
Developing Heterogeneous Software Product Lines
with FAMILE – a Model-Driven Approach

Thomas Buchmann and Felix Schwägerl
University of Bayreuth

Chair of Applied Computer Science I
Bayreuth, Germany

{thomas.buchmann, felix.schwaegerl}@uni-bayreuth.de

Abstract—Model-Driven Software Development and Software
Product Line Engineering are independent disciplines, which both
promise less development effort and increased software quality.
While Model-Driven Software Development relies on raising the
level of abstraction and automatic code generation, Software
Product Line Engineering is dedicated to planned reuse of
software components based upon a common platform, from which
single products may be derived. The common platform consists
of different types of artefacts like requirements, specifications,
architecture definitions, source code, and so forth. Only recently,
research projects have been started dealing with model-driven
development of software product lines. So far, the resulting tools
can only handle one type of artefact at the same time. In this
paper, requirements, concepts and limitations of tool support for
heterogeneous Software Product Line Engineering are discussed.
As a proof of concept, an extension to the model-driven tool
chain FAMILE is presented, which supports mapping of features
to different types of artefacts in heterogeneous software projects
at the same time. The added value of the approach is presented by
an example product line, which has been developed in a strictly
model-driven way using FAMILE.

Keywords–software product lines; model-driven development;
negative variability; feature models; heterogeneity.

I. INTRODUCTION

This article is an extended version of an ICSEA 2014
conference paper [1]. It contains a deeper insight into the tool
FAMILE and the adaptations, which enable the management
of heterogeneous software product lines. It also presents the
relevant ideas using a concrete example.

Model-Driven Software Engineering (MDSE) [2] puts
strong emphasis on the development of high-level models
rather than on the source code. Models are not considered as
documentation or as informal guidelines how to program the
actual system. In contrast, models have a well-defined syntax
and semantics. Moreover, MDSE aims at the development of
executable models. The Eclipse Modeling Framework (EMF)
[3] has been established as an extensible platform for the
development of MDSE applications. It is based on the Ecore
metamodel, which is compatible with the OMG Meta Object
Facility (MOF) specification [4]. Ideally, software engineers
operate only on the level of models such that there is no need
to inspect or edit the actual source code, which is generated
from the models automatically. However, practical experiences
have shown that language-specific adaptations to the generated
source code are frequently necessary. In EMF, for instance,
only structure is modeled by means of class diagrams, whereas

behavior is described by a posteriori modifications to the
generated source code.

Software Product Line Engineering (SPLE) [5][6] deals
with the systematic development of products belonging to a
common system family. Rather than developing each instance
of a product line from scratch, reusable software artefacts
are created such that each product may be composed from a
collection of reusable artefacts — the platform. Commonalities
and differences among different products may be captured in
a feature model [7], whereas feature configurations describe
the characteristics of particular products by selecting or dese-
lecting features. Typical SPLE processes distinguish between
domain engineering, which deals with the establishment of the
platform as well as the feature model, and application engi-
neering, which is concerned with the derivation of particular
products out of the product line by exploiting and binding the
variability provided by the platform.

To realize variability in SPLE, two distinct approaches
exist: In approaches based upon positive variability, product-
specific artefacts are built around a common core [8][9].
Composition techniques are used to derive products. In ap-
proaches based on negative variability, a superimposition of all
variants is created — a multi-variant product. The derivation
of products is achieved by removing all fragments of artefacts
implementing features that are not contained in the specific
feature configuration [10][11]. While approaches based on
positive variability typically require new languages, negative
variability can be applied to existing ones by means of using
preprocessor like tools. Thus, approaches based on negative
variability can easily be applied to already existing software
artefacts. The tool chain “Features and Mappings in Lucid
Evolution” (FAMILE) [12][13], which is used in this paper,
belongs to the latter category.

In the past, several approaches have been taken in combin-
ing SPLE and MDSE to get the best out of both worlds. Both
software engineering techniques consider models as primary
artefacts: Feature models [7] are used in SPLE to capture
the commonalities and differences of a product line, whereas
Unified Modeling Language (UML) models [14] or domain-
specific models are used in MDSE to describe the software sys-
tem at a higher level of abstraction. The resulting integrating
discipline, Model-Driven Software Product Line Engineering
(MDPLE), operates on a higher level of abstraction compared
to traditional software product line approaches operating on the
source code level. By this integration, an additional increase
in productivity is achieved. In the special case of negative

232

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

variability, the platform is provided as a multi-variant domain
model. The upcoming MDPLE approach has been successfully
applied in several case studies, including MOD2-SCM [15], a
model-driven product line for software configuration systems.

In this paper, requirements, concepts and limitations of tool
support for heterogeneous software product lines (HSPLs) are
discussed. Here, the term ‘heterogeneity’ means that (a) arte-
facts are distributed over multiple resources, (b) the underlying
data format of artefacts may differ (e.g., text files or XMI
files), (c) in the case of models, the metamodel may vary,
(d) artefacts are connected by both explicit and conceptual
links, and (e) variability among different resources may be
expressed by a shared variability model that uses a common
variability mechanism. Based upon these assumptions, several
conceptual extensions to MDPLE frameworks are developed,
which are implemented in the form of extensions to the tool
chain FAMILE as a proof of concept. The practical value of
the new approach is shown by developing a heterogeneous
product line for editors for graphs, which are distinguished
by properties such as the editor type (tree or graphical) or the
types of graphs that may be edited (weighted, directed, and/or
colored graphs, etc.).

The paper is structured as follows: After clarifying the
contribution (Section II), the state of the art of homogeneous
SPLE tools is outlined in Section III. A brief introduction of
the running example is given in Section IV, while Section V
explains the new concepts introduced for the support of
heterogeneous product lines. In Section VI, the example is
revisited in order to demonstrate the heterogeneous extension
to the MDPLE tool chain FAMILE on the graph product line,
which has been modeled using Eclipse Modeling Technology
(EMF and the Graphical Modeling Framework (GMF) [16]).
Related work is discussed in Section VII, while Section VIII
concludes the paper and outlines future work.

Both the tool chain and the running example project may
be retrieved via an Eclipse update site (http://btn1x4.inf.uni-
bayreuth.de/famile2/update).

II. STATE OF THE ART, CHALLENGES, AND
CONTRIBUTION

Heterogeneous software projects consist of a variety of
interconnected resources of different types. Different repre-
sentations may be used for requirements engineering, analysis
and design. The generated source code is typically expressed
in a general purpose language, e.g., Java, and extended with
language-specific – mostly behavioral – components. Further-
more, a software project contains a set of configuration files
such as build scripts, which are typically represented in plain
text or XML format. In order to adequately handle variability
of the overall software project, all these different artefacts need
to be subject to variability management.

In its current state, tool support for model-driven product
line engineering does not adequately address heterogeneous
software projects (see Section VII). In particular, the following
new challenges arise for SPLE tools:

(a) They should ensure the consistency of cross-resource
links between different artefacts.

(b) The level of abstraction needs to be variable, i.e., the
tool should be able to operate both at the modeling
and at the source code level.

(c) Different artefacts are based on different formalisms,
e.g., metamodels or language grammars. In the special
case of models, supporting a mixture of different
metamodels requires adequate tool support.

(d) In the case of model-driven engineering, there exist
conceptual links between different artefact types. For
example, when adding variability to a certain mod-
eling construct, the corresponding generated source
code fragment needs to be provided with the same
variability information in order to keep the product
line consistent.

(e) All artefacts must be handled by a uniform variability
mechanism (e.g., a common feature model) in order
to allow for product configuration in a single step.

In this paper, an approach to heterogeneous SPL develop-
ment is presented, which advances the state of the art by the
following conceptual contributions:

(a) Multi-resource artefacts Heterogeneous projects
consist of inter-related artefacts created for different
development tasks such as requirements engineering
or testing. The referential integrity among these inter-
related models is maintained during product deriva-
tion.

(b) Heterogeneous artefact types The approach pre-
sented here can handle product lines composed from
different kinds of artefacts. Technically, an abstraction
from different resource types is conducted by repre-
senting them as EMF models.

(c) Variable metamodels In the special case of mod-
els, the approach presented here does not assume a
specific metamodel but allows an arbitrary mixture of
models, which may be instances of any Ecore-based
metamodel(s).

(d) Maintenance of conceptual links The presented
approach recognizes dependencies between heteroge-
neous artefacts even in case they are not modeled
explicitly. This is true, e.g., for the concrete Java
syntax, which may be provided with variability in-
formation, too. Internally, the corresponding concrete
syntax fragment is mapped to an abstract syntax tree,
which is invisible to the user.

(e) Common variability mechanism In the original ver-
sion of FAMILE, the variability mechanism of feature
models has been applied to single-resource EMF mod-
els. The presented approach allows for an extension
of the product space to almost arbitrary resources. All
artefacts are managed by a unique feature model.

These conceptual contributions will be demonstrated by the
example of a proof-of-concept implementation that provides
an extension to the FAMILE toolchain [12][13]. The extended
version of FAMILE can deal with plain text files, XML files,
Java source code files, arbitrary EMF models, and further types
of resources. This way, variability within complete Eclipse

233

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Non-model
resource

resource
mapping model

resource
mapping model

feature model

resource set
mapping model

Internal
model

represen-
tation

resource
mapping model

Figure 1. Conceptual mapping of models and non-model artefacts in the
presented approach.

projects may be managed. Internally, all artefacts, even plain
text and XML files, are represented as EMF models.

For each resource that is subject to variability, a single-
resource mapping model (i.e., a model that maintains traceabil-
ity links between the variability model and the multi-variant
domain model) is created, which may be managed by the
existing FAMILE core. The consistency between those differ-
ent mapping models is maintained by an additional resource
set mapping model. Figure 1 shows how single resource and
resource set mapping models are used in order to manage a
heterogeneous Eclipse project. In Section VI-D, the interplay
between the different resource types is discussed in detail.

III. STATE OF THE ART: HOMOGENEOUS MDPLE TOOLS

This section provides a brief overview on the state of the
art of current tools for model-driven product line engineering.
The description is confined to approaches based on negative
variability. As one representative, the original version of the
FAMILE tool chain [12][13] is presented. FAMILE is tailored
towards software product line development processes that
distinguish between domain and application engineering [5][6].
Domain engineering is dedicated to analyzing the domain
and capturing the results in a feature model, which describes
commonalities and differences thereof. Furthermore, an imple-
mentation – the multi-variant domain model – is provided as
a result of this phase, which is then used during application
engineering to derive application specific products. Figure 2
depicts the software product line process.

Current MDPLE tools – in particular, FAMILE – support
this process by assisting in the following tasks:

1) Definition of a feature model At the beginning of
the domain engineering phase of the product line
life-cycle, the problem domain is analyzed and the
commonalities and differences are captured in a fea-
ture model [7]. For feature models, several extensions
such as cardinality-based feature modeling [17] have
been proposed.

2) Creation of the domain model For the construction
of a multi-variant domain model, modelers may use
their preferred modeling languages and tools. Most
MDPLE approaches only support single-resource
models. FAMILE requires that the resulting model
is an instance of an Ecore metamodel.

Analyze
Domain

Develop Multi-
variant

Domain Model

Establish
Mapping

Configure
Features

Configure
Product

A
p

p
lic

a
ti

o
n

 E
n

gi
n

e
er

in
g

D
o

m
a

in
 E

n
gi

n
e

er
in

g

Feature Model

Multi-variant
Domain Model

Mapping
Model

Feature
Configuration

Domain

Application
Specific

Requirements

Configured
Domain Model

1

2

3

4Validate
Mapping

5

6

Figure 2. The software product line process supported by the state-of-the-art
tool FAMILE.

3) Mapping features to model elements In order to
define which parts of the domain model realize which
feature (or which combination thereof), MDPLE tools
provide different mechanisms to map features to
model elements. For this purpose, FAMILE includes
the Feature to Domain Mapping Model (F2DMM)
editor, which supports the process of assigning fea-
ture expressions – arbitrary propositional formula on
the set of features – to particular model elements of
a single resource. A feature expression is a logical
combination of features, for which FAMILE pro-
vides a dedicated textual language (FEL, Feature
Expression Language). Modelers can either assign
feature expressions by drag-and-drop or by selecting
a model element in the editor and textually entering
the expression [12].

4) Ensuring the consistency of the product line The
increasing complexity coming with both the size of
the multi-variant domain model and the number of
features requires sophisticated mechanisms to detect
and repair inconsistencies among the artefacts of
the product line. In particular, the consistency be-
tween (a) the mapping model and the domain model,
(b) the feature model and its corresponding feature
configurations, and (c) feature expressions and the
feature model, must be ensured. Different approaches
are described in [17][18]. FAMILE introduces the
concepts of surrogates and propagation strategies
[13] for this purpose.

5) Definition of feature configurations As soon as
the mapping is complete, MDPLE tools support the
creation of feature configurations, each describing the
characteristics of a member of the software product
line. For each feature defined in the feature model,
a selection state must be provided that determines
whether a feature is present in the corresponding

234

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Screenshot of the F2DMM mapping model editor showing the multi-variant domain model of the (homogeneous) graph product line.

Instance of
Ecore

Metamodel

Feature
Metamodel

Feature
Model

Feature
Configuration

Instance of

Domain
Metamodel

Multi-variant
Domain model

F2DMM
Metamodel

Instance of

FEL
Metamodel

Resource Mapping Model Configured
Domain model

 derives

Figure 4. Metamodels and models involved in the original version of FAMILE. Different models are used to map a single-resource multi-variant domain
model. All metamodels are based on Ecore.

product.
6) Product derivation A specific product can be derived

by applying its corresponding feature configuration to
the product line. During the derivation process, the
multi-variant domain model is filtered by elements
whose assigned feature expressions evaluate to false,
i.e., the corresponding features are deselected in the
current feature configuration. In homogeneous MD-
PLE tools, the result of this operation is a product-
specific single-resource model represented as an in-
stance of the (previously fixed) domain metamodel.

IV. EXAMPLE: HOMOGENEOUS FAMILE PRODUCT LINE
FOR GRAPH METAMODELS

The following statements refer to the original version
of the tool FAMILE as one representative of homogeneous
MDPLE tools. Section V demonstrates how heterogeneous
project support is added to the tool chain. As a demonstrating
example within this paper, the graph product line example
has been adopted, which is frequently used in research papers
because it is easy to understand and its size is rather small
[19].

FAMILE itself has been developed using EMF as its
technological foundation. A model-driven software product
line developed with FAMILE is spread over multiple EMF
resources, which are instances of multiple metamodels (cf.
Figure 4): Feature models and configurations share a common
metamodel that supports cardinality-based feature modeling.
The (single-resource) F2DMM mapping model describes how

domain model elements are mapped to features. The domain
model is an instance of an arbitrary domain metamodel,
which is fixed for the mapped resource. It is assumed to
be a single-resource entity. The Feature Expression Language
(FEL) metamodel describes a textual language for feature
expressions [12].

With the F2DMM editor (see Figure 3), the user is assisted
in assigning feature expressions to domain model elements.
The underlying F2DMM mapping model is constructed auto-
matically and reflects the spanning containment tree structure
of the domain model (in this case, the domain model is an
Ecore class diagram). Using the reflective EMF editing mech-
anism [3], the F2DMM user interface emulates the reflective
EMF tree editor. Optionally, the user may load an example
feature configuration already during the mapping process in
order to comprehend how feature expressions are evaluated.
The screenshot shown in Figure 3 depicts an example feature
configuration in the left pane. Selected features or groups are
displayed in cyan, deselected features or groups in orange. The
right pane contains the mapping of specific features to artefacts
of the multi-variant domain model. Elements are annotated
with feature expressions after a colon. The calculated selection
states selected and deselected are represented in cyan and
orange.

The example feature configuration shown in Figure 3 rep-
resents a directed graph (with uncolored nodes and unweighted
edges) that realizes neither depth-first search nor breadth-first
search.

235

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Heterogeneous projectResource Set Mapping Model

Feature
Metamodel

Feature
Model

Feature
Configurations

Domain
Metamodels

MVDM A

F2DMM
Metamodel

FEL
Metamodel

FAMILE
Metamodel

Resource Mapping Model A

Products

 derives

Resource Mapping Model B

Resource Mapping Model C

MVDM B

MVDM C

CDM A

CDM B

CDM C

Figure 5. Metamodels and models involved in the extension of FAMILE. Abbreviations: MVDM = multi-variant domain model; CDM = configured domain
model.

Considering a (model-driven) software product line as a
homogeneous artefact causes a considerable amount of limita-
tions. When referring to the graph example, it is obvious that,
although being the core artefact of a model-driven project, the
metamodel is not “everything”. Using only the metamodel,
one is not able to express several behavioral aspects (e.g.,
the implementation of generated method bodies) or details of
representation (e.g., tree or diagram editors), only to name
a few. Thus, it is necessary to include further resources into
the product line. In the subsequent section, the conceptual
and technical prerequisites for heterogeneous SPL support
are discussed, before the running example is revisited in
Section VI, where the platform will be specified in a greater
level of detail. Furthermore, the underlying feature model will
be defined more precisely.

V. SUPPORT FOR HETEROGENEOUS APPROACHES

This section explains how support for heterogeneous
model-driven software product lines has been added to the
MDPLE tool FAMILE. From a technical point of view, this
requires multiple metamodels for the platform and multiple
models that describe different artefacts of the product in
different stages of the development process (e.g., requirements,
design, implementation). As stated in the introduction, it is
assumed that all project artefacts may be expressed using EMF.

Figure 5 shows the conceptual overview of the new, het-
erogeneous version of the FAMILE tool chain. A resource
set mapping model is an instance of the FAMILE metamodel
and wraps different single-resource F2DMM model instances,
which are used for mapping features to the different (heteroge-
neous) multi-variant domain model instances. A resource set
mapping model references a given feature model and one out
of an arbitrary number of corresponding feature configurations.
Features are mapped to the corresponding domain artefacts by
using a separate mapping model per resource.

In Subsection V-A, the new FAMILE metamodel will be
presented as the core of the heterogeneous extension. Sub-
section V-B explains how non-model artefacts are mapped to
EMF models, which is a technical necessity in order to manage
them in a FAMILE product line. Subsection V-C will present
additional user interface components that ease heterogeneous
SPL development.

A. The FAMILE Metamodel

The specific requirements of heterogeneous modeling
projects have been addressed by the FAMILE metamodel
and its corresponding instances, which constitute an extension
to the F2DMM metamodel, where models have been con-
sidered as self-contained single-resource entities [12]. While
this approach works well for projects with only one domain
metamodel, it is obvious that heterogeneous projects, e.g., a
GMF project, cannot be handled this way. Furthermore, even
in non-heterogeneous projects, a model might be split up into
different resources to better cope with size and/or complexity.
In order to support multiple (EMF-based) resources of poten-
tially different types, the new FAMILE model shown in Figure
6 wraps several instances of the F2DMM metamodel, which
still constitutes the core of the extended tool chain.

The FAMILE metamodel (cf. Figure 6) defines a logical
grouping of inter-related mapping models. The root element
– an instance of ProductLine – defines a number of global
project parameters, being the references to the used feature
model and optionally a feature configuration, as well as a prop-
agation strategy (used for automatic detection and resolution
of inconsistencies; see [13]). FAMILE takes care that global
project parameters are kept consistent within different resource
mappings of the same heterogeneous product line.

deriveProduct()

ps : PropagationStrategy

ProductLine
RootFeature

(from Feature
Metamodel)

name : EString
type : ArtefactType

F2DMMInstance

uri : Estring
contentType : EString

ResourceDescriptor

MappingModel
(from F2DMM
Metamodel)

Mapping
(from F2DMM
Metamodel)

FeatureExpr
(from FEL

Metamodel)

1

0..1

0..11

1

1

0..*

currentFeature
Configuration

featureModel

currentFCfeatureModel

mappingModel

mappingModels

domainArtefact

featureExpr0..1

Figure 6. The FAMILE metamodel, which is designed to support
heterogeneous software product lines.

236

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A single resource mapping model, which refers to exactly
one mapped EMF resource, is represented by F2DMMInstance.
This meta-class defines a number of resource-specific parame-
ters, such as the name and the artefact type (requirements, im-
plementation, test, etc.). Please note that F2DMMInstance ex-
tends the abstract meta-class Mapping defined in the F2DMM
metamodel, which manages variability by the use of feature
expressions and the calculation of selection states [12]. Thus,
variability on a coarse-grained level (i.e., on the level of
resources) is enabled. The referenced MappingModel describes
the mapping of the specific contents of a mapped resource, e.g.,
mapped EMF objects in the case of EMF model resources. Fur-
thermore, a contained ResourceDescriptor element describes
additional resource-specific parameters, being the relative URI
of the mapped resource, as well as its content type (plain
text, XML, EMF, etc.). The resource containing a multi-variant
domain model is referenced by its URI.

Besides the possibility of annotating specific resources of
the multi-variant domain model with feature expressions, the
presented extension addresses the fact that in heterogeneous
projects, cross-resource links occur frequently. For instance,
in the example in Section VI, elements of an Ecore model are
referenced by a corresponding GMF mapping model located
in a different resource. Please note: from the viewpoint of
FAMILE, the GMF mapping model is just an ordinary artefact
that is also based on the Ecore metamodel. During product
derivation, these links are detected and resolved automatically
in order to meet the requirement of referential integrity across
multiple resources.

B. Interpreting Non-Model Artifacts as EMF Instances

EMF and its metamodel Ecore are wide-spread in the
Eclipse community, thus a large number of potential domain
models is addressed by relying on EMF models as SPL arte-
facts. A (non-exhaustive) list comprises of course Ecore class
diagrams, Eclipse UML models [20], Xtext [21] / EMFText
[22] grammars and documents, GMF models [16], Acceleo
source code generation templates [23], MWE2 Workflow files
[24], Xtend specifications [25], domain-specific languages
based on Ecore, and many more. Additionally, FAMILE has
been applied successfully to Java source code as well. To
this end, the MoDisco [26] framework is used, which allows
to parse Java source code into a corresponding Java model
instance (which is also based on Ecore). MoDisco may be
also used to create EMF model instances out of XML files.

As explained before, the new framework considers all
artefacts part of the platform as models. In this subsection, it is
explained how particular resource types can be interpreted as
EMF instances. The new FAMILE implementation allows for
different extensions for specific heterogeneous resource types.
For each resource type, different user interface extensions are
provided, in order to allow the user to work at an adequate
level of abstraction. So far, five resource types have been
implemented.

• XMI-serialized EMF models. These are ordinary
models, which may be mapped using the F2DMM
editor, which represents the model as a tree.

• Xtext models may be mapped using their abstract
syntax tree, since Xtext files implement EMF’s

Resource interface. Currently, it is not possible to
add feature expressions to a text selection. It is planned
to add this feature in future.

• Java files. Invisibly to the user, Java source code
files are converted to EMF models using the MoDisco
framework. The user may select a source code frag-
ment and invoke the command Annotate Java element.
Behind the scenes, the mapping is applied to the
underlying MoDisco discovery model.

• XML files. Similarly to Java files, MoDisco offers
a discoverer for XML. Currently, only the concrete
syntax may be mapped using the standard F2DMM
single resource mapping editor.

• Unstructured text. For text files that do not fit any
of the categories above, the new FAMILE version
includes a fall-back representation. Text files are rep-
resented as an instance of a simple text meta-model,
which only consists of a sequence of text lines. This
way, single text lines may be assigned with feature
expressions using the F2DMM editor.

In the running example and in the screencast, the focus lies
on two resource types, being XMI-serialized EMF models and
Java files.

C. User Interface

The user interface has been extended to support hetero-
geneous software product lines. An additional editor manages
the mapping for a set of resources rather than single-resource
models, which are still covered by the existing F2DMM editor.
In addition to the tasks listed in Section III, the extended
FAMILE framework supports the following user interactions
(see also example in Section VI):

1) Adding heterogeneous product line support An
arbitrary Eclipse project containing any kind of re-
source (e.g., EMF models, source code and docu-
mentation) can be provided with the FAMILE nature,
which adds heterogeneous product line support by
automatically creating a FAMILE product line model.

2) Definition of a global feature model As soon as
the FAMILE nature has been added, the feature
model editor is opened automatically and can be
used to provide the results of domain analysis. Of
course, it is also possible to reuse an existing feature
model. Once a new feature model has been created
or an existing feature model has been selected, its
contained features may be used in feature expressions
annotating corresponding implementation fragments
from the multi-variant domain model(s).

3) Adding variability to resources Initially, it is as-
sumed that none of the project resources is subject
to variability. In order to add variability to a specific
resource, the Add F2DMM Instance command can be
invoked. It will create a new mapping model for the
selected resource and append it to the reference map-
pingModels of the ProductLine instance. Furthermore,
global project parameters are transferred to the new
F2DMM instance.

237

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Feature diagram for the graph product line.

4) Assigning feature expressions to resources In many
cases, variability is achieved at a rather coarse-
grained level, having resources rather than objects
implement features. The FAMILE editor supports this
requirement by the possibility of assigning feature
expressions to entire resources.

5) Applying a feature configuration globally The com-
mand Set Feature Configuration allows to change the
current configuration, which will restrict the visible
elements/resources in both the resource mapping and
the resource set mapping editor to elements with a
feature expression that satisfies the new configuration.
This global project parameter is propagated to all
existing F2DMM instances.

6) Deriving a multi-resource product After applying
a specific feature configuration, a product can be
exported. Invoking the Derive Product command will
prompt the user for a name of the derived Eclipse
project. As described above, single-resource product
derivation will be applied to each mapping model
covering a resource, keeping cross-resource links
consistent. Resources that are not wrapped by any
F2DMM instance or that are not annotated with
FEL expressions will be copied without any further
restriction.

VI. EXAMPLE REVISITED: HETEROGENEOUS PRODUCT
LINE FOR GRAPH METAMODELS AND CORRESPONDING

EDITORS

In Section III, the development process that is commonly
used in software product line engineering has been briefly
sketched. In the following, it is demonstrated how to use
FAMILE for model-driven product line engineering with this
process, using the running example introduced in Section IV.
In order to demonstrate the use of the heterogeneous extensions
to FAMILE, the example product line is enriched with editors
for the underlying graph data structure. In the domain engi-
neering sub-process, the variability is captured in a variability
model and a platform is established, which consists of not
only the graph metamodel, but also of resources that control
the aspects of representation as well as behavioral components
– i.e., graph algorithms – which are described at the level of
Java source code.

This section is organized as follows. The (heterogeneous)
platform and the variability model are introduced in Sub-
section VI-A. In Subsection VI-B, the mapping between

platform and variability model is described, with a focus on
heterogeneous resources. Subsection VI-C refers to the use of
two existing FAMILE concepts, being alternative mappings
and propagation strategies. In Subsection VI-D, the created
mapping is investigated with a focus on the interplay between
heterogeneous artefacts, i.e., different types of links among
them. The transition from domain engineering to application
engineering – i.e., product derivation – is subject of Subsec-
tion VI-E. Subsection VI-F gives an outlook for a more fine-
grained specification of variability among the platform.

A. Platform and Variability Model

The platform of the product line contains the following
types of artefacts:

• Ecore Model: An Ecore model is used to describe the
static structure of the product line for graph libraries.
EMF allows to generate Java code for the model
as well as code for a tree editor from the Ecore
specification.

• Java Code: As model-driven development using EMF
only allows to model the static structure of a software
system, it is necessary to supply the corresponding
method bodies using hand-written Java code. These
method bodies also contain variability, which needs
to be managed by FAMILE.

• GMF Models: The (optional) graphical editors for
the graph product line have been developed using the
Eclipse Graphical Modeling Framework (GMF) [16].

The variability of the graph product line is captured in a
feature model. The corresponding feature diagram is depicted
in Figure 7. A graph consists of Nodes and Edges. The
graphical notation uses filled dots for mandatory and unfilled
ones for optional features. Nodes may be Colored while edges
may be Weighted and/or Directed. Optional components of
the graph product line are the Search strategy (e.g., depth-
first search or breadth-first search), different Algorithms and
Editors. Child elements of feature groups are depicted with
arcs. Two different types of group relationships are possible:
“inclusive or” (filled arc) and “exclusive or” (unfilled arc)
of child elements. While the different search strategies are
mutually exclusive, the algorithms and the editor children
may be selected in arbitrary combinations. Please note that
there are also dependencies between features, which cannot

238

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Ecore model for the graph product line.

be displayed in the feature diagram. Features may also define
cross-tree constraints indicating feature inclusion or exclusion
once a certain feature is selected. E.g., the algorithm to detect
cycles in the graph requires Directed edges. Furthermore, the
calculation of a Shortest Path requires Weighted edges.

Figure 8 depicts the multi-variant domain model of the
graph product line. Following the model-driven approach, an
object-oriented decomposition of the underlying data structure
is applied: A Graph contains Nodes and Edges. Furthermore,
it may contain a Search strategy and Algorithms operating on
the graph data structure. For performance reasons, the data
structure may be converted into an Adjacency list, to speed up
certain algorithms. As the model depicted in Figure 8 is the
superimposition of all variants, the relation between nodes and
edges is expressed in multiple ways: (1) In case of undirected
graphs, an edge is used to simply connect two nodes, expressed
by the reference nodes. (2) Directed graphs on the other hand
demand for a distinction of the corresponding start and end
nodes of an edge. This fact is expressed by two single-valued
references named source and target.

As stated above, Ecore only allows for structural modeling,
i.e., it does not provide support to model method bodies. Thus,
the standard EMF development process [3] demands for a
manual specification of an EOperation’s body by completing
the generated source code. In the example, hand-written Java
source code for all operations contained in the class diagram
shown in Figure 8 has been supplied. A small cut-out of a
method implementation for the class Search is shown in Figure
9. In the corresponding Ecore model (cf. Figure 8), the Search
class defines three EOperations. While the EMF code gen-
eration only creates Java code for the method head, the body
implementation depicted in Figure 9 was supplied manually. In
this case, the method implementation also contains variability
as the corresponding references between nodes and edges are
different depending on the presence or absence of the feature
Directed in the current feature configuration. Please note that
the level of granualarity supported by FAMILE’s variability
annotations is arbitrary, ranging from single Java fragments,
over statements, blocks, methods or even classes and packages.

Figure 9. Example for method bodies written in Java.

The product line for graphs also allows for different types
of editors, which may be used to manipulate the graph data
structure. As shown in the corresponding feature model in
Figure 7, valid product configurations may either have no
editor at all, a tree editor, a graphical editor or they may
even contain both types of editor. While the tree editor may
be automatically generated from the Ecore model, a graphical
editor requires additional information. The Graphical Modeling
Framework (GMF) [16], which is also part of the Eclipse
Modeling Platform, allows for a creation of graphical editors
in a model-driven way. Generating graphical editors with GMF
requires the definition of three additional models:

1) GMFGraph (Graphical Definition Model) GMF
uses a GMFGraph model to define the graphical
representation of the concrete syntax. In case of the
example, the visual appearance of nodes and edges
of the graph is defined, by specifying the respective

239

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Abstract Syntax Concrete Syntax

Ecore Model

EMF Generator Model

GMF Mapping Model

Graphical Definition

Model

Tooling Definition

Model

GMF Generator Model

Java Source Code

decorates

generates generates

generates

Figure 10. Models involved in the GMF development process.

shapes.
2) GMFTool (Tooling Definition Model) Every graphi-

cal editor in Eclipse, which is based on the Graphical
Editing Framework (GEF), uses a so called palette to
drag new diagram elements to the drawing canvas.
As GMF is a model-driven extension to GEF, it
follows this paradigm. The GMFTooling definition
model is used to specify the contents of the editor’s
tool palette.

3) GMFMap (GMF Mapping Model) The models
described above are combined in the GMF mapping
model. In this model, a relation between abstract
syntax (Ecore), the graphical notation (GMFGraph)
and the tooling definition model (GMFTool) is estab-
lished. The GMF Mapping Model is then automati-
cally transformed into a generator model from which
the Eclipse plugin for the graphical editor is gener-
ated. Please note that the GMF mapping model is the
central part of the Graphical Modeling Framework. It
has nothing in common with the F2DMM mapping
model, which is the core of the FAMILE tool chain.
From the viewpoint of FAMILE, all the models that
have been described here are just ordinary artefacts
that may contain variability.

Figure 10 depicts the different models involved in the GMF
development process. All models are instances of Ecore-based
metamodels, and can thus be used easily with the FAMILE tool
chain. The abstract syntax of a GMF-based editor is defined
by an Ecore model (in this case, the superimposed graph
metamodel shown in Figure 8), while the editor providing the
concrete (graphical) syntax is defined by a graphical definition
model, a tooling definition model and a GMF mapping model.

The EMF generator model is used to generate Java source
code for the abstract syntax while the GMF generator model
is responsible for generating the diagram editor’s source code.
Please note that the screencast complementing this paper does
not cover the definition of the models mentioned below as
it just focuses on how to use FAMILE with these types of

Figure 11. Domain Engineering Process in the graph product line example.

artefacts.

B. Mapping Heterogeneous Artefacts

Figure 11 depicts the domain engineering phase in model-
driven software product lines developed with FAMILE. First,
the variability has to be captured in a feature model. The
features are then implemented using the appropriate modeling
languages. After that, a mapping between features and their
corresponding implementation fragments has to be established.
In the following subsection, the necessary steps are described
from the tool perspective.

In order to use FAMILE for a (heterogeneous) project,
the FAMILE project nature has to be assigned. As a result,
an empty feature model and a FAMILE model are created
within the project. Variability modeling, i.e., capturing the
commonalities and differences of the products in the product
line, is performed during the domain analysis step. The result
of this development task is a feature model. In the example,
the feature model shown in Figure 7 is applied to the entire
product line as a global project parameter. In order to map
features to corresponding implementation fragments, F2DMM
mapping models have to be created for each domain model.
In the example, five F2DMM instances have been defined,
one for each EMF/GMF resource mentioned above and one
for the Java source code — the underlying MoDisco AST
representation consists of a single EMF resource although
the source code is distributed over multiple packages and
compilation units in the physical file system. Please note that
for the EMF Generator model and the GMF Generator model
(cf. Figure 10) no F2DMM instances have been defined, as they
do not contain variability in this example. Furthermore, those
models have been automatically derived from the Ecore model
and the GMF mapping model and only contain information
for the code generators. Thus, they can easily be created again
after product derivation.

Since the graph metamodel as well as all GMF artefacts
are ordinary EMF models, their mapping is done in a straight-
forward way using the single resource F2DMM mapping editor
(see Section IV). For mapping the source code, the new con-
crete syntax connector of the FAMILE extension may be used.

240

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. Screenshot of the FAMILE resource set mapping editor. The left pane shows the feature model and feature configuration. In the main pane, the
mapping for contents of the resource set are shown.

Figure 13. Usage of alternative mappings. The red box depicts where elements of the multi-variant domain model have been virtually extended by alternative
mapping values (in italics).

It allows to assign feature expressions to parts of the hand-
written method bodies directly in the textual representation of
the Java source code. The body of the method dfs shown in
Figure 9 is annotated as follows (see also screencast) in order
to provide an optimized depth-first search for directed graphs.
First, the user selects lines 257 until 262 in the editor. Next,
he/she invokes the command Annotate Java element
from the context menu. The entered feature expression “Di-
rected” will be assigned to the corresponding AST element in
the MoDisco model in the background. Similarly, the for-
loop consisting of lines 265 until 267 is restricted by the
feature expression “not Directed”. As a consequence, derived
products will only contain one of the two loops to calculate
the successors for a depth-first search, but never both of them.

Figure 12 depicts the state of the example project after
corresponding F2DMM instances have been created for the
models mentioned above. The red arrows in the left part of
the figure indicate which domain model resource the corre-
sponding F2DMM models refer to. As one can see, mapped
resources may also be annotated with feature expressions. For
the example, a feature called Editor has been introduced in
order to make the visualization (tree editor vs. diagram editor)
of the graph variable. In case the feature Diagram is deselected
in a feature configuration, it is obvious that the resulting
product must not contain the GMF models. As a consequence,

the respective F2DMM instances are annotated with the feature
expression Diagram, as shown in Figure 12.

C. Usage of Alternative Mappings and Propagation Strategies

Figure 3 has already shown the content of the F2DMM
mapping model for the Ecore model, which is used to de-
fine the abstract syntax of the graph model. Analogously,
F2DMM instances for the other required artefacts (GMFGraph,
GMFTool, GMFMap and Java code) are created. Each model
file contains a superimposition of all possible variants. Com-
mon approaches using negative variability suffer from restric-
tions imposed by the used domain metamodels, which usually
do not provide adequate support for variability. FAMILE
mitigates this restriction by offering the advanced concept of
alternative mappings. In the example, alternative mappings
are used in the Link mapping in the GMFMap model (cf.
Figure 13). In case of an undirected graph, the corresponding
graphical editor should just connect two nodes by a solid line.
To this end, the underlying semantic model (i.e., the Ecore
class model) provides a reference nodes in the class Edge. In
contrast, if the feature Directed edges is selected, the graphical
editor should indicate the direction of the edge connecting two
nodes by using an arrow as a target decorator. Furthermore,
the semantic model does no longer contain a reference nodes,
but instead two single-valued references source and target,

241

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

which are used to store the corresponding nodes connected
by the edge. In GMF, a link mapping requires to specify
the corresponding EReferences used as the link’s source and
target. While in the first case, both source and target features
in the GMFMap file are set to the EReference nodes, the
latter case requires those features to point at the corresponding
source and target EReferences.

In this example, FAMILE’s alternative mapping capabil-
ities are necessary because the GMF mapping model uses
a single-valued EReference to store the sourceMetaFeature
and linkMetaFeature features. In case of undirected edges, the
nodes Reference defined in the Ecore model of the graph
product line is used. However, in case of directed edges, a
distinction between source and target nodes is required. To
this end, the Ecore model provides corresponding source and
target EReferences in the class Edge (cf. Figure 8), which
have to be used in the GMFMap model instead in case the
feature Directed is chosen. Please note that the reason why
in this example, alternative mappings are necessary in the
GMF mapping model but not in the semantic model is the
fact that the references nodes, source, target can be
defined simultaneously in the Ecore model. The GMF mapping
model, however, requires the applied occurrence of exactly one
semantic model element here, which cannot be realized by a
single multi-variant model. Figure 13 depicts how this has been
solved using FAMILE’s alternative mappings [12], which can
virtually extend the multi-variant model and thus mitigate the
limited variability of the used domain metamodels.

It is aimed to keep the annotation effort small for the
users of the tool chain. This can be achieved by so called
propagation strategies, which avoid the necessity of repeated
feature annotations. In the graph product line example, the
propagation strategy forward is used throughout all mapped
resources. As its name says, this strategy propagates selection
states of mapped elements along the direction of dependency.
For instance, each EMF object has an existential dependency
to its eContainer. As a consequence, in case the presence
of an element is restricted by a specific feature expression,
this restriction also holds for all contained elements, making
repeated annotations unnecessary. For additional details on
propagation strategies, the reader is referred to [13].

D. Interplay Between Different Model Types

Through the use of two external frameworks, namely GMF
and MoDisco, the resulting example product line is highly het-
erogeneous. Figure 15 sketches the interplay between different
resource types, being the domain model, the GMF models,
the generated Java source code and its internal MoDisco
representation, which is invisible to the end user. Between
different resource types, seven external link types occur, two
of which are conceptual, i.e., they do not occur explicitly as
EMF links.

• GMF Mapping links emerge from the GMF mapping
model and reference the domain model, the tooling
model, and the graphical definition model. These links
are created by GMF.

• Conceptual CS/AS links virtually link an abstract
syntax tree element to its corresponding concrete
syntax fragment in the Java source code. This link

is restored automatically in case the user selects a
concrete syntax fragment and invokes the command
Annotate FEL Expression.

• Feature expression links: Within the feature expres-
sion of a mapping, elements of the feature model are
referenced. These links are created automatically when
feature expressions are specified.

• Conceptual links between CS and feature ex-
pression: From the user’s perspective, source code
elements are mapped in concrete syntax. This causes
a conceptual dependency between source code frag-
ments and features.

• Mapping links: Each element of the mapping model
references exactly one element of the multi-variant
domain model. These links are created automatically
upon creation of a resource mapping model.

• Cross-Resource Mapping links: Among different
domain models, cross-resource links may occur (see
the GMF mapping model). In order to adequately
connect these to the variability model, a link between
the corresponding resource mappings is established.
These links are created automatically during mapping
model creation.

• Resource Mapping links. The superordinate resource
set mapping model references one F2DMM instance
per mapped model resource. Links of this kind are
created by the user through the Add F2DMM Instance
command.

By automating sub-tasks such as the synchronization be-
tween domain and mapping model, and the discovery of the
Java source code, the larger part of the complex relationships
shown in Figure 15 is not exposed to the user at all, but
managed automatically “behind the curtains”.

E. Product Derivation

After the domain engineering phase has been completed,
the platform may be used to derive specific products from
the product line in the application engineering step (cf. Figure

Figure 14. Application Engineering Process in the graph product line
example.

242

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

domain model
(graph.ecore)

GMF mapping
model

GMF graphical

GMF tooling

domain
mapping model

GMFmap
mapping model

GMFgraph
mapping model

GMFtool
mapping model

feature model

Resource set
mapping model

Domain model element

GMF model element

F2D model element

Feature

FAMILE F2DMM
instance mapping

Domain model internal link

GMF model internal link

F2DMM internal link

Feature model internal link

GMF mapping external link

Mapping link

Cross-resource mapping link

Feature expression link

Resource mapping link

MoDisco discovery
mapping model

Java source
code

MoDisco discovery
model element

Java source code file

MoDisco internal link

Conceptual CS/AS link

Conceptual link between CS
and feature expression

Figure 15. Interplay between resources of different types, which are created in subsequent steps of the domain engineering phase.

14). In the presented approach, application engineering is
reduced to a simple configuration task. The user only has to
specify an appropriate feature configuration, by selecting and
deselecting corresponding features in the feature model, while
all constraints (e.g., parent-child relationships, requires/ex-
cludes relationships) must be satisfied. The subsequent product
derivation step is a fully automatic process.

In the example, a derived Eclipse project is created, which
contains the required model files. Sample feature configura-
tions are provided, which allow for a fully automatic gener-
ation of four Eclipse plugin projects, which differ from each
other as follows (cf. Figure 16):

(FC1) An EMF tree editor for undirected, unweighted, un-
colored graphs, traversed by depth-first search. No
additional algorithms are offered.

(FC2) A GMF graphical editor for undirected, unweighted,
uncolored graphs, traversed by depth-first search. No
additional algorithms are offered.

(FC3) A GMF graphical editor for directed, unweighted,
uncolored graphs, traversed by depth-first search. De-
ployed algorithms include cycle detection, as well
as calculation of a minimum spanning tree and the
transpose.

243

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

FC1: FC2: FC3: FC4:

Figure 16. Four example feature configurations for instances of the graph product line.

(FC4) A GMF graphical editor for directed, weighted, col-
ored graphs, traversed by breadth-first search. All
available graph algorithms are deployed.

Of course, this set of feature configurations does not contain
all possible combinations of features and it may be extended
arbitrarily based on the features and constraints defined in the
feature model.

F. Outlook: Increasing the Heterogeneity of the Project

The example described in this section has been conducted
using a variety of different resources as artefacts. All models
involved in the GMF development process, i.e., the Ecore
domain model, the Graphical Definition Model, the Tooling
Definition Model, as well as the GMF Mapping Model,
are instances of different Ecore-based metamodels. Manual
adaptations to the Java source code are managed with the
help of the MoDisco framework, letting the user operate on
concrete textual syntax. In the current state of the project,
these models constitute the adequate level of abstraction for
variability management. However, it might become necessary
to define additional F2DMM mapping models for additional
non-EMF resources, for different reasons:

• The file plugin.properties in the Eclipse
project contains language-specific UI string constants,
each declared in a separate text line. Currently, the
generated Editor displays UI elements in English.
However, if support for different languages is desired,
one may add an additional F2DMM mapping model
for the properties file, and corresponding features
for each additional language to the feature model.
The mapping may be adequately managed by means
of a per-line mapping, using the “fall-back” EMF
representation for plain text files (see Section V-B).

• The file plugin.xml defines plug-in extensions
used to integrate the generated editor with the Eclipse
platform. By adding an F2DMM mapping model and
corresponding features, variability may be added to
the plugin’s runtime configuration, i.e., in order to
make the editor’s icon, label, or file extension depend
on specific feature configurations. Assuming that no
EMF-compatible metamodel for Eclipse plugin files is

defined, the MoDisco based representation for XML
files (see Section V-B) may be used.

VII. RELATED WORK

Many different tools and approaches have been published
in the last few years, which address (model-driven) software
product line development. Due to space restrictions, the focus
of this comparison lies on support for heterogeneous soft-
ware projects, using the definition of heterogeneity given in
the introduction. Other comparisons of FAMILE and related
approaches can be found in [12] and [13].

The tool fmp2rsm [27] combines FeaturePlugin [28] with
IBM’s Rational Software Modeler (RSM), a UML-based mod-
eling tool. The connection of features and domain model
elements is realized by embedding the mapping information
into the domain model using stereotypes (each feature is
represented by its own stereotype), which requires manual
extensions to the domain model. While fmp2rsm is limited
to the support of RSM models, the approach presented in this
paper provides a greater flexibility since the only restriction is
that the domain model needs to be Ecore based. Furthermore,
the extensions presented in this paper allow to use several
domain metamodels within one software product line project.

FeatureMapper [10] is a tool that allows for the mapping
of features to Ecore based domain models. Like FAMILE, it
follows a very general approach permitting arbitrary Ecore
models as domain models. FeatureMapper only allows to
map a single (self-contained) domain model, while the work
presented in this paper allows to use FAMILE also for software
product lines whose multi-variant domain model is composed
of artefacts distributed over different resources. Furthermore,
the artefacts may be instances of different metamodels.

VML* [8] is a family of languages for variability man-
agement in software product lines. It addresses the ability to
explicitly express the relationship between feature models and
other artefacts of the product line. It can handle any domain
model as long as a corresponding VML language exists for
it. VML* supports both positive and negative variability as
well as any combination thereof, since every action is a small
transformation on the core model. As a consequence, the order
in which model transformations are executed during product
derivation becomes important. So far, VML* is designed to

244

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

work with text files, provided that a corresponding VML
language exists for it (i.e., a grammar has to be specified).
Theoretically, VML languages could be written that work with
XMI serializations of the respective models in the example
presented in this paper, whereas FAMILE provides generic
support for model-driven software development based on
Ecore compliant models. In other words, VML* and FAMILE
provide similar support for heterogeneous projects, but they
operate on different ”technological spaces“. As a consequence,
the example provided in Section VI cannot be realized with
VML* easily. In fact, significant effort would be required to
create VML languages for the different models involved in the
graph product line example as presented here.

MATA [9] is another language that also allows to develop
model-driven product lines with UML. It is based on positive
variability, which means that, around a common core specified
in UML, variant models described in the MATA language are
composed to a product specific UML model. Graph transfor-
mations based on AGG [29] are used to compose the common
core with the single MATA specifications. While MATA is
limited to UML, the approach presented in this paper provides
support for any Ecore based model and furthermore allows
the combination of different domain metamodels within one
product line project.

CIDE [11] is a tool for source-code based approaches. It
provides a product specific view on the source code, where
all source code fragments not part of the chosen configuration
are omitted. The approach is similar to #ifdef -preprocessors
known from the C programming language [30]. The difference
is that it abstracts from plain text files and works on the
abstract syntax tree of the target language instead. In its current
state, CIDE provides support for a wide range of different
programming languages. Unfortunately, it cannot be used for
model-driven development. In contrast, FAMILE provides full-
fledged support for model-driven development based on Ecore
models. Furthermore, it may also deal with regular Java source
code by using the MoDisco [26] framework.

Bühne et al. [31] and Dhungana et al. [32] present ap-
proaches for heterogeneous variability modeling, i.e., manag-
ing commonalities and differences across multi product lines.
Dhungana et al. aim at unifying multi product lines, which rely
on different tools and formalisms for modeling variability. Web
services are used for a prototypical implementation. In contrast
to the approach presented here, in both approaches, the term
‘heterogeneity’ concerns different variability models rather
than the product space. While Bühne et al. and Dhungana et
al. only address variability modeling, the approach presented
in this paper covers a larger part of the software life-cycle.
Furthermore, FAMILE does not only allow for variability
modeling, but also for mapping the variability information to
heterogeneous implementation artefacts.

VIII. CONCLUSION AND FUTURE WORK

In this paper, requirements, concepts and limitations with
respect to tool support for heterogeneous model-driven soft-
ware product lines have been discussed. The approach pre-
sented in this paper closes a significant gap in the tool support
for model-driven development of software product lines, whose
artefacts are heterogeneous in terms of the used metamodels

as well as in containing artefacts like source code or con-
figuration files or XML documents. As a proof of concept, an
implementation of an extension to the FAMILE tool chain was
shown. A concrete example has been given, demonstrating the
benefits of the presented approach on a concrete product line
for graphs.

Usually, (model-driven) software projects do not only con-
sist of one single model resource. In contrast, different models
and metamodels as well as non-model artefacts are involved.
FAMILE is able to map features to model fragments in such
heterogeneous projects and also to derive consistent products.
Besides the aforementioned heterogeneous support, FAMILE
advances the state of the art by allowing to flexibly change the
granularity of the mapping between features and the product
space (project-wide or resource-wide scope). Furthermore, the
tool chain also allows for the usage in model-driven projects,
where parts of the software are still realized with manually
written Java source code. Of course, FAMILE may be used
in regular (non model-driven) Java projects as well. The main
challenges of heterogeneous SPLE tool support are (a) to cope
with different levels of abstractions (models and source code /
plain text files) as well as (b) different forms of representation,
(c) to ensure that links between different resources are kept
consistent, (d) to adequately handle conceptual links between
artefacts of different types, e.g., between model elements and
source code fragments, and (e) to provide a uniform variability
mechanism with respect to all project resources.

The approach presented here comes with the assumption
that each resource type may be expressed by an EMF model;
the new version of FAMILE provides adequate mapping con-
structs in order to support entire Eclipse projects. Furthermore,
the presented solution to heterogeneous SPLE tooling is to
divide a heterogeneous software project into a set of single-
resource mapping models, for which adequate MDPLE support
is already available. Links between different models are kept
consistent during product derivation. Extensions to the user
interface ease the integration of new artefacts into hetero-
geneous product lines as well as modifications to existing
mappings. Non-model resources such as Java or XML files are
automatically interpreted as EMF models, using the MoDisco
framework under the hood. Furthermore, a fallback metamodel
for text files is provided, which also allows to map features
to those kinds of artefacts at a lower level of abstraction. A
demonstration of the presented approach was given by apply-
ing the heterogeneous FAMILE tool chain to a product line for
graph metamodels, including modifications of the generated
source code, and editors. The resulting heterogeneous product
line manages an entire Eclipse plug-in project.

Current and future work addresses a case study carried out
in the field of robotics [33][34]. Although first results produced
by the old (homogeneous) version of the FAMILE tool chain
are very promising, it is expected that a significant gain in
productivity is achieved by exploiting the new, heterogeneous
approach. In this case study, the platform of the product line
consists of language grammar files, code generation template
files and C++ source code files.

ACKNOWLEDGMENTS

The authors want to thank Bernhard Westfechtel for his
valuable comments on the draft of this paper.

245

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] T. Buchmann and F. Schwägerl, “A model-driven approach to the de-
velopment of heterogeneous software product lines,” in Proceedings of
the Ninth International Conference on Software Engineering Advances
(ICSEA 2014), H. Mannaert, L. Lavazza, R. Oberhauser, M. Kajko-
Mattsson, and M. Gebhart, Eds. Nice, France: IARIA, 2014, pp. 300–
308.

[2] M. Völter, T. Stahl, J. Bettin, A. Haase, and S. Helsen, Model-Driven
Software Development: Technology, Engineering, Management. John
Wiley & Sons, 2006.

[3] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF Eclipse
Modeling Framework, 2nd ed., ser. The Eclipse Series. Boston, MA:
Addison-Wesley, 2009.

[4] OMG, Meta Object Facility (MOF) Core, formal/2011-08-07 ed., Object
Management Group, Needham, MA, Aug. 2011.

[5] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns, Boston, MA, 2001.

[6] K. Pohl, G. Böckle, and F. van der Linden, Software Product Line En-
gineering: Foundations, Principles and Techniques. Berlin, Germany:
Springer Verlag, 2005.

[7] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, “Feature-oriented domain analysis (FODA) feasibility study,”
Carnegie-Mellon University, Software Engineering Institute, Tech. Rep.
CMU/SEI-90-TR-21, Nov. 1990.

[8] S. Zschaler, P. Sánchez, J. Santos, M. Alférez, A. Rashid, L. Fuentes,
A. Moreira, J. Araújo, and U. Kulesza, “VML* - A Family of
Languages for Variability Management in Software Product Lines,”
in Software Language Engineering, ser. Lecture Notes in Computer
Science, M. van den Brand, D. Gaevic, and J. Gray, Eds. Denver, CO,
USA: Springer Berlin / Heidelberg, 2010, vol. 5969, pp. 82–102.

[9] J. Whittle, P. Jayaraman, A. Elkhodary, A. Moreira, and J. Arajo,
“MATA: A Unified Approach for Composing UML Aspect Models
Based on Graph Transformation,” in Transactions on Aspect-Oriented
Software Development VI, ser. Lecture Notes in Computer Science,
S. Katz, H. Ossher, R. France, and J.-M. Jzquel, Eds. Springer Berlin
/ Heidelberg, 2009, vol. 5560, pp. 191–237.

[10] F. Heidenreich, J. Kopcsek, and C. Wende, “FeatureMapper: Map-
ping features to models,” in Companion Proceedings of the 30th
International Conference on Software Engineering (ICSE’08), Leipzig,
Germany, May 2008, pp. 943–944.

[11] C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and D. S. Batory,
“Guaranteeing syntactic correctness for all product line variants: A
language-independent approach,” in TOOLS (47), ser. Lecture Notes in
Business Information Processing, M. Oriol and B. Meyer, Eds., vol. 33.
Springer, 2009, pp. 175–194.

[12] T. Buchmann and F. Schwägerl, “FAMILE: tool support for evolving
model-driven product lines,” in Joint Proceedings of co-located Events
at the 8th European Conference on Modelling Foundations and Ap-
plications, ser. CEUR WS, H. Störrle, G. Botterweck, M. Bourdells,
D. Kolovos, R. Paige, E. Roubtsova, J. Rubin, and J.-P. Tolvanen,
Eds. Building 321, DK-2800 Kongens Lyngby: Technical University
of Denmark (DTU), Jul. 2012, pp. 59–62.

[13] T. Buchmann and F. Schwägerl, “Ensuring well-formedness of config-
ured domain models in model-driven product lines based on negative
variability,” in Proceedings of the 4th International Workshop on
Feature-Oriented Software Development, ser. FOSD 2012. New York,
NY, USA: ACM, 2012, pp. 37–44.

[14] OMG, UML Superstructure, formal/2011-08-06 ed., Object Manage-
ment Group, Needham, MA, Aug. 2011.

[15] T. Buchmann, A. Dotor, and B. Westfechtel, “Mod2-
scm: A model-driven product line for software configuration
management systems,” Information and Software Technology, 2012,
http://dx.doi.org/10.1016/j.infsof.2012.07.010. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2012.07.010

[16] R. C. Gronback, Eclipse Modeling Project: A Domain-Specific Lan-
guage (DSL) Toolkit, 1st ed., ser. The Eclipse Series. Boston, MA:
Addison-Wesley, 2009.

[17] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Formalizing
cardinality-based feature models and their specialization,” Software
Process: Improvement and Practice, vol. 10, no. 1, pp. 7–29, 2005.

[18] F. Heidenreich, “Towards systematic ensuring well-formedness of soft-
ware product lines,” in Proceedings of the 1st Workshop on Feature-
Oriented Software Development. Denver, CO, USA: ACM, Oct. 2009,
pp. 69–74.

[19] R. E. Lopez-Herrejon and D. S. Batory, “A standard problem
for evaluating product-line methodologies,” in Proceedings of the
Third International Conference on Generative and Component-Based
Software Engineering, ser. GCSE ’01. London, UK, UK: Springer-
Verlag, 2001, pp. 10–24. [Online]. Available: http://dl.acm.org/citation.
cfm?id=645418.652082

[20] “Eclipse UML2 Project,” http://www.eclipse.org/modeling/mdt/
?project=uml2, accessed: 2014-07-15.

[21] “Xtext project,” http://www.eclipse.org/Xtext, accessed: 2014-07-15.
[22] “EMFText Project,” http://www.emftext.org, accessed: 2014-07-15.
[23] “Acceleo project,” http://www.eclipse.org/acceleo, accessed: 2014-07-

15.
[24] “MWE2 Project,” http://www.eclipse.org/modeling/emft/?project=mwe,

accessed: 2014-07-15.
[25] “Xtend project,” http://www.eclipse.org/xtend, accessed: 2014-07-15.
[26] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot, “MoDisco: a generic

and extensible framework for model driven reverse engineering,” in
Proceedings of the IEEE/ACM International Conference on Automated
software engineering (ASE 2010), Antwerp, Belgium, 2010, pp. 173–
174.

[27] “fmp2rsm project,” http://gsd.uwaterloo.ca/fmp2rsm, accessed: 2014-
07-15.

[28] M. Antkiewicz and K. Czarnecki, “FeaturePlugin: Feature modeling
plug-in for Eclipse,” in Proceedings of the 2004 OOPSLA Workshop on
Eclipse Technology eXchange (eclipse’04), New York, NY, 2004, pp.
67–72.

[29] G. Taentzer, “AGG: A Graph Transformation Environment for Modeling
and Validation of Software,” in Applications of Graph Transformations
with Industrial Relevance, ser. Lecture Notes in Computer Science,
J. Pfaltz, M. Nagl, and B. Böhlen, Eds. Charlottesville, VA, USA:
Springer Berlin / Heidelberg, 2004, vol. 3062, pp. 446–453.

[30] B. W. Kernighan, The C Programming Language, 2nd ed., D. M.
Ritchie, Ed. Prentice Hall Professional Technical Reference, 1988.

[31] S. Bühne, K. Lauenroth, and K. Pohl, “Modelling requirements vari-
ability across product lines,” in RE. IEEE Computer Society, 2005,
pp. 41–52.

[32] D. Dhungana, D. Seichter, G. Botterweck, R. Rabiser, P. Grünbacher,
D. Benavides, and J. A. Galindo, “Configuration of multi product lines
by bridging heterogeneous variability modeling approaches,” in SPLC,
E. S. de Almeida, T. Kishi, C. Schwanninger, I. John, and K. Schmid,
Eds. IEEE, 2011, pp. 120–129.

[33] J. Baumgartl, T. Buchmann, D. Henrich, and B. Westfechtel, “Towards
easy robot programming: Using dsls, code generators and software
product lines,” in Proceedings of the 8th International Conference on
Software Paradigm Trends (ICSOFT 2013), J. Cordeiro, D. Marca, and
M. van Sinderen, Eds. ScitePress, Jul. 2013, pp. 548–554.

[34] T. Buchmann, J. Baumgartl, D. Henrich, and B. Westfechtel, “Towards
a domain-specific language for pick-and-place applications,” in
Proceedings of the Fourth International Workshop on Domain-Specific
Languages and Models for Robotic Systems (DSLRob 2013)., U. P. S.
Christian Schlegel and S. Stinckwich, Eds. arXiv.org, 2013. [Online].
Available: http://arxiv.org/abs/1401.1376

246

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

