
Automated Unit Testing of JavaScript Code through Symbolic Executor SymJS

Hideo Tanida, Tadahiro Uehara

Information System Technologies Laboratory

Fujitsu Laboratories Ltd.

Kawasaki, Japan

Email: {tanida.hideo,uehara.tadahiro}
@jp.fujitsu.com

Guodong Li, Indradeep Ghosh

Software Systems Innovation Group

Fujitsu Laboratories of America, Inc.

Sunnyvale, CA, USA

Email: {gli,indradeep.ghosh}
@us.fujitsu.com

Abstract—JavaScript is expected to be a programming language
of even wider use, considering demands for more interactive
web/mobile applications and deployment in server-side software.
While reliability of JavaScript code will be of more importance,
testing techniques for the language remain insufficient, compared
to other languages. We propose a technique to automatically
generate high-coverage unit tests for JavaScript code. The tech-
nique makes use of symbolic execution engine for JavaScript, and
symbolic stub/driver generation engine, which injects symbolic
variables to system under test. Our methodology allows for
automatic generation of input data for unit testing of JavaScript
code with high coverage, which ensures quality of target code
with reduced effort.

Keywords–JavaScript; test generation; symbolic execution; sym-
bolic stub and driver generation.

I. INTRODUCTION

Extensive testing is required to implement reliable soft-
ware. However, current industrial practice rely on manually-
written tests, which result in large amount of effort required
to ensure quality of final products or defects from inadequate
testing.

Verification and test generation techniques based on formal
methods are considered to be solutions to overcome the prob-
lem. One such technique is test generation through symbolic
execution, which achieves higher code coverage compared to
random testing [1]–[7].

In order to symbolically execute a program, input variables
to the program are handled as symbolic variables with their
concrete values unknown. During execution of the program,
constraints to be met by values of variables in each execution
path are obtained. After obtaining constraints for all the paths
within the program, concrete values of input variables to
execute every paths can be obtained, by feeding a solver such
as Satisfiability Modulo Theory (SMT) [8] solver with the
constraints. Normal concrete execution of the program using
all the obtained data, results in all the path within the program
went through.

Manually-crafted test inputs require effort for creation,
while they do not guarantee exercising all the execution path
in the target program. In contrast, test generation based on
symbolic execution automatically obtains inputs to execute all
the path within the program. As the consequence, it may find
corner-case bugs missed with insufficient testing.

There are tools for symbolic execution of program code,
including those targeting code in C/C++ [2], [3], [5], Java [4],
and binary code [6], [7]. It is reported that the tools can
automatically detect corner-case bugs, or generate test inputs
that achieve high code coverage.

JavaScript was historically introduced as an in-browser
scripting language of light weight use. However, it is now
heavily used for implementation of feature rich client-tier
within interactive web applications. The language is also
used to implement software product of other kind, including
application servers based on Node.js [9] and standalone mobile
applications implemented with PhoneGap [10].

The wider adoption of the language has brought efficient
testing technique for JavaScript code into focus. In order to ex-
ercise tests in an efficient manner, unit testing frameworks such
as Jasmine [11], QUnit [12] and Mocha [13] are developed and
used in the field. However, only execution of once developed
tests can be supported through the tools, and large amount of
effort is still required to prepare test cases that ensure quality of
target code. Therefore, automatic test generation techniques for
the language are becoming of more importance, and symbolic
execution is again considered one key technology to play a
role.

Existing symbolic execution tools for JavaScript code
include Kudzu [14] and Jalangi [15]. Kudzu automatically
generates input data for program functions, with the aim
of automatically discovering security problems in the target.
Jalangi allows for modification of path constraints under nor-
mal concrete executions, in order to obtain results different
from previous runs. However, the tools could not be applied
to unit testing of JavaScript code in field, due to limitations
in string constraint handling and need for manual coding of
driver and stub used in testing.

We propose a technique to generate test inputs for
JavaScript code through symbolic execution on a tool
SymJS [1], [16]. Test inputs generated by the tool exercise
target code with high coverage. After augmenting generated
test inputs with user-supplied invariants, application behavior
conformance under diverse context can be checked in a fully
automatic fashion. Our proposal includes automatic generation
of symbolic stubs and drivers, which reduces need for manual
coding. Therefore, our technique allows for fully automatic
generation of input data used in unit testing of JavaScript code.
Test inputs generated by our technique exercise every feasible

146

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

execution paths in the target to achieve high coverage.

Our methodology has the following advantages to existing
works. Our JavaScript symbolic execution engine SymJS is
applicable to JavaScript development in practice for the fol-
lowing reasons.

• Our constraint solver PASS [17] allows test generation
for programs with various complex string manipula-
tions

• SymJS does not require any modification to the tar-
get code, while the existing symbolic executors for
JavaScript [14], [15] needed modifications and multi-
ple runs

• Our automatic stub/driver code generation allows for
fully automatic test data generation

An existing work [15] could be employed for generation of
unit tests. However, it required manual coding of stub/driver,
which requires knowledge on symbolic execution and error-
prone. The engine also suffered from limitations in string
constraint handling. Our fully automatic technique can be
applied to development in practice.

The rest of this paper is organized as follows. Section II
explains the need for automatic test generation/execution with
an example, and introduces our test input generation technique
through symbolic execution. Section III describes our method
to automatically generate stub/driver code used in test gener-
ation/execution. Evaluation in Section IV shows applicability
and effectiveness of our technique on multiple benchmarks. We
discuss the lessons learnt in Section V. Finally, we come to
the conclusion in Section VI and show possible future research
directions.

II. BACKGROUND AND PROPOSED TEST

GENERATION TECHNIQUE

A. Demands for Automatic Test Generation

Generally, if a certain execution path in a program is exer-
cised or not, depends on input fed to the program. Therefore,
we need to carefully provide sufficient number of appropriate
test input data, in order to achieve high code coverage during
testing.

For example, function func0() shown in Figure 1 con-
tains multiple execution path. Further, whether each path is
exercised or not depends on input fed to the program, which
are value of arguments s,a and return value of function
Lib.m2(). Current industrial testing practice depends on
human labor to provide the inputs. However, preparing test
inputs to cover every path within software under test requires
large amount of efforts. Further, manually-created test inputs
might not be sufficient to exercise every path within the target
program.

Figure 2 shows possible execution path within the example
in Figure 1. In the example, there are two sets of code blocks
and whether blocks are executed or not depend on branch
decisions. The first set of the blocks contains blocks 0-3,
and the second set contains blocks A-B. Conditions for the
blocks to be executed are shown at the top of each block in
Figure 2. Block 2 has a contradiction between conditions for

�

�

�

�

f u n c t i o n func0 (s , a) {
i f (” ” . e q u a l s (s)) { / / b l o c k 0

s = n u l l ;
} e l s e {

i f (s . l e n g t h <= 5) { / / b l o c k 1
a = a + s t a t u s ;

} e l s e {
i f (” ” . e q u a l s (s)) { / / b l o c k 2

Lib . m0 () ; / / Unreachable
} e l s e { / / b l o c k 3

Lib . m1 () ;
}

}
}
i f (a <= Lib . m2 ()) { / / b l o c k A

a = 0 ;
} e l s e { / / b l o c k B

a = a + s . l e n g t h ; / / Error w i t h n u l l s
}

}
Figure 1. Code Fragment Used to Explain our Methodology:

s, a, Lib.m2() may Take Any Value

Table I. Constraints to Execute Paths in Figure 2 and
Satisfying Test Inputs (under assumption status=-1)

Test Blocks Path Test
No. Executed Conditions Data

1 0,A "".equals(s) ∧ s="", a=0
a<=Lib.m2() Lib.m2()=0

2 0,B "".equals(s) ∧ s="", a=0
a>Lib.m2() Lib.m2()=-1

3 1,A !"".equals(s) ∧ s="a", a=0
s.length <= 5 ∧ Lib.m2()=0
a-1<=Lib.m2()

4 1,B !"".equals(s) ∧ s="a", a=1
s.length <= 5 ∧ Lib.m2()=0
a-1>Lib.m2()

5 3,A !"".equals(s) ∧ s="aaaaaa", a=0
s.length > 5 ∧ Lib.m2()=0
a<=Lib.m2()

6 3,B !"".equals(s) ∧ s="aaaaaa", a=0
s.length > 5 ∧ Lib.m2()=-1
a>Lib.m2()

execution, which are s.length()>5 and "".equals(s),
and will never be executed. However, the other blocks have
no such contradiction and are executable. Tests to execute
every possible combination of blocks 0,1,3 and blocks A,B
correspond to 3× 2 = 6 set of values for the inputs.

Table I shows combinations of blocks to execute, path
condition to be met by arguments s,a and return value of
Lib.m2(). In the example, it is possible to obtain concrete
values meeting the conditions for the inputs, and the values can
be used as test inputs. We will discuss how to automatically
obtain such test inputs in the sequel.

B. Test Input Generation through Symbolic Execution

We propose a methodology to automatically generate test
inputs with SymJS, a symbolic execution engine for JavaScript.
During symbolic execution of a program, constraints to be met
in order to execute each path (shown as “Path Conditions” in

147

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Execution Paths within Code Shown in Figure 1

Table I) are calculated iteratively. After visiting every possible
path within the program, constraints corresponding to all the
path are obtained. Concrete values of variables meeting the
constraints can be obtained with solvers such as SMT solver.
Obtained values are input data to exercise paths corresponding
to the constraints, which we can use for testing.

While JavaScript functions are often executed in a event-
driven and asynchronous fashion, our technique focuses on
generation of tests that invoke functions in deterministic and
synchronous orders. We assume the behavior of generated
tests are reasonable, considering what is inspected in current
JavaScript unit tests in field, as opposed to integration/system
testing. Each generated test data exercise single path within
the target, and only single data set is generated for each path.

SymJS allows for symbolic execution of JavaScript code.
SymJS interprets bytecode for the target program, and symbol-
ically executes it in a way KLEE [3] and Symbolic JPF [4] do.
SymJS handles program code meeting the language standard
defined in ECMAScript [18].

SymJS is an extended version of Rhino [19], an open-
source implementation of JavaScript. Our extensions include
symbolic execution of target code, constraint solving to obtain
concrete test input data, and state management. While there
are existing symbolic executors for JavaScript, SymJS does
not reuse any of their code base. Table III shows comparison
between SymJS and existing symbolic executors.

SymJS interprets bytecode compiled from source code of
target program. This approach is taken by existing symbolic
executors such as KLEE [3] and Symbolic PathFinder [4].

Table II. Instructions with their Interpretations Modified from
Original Rhino

Arithmetic/Logical ADD, SUB, MUL, DIV, MOD, NEG, POS, BITNOT,
Operations BITAND, BITOR, BITXOR, LSH, RSH, URSH etc.

Comparisons EQ, NE, GE, GT, LE, LT, NOT, SHEQ, SHNE etc.

Branches IFEQ, IFNE, IFEQ POP etc.

Function Calls RETURN, CALL, TAIL CALL etc.

Object NEW, REF, IN, INSTANCEOF,
Manipulations TYPEOF, GETNAME, SETNAME, NAME etc.

Object GETPROP, SETPROP, DELPROP,
Accesses GETELEM, SETELEM, GETREF, SETREF etc.

Handling bytecode instead of source code allows for imple-
mentation of symbolic executors without dealing with complex
syntax of the target language. SymJS is implemented as an
interpreter of Rhino bytecode, which updates the program state
(content of heap/stack and path condition) on execution of
every bytecode instruction. Upon hitting branch instruction, it
duplicates the program state and continues with the execution
of both the branches.

In order to implement symbolic execution of target pro-
grams, we have modified interpretation of the instructions
shown in Table II from the original Rhino. Handling of
instructions for stack manipulation, exception handling, and
variable scope management remain intact.

For example, an instruction ADD op1 op2 is interpreted as
follows.

1) Operands op1 and op2 are popped from stack. The
operands may take either symbolic or concrete value.

2) Types of the operands are checked. If both the
operands are String, the result of computation is the
concatenation of the operands. If they are Numeric,
the result is the sum of the operands. Otherwise, val-
ues are converted according to ECMAScript language
standard, and the result is either concatenation or
addition of the obtained values.

As JavaScript is a dynamically typing language, types of
operands for Rhino instructions are not known prior to execu-
tion. Therefore, types of results also need to be determined at
run time. For example, evaluation of instructions v1 = ADD
e1:number v:untyped; v2 = ADD v1 “abc” yields, v1 = e1 +
v:number; v2 = toString(e1 + v:number) concat “abc”. Types of
variables v1,v2 are fixed just at run time in a dynamic fashion.

Comparison instructions are followed by branch instruc-
tions in Rhino bytecode. SymJS handles compare and branch
instruction pairs as in the following. First, it creates Boolean
formula corresponding to result of comparison after necessary
type conversions. Assuming the created formula is denoted by
symbol c, we check if c and its negation ¬c are satisfiable
together with current path condition pc. In other words, we
check for satisfiablity of pc ∧ c and pc ∧ ¬c. If both are
satisfiable, we build states s1, s2 corresponding to pc ∧ c and
pc ∧ ¬c and continue with execution from states s1 and s2.
If one of them is satisfiable, the state corresponding to the
satisfiable one is chosen and execution resumes from that point.

SymJS supports two ways to manage states, which are
forked on hitting branches etc. The first method is to store all
program state variables including content of heap/stack, as is

148

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table III. Comparison of Symbolic Executors

Tool Target Sym. Dep./Cache String
Lang. VM Solving Solving

SymJS JavaScript Yes Yes Yes
KLEE [3] C Yes Yes No
SAGE [7] x86 binary No Yes No

Sym JPF [4] Java Yes No No
Kudzu [14] JavaScript No No Yes
Jalangi [15] JavaScript No No Limited

Table IV. Representation of States in Fuzzing after Executing
Code on Figure 1 under Path Conditions in Table I

Test No. Blocks Executed State Representation

1 0,A L;L
2 0,B L;R
3 1,A R;L;L
4 1,B R;L;R
5 3,A R;R;R;L
6 3,B R;R;R;R

done in [3], [4]. The second method is to remember only which
side is taken on branches. This method needs to re-execute the
target program from its initial state on backtracking. However,
it benefits from its simple implementation and smaller memory
footprint. The method is called “Fuzzing” and similar to the
technique introduced in [5], [7]. However, our technique is
implemented upon our symbolic executor and does not need
modification of target code required in the existing tools [14],
[15] for JavaScript.

During symbolic execution of programs through fuzzing,
states are represented and stored only by which side is taken
on branches. The information can be used to re-execute the
program from its initial state and explore the state space
target may take. States after symbolically executing the target
program in Figure 1 with path conditions corresponding to tests
1-6 in Table I, are represented as shown in Table IV during
fuzzing. Symbols L,R denote left/right branch is taken on a
branching instruction.

For each of state representations shown in Table IV, corre-
sponding path condition can be obtained. Table I includes path
conditions for the states in Table IV. If it is possible to obtain
solutions satisfying the constraints, they can be used as inputs
used during testing. Constraints on numbers can be solved by
feeding them into SMT solvers. However, SMT solvers cannot
handle constraints of strings, which is heavily used in most
of JavaScript code. Therefore, we employ constraint solver
PASS [17] during test input generation.

PASS can handle constraints over integers, bit-vectors,
floating-point numbers, and strings. While previous constraint
solvers with support for string constraints used bit-vectors or
automata, PASS introduced modeling through parameterized-
arrays, which allows for more efficient solving. PASS converts
string constraints into quantified expressions. The expressions
are solved through an efficient and sound quantifier elimi-
nation algorithm. The algorithm speeds up identification of
unsatisfiable cases. As the consequence, it can solve complex
constraints corresponding to string manipulations within EC-
MAScript standard. Multiple optimizations are also introduced
on incorporating PASS into SymJS. Such optimizations include
dependency solving, cache solving and expression simplifica-
tion to reduce computation within the solver.

�
�

�
	symjs assume (a rg0 . l e n g t h ==16) ;

Figure 3. Use of symjs assume() to Constrain Length of arg0
to be 16

As the nature of symbolic execution, SymJS may suffer
from path explosion on targeting programs with large state
space. In order to eliminate program behavior of uninterest,
SymJS can make use of symjs_assume(assumption)
function call, which prunes state space violating the assump-
tion. The code snippet shown in Figure 3 shows an example
of constraining length of string arg0 to be 16.

C. Symbolic Stubs and Drivers

Symbolic variables are targets of test input generation
through symbolic execution. SymJS allows definition of
symbolic variables through function calls. The code snippet
below shows an example of defining symbolic string
variable. var s = symjs_mk_symbolic_string();
While the example defines a symbolic variable of
string type, functions symjs_mk_symbolic_int(),
symjs_mk_symbolic_bool() and
symjs_mk_symbolic_real() allow definition of
symbolic variables with their type being integer, Boolean, and
floating-point, respectively. While SymJS allow only string,
integer, Boolean, and floating-point numbers to be symbolic,
their constraints are retained on assignments/references as
fields of more complex objects, allowing generation of tests
with values of object fields varied.

In order to determine test inputs for the function func0()
in Figure 1, additional code fragments are required. First, a
symbolic driver shown in Figure 6 is required. The driver
declares symbolic variables and passes them to the function
as arguments. Stubs to inject dependencies are also required.
A symbolic stub in Figure 7 includes a symbolic variable dec-
laration. With the stub, return values of function Lib.m2()
are included to test inputs obtained by SymJS.

D. Test Execution within Web Browsers

Functions symjs_mk_symbolic_*() used to define
symbolic variables are interpreted as expressions to define
new symbolic variables during test generation. SymJS itself
allows for normal concrete test execution with the generated
test inputs. During concrete execution, the functions return
concrete values contained in test inputs.

SymJS can export test inputs into external test runners
based on a test framework Jasmine [11]. The runners contain
test playback library, which returns corresponding test input
data on symjs_mk_symbolic_*() function calls. Figure 4
shows an example of test runner generated. Each of tests
contains automatically generated test data in an array structure,
and users can easily create new tests through duplication and
modification of existing tests.

The runners can be loaded into typical web browser and al-
low for execution of generated tests with no custom JavaScript
interpreter. The runner has an extension to Jasmine, which

149

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

�

�

�

�

d e s c r i b e (” T e s t w i th u n d e r s c o r e . s t r i n g . symjs . j s−c a m e l i z e . j s ” , f u n c t i o n () {
i t (” s h o u l d run t e s t 1 ” , f u n c t i o n () {

r e p l a y L i s t . i n i t (
[[” a rg0 #0 ” , n u l l] , [” a rg1 #1 ” , f a l s e]]

) ;
v a r a rg0 = s y m j s m k s y m b o l i c s t r i n g (” a rg0 ”) ;
v a r a rg1 = symjs mk symbol ic boo l (” a r g1 ”) ;
v a r r e t v a l = c a m e l i z e (arg0 , a rg1) ;
e x p e c t (t rue) . toBe (t rue) ; / / d e f a u l t a s s e r t i o n

}) ;
}) ;

Figure 4. Test Runner Code with Test Data

Figure 5. Test Runner View with Test Data and Stacktrace

prints test data and stacktrace on use of test input as shown in
Figure 5.

III. AUTOMATIC GENERATION OF SYMBOLIC STUBS AND

DRIVERS

As explained in Section II-C, symbolic stubs and drivers
are required to symbolically execute target functions and obtain
test inputs. Symbolic stubs that return symbolic variables are
used to generate return values of functions, which are called
from functions under test. Symbolic drivers are needed to vary
arguments passed to functions tested.

While it is possible to employ manually implemented
symbolic stubs and drivers, additional cost is required for
implementation. Therefore, it is desirable to have symbolic
stubs and drivers automatically generated. Hence, we have
decided to generate symbolic stubs and drivers in an automatic
manner, and use them for test generation and execution.

A. Strategy for Generating Symbolic Stubs and Drivers

Our symbolic stub generation technique produces stub
for functions and classes specified. Our driver generation
technique emits code that invokes program under test.

As for stub generation, we have decided to generate func-
tions, which just create and return objects according to type of
return value expected by caller. The following is the mapping
between expected type and returned object:

• String, integer, Boolean and floating-point numbers
which SymJS can handle as symbolic
(Hereafter referred to as SymJS primitives):
Newly defined symbolic variable of the corresponding
type.

• Other classes:
Newly instantiated object of the expected type. If the
class is targeted for stub generation, newly instantiated
stub object is returned.

• Void: Nothing is returned.

In order to create stubs for classes, stubs for constructors also
need to be generated. Here, we generate empty constructors,
which result in all stateless objects. Our approach assumes
there is no direct access to fields of stub classes, and does not
generate stubs for fields.

We have to note even in case type of return value from a
stub is a non-SymJS primitive, we may get multiple test inputs
on invocation on the stub. That is the case if returned objects
contain functions that return symbolic variables. The situation
happens if the non-SymJS primitive class contain functions that
return objects of SymJS primitive class, and the non-SymJS
primitive class is stubbed. Therefore, it is possible to obtain
more than one set of test inputs by calling functions returning
non-SymJS primitive.

Symbolic drivers generated with our technique have the
following functionality:

• If the function to be tested is not static and needs an
object instance to be executed, instantiate an object of
the corresponding class and call the function

• If the function is a static one, just call the function

As arguments passed to the function, drivers give the following
objects according to the expected types:

150

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

�

�

v a r s = s y m j s m k s y m b o l i c s t r i n g (” a rg0 ”) ;
v a r a = s y m j s m k s y m b o l i c f l o a t (” a rg1 ”) ;
func0 (s , a) ;

Figure 6. Symbolic Driver to Execute Code in Figure 1

�

�

Lib . m2 = f u n c t i o n () {
re turn s y m j s m k s y m b o l i c f l o a t () ;

} ;

Figure 7. Symbolic Stub Providing Lib.m2() Used in Figure 1�
�

�
�/∗ ∗ @return {Number} m2 v a l u e ∗ /

Lib . m2 = f u n c t i o n () { . . . } ;

Figure 8. Function Definition with an Annotation to
Automatically Generate Symbolic Stub in Figure 7�

�
�
�/∗ ∗ @return { t x . Data} da ta ∗ /

t x . Ui . g e t V a l u e = f u n c t i o n () { . . . } ;

⇓

�

�

t x . Ui . g e t V a l u e = f u n c t i o n () {
re turn new t x . Data () ;

} ;

Figure 9. Function with an Annotation Returning non-SymJS
Primitive and Generated Symbolic Stub

�
�

/∗ ∗ @param { S t r i n g } s
∗ @param {Number} a ∗ /

f u n c t i o n func0 (s , a) { . . . }
Figure 10. Annotations for Function under Test to

Automatically Generate Symbolic Driver in Figure 6

• SymJS primitives:
Newly defined symbolic variable of corresponding
type.

• Other classes:
Newly instantiated object of the expected type. If the
class is targeted for stub generation, newly instantiated
stub object is passed.

The manner to choose arguments is similar to the one resolves
what to return in symbolic stubs.

B. Generating Symbolic Stubs and Drivers from Annotations

Symbolic stub/driver generation strategy proposed in Sec-
tion III-A requires type information from target code. Types
of return values expected by caller are required for stub
generation. Types of arguments passed to functions under test
are required to generate drivers.

However, JavaScript is a dynamically typing language,
which makes it difficult to determine type of return values
and arguments prior to run time. On the contrary, many
JavaScript programs have some expectations in types of return

values and arguments, which are often defined in Application
Programming Interface (API) etc. Further, there is a way to
express type information for JavaScript code in a machine
readable manner, which is JSDoc-style annotation. Therefore,
we have decided to obtain type information from annotations
in JSDoc3 [20] convention, and generate symbolic drivers and
stubs.

Symbolic stubs are generated from original source code
of functions to generate stubs for. Functions need to contain
annotations, which provide type information on return values
of functions. Symbolic stub for a function can be generated if
the type of its return values is obtained from annotations.

JSDoc3 allows for declaration of return value type, mainly
through @return annotations. In order to generate symbolic
stub for function Lib.m2() used in code snippet on Figure 1,
an annotation like the one shown in Figure 8 is required. If such
annotation is attached to original source code of the function,
it is possible to figure out type of return values. From the
obtained type of return values, the symbolic stub in Figure 7
can be generated in a fully automatic manner. The example
demonstrates generation of symbolic stub for a function re-
turning a SymJS primitive. An example of generating symbolic
stub for a function that returns a non-SymJS primitive is shown
in Figure 9.

Symbolic drivers are generated from source code of func-
tions to be tested. Source code need to contain annotations
expressing type of arguments passed to the function, in order to
automatically generate symbolic driver to invoke the function.

Types of parameters passed to functions are often given
through @param annotation for JSDoc3. Symbolic driver for
the function func0() can be generated from the annotations
in Figure 10, attached to the function. The annotations give
types of parameters for the function, allowing generation of
the symbolic driver in Figure 6.

The proposed technique for automatic generation of sym-
bolic stub and drivers is implemented as plugins for JSDoc3.
JSDoc3 allows implementation of custom plugins, and they
may contain hooks to be invoked on finding classes or func-
tions. Within the hooks, it is possible to obtain types for return
values and parameters. The developed plugins automatically
generate symbolic stubs and drivers for classes and functions
found in input source code.

While we have proposed a technique to automatically
generate symbolic stubs and drivers based on type information
obtained from annotations, it is also possible to use type infor-
mation from other sources. Such sources of type information
include API specification documents.

IV. EVALUATION

A. Experimental Setup

In order to confirm that our proposed technique can auto-
matically generate and execute unit tests achieving high code
coverage, we have performed experiments using two JavaScript
programs with their statistics shown in Table V.

The first subject (INDUSTRIAL) corresponds to the client
part of web application implemented upon our in-house frame-
work for web application implementation. Within the target

151

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table V. Statistics on the Target Program

Name INDUSTRIAL UNDERSCORE.STRING

#Statement 123 427
#Public Function 22 57

program, calls to API not defined in ECMAScript standard are
wrapped in our framework. As the consequence, it contains
only calls to standard API or our framework. We have to
note common API to manipulate HTML Document Object
Model (DOM) or to communicate with servers are not part of
ECMAScript standard and not used directly in the program.

The second subject (UNDERSCORE.STRING) is
a free and open-source string manipulation library
Underscore.string [21]. It provides many useful string
operations, which are not standardized in JavaScript
programming language. The library has no functionality
involving HTML DOM manipulation or communication, and
implemented using only functionality defined in ECMAScript
standard. It can be employed on server-side Node.js platform
as well as web browsers on clients. We have manually
annotated source code of the target to provide argument type
information required for automatic driver generation.

All experiments are performed on a workstation with Intel
Xeon CPU E3-1245 V2@3.40GHz and 16GB RAM.

B. Generation of Symbolic Stubs and Drivers

In order to perform automatic generation of test input
proposed in Section II, we have generated symbolic stubs and
drivers with the technique explained in Section III.

Symbolic stubs to target INDUSTRIAL are generated from
source code of the framework used to implement the applica-
tion. Source code has annotations meeting JSDoc3 standard,
which allow for retrieval of types for return values of func-
tions. Stubs are successfully generated for all the classes and
functions defined in the framework. UNDERSCORE.STRING

that depends only on functionality provided by ECMAScript
standard required no stub to be generated. As the program is
implemented only upon API defined in ECMAScript language
standard and the framework, all the stubs required for symbolic
execution of the program are ready at this stage.

Symbolic drivers are generated from source code of the
program under test. INDUSTRIAL had JSDoc3-style anno-
tations as is. Manually annotated source code of UNDER-
SCORE.STRING is used to extract type information for func-
tion arguments within the subject. Types of arguments in
UNDERSCORE.STRING could be found in its document, and
the annotation process was straightforward. Drivers for all
functions within the two targets are generated successfully.

C. Test Input Generation

All functions within the target programs are symbolically
executed using the automatically generated drivers and stubs.
Table VI contains statistics on the generated tests.

In the first trial, the subject programs are symbolically
executed with no special configuration. While all functions
in INDUSTRIAL are processed within 1 second, analysis of

2 functions in UNDERSCORE.STRING did not finish within
timeout of 1 minute. In order to process the functions within
reasonable time, we have introduced the following constraints
during symbolic execution of UNDERSCORE.STRING.

• count(string,substring), which counts num-
ber of substring occurrences in string, resulted
in timeout assuming arbitrary string as string and
substring. This is due to non-terminating loop and
resulting large number of forked states during sym-
bolic execution. we have limited maximum number of
branches a state may go through to 7 from its default
configuration of 20.

• words(string,delimiter), which counts
number of words within string separated by
delimiter also resulted in timeout, assuming
arbitrary string as the two parameters. We have
constrained length of two arguments to equal to 16
and 1, respectively. Constraints can be introduced
through insertion of symjs_assume() calls to the
driver.

After introducing the constraints, all functions within UNDER-
SCORE.STRING are processed within 2 seconds.

D. Test Execution

Test inputs for all functions in INDUSTRIAL and UN-
DERSCORE.STRING are automatically exported to test runners
based on Jasmine test framework. Code coverage during testing
is measured with Blanket.js [22], and line coverage of 92.7%
and 76.0% on average is obtained for INDUSTRIAL and
UNDERSCORE.STRING, respectively.

Figure 11 shows distribution of statement coverage for
functions in the benchmarks. The result shows our technique
can generate unit test input with high coverage. For instance,
100% statement coverage is achieved with more than 60% of
the functions. However, some of the benchmarks are not fully
covered due to limitations in symbolic execution or stub/driver
generation. In the sequel, we discuss the source of failure to
cover some statements.

E. Code Not Covered in the Experiments

While the experimental results show that the proposed
method can generate test input achieving high code coverage,
100% coverage is not reached, implying some portion of the
target program is not exercised. Automatically generated test
runner code shown in Figure 4 allows for manual modification
and insertion of cases in order to test such code. However,
additional labor is required and it is desirable to have such code
automatically covered. The followings are the classes of code
not executed, and possible enhancements to our methodology,
which allows for coverage of missed code.

1) Code Exercised on Matches to Regular Expressions

JavaScript features regular expression library within its
core ECMAScript language standard. The functionality is very
useful to perform string manipulations and heavily used in
UNDERSCORE.STRING. However, SymJS cannot obtain and
manage path conditions corresponding to matches and un-
matches on some regular expressions. The limitation results

152

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table VI. Statistics on the Tests Generated

Target INDUSTRIAL UNDERSCORE.STRING UNDERSCORE.STRING

(w/o constraints) (w/ constraints)

Functions with generated tests 22 55 57
#Test per function(max./avg./min.) 27/2.6/1 201/24.4/1 48/6.4/1

Max. test generation time per function (sec.) < 1 > 60 (timed out) < 2
Statement coverage(%) 92.7 73.5 76.0

 0

 20

 40

 60

 80

 100

20-40 40-60 60-80 80-99 100

Pe
rc

en
ta

ge
 o

f F
un

ct
io

ns

Statement Coverage (%)

INDUSTRIAL
UNDERSCORE.STRING

Figure 11. Distribution of Statement Coverage for Functions in INDUSTRIAL and UNDERSCORE.STRING

�

�

�

�

/ / fm t i s a s y m b o l i c S t r i n g v a r i a b l e
/ / c r e a t e d from argument s t o t h e f u n c t i o n
i f ((match = / ˆ [ˆ \ x25] + / . exec (fmt))

!== n u l l) {
p a r s e t r e e . push (match [0]) ;

}
Figure 12. Code Exercised on Matches to Regular

Expressions from sprintf() Function in
UNDERSCORE.STRING

in failure to cover code to be exercised on matches of input
string to such regular expressions.

11 functions in UNDERSCORE.STRING are not fully cov-
ered due to this limitation in handling regular expressions.
Figure 12 shows such code fragment found in sprintf()
function from UNDERSCORE.STRING. The restriction results
in 57/75 statements within the large function missed, down-
pressing total coverage achieved with UNDERSCORE.STRING.

We are planning to enhance string constraint solver PASS,
in order to model and handle larger class of regular expres-
sions.

2) Code Handling Objects of Unexpected Type

As JavaScript is a dynamically typing language, objects of
unexpected type might be returned from functions. In order
to handle such scenario, the target programs contained type
checking and subsequent branching code. However, symbolic
stubs generated through our technique, always return an object
of type specified in source code annotation. Such stubs fail to
cover code portions handling objects of type different from

�

�

�

�

/∗ ∗
. . .
∗ @param {Number} p o s i t i o n
∗ /

f u n c t i o n endsWith (s t r , ends , p o s i t i o n) {
. . .
i f (t y p e o f p o s i t i o n == ’ u n d e f i n e d ’) {

p o s i t i o n = s t r . l e n g t h − ends . l e n g t h ;
} . . .

}
Figure 13. Code Handling Objects of Unexpected Type from

endsWith() Function in UNDERSCORE.STRING

annotations.

1 function in INDUSTRIAL and 2 functions in UNDER-
SCORE.STRING contain such code, and full coverage is not
achieved. Figure 13 shows the corresponding code fragment
from endsWith() function in UNDERSCORE.STRING.

Code handling objects of unexpected type can be exercised
by making use of multiple symbolic stubs/drivers, which
return/pass objects of different type. Currently, we support
@return and @param annotations each specifying single
type. However, JSDoc3 includes support for annotations with
multiple possible types of arguments and return values. Our
symbolic driver and stub generator can be extended easily to
support such annotations.

3) Code with No Premise on Object Type

INDUSTRIAL also contained 1 function, which determines
type of objects at run time and process them accordingly.

153

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

However, our technique cannot cover such procedures. From
functions with types of their return values unknown, we
generate stubs that return the default JavaScript “Object”. As
the consequence, code interacting with objects of custom class
is uncovered.

Object types a variable may take can be extracted by means
of static analysis or random tests. Our symbolic execution
technique can be employed to create test input variation within
the obtained type.

4) Code Iterating through Entries in Hash or Array

1 function within INDUSTRIAL had loop iterating through
members in objects returned from a symbolic stub. Such
control structure is often observed in JavaScript code, in order
to make use of a plain “Object” as a hash table. However,
automatically generated symbolic stub returns newly created
“Object” with no members, and loop body is missed in the
experiment. Code that inspects content of arrays from symbolic
stubs is also expected to missed, as symbolic stubs generated
by our tool return newly created empty arrays.

Loop bodies in such functions can be exercised by stubs
that returns “Object” or array with one or more members
contained.

5) Catch Blocks Handling Exceptions

1 function from INDUSTRIAL contained catch blocks for
exceptions thrown from the framework used in the program.
However, after replacing the framework with the automatically
generated symbolic stubs, exceptions are never thrown and
catch blocks are not exercised.

In order to cover catch blocks in target, we have to generate
symbolic stubs that throws exception during execution, in
addition to those do not throw exceptions.

V. DISCUSSION

A. Completeness

Our symbolic execution technique depends on modeling of
computation performed, including complex one such as string
manipulations. While we have employed constraint solver
PASS, which is capable of handling complex string constraints,
some constraints such as the one corresponding to code with
regular expressions could not be handled.

Another limitation comes from automatically generated
symbolic stubs/drivers from our technique. Type annotations
used as input of our stub/driver generation technique, do not
provide enough information to model environments where
target software is executed. For instance, target software might
be fed objects of unexpected type, or thrown exceptions. Our
symbolic stub/driver generation technique does not take such
situations into account.

However, compared to existing industrial practice of test-
ing based on manually written tests, our technique can test
behavior of wider scope in an automatic fashion.

B. Scope

Like other automated test input generation techniques
based on symbolic execution, we do not automatically generate

assertions to check target application behavior conformance
with the obtained test inputs. In other words, users need to
provide assertions/invariants to ensure target code is function-
ing as expected.

However, invariants and many assertions can be shared
between multiple test cases, and costs for writing them is much
smaller compared to those required to write tests from scratch.
Further, our Jasmine-based test runner allows for insertion of
global invariants, as well as to assertions specific to test cases.

C. Automation Level

Our test generation technique may require some user
inputs on targeting complex applications such as UNDER-
SCORE.STRING. In the experiment, maximum number of
branches and constraint to string length are required to end
test generation for some functions. However, the number of
parameters that needed to be adjusted are quite small. In
addition, more than 95% of functions in the subject could
be handled with the default configuration of the symbolic
executor.

D. Correctness

Symbolic stubs generated with our technique always return
newly defined symbolic variable. Such behavior may result in
over-approximation of real system behavior before introducing
stubs. For example, an expression containing multiple calls to
a single function getValue()!=getValue() is unlikely
to be satisfied, assuming target variable of the getter functions
is not accessed from other execution contexts between two
function calls. However, as the stubbed getValue() func-
tion returns newly defined symbolic variable on every call, it
is possible to generate tests that make the expression true.

Combination of the generated test input and stub allows for
reproduction of behavior that makes the expression true during
test execution. However, the behavior might be quite different
and hard to reproduce in real system under development. In
that case, stubs need to be manually modified or developed,
in order to mock behavior of environment in which software
under test is executed.

E. Scalability

Our case studies confirm that our technique can be applied
to real-world JavaScript code used in field. While we need to
adjust some parameters used in test generation, we were able
to target all functions in the benchmarks within 2 seconds.

However, we need to perform experiments on applications
with their size varied. In order to target software of larger
scale, test generation techniques such as DART [23] would
be required, in addition to pure symbolic execution used in
current SymJS.

F. Threats to Validity

Issues related to the external validity of our evaluation are
handled in the discussions above. The internal validity of our
experiments may depend on software tools used. We have min-
imized the chance by writing tests for the toolchain developed,
which are completely different from the benchmarks used in
the evaluation.

154

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We proposed a technique to automatically generate unit
test input data for JavaScript code. The technique makes
use of a symbolic executor SymJS, in order to achieve high
code coverage during testing. The technique is a two-phase
approach, consisting of the following fully-automatic steps:

1) Symbolic stub/driver generation based on type infor-
mation obtained from annotations

2) Test input generation through symbolic execution of
target code

The experiments were conducted targeting client part of
proprietary web application and open-source string manipu-
lation library. Our technique generated tests that achieve line
coverage higher than 75%, and more than 60% of functions
in the subject are fully covered with the generated tests.
The results show the technique can automate generation and
execution of high-coverage unit tests for large portion of
JavaScript code in the field.

B. Future Work

Future work includes more verification trials with variety of
target programs. While we have performed experiments with
programs of relatively small size, experiments on larger targets
are also required.

In order to exercise target code missed in the experiment
automatically, constraint solver PASS and symbolic stub/driver
generator need to be improved. However, our methodology
allows for manual modification of generated tests to cover
such code, which is found in less 40% of the subject in the
evaluation.

In the experiment, we have targeted JavaScript code with
HTML DOM API encapsulated in our custom framework
(INDUSTRIAL) and code that involves API defined in EC-
MAScript standard associated only (UNDERSCORE.STRING).
As the consequence, symbolic stubs required for test gen-
eration and execution in the experiment were only those
corresponding to our custom framework. However, in order
to target JavaScript code, which has interactions with server-
side API such the one in Node.js or client-side API for HTML
DOM manipulations, symbolic stubs for corresponding APIs
need to be developed. To target mobile applications, it is
required to prepare symbolic stubs for frameworks used in
their implementation. Development support techniques for new
symbolic stubs are necessary, in order to support larger set of
platforms with JavaScript code deployed with reduced effort.

REFERENCES

[1] H. Tanida, G. Li, M. Prasad, and T. Uehara, “Automatic Unit Test
Generation and Execution for JavaScript Program through Symbolic
Execution,” in Proceedings of the Ninth International Conference on
Software Engineering Advances, 2014, pp. 259–265.

[2] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“EXE: Automatically Generating Inputs of Death,” in Proceedings of
the 13th ACM Conference on Computer and Communications Security,
2006, pp. 322–335.

[3] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic
Generation of High-coverage Tests for Complex Systems Programs,”
in Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, 2008, pp. 209–224.

[4] C. S. Păsăreanu and N. Rungta, “Symbolic PathFinder: Symbolic
Execution of Java Bytecode,” in Proceedings of the IEEE/ACM In-
ternational Conference on Automated Software Engineering, 2010, pp.
179–180.

[5] K. Sen, D. Marinov, and G. Agha, “CUTE: A Concolic Unit Testing En-
gine for C,” in Proceedings of the 10th European Software Engineering
Conference, 2005, pp. 263–272.

[6] N. Tillmann and J. De Halleux, “Pex: White Box Test Generation for
.NET,” in Proceedings of the 2nd International Conference on Tests and
Proofs, ser. TAP’08, 2008, pp. 134–153.

[7] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: Whitebox Fuzzing
for Security Testing,” Queue, 2012, pp. 20:20–20:27.

[8] L. De Moura and N. Bjørner, “Satisfiability Modulo Theories: Intro-
duction and Applications,” Commun. ACM, vol. 54, no. 9, 2011, pp.
69–77.

[9] “Node.js,” https://nodejs.org/, [Online; accessed 2015.05.28].

[10] “PhoneGap — Home,” http://phonegap.com/, [Online; accessed
2015.05.28].

[11] “Jasmine: Behavior-Driven JavaScript,” http://jasmine.github.io/, [On-
line; accessed 2015.05.28].

[12] “QUnit: A JavaScript Unit Testing framework,” http://qunitjs.com/,
[Online; accessed 2015.05.28].

[13] “Mocha - the fun, simple, flexible JavaScript test framework,” http:
//mochajs.org/, [Online; accessed 2015.05.28].

[14] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song,
“A Symbolic Execution Framework for JavaScript,” in Proceedings of
the 2010 IEEE Symposium on Security and Privacy, 2010, pp. 513–528.

[15] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A selective
record-replay and dynamic analysis framework for javascript,” in Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, 2013, pp. 488–498.

[16] G. Li, E. Andreasen, and I. Ghosh, “SymJS: Automatic Symbolic
Testing of JavaScript Web Applications,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2014, pp. 449–459.

[17] G. Li and I. Ghosh, “PASS: String Solving with Parameterized Array
and Interval Automaton,” in Proceedings of Haifa Verification Confer-
ence, 2013, pp. 15–31.

[18] ECMA International, Standard ECMA-262 - ECMAScript Language
Specification, 5th ed., June 2011. [Online]. Available: http://www.
ecma-international.org/publications/standards/Ecma-262.htm

[19] “Rhino,” https://developer.mozilla.org/en-US/docs/Rhino, [Online; ac-
cessed 2015.05.28].

[20] “Use JSDoc,” http://usejsdoc.org/index.html, [Online; accessed
2015.05.28].

[21] “underscore.string,” https://epeli.github.io/underscore.string/, [Online;
accessed 2015.05.28].

[22] “Blanket.js —Seamless javascript code coverage,” http://blanketjs.org/,
[Online; accessed 2015.05.28].

[23] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed Automated
Random Testing,” in Proceedings of the 2005 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, 2005,
pp. 213–223.

155

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

