
539

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Combining Association Mining with Topic Modeling
to Discover More File Relationships

Namita Dave, Karen Potts, Vu Dinh, and Hazeline U. Asuncion
School of Science, Technology, Engineering, and Mathematics

University of Washington Bothell
Bothell, WA, USA

{namitad , pottsk2 , vdinh143, hazeline}@u.washington.edu

Abstract— Software maintenance tasks require familiarity with
the entire software system to make proper changes. Often,
maintenance engineers who did not develop the software are
tasked with corrective or adaptive maintenance tasks. As a
result, modifying the software becomes a time-consuming
process due to their lack of familiarity with the source code.
To help software engineers locate relevant files for a
maintenance task, association mining has been used to identify
the files that frequently change together in a software
repository. However, association mining techniques are
limited to the amount of project history stored in a software
repository. We address this difficulty by using a technique
that combines association mining with topic modeling, referred
to as Frequent Pattern Growth with Latent Dirichlet
Allocation (FP-LDA). Topic modeling aims to uncover file
relationships by learning semantic topics from source files. We
validated our technique via experiments on seven open source
projects with different project characteristics. Our results
indicate that FP-LDA can find more related files than
association mining alone. We also offer lessons learned from
our investigation.

Keywords-Association mining; Topic Modeling; Software
Engineering.

I. INTRODUCTION

Software maintenance has been known to incur the
highest cost among the different phases in the software
lifecycle [1, 2]. This may be due to an engineer’s
unfamiliarity with the software to modify, requiring more
time to understand the source code [3]. Maintenance tasks
also become more difficult as the complexity of the code
increases and as code degradation occurs over time, due to
patches and workarounds [4].

To assist with software maintenance tasks, various
techniques have been proposed to find related source code,
including static and dynamic analyses, recommendation
systems, and code search techniques. Static analysis
techniques, more specifically, dependency analysis, provide
file relationships based on call graphs [5]. Dynamic analysis
tools, meanwhile, are able to identify relationships between
files based on execution traces [6]. These techniques,
however, are generally language-specific. Recommendation
systems, meanwhile, provide possible files of interest based
on a developer’s past activities, textual similarity, check-in
records, or email records [7, 8]. These systems generally use
information retrieval techniques, along with user context, to

provide files of interest. Code search techniques find related
code based on syntactic or structural matches [9].

Association mining is another technique used to find
related files. Association mining uncovers relationships
between files, based on files that have been modified
together in the past. This technique generates rules, which
specify which files are frequently changed together. Unlike
the other techniques, association mining is not specific to the
programming language used or restricted to syntactic or
structural matches of a query.

The most commonly used algorithms for association
mining are Apriori [10] and Frequent Pattern Growth (FP-
Growth) [11]. While these algorithms provide some level of
accuracy, they are highly dependent on the project history. If
there are not enough modifications in the software project, or
if the modifications are sparse throughout the software
system, there are fewer chances that association mining will
result in correct rules.

Meanwhile, machine learning techniques, such as Latent
Dirichlet Allocation (LDA), allow us to automatically detect
relationships between files based on semantic similarity.
LDA is an unsupervised statistical approach for learning
semantic topics from a set of documents [12]. It is a fully
automated approach that does not require training labels. It
only requires a set of documents and number of topics to
learn.

Thus, we aim to address the challenges of association
mining by combining it with LDA. Our technique, Frequent
Pattern Growth with Latent Dirichlet Allocation (FP-LDA),
allows us to achieve better recall results than solely using
association mining. By combining these two techniques, we
are able to overcome the limitations of each technique. LDA
allows us to find file associations even with limited
modification history. Association mining, meanwhile,
allows us to find associations among files where semantic
similarities may not be readily apparent. We previously
introduced FP-LDA [1] but this paper provides more details
regarding our technique.

The contributions of this research paper are as follows:
(1) combination of association mining and topic modeling to
identify file relationships in a software project, (2)
experiments on seven open source projects, and (3) lessons
learned in effectively using these techniques. We also
created a set of tools that automates the entire process—from
pre-processing the data to querying related files.

540

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We envision our technique being used in the following
scenarios: a developer presented with a modification task
knows at least one file to change and would like to know
what other files to change; a technical lead wishes to ensure
that changes performed by a teammate are complete; a
maintenance engineer needs to perform impact analysis to
determine the feasibility of changing a section of the code.

The rest of the paper is organized as follows. Section II
covers background on association mining and Section III
covers background on topic modeling. In Section IV, we
present our combined approach, FP-LDA. We then validate
our approach in Section V. Section VI covers lessons
learned. We conclude with future work.

II. ASSOCIATION MINING

This section covers background on association mining,
selection of the association mining technique, application,
limitations, and related work.

A. Background

Association rule mining is a method used to discover
patterns in large data sets. Initially, it was used in Market
Basket Analysis to find how items bought by customers are
related [13]. Rules are mined from the dataset, such as
“Customers who bought item A also bought item B”. In the
case of mining file associations in software projects, rules
such as “Developers who modified file A also modified file
B” are mined [14]. In order to mine these rules, patterns must
be analyzed in the dataset.

We now discuss the main ideas of association mining
based on work by Agrawal and Srikant [10], as applied to
software development.

},...,,{ 21 miiiI 

 (1)

Let (1) represent the total set of items. In this paper, the files
in the repository are items. T represents a set of transactions

},,...,,{ 21 ntttT 

(2)

which are in the software repository being mined. Each
transaction t is a set of items such that .It  In this paper,
t represents one atomic commit.

Given the set of transactions T (see (2)), the goal of
association mining is to find all the association rules that
have support and confidence greater than the user specified
threshold values. An itemset is a collection of items. The
support is defined as the fraction of transactions that contain
the itemset and from which the rule is derived. The
confidence denotes the strength of a rule. An association rule
is represented as

YX  [support = 20%, confidence = 80%] (3)

In this notation, itemset X is called the antecedent and

itemset Y is called the consequent such that ., IYX  Both

antecedent and consequent are comprised of one or more
items. Assume that both X and Y consist of one file, each
namely x and ,y respectively. Then, this rule says that in
20% of the check-in transactions, both x and y files are
modified and the transactions, which changed file ,x also
changed file y 80% of the time.

The threshold support value specified by the user is
called minimum support. This is an important element that
makes association mining practical. It reduces the search
space by limiting the number of rules generated [15]. The
threshold confidence value specified by the user is called
minimum confidence [15].

There are two types of measures for association mining:
objective and subjective. Support and confidence, which we
just discussed, are objective measures of association mining
[16]. Subjective measures are unexpectedness and
actionability [17]. The generated rules are “unexpected” or
surprising if the relationship is not obvious to the user. For
example a file customers.h is, most of the time, going to
change if customers.c is modified. Such a rule, though valid
has little usefulness to the developer. However, if the
recommendations help the developer to perform her task
effectively, then such rules have high actionability.
Actionability refers to the capability of the approach to yield
a rule that can be acted upon with some advantage.

B. Selection of Association Mining Technique

There are two commonly used association mining
techniques. The first sequential pattern mining algorithm
used to mine rules was Apriori algorithm [10]. Later, the
Frequent Pattern Growth Algorithm, or FP-Growth, was
introduced [11]. We now discuss the ideas behind these two
techniques and the rationale for selecting FP-Growth.

Apriori is a classic algorithm for learning association
rules over transactional databases for sample collections of
items bought by customers [10]. It works in two steps. In the
first step, it generates the candidate itemsets. These are the
set of items that have the minimum support. In the second
step, association rules are generated. Apriori uses the
property that any subsets of a frequent itemset are also
frequent. The essential idea behind Apriori algorithm is that
it iteratively generates candidate itemsets of length (k + 1)
from frequent itemsets of length k and then tests their
corresponding frequency in the database. Apriori is not
efficient when used with large data sets, as generation of
candidate item sets and support counting is very expensive,
as confirmed in [18].

FP-Growth is a faster and more scalable approach to
mine a complete set of frequent patterns by pattern fragment
growth. This can be achieved by using a compact prefix tree
structure for storing a transaction dataset [11]. This
algorithm operates in two steps. In the first step, it creates a
compact Frequent Pattern tree to encode the database. The
construction of an FP-tree begins with pre-processing the
input data with an initial scan of the database to count
support for single items. The single items that do not meet
the threshold support values are eliminated. The database is
then scanned for the second time to produce an initial FP-

541

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tree. The second step runs a depth first recursive procedure
to mine the FP-tree for frequent itemsets with increasing
cardinality. The FP tree stores a single item at each node.
The root node of an FP tree is empty. The path from the root
to a node in the FP tree is a subset of the transactions
database. The items in the path are in decreasing order of
support. In the second step, the algorithm examines a
conditional-pattern base for each itemset starting with length
1 and then constructs its own conditional FP-tree. Unlike the
Apriori algorithm, it avoids generating expensive candidate
itemsets. Each conditional FP-tree is recursively mined to
generate frequent itemsets. The algorithm uses a divide-and-
conquer approach to decompose the mining task into smaller
tasks of mining the confined conditional databases.
Interested readers can refer to work by Han, Pei and Yin for
more information [11].

C. Application

Association mining has been used in the past to support
various software engineering tasks. Some approaches to
accomplish these tasks rely on structural analysis of code
while others rely on textual mining. In mining associations
from software projects, two data sources are primarily used
as sequence-sources: the project history and the code
structure. In cases where history or documentation is
unavailable, the structure of the software may be analyzed by
breaking it into groups, further decomposing them into
entities, and then mining association rules from the entity
sets [19]. MAPO, a tool for suggesting API usage patterns,
analyzes sequences in code structure found within open-
source repositories [20]. Clustering techniques have also
been explored to find similarities in program entities in order
to support software maintenance [21]. Techniques that rely
on the structure of the software are useful in cases where one
language is used or when the interoperation of processes is
not a concern. In analyzing open source repositories, we
have found that several types of code may be checked-in
together. In addition, interoperating processes may not share
dependencies in source descriptions, and yet they may pass
messages, and thus rely upon each other.

Another source of data for mining associations between
source files is found in the history logs of configuration
management systems, such as those found in the open source
repositories that we have mined. Association mining with
FP-Growth has been applied to these change histories [14].
We build on this approach and we enhance this technique
with the use of topic modeling. An example of a tool that
performs association mining on history logs is Rose [19]. It
is a tool that parses syntactic entities from the committed
source code, such as classes, functions, and fields.
Association mining is applied to this parsed version of the
history data set. The association rules obtained could predict
that programmers who changed a given entity also changed
the recommended entities. Our approach is similar, in that
we mine rules from the history of the repository. However,
we do not provide the fine granularity of connection
provided by parsing syntactic entities, for the reasons
outlined above, relating to techniques that rely on software
structure to mine associations. Instead, we use topic

modeling techniques to find associations between source
files based on variable names, comments, and other
information available as plain text. By restricting the words
we use in our topic model, this technique is applicable to any
source code language. Later, we discuss our approach to pre-
processing source code and our approach to language-
specific keywords (see Section IV.A). Association rules have
also been mined from repository histories in order to find
traceability links [22]. As pointed out by David et al., mining
the project history has the benefit of reducing the need to
rely on the content of the data in instances where it may be
sparse or where the content of related artifacts is not related.
While we do not rely on the content, we do leverage it where
appropriate with topic modeling. It has been pointed out that
temporal information can also be useful in eliminating false-
positive recommendations [23]. However, this was not
applicable to our approach, since we consider both the
history of aggregated commits as well as the content of the
source files.

D. Limitations

Association mining is useful in finding patterns in the
data that satisfy minimum support and minimum confidence
constraints. However, some researchers have shown that
association mining often results in redundant and
unimportant rules. A drawback is that it is difficult to
eliminate insignificant rules [24].

In this research, the number of association rules
generated depends on the amount of modification history of
a project. Also, there is a possibility that not all modules or
files may be changed during a software maintenance phase.
This can affect the number of rules generated.

E. Related Work

Our work is most closely related to previous work in
mining frequently changed files from a software repository
[14, 25]. We used association mining as other software
engineering researchers have used this technique in the past.
We build on top of this existing work and examine the
benefits of combining association mining with topic
modeling. While others have used collaborative filtering
[26], we use topic modeling, which is a probabilistic version
of matrix factorization over the word-document matrix. In
this paper, we use topic modeling to analyze the semantic
content of source code and commit comments. In previous
work, we have used topic modeling to identify associations
between various software files and architecture components
[27]. In the future, we plan to use topic modeling to identify
associations between files and authors. Our work is also
related to other techniques that seek to identify relationships
between software files, such as recommendation systems,
code search techniques, and dependency analysis.

Recommendation systems for software engineering may
also recommend files for modification. Not all
recommendation systems use association rule mining, but
eRose a plugin for Eclipse does [8]. The common factor
among all recommendation systems for software engineering
is that they rely on the user’s context in order to provide
recommendations. While recommendation systems may help

542

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

find related files in source code, the issue of user context is
outside of the scope of our work.

Code search techniques may also be used to find source
files that are related to one another. These techniques have
their roots in traditional information retrieval methods [28].
An equivalency study was undertaken to compare various IR
methods in the area of traceability recovery [29]. The results
of this study showed that while Latent Semantic Indexing
(LSI), Jensen-Shannon (JS), and Vector Space Model (VSM)
provided higher accuracy in identifying related files, LDA
was able to capture associations, which the other methods
could not. Recent work in code search has been performed to
enhance the accuracy of these methods by allowing the user
to specify both the syntactic and semantic properties of a
search [28]. Code search techniques, however, fall short in
finding relationships between project files, which are not
semantically or syntactically related. Meanwhile, our
technique finds these relationships based on the change
history of the project and semantic relationship.

Dependency analysis tools may be used to find
relationships between source files based on call graphs [5].
By making use of the project histories, we can mine
relationships between any files that are checked-in together,
as opposed to simply analyzing the code structure. As
discussed previously, we also have the ability to find
relationships between source code files written in different
languages. Most importantly, this approach helps to detect
cross cutting concerns in which there may be a relationship
between two files, but no relationship in a call-graph. For
example, a project created for multiple operating systems
may contain two source files, which accomplish the same
task, but have no relationship in the calling tree. In this case,
dependency analysis cannot detect these relationships, but
our approach can, because of the semantic similarity
between files.

III. TOPIC MODELING

This section covers background on topic modeling, how
we selected the topic modeling technique, application, and
limitations.

A. Background

LDA is an unsupervised statistical approach for learning
semantic topics from a set of documents [12]. Since it is an
unsupervised machine learning technique, no training labels
are necessary. This is a fully automated approach that only
requires a set of documents and the number of topics to learn

LDA is a generative Bayesian topic model for a corpus of
documents. The basic concept behind LDA is that it
discovers topics. Then, it associates a set of words with each
topic. Lastly, it defines each document as a probabilistic
mixture of these topics. Thus, each document can belong to
multiple topics. Additional details regarding LDA’s
generative process are in [12].

Here are some concepts used in LDA:
• A word is a basic unit of discrete data.
• A document is characterized by a vector of word counts.
• A corpus has a total of W words in its vocabulary.

• D documents placed side by side, gives W x D matrix of
counts.
• A topic is a probability distribution over W words.
• Each document is associated with a probability distribution
over T topics.

To obtain a semantic interpretation of a topic, we simply
examine the highest-probability words in that topic. For
example, if a topic has high probability words “window”,
“dialog”, “height”, “width”, “button”, we can infer the topic
to be related to the user interface of the software.

As we discuss in the next section, we use LDA to
determine possible relationships between source code files
through their topic distributions. Each source code file
equates to a document in LDA.

B. Selection of Topic Modeling Technique

Topic modeling algorithms generally fall under two
categories: sampling-based and variational methods [12].
Sampling-based algorithms collect samples to approximate
the posterior with an empirical distribution. Variational
methods, meanwhile, use a parameterized family of
distributions and then find the member of the family that is
closest to the posterior. In this paper, we use a fast version
of Collapsed Variational Inference (CVB0) for LDA [30],
which has been shown to be among the fastest and most
accurate methods for learning topic models.

C. Application

Topic modeling has generally been used to analyze
unstructured text [31]. In software engineering, topic
modeling has been used to relate code topics to authors [32],
to enhance the prospective capture of traceability links [27],
to derive coupling metrics between classes [33], to find
duplicate bug reports [34], and to analyze code
fragmentation on the Android framework [35, 36]. Other
studies have also shown that LDA can capture associations
between software files that are not captured by other IR
techniques [37, 29]. In this paper, we use topic modeling to
obtain additional file associations to those that can be
acquired from mining a project history.

D. Limitations

LDA has generally been applied to unstructured text [31].
Meanwhile, source code is a highly structured text that has a
limited range of semantic concepts. The results are also
subject to parameters used in LDA. As a result, researchers
have examined ways to fine-tune the parameters [36].

We processed the source code prior to running LDA such
that reserved words are removed and only semantically
meaningful words are used. Our pre-processing technique is
similar to the pre-processing technique described here [38].

IV. COMBINED APPROACH

Our technique, FP-LDA, aims to lower the dependency
of the result on the project history and to provide an
alternative means of uncovering related files. FP-LDA
consists of the following steps: (1) data extraction and pre-
processing, (2) association data mining, (3) topic modeling,
and (4) result querying. Figure 1 shows a high level process

543

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. FP-LDA data flow to find file dependencies.

of our technique. Each layer in Figure 1 corresponds to each
of these steps. All the processes represented by a rectangle
have been implemented.

A. Data Extraction and Pre-processing

Pre-processing version history for data mining. This first
step involves extracting the version history of an open source
project and preparing the data to be fed as input to the
mining algorithm (Step A2). We created a tool that accesses
the version history of the project, processes it, and stores the
history data in MySQL database. For projects using
Subversion (SVN), we used SVNKit application
programming interfaces (APIs) [39] to access the version
history of the project. SVNKit is an open source Java-based
SVN library. For projects using Git, we used JavaGit [40]
API to access the version history.

Data pre-processing is an important step in that it
removes all unwanted data that may impact data mining
(A2). In our technique, our goal is to create a generic pre-
processing step to support different open source projects.
Thus, we used the following conditions when determining
the type of transactions to include in our association mining.
Similar to [14], we do not include transactions with more
than one hundred files since these transactions may
contribute to noise. Such commits may be due to specialized
tasks, such as formatting all source code files and then
checking-in all files together. We also removed transactions
that do not assist in identifying relationships between files,
such as single file commits, non-source code commits (e.g.,
graphic files), and commits of deleted files. The remaining
valid transactions are then stored in a database (A3). This is
the dataset that will be analyzed by the mining algorithm.

We then transform this dataset into a file format that
conforms to expected format of the mining algorithm (A4).

Pre-processing source files for LDA. While the mining
algorithm examines the entire commit history, we use topic
modeling to extract topics from the latest version of the
source code. We extracted from the source code
semantically meaningful text, such as comments, identifier
names and string literals. These words provide clues on the
purpose or functionality of the code (B2).

To extract these words, we run each file through a
tokenizer. The tokenizer aids in splitting words with
underscore or in camel case to obtain the name of objects or
variables. We also specified a set of stop words that are
programing language-reserved words, and high frequency
terms in a software project (see Lessons Learned in Section
VI for a detailed discussion). We also removed words like
“get” and “set” since source files contain methods that start
with these words. This requires some knowledge of the
programming language syntax. Another option is to generate
the Abstract Syntax Tree using tools like ANTLR [41] to
support multiple languages. The generated tree can then be
explored to extract the comments and identifiers inside the
source code.

B. Association Data Mining

Once the data is preprocessed, we run the data mining
algorithm (A6). We used Frequent Pattern Growth (FP-
Growth) algorithm for association mining, more specifically,
the Liverpool University Computer Science – Knowledge
Discovery in Data (LUCS-KDD) implementation of FP-
Growth. This Java implementation uses tree structures for
association mining [42]. This algorithm requires an input
file for the transactions to be analyzed. Each line in the input

544

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I. Open Source Project Characteristics.

Project Repos Total LOC Java LOC No of Files No of Commits Years of History

ArchStudio5 Git 838675 194766 2406 596 3.8

ArgoUML SVN 432521 328494 2254 14922 9.3

EclipseFP Git 453362 106798 1435 2419 9

Eu_Geclipse Git 503152 333389 3196 3356 7.5

Lucene SVN 3893658 1058795 15463 11374 4.5

Thrift Git 332158 27468 1561 3723 6.3

Xerces SVN 1266177 260242 2497 5434 14.8

file constitutes one transaction. Each item in the line denotes
a file ID. This implementation only works on numeric data.
The input file was generated in the previous step. The
minimum support and minimum confidence values can be
passed as input parameters to the algorithm. The algorithm
then generates all the association rules.

In our approach, we did not restrict the frequent itemsets
generated to two so that we could uncover more complex
relationships. In this case, rules are produced with more than
one item in the antecedent and consequent. A file can be
related to different files in a different way. If we input only
one file, it will give all the recommendations that many not
be valid for a certain transaction. However, if the user knows
more than one file to be modified for a task, we can refine
the predictions. For example, using complex rules we can
find out which files change given that two input files are
modified together. We store the generated frequent itemsets
in a database (A7).

C. Topic Modeling

Once the source files are pre-processed, we extract
semantic topics using LDA (B4). We used the CVB0
implementation of LDA [30]. Our implementation of LDA
has the following parameters: number of topics and number
of iterations. Number of topics is the number of topics we
specify. The greater the number of topics, the more fine-
grained will be the generated topics. Number of iterations is
the number of times the algorithm will run. The higher
number of iterations increases the likelihood that the topics
will converge. We observed that it is sufficient to run the
topic model using 1000 iterations.

D. Result Querying

The last step is to query the results of both the rules
generated from association mining and the document
relationship to topics (C1). We assume that the user is aware
of at least one file that has to be modified for a given
modification task. This file is used as the input. The output
will show all the files that are recommended or predicted to
change along with the input file.

V. VALIDATION

In this section, we discuss how we assess our technique.
We cover the setup of our experiment,

A. Experiment with Open Source Projects

In order to validate the ability of FP-LDA to identify
relevant files to modify, we conducted experiments on open
source projects. We compared FP-LDA with our baseline,
FP-Growth.

1) Experiment Setup
We conducted an experiment on seven open source

projects that use SVN or Git repositories (see Table I). We
selected these projects because these are active projects with
different lengths of time (ranging from 3.8 years to almost 15
years) and different range of files (ranging from one
thousand files to more than fifteen thousand files).

For each project, we used the same set of parameters.
For association mining, we used minimum support of 10 and
15 and confidence value of 40. For topic modeling, we used
25, 50, and 100 topics. For all topic model runs, we used
1000 iterations. We also used topic cutoff values of 10%,
25%, 50%, and 75%. The LDA recommendations were
calculated by returning files that have a topic distribution
percentage higher than the cutoff for a given topic. We
assumed that a file with a higher distribution is semantically
closer to a given topic. The validation was performed for
these four cutoff percentages. For this experiment, we used
Java source code for the topic model.

2) Procedure
To measure the effectiveness of our approach, we used

precision and recall. Precision measures the conciseness of a
recommendations provided by the approach. Recall measures
how many relevant recommendations are made by using this
approach. We followed the same approach as used by Ying
et al [14]. In this case study, we have assumed that developer
is aware of at least one file for a given modification task.
Therefore, we specified only one file sf for generating
recommendations for a modification task .m As explained

545

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Comparison of recall count between FP-Growth and FP-LDA for the different open source projects.

2

287

74
4

192

20
144

221

1447

374 417

1026

44

531

0

200

400

600

800

1000

1200

1400

1600

N
u
m
b
e
r
o
f
fi
le
s
w
it
h
 R
e
ca
ll
>
0

Open Source Projects

FP‐Growth

FP‐LDA

in [14], the precision precision(m, fs) of a recommendation

recom(fs) is the fraction of files that are predicted correctly

and are part of the solution fsol (m) for the modification task

.m The recall recall(m, fs) of a recommendation

recom(fs) is the fraction of files recommended out of

fsol (m) .

For example, let us consider a modification task that
requires changing files {a, b, c, d}. In addition, let us
assume that the recommendations obtained for file b using
our approach are files {a, c}. In this case, the precision for
file b in this modification task is 100% as the approach
recommended correct files. The recall value for file b for
same modification task is 66.67% because the approach
could predict only two files {a, c} out of {a, c, d}.

In order to determine the effectiveness of our prediction
algorithm, we generated FP-Growth rules using 90% of the
commit transactions. We then calculated the precision and
recall rates of the generated rules on the remaining 10% of
the commit transactions (the withheld set). We split the
dataset based on time, since this simulates actual practice.
Then, we calculated precision and recall for both FP-Growth
and FP-LDA for each file in each transaction. We
calculated precision and recall for the different parameter
combinations. Finally, we counted the number of files in
the 10% commit that was able to predict at least one relevant
file across the different parameters settings.

3) Experiment Results
As Figure 2 shows, FP-LDA consistently improves FP-

growth’s ability to identify related files. This is best
illustrated in the case of the ArchStudio project where only

four rules were produced by FP-Growth using minimum
support of 10 and confidence of 40. FP-Growth did not
produce any rules with minimum support of 15 and
confidence of 40. The small number of rules is due to the
fact that ArchStudio is a young project that does not have
sufficient history to determine file associations. In this case,
FP-LDA improves the ability to identify relevant files by two
orders of magnitude. The Thrift project, which shows the
least number of improvements of 100%, is due to the fact
that this project contains the least number of Java source files
in comparison to the other projects, only 1/10th of the
project's source code. FP-LDA does not only benefit new
projects, but older projects like Xerces, which has almost 15
years of history. In this project, we see an almost 300%
increase in its ability to find relevant files.

B. Experiment on Two Open Source Projects

In order to validate the ability of FP-LDA to rank
relevant files to modify, we conducted experiments on two
open source projects: ArgoUML and EclipseFP. We
compared FP-LDA with two baselines, FP-Growth and
LDA.

1) Experiment Setup
We selected ArgoUML and EclipseFP projects for

implementing ranking.
For ranking the association rules, we used confidence of

the rule as a measure to return the recommended files. The
higher the confidence, the higher are the chances that
predicted files co-occur with the input file in the commit
transactions. We selected the top 5 recommendations from
FP-Growth. Based on our experience with these projects, the
number of association rules generated is not many.

546

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Average precision for precision at 15.

Figure 4. Number of files per transaction in the withheld transaction

dataset that has at least one correct recommendation.

Therefore, by selecting top 5 predictions we covered almost
all the predictions that can be provided by FP.

Then for LDA, we used cosine similarity measure to
assess the similarity between the source files. The higher
value of cosine between two files, the stronger correlation
exists between the files. To compare the files using this
method we represented each file with total number of
frequent words. This is calculated by multiplying the
distribution percentage with total number of words in a
preprocessed file. We selected the top 10 recommendations
from LDA. Next section discusses cosine similarity
implementation in detail.

2) Procedure
Though the distribution percentage gives an indication of

semantic closeness of a file and topic, the number of
recommended files was very high. Therefore, for LDA, we
decided to rank the recommended files and return only a
limited number of recommendations.

Cosine similarity is often used in text mining applications
to assess the similarity between two files [43].
Mathematically, cosine similarity is a measure of how
similarity between two vectors and is measured by the cosine
of the angle between them.

The cosine similarity between two vectors and of
dimension N is calculated












N

i

i

N

i

i

i

N

i
i

wv

wv

wv

wv
wv

1

2

1

2

1

||||

.
),cos(




 (4)

The vectors are derived by multiplying the distribution

percentage of a file for a topic with total number of words in
a preprocessed file. This gives us a total number of frequent
words from a topic present in the file. We assume two files
are most similar if the cosine value between them is highest.
To obtain topic model recommendations, for a given input
file, we recommend files in order of highest cosine
similarity. We limit the number of recommendations to 15 so
that the precision calculated with FP-LDA is not less than the
one obtained using just FP-Growth.

In this setup, we calculated precision and recall for the
transactions where FP-Growth resulted in at least one
prediction. We also calculated the number of files for all the
transactions in test dataset that has at least one correct
recommendation.

3) Results
Figure 3 shows the average precision obtained using FP-

Growth, FP-LDA and LDA for ArgoUML and EclipseFP.
We return at most 15 recommendations in this setup. A low
value of precision for FP-LDA may be a result of the fact
that most transactions do not consist of 15 files. However,
we can see from Figure 4 that the total number of files for
the transaction dataset that have at least one correct
prediction is greater with FP-LDA than with FP-Growth
alone. This means there are more recommendations
obtained by using FP-LDA.

C. Examples

In addition to comparing the number of files in the
withheld set, which resulted in at least one relevant
recommendation, we also examined specific transactions to
compare FP-LDA with our baseline. We selected one
example that best illustrates each case.

Case 1: FP-Growth recall > 0 and FP-LDA recall > FP-
Growth recall: In the Lucene project, we see an example of
this in revision ID 1580463 (see Table II). In this example,
FP-Growth was run with minimum support of 10 and a
minimum confidence of 40%. The topic distribution cutoff
was kept at 75%. Figure 5 shows the files committed as part
of this transaction. We used Overseer.java as an input file
for the techniques.

The association mining alone is able to predict two out of
these eight files resulting in a recall value of 0.29. Figure 5
shows the predictions obtained using FP-Growth.

With combined FP-LDA, there are four correct
recommendations resulting in a higher recall value of value
of 0.6. The precision (0.2) of FP-LDA is low because there
were 24 files predicted. The ranking approach we used in
Section V.B allows recommendations to be returned that are
semantically closer to the topic first and limits the total
recommendations. Figure 5 also shows the recommendations
from using FP-LDA.

547

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Example for Case 1: Recall for FP-Growth > 0 and FP-LDA recall > FP-Growth recall.

Case 2: FP-Growth recall =0, FP-LDA recall> 0: This
study was done on ArgoUML revision ID 19876. Figure 6
shows the files that are checked in as part of this revision ID.

The minimum support and confidence values used for FP
are 10% and 40%, respectively. The percentage cutoff
distribution is 75%.

Using FP-Growth technique gives no recommendations
therefore recall is 0. FP-LDA provides 11 recommendations.
Four recommendations are correct for this transaction giving
a recall of 0.5 and precision of 0.4. Figure 6 also shows the
files recommended by FP-LDA.

D. Discussion

The calculation of precision and recall gives a general
understanding of how the approach fares in finding
relationships. We assumed that each of these transactions
was a task presented to a developer. For each file in the test
transaction, we calculated precision and recall values to see
if the tool can predict the remaining files.

We have shown in the example for Case 2 a case where
FP-Growth is not able to find file relationships, but FP-LDA
overcomes this shortcoming. Because the number of total
recommendations increases with topic modeling, the
precision has a tendency to decrease, as shown in the
example. However, FP-LDA does achieve the same
precision rates for the same recall as FP-Growth alone. A
higher recall value shows that there is an increase in the
number of relevant files predicted. This indicates that
number of correct recommendations increases with LDA.
The utility of the approach lies in the fact that a developer
needs to search only the set of recommended files, and not
the entire source code base. Moreover, since we solely base
our precision and recall on actual check-in records in the
latter 10% of the history record, it is entirely possible that
two files are related, but they may not have been checked-in

together within this subset of the data, within the same
transaction.

We have also shown in the experiment on two open
source projects that FP-LDA is able to overcome the
limitations of both FP-Growth and LDA only. FP-Growth
can provide high precision rates but can recommend a very
small number of files. Meanwhile, LDA only can
recommend large number of files but with much lower
precision. FP-LDA achieves a better balance between
precision and the number of correct recommendations.

E. Limitations of the study

Our precision and recall numbers may be subject to the
specific datasets we selected. However, since we selected
projects with different characteristics and we observe the
same trend across the different projects, this indicates that
our results are applicable to other open source projects.

The number of topics used in LDA may also affect
precision and recall rates. We ran our technique using
different topic numbers and observed that the smaller the
topic number, the higher the recall rates and the lower
precision rates are generated. 50 and 100 topics are
generally used by machine learning researchers. We added
25 topics to provide us a wider range of precision and recall
values to examine. Also LDA may not always generate
significant topics. The quality of generated topics has to be
manually evaluated.

 It is possible that our baseline, FP-Growth, could have
produced more rules if we provided lower minimum support
and confidence values. Choosing minimum support and
minimum confidence for association mining is critical. A
lower minimum support may yield more rules but not
necessarily meaningful rules. Choosing the optimum value
depends on the kind of dataset used. We decided the
minimum support and confidence values based on our
experience with analyzing projects and size of the version

548

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Example for Case 2: Recall for FP-Growth = 0 and FP-LDA recall > 0.

history. However, even if more rules were produced, based
on the examples shown, it is not possible for FP-Growth to
predict certain files because the files modified in the most
recent 10% of the history are not necessarily the same as the
files modified in the first 90% of the history.

VI. LESSONS LEARNED

Lesson 1: Stop word selection. We observed that choice
of the stop words affects the quality of topic model in a
profound way. The words that need to be excluded from
analysis depend largely on the use. For example, in this study
we focused on finding the relationship between files. We do
not want to know author file relationship. If we did not
remove the author names from the processed source code
files, we would get a topic with author names in it. In
addition, the words we extracted for topic modeling
represented different levels of abstraction. Thus, the highest
level concepts (i.e., project-wide concepts) should also be
added to the list of stop words. Since we are analyzing
source code, the generally used list of stop words for natural
language documents (e.g., a, an, the) are not applicable. At
the same time, we wished to use a general approach for
determining project-specific concepts that do not contribute
to the meaning of each source code file. Thus, we used the
following approach in creating our stop words list. We ran
the corpus through a three-step process. First, we eliminated
all language-specific reserved words. In Java, these include
words such as “public”, “class”, “while”. After the
language-specific words are eliminated from the corpus, we
then analyzed the corpus for the highest frequency words for
that project [44]. We took the 10% of the highest frequently
occurring words in the corpus and used these as our second
set of stop words. Lastly, we examined the generated topics

manually and removed any more words that does not
contribute to the meaning of the topics (e.g., copyright info).

Lesson 2: Aggregating commits. In our previous work
[1], we considered each atomic commit as one transaction.
This time, we logically grouped transactions to obtain more
meaningful changed sets. These heuristics are time interval
and author. We assumed that the commits within a time
interval by the same author are related to each other. After
examining certain transactions we decided the time interval
to be one hour. However, using a fixed time interval may not
be generalizable across different projects. In the future, we
plan to determine how to create a generalizable heuristics for
aggregating commits to get more relevant results.

VII. CONCLUSION AND FUTURE WORK

In this paper, we used association mining and topic
modeling together to assist developers in software
maintenance task. These techniques were used to uncover the
source file dependencies within a software project. We
applied association mining on version history of a project to
find files that frequently change together. We complemented
this technique by using topic modeling on the source code
documents. We showed that using topic modeling could
uncover file dependencies that are not captured due to lack of
version history for those files. Our evaluation indicates that
this combination of techniques increases the number of
relevant files obtained by at least a 100%, based on the seven
open source projects we analyzed.

In the future, we would like to explore various options
that can measure the usefulness of this approach. We plan to
analyze more open source projects as well as conduct user
studies to determine whether our approach reduces the time
required for impact analysis or any maintenance task. In

549

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table II. Summary of precision and recall for the two cases examined.

Project	
FP‐Growth	 FP‐LDA Topic	Modeling	Files	

Recommended	Precision Recall Precision Recall

Case	1:	FP‐Growth	has	no	recommendations	while	FP‐LDA	gives	recommendations	

Argo	UML	 0 0 0.4 0.5
Revision id = 19876:
11 with 4/8 correct

Lucene	 0.5 0.3 0.2 0.6
Revision Id = 1580463
24 with 4/8 correct

Case	2:	FP‐LDA	has	higher	number	of	correct	recommendations	than	FP‐Growth	

Lucene	 0.5 0.3 0.5 1
Revision Id = 1610028

9 with 0 correct

addition, we can use an approach to automatically rank the
LDA topics based on their semantic importance to eliminate
insignificant topics [45].

ACKNOWLEDGMENT

We thank Arthur U. Asuncion for his insights on LDA
and providing the CVB0 implementation of LDA. We also
thank Eamon Maguire for his assistance in extracting version
histories and running the mining algorithm. We thank
Delmar Davis with his assistance in running evaluations.
We also thank Subha Vasudevan for her contributions,
including analyzing generated topics and preparing the stop
words for effective topic modeling. This material is based
upon work supported by the National Science Foundation
under Grant No. CCF-1218266. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

REFERENCES
[1] N. Dave, D. Davis, K. Potts, and H. U. Asuncion, “Uncovering file

relationships using association mining and topic modeling,” in The
Sixth International Conference on Information, Process, and
Knowledge Management, pp. 105–111, Mar 2014.

[2] S. S. Yau and J. S. Collofello, “Some stability measures for software
maintenance,” Trans. on Software Engineering, vol. SE-6, pp. 545–
552, Nov. 1980. doi:10.1109/TSE.1980.234503.

[3] A. J. Ko, B. A. Myers, M. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” TSE, vol. 32, pp. 971–987, Dec
2006. doi:10.1109/TSE.2006.116.

[4] R. N. Taylor, N. Medvidovic, and E. Dashofy, Software Architecture:
Foundations, Theory, and Practice. John Wiley & Sons, 2010.

[5] M. Sharp and A. Rountev, “Static analysis of object references in
RMI-based Java software,” in Proc of the Int’l Conference on
Software Maintenance, pp. 101–110, Sep. 2005.
doi:10.1109/ICSM.2005.84.

[6] M. Eaddy, A. V. Aho, G. Antoniol, and Y. G. Gueheneuc, “Cerberus:
Tracing requirements to source code using information retrieval,
dynamic analysis, and program analysis,” in Proc of the 16th Int’l
Conference on Program Comprehension, pp. 53–62, Jun. 2008.
doi:10.1109/ICPC.2008.39.

[7] D. Cubranic, G. C. Murphy, J. Singer, and S. Booth Kellogg,
“Hipikat: a project memory for software development,” Trans. on
Software Engineering, vol. 31, pp. 446–465, Jun. 2005.
doi:10.1109/TSE.2005.71.

[8] M. P. Robillard, R. J. Walker, and T. Zimmermann,
“Recommendation systems for software engineering,” IEEE
Software, vol. 27, pp. 80–86, Jul-Aug. 2010.
doi:10.1109/MS.2009.161.

[9] S. Bajracharya, J. Ossher, and C. V. Lopes, “Sourcerer - an
infrastructure for large-scale collection and analysis of open-source
code,” Science of Computer Programming, vol. 79, pp. 241–259, Jan.
2014. doi:10.1016/j.scico.2012.04.008.

[10] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules in large databases,” in Proc of 20th Int’l Conference on Very
Large Data Bases, pp. 487–499, Sep. 1994.

[11] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without
candidate generation,” in Proc of the 2000 Int’l Conference on Mgmt
of Data, pp. 1–12, May 2000. doi:10.1145/342009.335372.

[12] D. M. Blei, “Probabilistic topic models,” Comunications of the ACM,
vol. 55, pp. 77–84, Apr 2012. doi:10.1145/2133806.2133826.

[13] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules
between sets of items in large databases,” SIGMOD Rec., vol. 22,
pp. 207–216, Jun. 1993. doi:10.1145/170036.170072.

[14] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll,
“Predicting source code changes by mining change history,” Trans.
on Software Engineering, vol. 30, pp. 574–586, Sep. 2004.
doi:10.1109/TSE.2004.52.

[15] B. Liu, W. Hsu, and Y. Ma, “Mining association rules with multiple
minimum supports,” in Proc of the Fifth ACM SIGKDD Int’l
Conference on Knowledge Discovery and Data Mining, pp. 337–341,
Aug. 1999. doi:10.1145/312129.312274.

[16] K. Lai and N. Cerpa, “Support vs confidence in association rule
algorithms.”
http://www.researchgate.net/publication/233754781_Support_vs_Con
fidence_in_Association_Rule_Algorithms/file/9fcfd512a4907b8aca.p
df, 2001.

[17] B. Liu, W. Hsu, S. Chen, and Y. Ma, “Analyzing the subjective
interestingness of association rules,” Intelligent Systems and their
Applications, vol. 15, pp. 47–55, 2000. doi:10.1109/5254.889106.

[18] J. Pei and et al., “Mining sequential patterns by pattern-growth: the
PrefixSpan approach,” Trans. on Knowledge and Data Engineering,
vol. 16, pp. 1424–1440, Nov. 2004. doi:10.1109/TKDE.2004.77.

[19] C. Tjortjis, L. Sinos, and P. Layzell, “Facilitating program
comprehension by mining association rules from source code,” in
Proc of the International Workshop on Program Comprehension,
pp. 125–132, 2003. doi:10.1109/WPC.2003.1199196.

550

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[20] T. Xie and J. Pei, “MAPO: mining API usages from open source
repositories,” in Proc of the 2006 Int’l Workshop on Mining Software
Repositories, pp. pages 54–57, 2006. doi:10.1145/1137983.1137997.

[21] D. Rousidis and C. Tjortjis, “Clustering data retrieved from java
source code to support software maintenance: A case study,” in Proc
of the Ninth European Conference on Software Maintenance and
Reengineering, pp. 276–279, 2005. doi:10.1109/CSMR.2005.16.

[22] J. David, M. Koegel, H. Naughton, and J. Helming, “Traceability
ReARMed,” in Proc of the International Computer Software and
Applications Conference, pp. 340–348, 2009.
doi:10.1109/COMPSAC.2009.52.

[23] H. Kagdi, S. Yusuf, and J. I. Maletic, “Mining sequences of changed-
files from version histories,” in Proc of the International Workshop
on Mining Software Repositories, pp. 47–53, 2006.
doi:10.1145/1137983.1137996.

[24] B. Liu, W. Hsu, and Y. Ma, “Identifying non-actionable association
rules,” in Proc of Int’l Conference on Knowledge Discovery and Data
Mining, pp. 329–334, Aug. 2001. doi:10.1145/502512.502560.

[25] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining
version histories to guide software changes,” Trans. on Software
Engineering, vol. 31, pp. 429–445, Jun. 2005.
doi:10.1109/TSE.2005.72.

[26] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based
collaborative filtering recommendation algorithms,” in Proc of the
10th International Conference on World Wide Web, pp. 285–295,
May 2001. doi:10.1145/371920.372071.

[27] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software
traceability with topic modeling,” in Proc of the Int’l Conference on
Software Engineering, vol. 1, pp. 95–104, May 2010.
doi:10.1145/1806799.1806817.

[28] S. P. Reiss, “Semantics-based code search,” in Proc of the Int’l
Conference on Software Engineering, pp. 243–253, May 2009.
doi:10.1109/ICSE.2009.5070525.

[29] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia, “On the
equivalence of information retrieval methods for automated
traceability link recovery,” in Proc of the 16th Int’l Conference on
Program Comprehension, pp. 68–71, Jun-Jul. 2010.
doi:10.1109/ICPC.2010.20.

[30] A. Asuncion, M. Welling, P. Smyth, and Y. W. Teh, “On smoothing
and inference for topic models,” in Proc of Conference on
Uncertainty in Artificial Intelligence, pp. 27–34, Jun. 2009.

[31] B. Gretarsson and et al., “TopicNets: Visual analysis of large text
corpora with topic modeling,” Trans. on Intelligent Systems and
Technology, vol. 3, pp. 23:1–23:26, Feb. 2012.
doi:10.1145/2089094.2089099.

[32] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi,
“Mining Eclipse developer contributions via author-topic models,” in
Proc of the Fourth International Workshop on Mining Software
Repositories, p. 30, 2007. doi:10.1109/MSR.2007.20.

[33] M. Gethers and D. Poshyvanyk, “Using relational topic models to
capture coupling among classes in object-oriented software systems,”
in Proc of the International Conference on Software Maintenance,
pp. 1–10, 2010. doi:10.1109/ICSM.2010.5609687.

[34] A. Nguyen, T. T. Nguyen, H. Nguyen, and T. N. Nguyen, “Multi-
layered approach for recovering links between bug reports and fixes,”
in Proc of the 20th International Symposium on the Foundations of
Software Engineering, p. 63, 2012.

[35] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia,
“Understanding Android fragmentation with topic analysis of vendor-
specific bugs,” in Proc of the Working Conference on Reverse
Engineering, pp. 83–92, 2012. doi:10.1109/WCRE.2012.18.

[36] A. Panichella and et al., “How to effectively use topic models for
software engineering tasks? an approach based on genetic
algorithms,” in Proc of the Int’l Conference on Software Engineering,
pp. 522–531, May 2013. doi:10.1109/ICSE.2013.6606598.

[37] A. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun,
“Duplicate bug report detection with a combination of information
retrieval and topic modeling,” in Proc. of the International
Conference on Automated Software Engineering, pp. 70–79, 2012.
doi:10.1145/2351676.2351687.

[38] T. Savage, B. Dit, M. Gethers, and D. Poshyvanyk, “TopicXP:
Exploring topics in source code using Latent Dirichlet Allocation,” in
Proc of the Int’l Conference on Software Maintenance, pp. 1–6, Sep.
2010. doi:10.1109/ICSM.2010.5609654.

[39] TMate Software, “SVNKit.” http://svnkit.com/. 2014.12.17.

[40] “JavaGit.” http://javagit.sourceforge.net/. 2014.12.17.

[41] “ANTLR.” http://www.antlr.org/. 2014.12.17.

[42] F. Coenen, G. Goulbourne, and P. Leng, “Tree structures for mining
association rules,” Data Mining and Knowledge Discovery, vol. 8,
pp. 25–51, Jan. 2004. doi:10.1023/B:DAMI.0000005257.93780.3b.

[43] B. Li and L. Han, “Distance weighted cosine similarity measure for
text classification,” in Intelligent Data Engineering and Automated
Learning (H. Yin, K. Tang, Y. Gao, F. Klawonn, M. Lee, T. Weise,
B. Li, and X. Yao, eds.), vol. 8206 of Lecture Notes in Computer
Science, pp. 611–618, Springer Berlin Heidelberg, 2013.

[44] C. D. Manning, P. Raghavan, and H. Schutze, Introduction to
Information Retrieval. Cambridge University Press, 2008.

[45] L. Alsumait, D. Barbará, J. Gentle, and C. Domeniconi, “Topic
significance ranking of LDA generative models,” in Proceedings of
the European Conference on Machine Learning and Knowledge
Discovery in Databases: Part I, pp. 67–82, 2009.

