
740

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Evaluating Parallel Breadth-First Search Algorithms for Multiprocessor Systems

Matthias Makulla and Rudolf Berrendorf

Computer Science Department

Bonn-Rhein-Sieg University

Sankt Augustin, Germany

e-mail: matthias.makulla@h-brs.de, rudolf.berrendorf@h-brs.de

Abstract—Breadth-First Search is a graph traversal technique
used in many applications as a building block, e.g., to system-
atically explore a search space or to determine single source
shortest paths in unweighted graphs. For modern multicore
processors and as application graphs get larger, well-performing
parallel algorithms are favorable. In this paper, we systematically
evaluate an important class of parallel algorithms for this
problem and discuss programming optimization techniques for
their implementation on parallel systems with shared memory.
We concentrate our discussion on level-synchronous algorithms
for larger multicore and multiprocessor systems. In our results,
we show that for small core counts many of these algorithms show
rather similar performance behavior. But, for large core counts
and large graphs, there are considerable differences in perfor-
mance and scalability influenced by several factors, including
graph topology. This paper gives advice, which algorithm should
be used under which circumstances.

Index Terms—parallel breadth-first search, BFS, NUMA, mem-
ory bandwidth, data locality.

I. INTRODUCTION

Breadth-First Search (BFS) is a visiting strategy for all

vertices of a graph. BFS is most often used as a building

block for many other graph algorithms, including shortest

paths, connected components, bipartite graphs, maximum flow,

and others [1] [2] [3]. Additionally, BFS is used in many

application areas where certain application aspects are mod-

eled by a graph that needs to be traversed according to the

BFS visiting pattern. Amongst others, exploring state space

in model checking, image processing, investigations of social

and semantic graphs, machine learning are such application

areas [4].

We are interested in undirected graphs G = (V,E), where

V = {v1, ...,vn} is a set of vertices and E = {e1, ...,em} is a set

of edges. An edge e is given by an unordered pair e = (vi,v j)
with vi,v j ∈ V . The number of vertices of a graph will be

denoted by |V |= n and the number of edges is |E|= m.

Assume a connected graph and a source vertex v0 ∈V . For

each vertex u ∈V define depth(u) as the number of edges on

the shortest path from v0 to u, i.e., the edge distance from v0.

With depth(G) we denote the depth of a graph G defined as

the maximum depth of any vertex in the graph relative to the

given source vertex. Please be aware that this may be different

to the diameter of a graph, the largest distance between any

two vertices.

The problem of BFS for a given graph G = (V,E) and a

source vertex v0 ∈ V is to visit each vertex in a way such

that a vertex v1 must be visited before any vertex v2 with

...

processor

D
R
A
M

...

processor

D
R
A
M

...

processor

D
R
A
M

...

processor

D
R
A
M

processor

interconnect

Fig. 1: Principial Structure of a 4-socket Multiprocessor Multicore NUMA
system.

depth(v1)< depth(v2). As a result of a BFS traversal, either

the level of each vertex is determined or a (non-unique) BFS

spanning tree with a father-linkage of each vertex is created.

Both variants can be handled by BFS algorithms with small

modifications and without extra computational effort. The

problem can be easily extended and handled with directed

or unconnected graphs. A sequential solution to the problem

can be found in textbooks based on a queue where all non-

visited adjacent vertices of a visited vertex are enqueued [2]

[3] [5]. The computational complexity is O(|V |+ |E|). Level-

synchronous BFS algorithms work in parallel on all vertices

of one level and have a barrier synchronization [6] before the

work for the next level is launched.

Large parallel systems with shared memory are nowadays

organized as multiprocessor multicore system in a Non-

Uniform Memory Access topology [7] (NUMA; see Fig. 1). In

such systems multiple processors (usually with multiple cores)

are connected by a fast interconnection network, e.g., Quick-

Path Interconnect (QPI) on Intel systems [8] or HyperTrans-

port (HT) on AMD systems [9]. All processors / cores share a

common address space in a DRAM based main memory. The

interesting aspect is that this main memory / address space is

distributed to the NUMA nodes. This has consequences for the

performance aware programmer as accessing data on processor

i that resides on DRAM chips that are assigned / close to

processor i is faster than accessing data residing in DRAM

chips that are assigned to a different / further away processor.

Additionally, the coherence protocol may invalidate cached

data in the cache of one processor because another processor

modifies the same data. As a consequence, for a programmer

741

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

often a global view on parallel data structures is necessary

to circumvent performance degradation related to coherence

issues.

Many parallel BFS algorithms got published (see Section

II for a comprehensive overview including references), all

with certain scenarios in mind, e.g., large distributed memory

parallel systems using the message passing programming

model [10] [11] [12], algorithms variants that are tailored

to Graphic Processing Units (GPU) using a different parallel

programming model [13] [14] [15], or randomized algorithms

for fast, but possibly sub-optimal results [16]. Such original

work often contains performance data for the newly published

algorithm on a certain system, but often just for the new

approach, or taking only some parameters in the design space

into account [17] [18]. To the best of our knowledge, there

is no rigid comparison that systematically evaluates relevant

parallel BFS algorithms in detail in the design space with

respect to parameters that may influence the performance

and/or scalability and give advice, which algorithm is best

suited for which application scenario. In this paper, BFS

algorithms of a class with a large practical impact (level-

synchronous algorithms for shared memory parallel systems)

are systematically compared to each other.

The paper first gives an overview on parallel BFS algorithms

and classifies them. Second, and this is the main contribution

of the paper, a selection of level-synchronous algorithms rele-

vant for the important class of multicore and multiprocessors

systems with shared memory are systematically evaluated

with respect to performance and scalability. The results show

that there are significant differences between algorithms for

certain constellations, mainly influenced by graph properties

and the number of processors / cores used. No single algorithm

performs best in all situations. We give advice under which

circumstances which algorithms are favorable.

The paper is structured as follows. Section II gives a

comprehensive overview on parallel BFS algorithms with an

emphasis on level synchronous algorithms for shared memory

systems. Section III prescribes algorithms in detail that are of

concern in this paper. Section IV describes our experimental

setup, and, in Section V, the evaluation results are discussed,

followed by a conclusion.

II. RELATED WORK AND PARALLEL BFS ALGORITHMS

We combine in our BFS implementations presented later

in Section III several existing algorithmic approaches and

optimization techniques. Therefore, the presentation of related

work has to be intermingled with an overview on parallel BFS

algorithms itself.

In the design of a parallel BFS algorithm different chal-

lenges might be encountered. As the computational density

for BFS is rather low, BFS is memory bandwidth limited for

large graphs and therefore bandwidth has to be handled with

care. Additionally, memory accesses and work distribution are

both irregular and dependent on the data / graph topology.

Therefore, in large NUMA systems data layout and memory

access should respect processor locality [19]. In multicore

multiprocessor systems, things get even more complicated,

as several cores share higher level caches and NUMA-node

memory, but have distinct and private lower-level caches (see

Fig. 1 for an illustration).

A more general problem for many parallel algorithms in-

cluding BFS is a sufficient load balance of work to parallel

threads when static partitioning is not sufficient, e.g., distribut-

ing statically all vertices in blocks over available cores. Even

if an appropriate mechanism for load balancing is deployed,

graphs might only supply a limited amount of parallelism. As

the governing factor that influences workload and parallelism

is the average vertex degree of the traversed graph, especially

graphs with a very low average vertex degree are challenging

to most algorithms. This aspect notably affects the popular

level-synchronous approaches for parallel BFS we concentrate

on later. We discuss this aspect in Section V.

The output of an BFS algorithm is an array level of size n

that stores in level[v] the level found for the vertex v. This

array can be (mis-)used to keep track of unvisited vertices,

too, e.g., initially storing the value −1 in all array elements

marking all vertices as unvisited. We discuss in Section II-D

other possibilities. As discussed, in BFS algorithms house-

keeping has to be done on visited / unvisited vertices as well

as frontiers with several possibilities how to do that. A rough

classification of algorithms can be achieved by looking at

these strategies. Some of them are based on special container

structures where information has to be inserted and deleted.

Scalability and administrative overhead of these containers are

of interest. Many algorithms can be classified into two groups:

container centric and vertex centric approaches.

Important for level-synchronous algorithms is the notion of

a level and correlated to that a (vertex) frontier. Fig. 2 explains

that notion on an example graph and three level iterations of a

level-synchronous BFS algorithm. Starting with a given vertex

v0 this vertex makes up the initial vertex frontier and gets

assigned the level 0. All unvisited neighbors of all vertices of

the current frontier are part of the next frontier and get the

current level plus 1. Such a level iteration is repeated until no

more unvisited vertices exist. As can be seen for the example

graph in Fig. 2, housekeeping has to be done whether a vertex

is visited or not. And working on several vertices of the same

level in parallel may lead to a situation where several threads

may detect in parallel that a vertex is unvisited. Therefore,

care has to be taken to handle such situations, e.g., with

synchronization or handling unsynchronized accesses in a

appropriate way [20]. As explained before, we concentrate our

discussion on connected graphs. To extend BFS for graphs that

are not connected, another BFS traversal can be started if one

BFS traversal stops with any then unvisited vertex as long as

unvisited vertices exist.

A. Container Centric Approaches

The emphasis in this paper is on level-synchronous al-

gorithms where data structures are used, which store the

current and the next vertex frontier. Generally speaking, these

approaches deploy two identical containers (current and next)

742

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0

0 current frontier

assigned level

next frontier visited unvisited

0 0

level iteration 1 level iteration 2 level iteration 3

1 1

1

1 1

1

2

2

Fig. 2: Vertex levels and frontiers.

whose roles are swapped at the end of each iteration. Usually,

each container is accessed in a concurring manner such that the

handling/avoidance of synchronized accesses becomes crucial.

Container centric approaches are eligible for dynamic load

balancing but are sensible to data locality on NUMA systems.

Container centric approaches for BFS can be found in some

parallel graph libraries [21] [22] [23] [24].

For level synchronous approaches, a simple list (for ex-

ample an array based list) is a sufficient container. There

are approaches, in which each thread manages two private

lists to store the vertex frontiers and uses additional lists

as buffers for communication [10] [25] [26]. Each vertex is

associated with a certain thread, which leads to a static one

dimensional partitioning of the graph’s vertices. When one

thread encounters a vertex associated to another thread while

processing the adjacent vertices of its local vertex frontier, it

adds this foreign vertex to the communication buffer of the

owning thread. After a barrier synchronization each thread

processes the vertices contained in the communication buffers

of each foreign thread. As the number of threads increases, an

increased number of communication buffers must be allocated,

limiting the scalability of this approach. Due to the one

dimensional partitioning data locality can be utilized.

In contrast this approach completely neglects load balancing

mechanisms. The very reverse would be an algorithm, which

focuses on load balancing. This can be achieved by using

special lists that allow concurrent access of multiple threads.

In contrast to the thread private lists of the previous approach,

two global lists are used to store the vertex frontiers. The

threads then concurrently work on these lists and implicit

load balancing can be achieved. Concurrent lock-free lists can

be efficiently implemented with an atomic compare-and-swap

operation.

It is possible to combine both previous approaches and

create a well optimized method for NUMA architectures [17]

[18]. While a global list for the current vertex frontier supplies

fundamental work balance, it completely ignores data locality.

In the NUMA optimized approach each vertex is assigned

to one memory bank, leading to a one dimensional vertex

partitioning among the sockets / NUMA nodes. As described

above communication buffers are managed for each socket

that gather foreign vertices. The local vertex frontier for one

socket is a concurrent list, which is processed in parallel by

the threads belonging to this socket.

Furthermore, lists can be utilized to implement container

centric approaches on special hardware platforms as graphic

accelerators with warp centric programming [13] [27]. Instead

of threads, warps (groups of threads; [15]) become the gov-

erning parallel entities. With warp centric programming, BFS

is divided into two phases: SISD and SIMD. In a SISD phase,

each thread of a warp executes the same code on the same

data. These phases are used to copy global vertex chunks

to warp local memory. Special hardware techniques support

efficient copying on warp level. In the SIMD phase each

thread executes the same statements but on different data.

This is used to process the adjacent vertices of one vertex

in parallel. Because the workload is split into chunks and

gradually processed by the warps, fundamental work balancing

is ensured. To avoid ill-sized chunks another optimization may

be applied: deferring outliers [13], which will be discussed in

a later section.

Besides strict FIFO (First-In-First-Out) and relaxed list

data structures, other specialized containers may be used. A

notable example is the bag data structure [28] [29], which is

optimized for a recursive, task parallel formulation of a parallel

BFS algorithm. This data structure allows an elegant, object-

oriented implementation with implicit dynamic load balancing,

but which regrettably lacks data locality or rather leaves it

solely to a thread runtime system. A bag is an array of a

special kind of binary trees that holds the vertices of the

current and the next vertex frontier. One can insert new nodes

into a bag, split one bag into two almost equal sized bags and

unify two bags to form a new bag. All operations are designed

to work with minimal complexity. When beginning a new BFS

level iteration one bag forms the entire vertex frontier for this

iteration. The initial bag is then split into two parts. The first

part is used for the current thread and the second is used

to spawn a new thread (or parallel task). A thread splits and

spawns new tasks until its input bag is smaller than a specified

threshold. In this case the thread processes the vertices from

743

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

its partial bag and inserts the next frontier’s vertices into a

new bag. When two threads finish processing their bags, both

results are unified. This is recursively done until only one bag

remains, which then forms the new vertex frontier.

B. Vertex Centric Approaches

A vertex centric approach achieves parallelism by assigning

a parallel entity (e.g., a thread) to each vertex of the graph.

Subsequently, an algorithm repeatedly iterates over all vertices

of the graph. As each vertex is mapped to a parallel entity,

this iteration can be parallelized. When processing a vertex,

its neighbors are inspected and if unvisited, marked as part

of the next vertex frontier. The worst case complexity for this

approach is therefore O(n2) for degenerated graphs (e.g., linear

lists). This vertex centric approach might work well only, if

the graph depth is very low.

A vertex centric approach does not need any additional

data structure beside the graph itself and the resulting level-

/ f ather-array that is often used to keep track of visited

vertices. Besides barrier synchronization at the end of a level

iteration, a vertex centric approach does with some care not

need any additional synchronization. The implementation is

therefore rather simple and straightforward. The disadvantages

of vertex centric approaches are the lacking mechanisms for

load balancing and graphs with a large depth.

But this overall approach makes it well-suited for GPU’s

where each vertex is mapped to exactly one thread [30] [31].

This approach can be optimized further by using hierarchical

vertex frontiers to utilize the memory hierarchy of a graphic

accelerator, and by using hierarchical thread alignment to

reduce the overhead caused by frequent kernel restarts [32].

Their linear memory access and the possibility to take

care of data locality allow vertex centric approaches to be

efficiently implemented on NUMA machines [27]. Combined

with a proper partitioning, they are also suitable for distributed

systems, as the overhead in communication is rather low. But

as pointed out already above, this general approach is suited

only for graphs with a very low depth.

C. Other Approaches

The discussion in this paper concentrates on level-

synchronous parallel BFS algorithms for shared-memory par-

allelism. There are parallel algorithms published that use

different approaches or that are designed for other parallel ar-

chitectures in mind. In [16], a probabilistic algorithm is shown

that finds a BFS tree with high probability and that works

in practice well even with high-diameter graphs. Beamer et

al. [33] combines a level-synchronous top-down approach

with a vertex-oriented bottom-up approach where a heuristic

switches between the two alternatives; this algorithm shows for

small world graphs very good performance. Yasui et al. [34]

explores this approach in more detail for multicore systems.

In [35], a fast GPU algorithm is introduced that combines fast

primitive operations like prefix sums available with highly-

optimized libraries. A task-based approach for a combination

of CPU/ GPU is presented by Munguia et al. [36].

A BFS traversal can be implemented as a matrix-vector

product over a special semi-ring [37]. Matrix-vector mul-

tiplication is subject to elaborated research and one could

profit from highly optimized parallel implementations when

implementing BFS as a matrix-vector product.

Additionally, there are (early) algorithms that focus more

on a principial approach while ignoring important aspects of

real parallel systems [38] [39].

For distributed memory systems, the partitioning of the

graph is crucial. Basically, the two main strategies are one

dimensional partitioning of the vertices and two dimensional

edge partitioning [10]. The first approach is suited for small

distributed and most shared memory systems, while the second

one is viable for large distributed systems. Optimizations

of these approaches combine threads and processes in a

hybrid environment [37] and use asynchronous communica-

tion [40] to tolerate communication latencies: one dedicated

communication thread per process is used to take care of all

communication between the different processes. The worker

threads communicate via multiple producer / single consumer

queues with the communication thread [40]. Each worker

writes the non-local vertices to the proper queue while the

communication thread monitors these queues. When a queue

is full, the communicator sends its contents to the associated

process. This reduces the communication overhead at the end

of an iteration. Scarpazza discusses in [41] optimizations for

the Cell/B.E. processor. Pearce [42] discusses techniques to

use even NAND based Flash memories for very large graphs

that do not fit into main memory.

D. Common extensions and optimizations

An optimization applicable to some algorithms is the use of

a bitmap to keep track of visited vertices in a previous iteration

[17] instead of (mis-)using the level information to keep track

of unvisited vertices (e.g., level[v] equals -1 for an unvisited

vertex v). The intention is to keep more information on visited

vertices in a higher level of the cache hierarchy as well as to

reduce memory bandwidth demands. Bitmaps can be used to

optimize container as well as vertex centric approaches.

Fine-grained tuning like memory pre-fetching can be used

to tackle latency problems [18] (but which might produce even

more pressure on memory bandwidth).

Most container centric approaches work on vertex chunks

instead of single vertices [28]. This reduces container access

and synchronization overhead.

To avoid unequal workloads on different threads another

optimization is to defer outliers [13] that could slow down

one thread and force all others to go idle and wait for the

busy thread at the end of an iteration. Usually, outliers are

vertices with an unusual high vertex degree. When a thread

encounters an outlying vertex, this vertex is inserted into a

special container. This way processing outliers is deferred

until the end of an iteration, avoiding unequal distribution of

workload among the threads.

Besides implicit load balancing of some container centric

approaches, there exist additional methods. One is based on

744

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

shared next frontier
insert position

private chunk thread 1

(full)

copy

vertices

private chunk thread 2

(not yet full)

Fig. 3: Inserting vertices of a full chunk into the global list of a vertex frontier
with algorithm graph500.

shared next frontier

private chunk thread 1

(full)

insert chunk

private chunk thread 2

(not yet full)

Fig. 4: Inserting vertices of a full chunk into the global list of a vertex frontier
with algorithm list.

a logical ring topology [43] of the involved threads. Each

thread keeps track of its neighbor’s workload and supplies

it with additional work, if it should be idle. A single control

thread is present but the load balancing is done by the worker

threads so the controller does not become a communication

bottleneck. A downside of this optimization is that shifting

work between threads may destroy data locality and affect

overall performance.

Another approach to adapt the algorithm to the topology

of the graph monitors the size of the next vertex frontier.

At the end of an iteration, the number of active threads is

adjusted to match the workload of the coming iteration [25].

Like the previous optimization this does not go well with

data locality for NUMA architectures or distributed systems

because vertices owned by an inactive process or thread would

have to be moved to some active unit.

other sockets

current frontier

next frontier

socket

chunks[]

socket

chunks[]

other sockets

current frontier

next frontier

socket

chunks[]

socket

chunks[]

NUMA socket 0 NUMA socket 1

thread 1

thread 2

thread 3

thread 4

Fig. 5: Modeling a multicore NUMA architecture in software with algorithm
socketlist (example for a 2-socket 2-core system).

III. EVALUATED ALGORITHMS

In our evaluation, we used the following parallel algorithms,

each representing certain points in the described algorithm

design space for shared memory systems, with an emphasis

on level-synchronous algorithms:

• global: vertex-centric strategy as described in Section

II-B, with parallel iterations over all vertices on each level

[27]. The vertices are distributed statically in blocks to all

threads. As pointed out already, this will only work for

graphs with a very low depth. All data is allocated in

parallel to meet the NUMA first touch policy and take

care of data locality. First touch strategy [44] means that

the processor that executes the initial access to a part of

a data structure (usually with a granularity of a 4 KB

page of the virtual address space) allocates that part of

the data structure in the DRAM that is assigned to that

NUMA node. This is the default allocation strategy in

most operating systems including Linux. The distribution

of data and work is therefore to split the vertices into

blocks and assign each block to a different thread. Then,

the data allocation as well as the work on that data is

distributed.

• graph500: OpenMP reference implementation in the

Graph500 benchmark [21] using a single array list with

atomic Compare-And-Swap (CAS) and Fetch-And-Add

accesses to insert chunks of vertices. Vertex insertion into

core-/thread-local chunks is done without synchronized

accesses. Only the insertion of a full chunk into the global

list has to be done in a synchronized manner (atomically

increasing a write index). All vertices of a full chunk get

copied to the global array list. See Fig. 3 for a two thread

example.

• bag: using OpenMP [45] tasks and two bag containers as

described in [28]. This approach implicitly deploys load

balancing mechanisms. Because of its parallel task based

divide and conquer nature it does not take data locality

into account (but leaves it solely to the thread runtime

system). The original bag data structure is extended by

a so called hopper [28]. This additional structure serves

as a vertex cache to reduce the amount of insert opera-

tions on the main structure. In addition to the OpenMP

implementation we implemented a Cilk+ version [46] as

in the the original paper that did not show any signifi-

cant differences to the OpenMP version with respect to

performance.

• list: deploys two chunked linear lists with thread safe

manipulators based on CAS operations. Threads con-

currently remove chunks from the current node frontier

and insert unvisited vertices into private chunks. Once a

chunk is full, the chunk is inserted into the next node

frontier, relaxing concurrent access. The main difference

to graph500 is that vertices are not copied to a global

list but rather a whole chunk gets inserted (updating

pointers only). And another difference to graph500 is

related to that the distribution of vertices of a frontier to

745

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

threads is chunk-based rather than vertex based. There is

some additional overhead, if local chunks get filled only

partially. See Fig. 4 for a two thread example.

• socketlist: extends the previous approach to respect

data locality and NUMA awareness. The data is logically

and physically distributed to all NUMA-nodes (i.e., pro-

cessor sockets). Each thread primarily processes vertices

of the current vertex frontier from its own NUMA-node

list where the lists from the previous level are used for

equal distribution of work. If a NUMA-node runs out of

work, work is stolen from overloaded NUMA-nodes [17].

A newly detected vertex for the next vertex frontier is first

inserted into a thread local chunk. Instead of using only

one buffer chunk per NUMA node, n chunks are used

per NUMA node by each thread where n is the number

of NUMA nodes in the system. This simplifies NUMA-

aware insertion of a chunk into the correct part of the

next frontier. See Fig. 5 for a four threads in a 2-socket

2-core system.

• bitmap: further refinement and combination of the pre-

vious two approaches. A bitmap is used to keep track

of visited vertices to reduce memory bandwidth. Again,

built-in atomic CAS operations are used to synchronize

concurrent access [17].

The first algorithm global is vertex-centric, all others are

level-synchronous container-centric in our classification and

utilize parallelism over the current vertex front. The last

three implementations use a programming technique to trade

(slightly more) redundant work against atomic operations as

described in [20]. socketlist is the first container-centric

algorithm in the list that pays attention to the NUMA memory

hierarchy, bitmap additionally tries to reduce memory band-

width by using an additional bitmap to keep track of the binary

information whether a vertex is visited or not.

Some of the algorithms work with chunks were the chunk

size is an algorithm parameter. For those algorithms we used

a chunk size of 64 vertices. Another algorithm parameter in

the threshold value in bag; we used 1,000 for that parameter.

We did some pre experiments with these algorithm parameters

using different graphs and different system and found that

these chosen values were reasonable / best for most / many

test instances.

IV. EXPERIMENTAL SETUP

Beside the choice of the parallel algorithm itself certain

parameters may influence the performance of parallel BFS,

possibly dependent on the algorithm used. We are interested

in relative performance comparisons between the different

algorithms but also in their scalability for an increasing degree

of parallelism. The latter aspect is of particular interest as

future processors / systems will have more parallelism than

todays’ systems and that available hardware parallelism needs

to be utilized efficiently by programs / algorithms. Therefore,

scalability is a major concern. Large parallel systems with

different architectures are used in the evaluation to examine

the influence of the degree of parallelism and main system

aspects.

Furthermore, the graph topology will likely have a signifi-

cant influence on performance. Level-synchronous algorithms

in general need on each level enough parallelism to feed all

available threads. On the other side, if there is significantly

more parallelism available than the number of threads, this

parallelism has to be managed. Therefore, the available paral-

lelism in each BFS level as well as the distribution of available

parallelism over all levels is of interest when evaluating such

algorithms.

In this section, we specify our parallel system test envi-

ronment, describe classes of graphs and chosen graph repre-

sentatives in this classes. The algorithms are implemented in

C and partially C++ using the OpenMP parallel programming

model [45]. Porting this to other parallel programming models

utilizing thread-based shared memory parallelism like the new

thread functionality in the recent language standards for C

[47] and C++ [48], or using similar thread-based programming

models like PThreads [49] or Cilk+ [46] should be rather

straightforward.

To be able to handle also very large graphs, 64 bit indices

were used throughout all tests unless otherwise stated. A

discussion on using 32 bit indices (which can reduce memory

bandwidth demands significantly) for graphs that are limited

to roughly 4 billion vertices / edges is done in Section V-C.

A. Test Environment

Today, any mainstream system with more than one proces-

sor socket is organized as a NUMA system. Fig. 1 has shown

the principal system architecture of such a system, in the

example shown for a 4 socket system. On such systems, espe-

cially data-intensive algorithms have to respect distributed data

allocation [44] [50] and processor locality [19] in the execution

of an algorithm. Beside the performance characteristics of the

memory hierarchy known from modern processors [7], in a

NUMA system an additional penalty exists if a core accesses

data that is not cached by a private L1/L2 cache of this core

or the shared L3 cache of the corresponding processor, and

the data resides in that part of the distributed main memory

that is allocated on a different NUMA socket.

We used in our tests parallel systems (see Table I for

details) that span a spectrum of system parameters, mainly the

degree of parallelism, NUMA topology, cache sizes, and cycle

time. The largest system is a 64-way AMD-6272 Interlagos

based system with 128 GB shared memory organized in 4

NUMA nodes, each with 16 cores. An additional AMD based

system with 4 NUMA nodes but fewer core count was used,

too. Two other systems are Intel based systems with only 2

NUMA nodes each. We will focus our discussion on the larger

Interlagos system and discuss in Section V-C the influence of

the system details.

B. Graphs

It is obvious that graph topology will have a significant

influence on the performance of parallel BFS algorithms. We

746

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I: SYSTEMS USED.

name Intel-IB Intel-SB AMD-IL AMD-MC

processor:

manufacturer Intel Intel AMD AMD
CPU nodel E5-2697 E5-2670 Opteron 6272 Opteron 6168
architecture Ivy Bridge Sandy Bridge Interlagos Magny Cours
frequency[GHz] 2.7 2.6 2.1 1.9
last level cache size [MB] 30 20 16 12

system:

memory [GB] 256 128 128 32
number of CPU sockets 2 2 4 4
n-way parallel 48 32 64 48

used some larger real graphs from the DIMACS-10 challenge

[51], the Florida Sparse Matrix Collection [52], and the

Stanford Large Dataset Collection [53]. Additionally, we used

synthetically generated pseudo-random graphs that guarantee

certain topological properties. R-MAT [54] is such a graph

generator with parameters a,b,c influencing the topology and

clustering properties of the generated graph (see [54] for

details). R-MAT graphs are mostly used to model scale-free

graphs. The graph friendster and larger RMAT-graphs could

not be used on all systems due to memory requirements. We

used in our tests graphs of the following classes:

• Graphs with a very low average and maximum vertex

degree resulting in a rather high graph depth and limited

vertex fronts. A representative for this class is the road

network road-europe.

• Graphs with a moderate average and maximum vertex de-

gree. For this class we used Delaunay graphs representing

Delaunay triangulations of random points (delaynay) and

a graph for a 3D PDE-constraint optimization problem

(nlpkkt240).

• Graphs with a large variation of degrees including few

very large vertex degrees. Related to the graph size, they

have a smaller graph depth. For this class of graphs we

used a real social network (friendster), link information

for web pages (wikipedia), and synthetically generated

Kronecker R-MAT graphs with different vertex and edge

counts and three R-MAT parameter sets. The first parame-

ter set named 30 is a = 0.3,b = 0.25,c = 0.25, the second

parameter set 45 is a = 0.45,b = 0.25,c = 0.15, and the

third parameter set 57 is a = 0.57,b = 0.19,c = 0.19.

All our test graphs are connected, for R-MAT graphs guaran-

teed with n−1 artificial edges connecting vertex i with vertex

i+1. Some important graph properties are given in Table II.

For a general discussion on degree distributions of R-MAT

graphs see [55].

V. RESULTS

In this section, we discuss our results for the described

test environment. Performance results will be given in Million

Traversed Edges Per Second MT EPS := m/t/106, where m is

the number of edges and t is the elapsed time in seconds

an algorithm takes. MTEPS is a common metric for BFS

performance [21] (higher is better). To give an idea on the

elapsed time, for example an MTEPS value of 2000 for the

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000

si
ze

 (
nu

m
be

r
of

 v
er

tic
es

)

level iteration

road-europe wikipedia friendster

Fig. 6: Dynamic sizes of some vertex frontiers and potential parallelism.

graph RMAT-1M-1G-57 with 1 million vertices and 1 billion

edges corresponds to 250 milliseconds execution time for the

whole graph traversal on the system Intel-SB. In an undirected

graph representing an edge internally with two edges (u,v) and

(v,u) only half of the internal edges are counted in this metric.

On large and more dense graphs, MTEPS values are gener-

ally higher than on very sparse graphs. This is due to the fact

that in denser graphs many visited edges do not generate an ad-

ditional entry (and therefore work) in a container of unvisited

vertices. This observation is not true for the algorithm global,

where in all levels all vertices get traversed. The MTEPS

numbers for the graphs and systems used vary between less

than 1 and approx. 3,500, depending on the graph, system and

algorithm.

In the following discussion on results, we distinguish be-

tween different views on the problem. It is not possible to

show all our results in this paper in detail (4 parallel systems,

26 different graphs, up to 11 thread counts, 32/64 bit versions,

different compilers / compiler switches). Rather than that, we

summarize results and show only interesting or representative

aspects in detail.

A. Graph Properties and Scalability

In terms of scalability, parallel algorithms need enough

parallel work to feed all threads. For graphs with limiting

properties, such as very small vertex degrees or small total

number of vertices / edges, there are problems to feed many

parallel threads. Additionally, congestion in accessing smaller

shared data structures arise.

Fig. 6 shows relevant vertex frontier sizes for 3 selected

graphs showing different characteristics. The x axis gives the

level of BFS traversal, the y axis shows the corresponding

747

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II: CHARACTERISTICS OF THE USED GRAPHS.

degree graph

graph name |V |×106 |E|×106 avg. max. depth

delaunay (from [51]) 16.7 100.6 6 26 1650

nlpkkt240 (from [52]) 27.9 802.4 28.6 29 242

road-europe (from [51]) 50.9 108.1 2.1 13 17345

wikipedia (from [52]) 3.5 45 12.6 7061 459

friendster (from [53]) 65.6 3612 55 5214 22

RMAT-1M-10M-30 1 10 10 107 11
RMAT-1M-10M-45 1 10 10 4726 16
RMAT-1M-10M-57 1 10 10 43178 400
RMAT-1M-100M-30 1 100 100 1390 9
RMAT-1M-100M-45 1 100 100 58797 8
RMAT-1M-100M-57 1 100 100 530504 91
RMAT-1M-1G-30 1 1000 1000 13959 8
RMAT-1M-1G-45 1 1000 1000 599399 8
RMAT-1M-1G-57 1 1000 1000 5406970 27

RMAT-100M-1G-30 100 1000 10 181 19
RMAT-100M-1G-45 100 1000 10 37953 41
RMAT-100M-1G-57 100 1000 10 636217 3328
RMAT-100M-2G-30 100 2000 20 418 16
RMAT-100M-2G-45 100 2000 20 85894 31
RMAT-100M-2G-57 100 2000 20 1431295 1932
RMAT-100M-4G-30 100 4000 40 894 15
RMAT-100M-4G-45 100 4000 40 180694 31
RMAT-100M-4G-57 100 4000 40 3024348 1506
RMAT-100M-8G-30 100 8000 40 1807 15
RMAT-100M-8G-45 100 8000 40 371454 21
RMAT-100M-8G-57 100 8000 40 6210095 1506

size of the vertex frontier for this level. The frontier size

for friendster has a steep curve (i.e., there is soon enough

parallelism available) that remains high for nearly all level

iterations. The frontier size for wikipedia start similar, but

has for the later level iterations only few vertices per frontier

left, which restricts any level-synchronous BFS algorithm in

utilizing parallelism in this later level iterations. And the worst

case shown is the graph road-europe where the frontier size

never exceeds more than roughly 10,000 vertices. Working

on 10,000 vertices with 64 threads means that every thread

has not more than roughly 150 vertices to work on, and the

computational density for BFS is rather low.

For graphs with such limiting properties (road network,

the delaunay graph and partially small RMAT-graphs), for all

analyzed algorithms performance is limited or even drops as

soon the number of threads is beyond some threshold; on all of

our systems around 8-16 threads. Fig. 7a shows the worst case

of such an behavior with road-europe. For graphs with such

properties, other algorithms different to a level-synchronous

approach should be taken into account, e.g., [16].

For large graphs and / or high vertex degrees (all larger

R-MAT graphs, friendster, nlpkkt240), the results were

quite different from that and all algorithms other than global

showed on nearly all such graphs and with few exceptions a

continuous but in detail different performance increase over

all thread counts (see Fig. 7b for an example and the detailed

discussion below). Best speedups reach nearly 40 (bitmap with

RMAT-1M-1G-30) on the 64-way parallel system.

For denser graphs with a very low depth often all algorithms

show a very similar behavior and even absolute performance,

even with an increasing number of threads. See Fig. 8 for an

 0

 5

 10

 15

 20

 25

 30

 35

 10 20 30 40 50 60

M
T

E
P

S

number of threads

global
graph500

bag
list

socketlist
bitmap

(a) Limited scalability with graph road-europe on system AMD-IL.

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60

M
T

E
P

S

number of threads

global
graph500

bag
list

socketlist
bitmap

(b) Continuous performance increase with more threads for graph friendster
on system Intel-IB.

Fig. 7: Differences in Scalability.

example.

B. Algorithms

For small thread counts up to 4-8, all algorithms other

than global show with few exceptions and within a factor of

748

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 10 20 30 40 50 60

M
T

E
P

S

number of threads

global
graph500

bag
list

socketlist
bitmap

Fig. 8: Similar principal behavior for dense graphs with a small depth like on
the graph RMAT-1M-1G-30 on system Intel-IB with 32 bit indices.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 20 30 40 50 60

M
T

E
P

S

number of threads

global
graph500

bag
list

socketlist
bitmap

(a) Benefit of NUMA awareness for graph RMAT-100M-1G-57 on system
AMD-IL.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 20 30 40 50 60

M
T

E
P

S

number of threads

global
graph500

bag
list

socketlist
bitmap

(b) Memory bandwidth optimization with algorithm bitmap for graph
friendster on system AMD-IL.

Fig. 9: Benefits of clever memory handling.

2 comparable results in absolute performance and principal

behavior. Therefore, for small systems / a low degree of

parallelism the choice of algorithm is not really crucial. But

for large thread counts, algorithm behavior can be quite dif-

ferent. Therefore, we concentrate the following discussion on

individual algorithms primarily on large thread counts (more

than 8).

The algorithm global has a very different approach than all

other algorithms, which can be also easily seen in the results.

For large graphs with low vertex degrees, this algorithm per-

forms extremely poor as many level-iterations are necessary,

e.g., factor 100 slower for the road graph compared to the

second worst algorithm; see Fig. 7a for an example of that

behavior. The algorithm is only competitive on the systems

we used if the graph is very small and the graph depth is very

low resulting in only a few level-iterations, e.g., less than 10.

See Fig. 8 for an example.

The graph500 algorithm uses atomic operations to incre-

ment the position where (a chunk of) vertices get to be inserted

into the new vertex front. Additionally, all vertices of a local

chunk get copied to the global list (vertex front). This can be

fast as long as the number of processors is small. But, as the

number of threads increases, the cost per atomic operation

increases [20], and therefore, the performance drops often

significantly relative to other algorithms. Additionally, this

algorithm does not respect data / NUMA locality on copying

vertices from a local chunk to a global list, which gets a serious

problem with large thread counts.

Algorithm bag shows only good results for small thread

counts or dense graphs. Similar to graph500, this algorithm is

not locality / NUMA aware. The bag data structure is based

on smaller substructures. Because of the recursive and task

parallel nature of the algorithm, the connection between the

allocating thread and the data is lost, often destroying data

locality as the thread count increases. Respecting locality is

delegated solely to the run-time system mapping tasks to

cores / NUMA nodes. In principle, it is often a good idea

to delegate complex decisions to runtime systems. But in this

case the runtime system (without modifications / extensions)

has not enough knowledge about the whole context that would

be necessary to further optimize the affinity handling in a

more global view. Explicit affinity constructs as in the latest

OpenMP version 4.0 [45] could be interesting for that to

explicitly optimize this algorithm for sparser graphs or many

threads instead of leaving all decisions to the runtime system.

The simple list algorithm has good performance values

for small thread counts. But for many threads, list performs

rather poor on graphs with high vertex degrees. Reasons are

implementation specific the use of atomic operations for insert

/ remove of full / final chunks and that in such vertex lists

processor locality is not properly respected. When a thread

allocates memory for a vertex chunk and inserts this chunk into

the next node frontier, the chunk might be dequeued by another

thread in the next level iteration. This thread might be executed

on a different NUMA-node, which results in remote memory

accesses. This problem becomes larger with increasing thread

/ processor counts. The list algorithm has on the other side

a very low computational overhead such that this algorithms

is often very good with a small thread count.

The socketlist approach improves the list idea with

respect to NUMA aware data locality at the expensive of

an additional more complex data structure. For small thread

counts, this is an additional overhead that often does not pay

off but on the other side also does not drop performance in

a relevant way. But for larger thread counts, the advantage is

obvious looking at the cache miss and remote access penalty

time of current and future processors (see Fig. 9).

The additional overhead of the bitmap algorithm makes this

algorithm with only a few threads even somewhat slower than

some other algorithms (but again not in a relevant way). But

the real advantage shows off with very large and dense graphs

and large thread counts, when even higher level caches are not

749

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0

100

200

300

400

500

600

700

800

900

graph500 global list socketlist bag bitmap

t
e

s
t
 i
n

s
t
a

n
c
e

s

rank 6

rank 5

rank 4

rank 3

rank 2

rank 1

(a) Algorithm ranking for all test instances.

0

50

100

150

200

250

300

350

400

graph500 global list socketlist bag bitmap

t
e

s
t
 i
n

s
t
a

n
c
e

s

rank 6

rank 5

rank 4

rank 3

rank 2

rank 1

(b) Algorithm ranking for a thread count up to 8.

0

50

100

150

200

250

300

350

400

450

500

graph500 global list socketlist bag bitmap

t
e

s
t
 i
n

s
t
a

n
c
e

s

rank 6

rank 5

rank 4

rank 3

rank 2

rank 1

(c) Algorithms ranking for a thread count 16 and more.

Fig. 10: Relative performance ranking of algorithms.

sufficient to buffer vertex fronts and memory bandwidth gets

the real bottleneck. The performance difference to all other

algorithms can then be significant and is even higher with

denser graphs (see Figs. 8, 9a, 9b).

In the above discussion performance observations on algo-

rithms were given in a general way but explicitly shown only

for selected examples. Fig. 10 shows summarizing statistics

on the algorithms for all graphs on all systems and all

thread counts. The six algorithms of interest are ranked for

each problem instance (graph, system, thread count) on their

relative performance to each other with a rank from 1 to

6. An algorithm ranked first for a problem instance was

the best performing algorithm for that problem instance. A

rank says nothing about the absolute difference between two

algorithms for a problem instance. The difference between two

performance numbers might be rather small while for another

problem instance the performance of the algorithm ranked first

might be significant higher then the performance of the second

ranked algorithm.

Fig. 10 shows three histograms: for all test instances, for

thread counts up to 8 (i.e., small parallel systems), and for

threads counts of 16 and more (i.e., large parallel systems). As

a remark, the results for very different graphs topologies are

summarized in these diagrams such that for example for very

small graphs algorithms with a startup overhead to generate

complex data structures have a disadvantage and may be

ranked lower. As can be clearly seen, the algorithms that

optimize memory accesses (awareness of NUMA topology,

memory bandwidth reduction) show best results. This is es-

pecially true for many threads and for the two systems with

4 NUMA nodes (see for example Figs. 7b and 9b for this

observation). The algorithm bitmap was ranked first or second

in more than 75% of all problems instances with large threads

counts and roughly 50% even for small threads counts. Also,

evidently the algorithm global is worst in more than halve of

all instances.

C. Influence of the system architecture

As described in Section IV, we used in our tests dif-

ferent systems but concentrated our discussions so far on

results on the largest AMD-IL system. While the principle

system architecture on Intel and AMD systems got in the last

years rather similar, implementation details, e.g., on cache

coherence, atomic operations, cache sizes, and the micro-

architecture are quite different [56] [57].

While the Intel systems are 2 socket systems, the AMD

systems are 4 socket system, and the latter systems showed

(as expected) more sensibility to locality / NUMA. Fig. 11

shows this sensibility for the same graph on a 4 socket system

and on a 2 socket system. While on the 4 NUMA node

system the bitmap algorithm has more advantages than all

other algorithms, on the less sensitive 2 NUMA node system

the performance difference of the algorithms to all other

algorithms is less.

Hyper-Threading on Intel systems gave improvements only

for large RMAT graphs. There is a choice of using 32 bit

indices (i.e., the data type int or unsigned int) or 64 bit

indices (i.e., the data type long or unsigned long). Using a 32

bit index limits the number of vertices / edges to not more than

roughly 4 billion. On the other side, a 32 bit index requires

less memory bandwidth, which is rather preciously for a BFS

algorithm with very low computational density. Comparing

32 bit ro 64 bit results showed as expected performance

improvements due to lower memory bandwidth requirements

750

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 20 30 40 50 60

M
T

E
P

S

number of threads

global
graph500

bag
list

socketlist
bitmap

(a) 2 NUMA nodes for graph RMAT-100M-1G-57 on system Intel-IB.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 20 30 40 50 60

M
T

E
P

S

number of threads

global
graph500

bag
list

socketlist
bitmap

(b) 4 NUMA nodes for graph RMAT-100M-1G-57 on system AMD-IL.

Fig. 11: Difference in NUMA nodes.

 0

 500

 1000

 1500

 2000

 2500

 10 20 30 40 50 60

M
T

E
P

S

number of threads

global
graph500

bag
list

socketlist
bitmap

(a) 64 bit indices for graph RMAT-1M-1G-30 on system Intel-SB.

 0

 500

 1000

 1500

 2000

 2500

 10 20 30 40 50 60

M
T

E
P

S

number of threads

global
graph500

bag
list

socketlist
bitmap

(b) 32 bit indices for graph RMAT-1M-1G-30 on system Intel-SB.

Fig. 12: Switching from 64 to 32 bit indices.

and fitting more information in caches. These improvements

were around 20-30% for all algorithms other than bitmap

(with a less bandwidth pressure than the other algorithms).

Fig. 12 shows an example for this improvement. The absolute

improvement is for example for 32 threads roughly 1800

MTEPS with 32 bit indices compared to roughly 1500 MTEPS

with 64 bit indices. The advantage of the algorithm bitmap

compared to all other algorithms decreases as the pressure on

memory bandwidth in decreased with 32 bit instead of 64 bit

indices.

VI. CONCLUSIONS

In our evaluation for a selection of parallel level syn-

chronous BFS algorithms for shared memory systems, we

showed that for small systems / a limited number of threads

all algorithms other than global behaved almost always rather

similar, including absolute performance. Therefore, for very

small systems the choice of parallel BFS algorithm other than

global is not crucial.

But using large parallel NUMA-systems with a deep mem-

ory hierarchy, the evaluated algorithms show often significant

differences. Here, the NUMA-aware algorithms socketlist

and bitmap showed constantly good performance and good

scalability, if vertex fronts are large enough. Both algorithms

utilize dynamic load balancing combined with locality han-

dling, this combination is a necessity on larger NUMA sys-

tems. Especially on larger and more dense graphs, the bitmap

shows often significant performance advantages over all other

algorithms (approx. 75% of all test instances ranked first or

second). Using 32 bit indices for smaller graphs instead of 64

bit indices reduces the benefit of this algorithm compared to

the others.

The level-synchronous approach should be used only if the

graph topology ensures enough parallelism on each / on most

levels for the given system. Otherwise, any level-synchronous

BFS algorithm has problems to feed that many threads.

ACKNOWLEDGEMENTS

The system infrastructure was partially funded by an in-

frastructure grant of the Ministry for Innovation, Science, Re-

search, and Technology of the state North-Rhine-Westphalia.

We thank the anonymous reviewers for their careful reading

and their helpful comments and suggestions on an earlier

version of the manuscript.

REFERENCES

[1] R. Berrendorf and M. Makulla, “Level-synchronous parallel breadth-
first search algorithms for multicore- and multiprocessors systems,” in
Proc. Sixth Intl. Conference on Future Computational Technologies and

Applications (FUTURE COMPUTING 2014), 2014, pp. 26–31.
[2] R. Sedgewick, Algorithms in C++, Part 5: Graph Algorithms, 3rd ed.

Addison-Wesley Professional, 2001.
[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms, 3rd ed. The MIT Press, 2009.
[4] C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and B. Y. Zhao, “User

interactions in social networks and their implications,” in Proc. 4th ACM

European Conference on Computer Systems (Eurosys), 2009, pp. 205–
218.

[5] J. G. Siek, L.-Q. Lee, and A. Lumbdsdaine, The Boost Graph Library.
Addison-Wesley Professional, 2001.

751

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[6] P. S. Pacheco, An Introduction to Parallel Programming. Burlington,
MA: Morgan Kaufman, 2011.

[7] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-

tative Approach, 5th ed. Morgan Kaufmann Publishers, Inc., 2012.

[8] Intel, Intel R© Quickpath Interconnect Maximizes Multi-Core

Performance, http://www.intel.com/technology/quickpath/, retrieved:
22.11.2014.

[9] Hypertransport Consortium, http://www.hypertransport.org/, retrieved:
22.11.2014.

[10] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson,
and U. Catalyurek, “A scalable distributed parallel breadth-first search
algorithm on BlueGene/L,” in ACM/IEEE Conf. on Supercomputing,
2005, pp. 25–44.

[11] F. Checconi, J. Willcock, and A. R. Choudhury, “Breaking the speed
and scalability barriers for graph exploration on distributed-memory
machines,” in Proc. Intl. Conference on High-Performance Computing,

Networking and Storage and Analysis (SC’12), 2012, pp. 1–12.

[12] Message Passing Interface Forum, “MPI: A message-passing interface
standard, version 3.0,” Tech. Rep., Jul. 2012.

[13] S. Hong, S. Kim, T. Oguntebi, and K. Olukotun, “Accelerating CUDA
graph algorithms at maximum warp,” in Proc. 16th ACM Symp. Princi-

ples and Practice of Parallel Processing (PPoPP), 2011, pp. 267–276.

[14] D. Li and M. Becchi, “Deploying graph algorithms on GPUs: an adaptive
solution,” in Proc. 27nd Intl. Symp. on Parallelism and Distributed

Computing (IPDPD2013). IEEE, 2013, pp. 1013–1024.

[15] CUDA Toolkit Documentation v6.0, Nvidia,
http://docs.nvidia.com/cuda/, 2014, retrieved: 22.11.2014.

[16] J. D. Ullman and M. Yannakakis, “High-probability parallel transitive
closure algorithms,” SIAM Journal Computing, vol. 20, no. 1, pp. 100–
125, 1991.

[17] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader, “Scalable graph
exploration on multicore processors,” in ACM/IEEE Intl.Conf. for High

Performance Computing, Networking, Storage and Analysis (HPCNSA),
2010, pp. 1–11.

[18] J. Chhungani, N. Satish, C. Kim, J. Sewall, and P. Dubey, “Fast and
efficient graph traversal algorithm for CPUs: Maximizing single-node
efficiency,” in Proc. 26th Intl. Parallel and Distributed Processing

Symposium. IEEE, 2012, pp. 378–389.

[19] A. Agarwal and A. Gupta, “Temporal, processor and spatial locality
in multiprocessor memory references,” Frontiers of Computing Systems

Research, vol. 1, pp. 271–295, 1990.

[20] R. Berrendorf, “Trading redundant work against atomic operations on
large shared memory parallel systems,” in Proc. Seventh Intl. Conference

on Advanced Engineering Computing and Applications in Sciences

(ADVCOMP), 2013, pp. 61–66.

[21] Graph 500 Comitee, Graph 500 Benchmark Suite,
http://www.graph500.org/, retrieved: 22.11.2014.

[22] D. Bader and K. Madduri, “SNAP, small-world network analysis and
partitioning: an open-source parallel graph framework for the exploration
of large-scale networks,” in 22nd IEEE Intl. Symp. on Parallel and

Distributed Processing, 2008, pp. 1–12.

[23] N. Edmonds, J. Willcock, A. Lumsdaine, and T. Hoefler, “Design of a
large-scale hybrid-parallel graph library,” in Intl. Conference on High

Performance Computing Student Reserarch Symposium. IEEE, Dec.
2010.

[24] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” in Proc. Principles and Practice of

Parallel Processing. IEEE, 2013, pp. 135–146.

[25] Y. Xia and V. Prasanna, “Topologically adaptive parallel breadth-first
search on multicore processors,” in 21st Intl. Conf. on Parallel and

Distributed Computing and Systems, 2009, pp. 1–8.

[26] D. Bader and K. Madduri, “Designing multithreaded algorithms for
breadth-first search and st-connectivity on the Cray MTA-2,” in 35th

Intl. Conf. on Parallel Processing, 2006, pp. 523–530.

[27] S. Hong, T. Oguntebi, and K. Olukotun, “Efficient parallel graph
exploration on multi-core CPU and GPU,” in Intl. Conf. on Parallel

Architectures and Compilation Techniques, 2011, pp. 78–88.

[28] C. E. Leiserson and T. B. Schardl, “A work-efficient parallel breadth-
first search algorithm (or how to cope with the nondeterminism of
reducers),” in Proc. 22nd ACM Symp. on Parallelism in Algorithms and

Architectures, 2010, pp. 303–314.

[29] T. B. Schardl, “Design and analysis of a nondeterministic parallel
breadth-first search algorithm,” Master’s thesis, MIT, EECS Department,
Jun. 2010.

[30] P. Harish and P. Narayanan, “Accelerating large graph algorithms on the
GPU using CUDA,” in 14th Intl. Conf. on High Performance Computing,
2007, pp. 197–208.

[31] P. Harish, V. Vineet, and P. Narayanan, “Large graph algorithms for
massively multithreaded architectures,” IIIT Hyderabad, Tech. Rep.,
2009.

[32] L. Luo, M. Wong, and W. Hwu, “An effective GPU implementation of
breadth-first search,” in 47th Design Automation Conference, 2010, pp.
52–55.

[33] S. Beamer, K. Asanovic, and D. Patterson, “Direction-optimizing
breadth-first search,” in Proc. Supercomputing 2012, 2012, pp. 1–10.

[34] Y. Yasui, K. Fujusawa, and K. Goto, “NUMA-optimized parallel
breadth-first search on multicore single-node system,” in Proc. IEEE

Intl. Conference on Big Data, 2013, pp. 394–402.
[35] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU graph traver-

sal,” in Proc. Principles and Practice of Parallel Processing. IEEE,
2012, pp. 117–127.

[36] L.-M. Munguı̀a, D. A. Bader, and E. Ayguade, “Task-based
parallel breadth-first search in heterogeneous environments,” in
Proc. Intl. Conf. on High Performance Computing (HiPC 2012), 2012,
pp. 1–10.

[37] A. Buluç and K. Madduri, “Parallel breadth-first search on distributed
memory systems,” in Proc. Supercomputing. IEEE, 2011, pp. 65–79.

[38] H. Gazit and G. L. Miller, “An improved parallel algorithm that computer
the BFS numbering of a directed graph,” Information Processing Letters,
vol. 28, pp. 61–65, Jun. 1988.

[39] R. K. Gosh and G. Bhattacharjee, “Parallel breadth-first search algo-
rithms for trees and graphs,” Intern. Journal Computer Math., vol. 15,
pp. 255–268, 1984.

[40] H. Lv, G. Tan, M. Chen, and N. Sun, “Understanding parallelism in
graph traversal on multi-core clusters,” Computer Science – Research

and Development, vol. 28, no. 2-3, pp. 193–201, 2013.
[41] D. Scarpazza, O. Villa, and F. Petrini, “Efficient breadth-first search on

the Cell/BE processor,” IEEE Trans. Par. and Distr. Systems, pp. 1381–
1395, 2008.

[42] R. Pearce, M. Gokhale, and N. M. Amato, “Scaling techniques
for massive scale-free graphs in distributed (external) memory,” in
Proc. Intl. Symposium on Parallel and Distributed Processing (IPDPS).
IEEE, 2013, pp. 825–836.

[43] Y. Zhang and E. Hansen, “Parallel breadth-first heuristic search on a
shared-memory architectur,” in AAAI Workshop on Heuristic Search,

Memory-Based Heuristics and Their Applications, 2006, pp. 1 – 6.
[44] B. Chapman, G. Jost, and R. van der Pas, Using OpenMP. Cambridge,

MA: The MIT Press, 2008.
[45] OpenMP Application Program Interface, 4th ed., OpenMP Archi-

tecture Review Board, http://www.openmp.org/, Jul. 2013, retrieved:
22.11.2014.

[46] Intel R© CilkTMPlus, https://software.intel.com/en-us/intel-cilk-plus, re-
trieved: 22.11.2014.

[47] ISO/IEC 9899:2011 - Programming Languages – C, ISO, Genf,
Schweiz, 2011.

[48] ISO/IEC 14882:2011 Programming Languages – C++, ISO, Genf,
Schweiz, 2011.

[49] IEEE, Posix.1c (IEEE Std 1003.1c-2013), Institute of Electrical and
Electronics Engineers, Inc., 2013.

[50] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and
R. Menon, Parallel Programming in OpenMP. San Francisco: Morgan
Kaufman Publishers, 2001.

[51] DIMACS, DIMACS’10 Graph Collection,
http://www.cc.gatech.edu/dimacs10/, retrieved: 22.11.2014.

[52] T. Davis and Y. Hu, Florida Sparse Matrix Collection,
http://www.cise.ufl.edu/research/sparse/matrices/, retrieved: 22.11.2014.

[53] J. Leskovec, Stanford Large Network Dataset Collection,
http://snap.stanford.edu/data/index.html, retrieved: 22.11.2014.

[54] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model
for graph mining,” in SIAM International Conference on Data Mining,
2004, pp. 442 – 446.

[55] C. Groër, B. D. Sullivan, and S. Poole, “A mathematical analysis of the
R-MAT random graph generator,” Networks, vol. 58, no. 3, pp. 159–170,
Oct. 2011.

[56] Intel, Intel R© 64 and IA-32 Architectures Optimization Reference Man-

ual, 2014.
[57] Advanced Micro Devices, Software Optimization Guide for AMD Family

15h Processors, Jan. 2012.

