, pp. 205–213, 2013.

[9] NIST Framework and Roadmap for Smart Grid Interoperability
Standards. Release 2.0. NIST Special Publication 1108R2. Available:
http://www.nist.gov/smartgrid/upload/NIST Framework Release 2-
0 corr.pdf Last accessed: November 2014.

[10] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, ”Above the
clouds: A Berkeley view of cloud computing,” Technical report, EECS
Department, University of California, Berkeley, 2009.

[11] S. Gatziu, A. Koschel, G. Bültzingsloewen, and H. Fritschi, ”Un-
bundling active functionality,” ACM SIGMOD Record, vol. 27, no. 1,
ACM, pp. 35-40, 1998.

[12] OSGi Alliance, ”The Whiteboard pattern,” Technical Whitepaper, Avail-
able: http://www.osgi.org/wiki/uploads/Links/whiteboard.pdf Last ac-
cessed: November 2014.

[13] D. McCarthy and U. Dayal, ”The architecture of an active database
management system,” In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, New York, NY, USA: ACM,
pp. 215–224, 1989.

[14] K. Dittrich and S. Gatziu, ”Aktive Datenbanksysteme, Konzepte und
Mechanismen,” Int. Thomson Publishing GmbH, Bonn, Albany, At-
tkirchen, 1996.

[15] N. Paton (editor), ”Active rules for databases,” Springer, New York.
1999.

[16] The ACT-NET Consortium, ”The active database management system
manifesto: a rulebase of ADBMS features,” In ACM SIGMOD Record,
vol. 25, no. 3, ACM, pp. 414-471, 1996.

[17] J. Widom and S. Ceri (editors), ”Active database systems: triggers and
rules for advanced database processing,” Morgan Kaufmann Publishers,
Inc., San Francisco, California, U.S.A. 1996.

[18] S. Gatziu and K. Dittrich, ”An event definition language for the
active object-oriented database system SAMOS,” In Proceedings of the
Conference on Datenbanksysteme in Büro, Technik und Wissenschaft,
Braunschweig, Germany, 1993.

[19] S. Schwiderski, ”Monitoring the behaviour of distributed systems,” PhD
thesis, Selwyn College, University of Cambridge, UK, 1996.

[20] A. Koschel, ”Distributed events in active database systems: Letting the
genie out of the bottle,” In Data Knowledge Engineering, vol. 25, no.
1-2, 1998.

[21] B. Schroeder, ”On-line monitoring: a tutorial,” IEEE Computer, vol. 28,
no. 6, pp. 72–80, 1995.

[22] D. Luckham, ”The power of events,” Addison-Wesley, Boston, MA,
2002.

[23] G. Wishnie and H. Saiedian, ”A complex event routing Infrastructure
for distributed systems,” In Proceedings of the 33rd Annual IEEE
International Computer Software and Applications Conference, pp. 92-
95, 2009.

[24] P. Goyal and R. Mikkilineni, ”Policy-based event-driven services-
oriented architecture for cloud services operation and management,” In
Proceedings of the IEEE International Conference on Cloud Computing,
pp. 135-138, 2009.

[25] OASIS WSBPEL TC. Web Services Business Process Execution Lan-
guage ver. 2.0, Oasis standard, OASIS, 2007.

