
HiPAS: High Performance Adaptive Schema Migration

Development and Evaluation of Self-Adaptive Software for Database Migrations

Hendrik Müller, Andreas Prusch, and Steffan Agel

Pasolfora GmbH

An der Leiten 37, 91177 Thalmässing, Germany

{hendrik.mueller|andreas.prusch|steffan.agel}@pasolfora.com

Abstract – HiPAS stands for “High Performance Adaptive

Schema Migration” and is a self-adaptive software system,

aimed at reducing downtime during offline database

migrations by automatically adapting to available system

resources. The process of a database migration can be

shortened by parallelizing the data transfer up to a certain

degree. In this article, we describe how HiPAS was enabled to

continuously adapt the parallelization degree according to its

operational environment in order to avoid both overloading

and idle resources. To automate the developed method, we

implemented HiPAS following decisions taken within the

dimensions of design space for self-adaptive software. Based on

a centralized control pattern in distributed systems, HiPAS

uses a feedback loop to enable adaptions. Hence, according to

monitored system information, the current utilization is

adjusted whenever necessity is assumed. To enable a flexible

adaption, the total amount of migration data is partitioned into

equal sized transfer jobs, which are distributed across

available instances and networks. HiPAS is invoked on

database layer and controlled by a temporarily created

autonomous database user. Therefore, migration metadata are

stored inside tables and highly integrated with the actual

migration data. HiPAS was designed and evaluated iteratively

following the IS research framework and reveals significant

downtime reduction potential compared to non-adaptive

migration approaches like Oracle “Data Pump”. Our results

serve as a contribution for all practitioners, who seek to

perform database migrations within a challenging timeframe,

as well as researchers on self-adaptive software and their

various fields of application.

Keywords-Adaptability; Anticipation; Self-Adaptive Software;

Database Migration; Parallelization.

I. INTRODUCTION

The rapid technical developments inside changing
markets, as well as the need for efficiency enhancements,
mainly driven by cost pressure, require an occasional transfer
of running information systems into a new environment,
which fulfills the operational requirements in a more suitable
way. This process is referred to as software migration [1], [2]
and meanwhile the software’s availability can be limited
depending on the chosen migration method. Regarding this,
basically two approaches can be differentiated:

 online Migration: continuous availability

 offline Migration: interrupted availability

In some critical environments, a downtime is not
acceptable, thus online migrations need to be performed.
This article deals with the variety of cases, which do not
require a costly and complex online migration and a planned
downtime is tenable. In that case, the main concern is to keep
the downtime as short as possible since the duration of
unavailability may result in opportunity costs. In particular,
we target migrations applying the “big-bang” strategy [3],
thus data is fully migrated at once in contrast to incremental
migrations. Since the legacy system (source system) is shut
down during the data transfer, starting the target system,
referred to as cut-over [4], cannot be performed before all
required data has been transferred to the target system’s
database. The length of downtime depends on the migration
approach taken. For database migrations, different system
layers can be involved determining the performance and
granularity of data selection (see Section II). We investigated
the applicability of adaptive capabilities for database
migration software in order to reduce the necessary
downtime by parallelizing data transfer up to an optimal
parallelization degree, which will be continuously adapted to
the system’s load capacity. Prior tests indicated that
overloading the target or source systems resources leads to a
temporary stagnation of the whole migration progress,
whereas a low utilization wastes available resources, thus
underachieving existing downtime reduction potential. In
this manner, we contribute to the field of self-adaptive
software and support the statement by de Lemos et al. that
“self-adaption has become an important research topic in
many diverse application areas” and “software systems must
become more versatile, flexible, dependable […] and self-
optimizing by adapting to changes that may occur in their
operational contexts, environments and system
requirements” [5].

Moreover, the developed approach “HiPAS” (High
Performance Adaptive Schema Migration [1]) is intended to
provide dependability and interruptibility, since migration
software should be able to identify where to resume an
interrupted migration process instead of starting from scratch
avoiding the necessity of rescheduling a planned downtime.

Further technically conditioned features will be added in
Section III as consequences of the preliminary
considerations. Section IV summarizes HiPAS´ architecture
by means of introducing adaptability challenges of the
subsequent described migration process (Section V). The
adaptive capabilities are outlined in Sections VI and VII.

262

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Finally, in Section VIII, we evaluate HiPAS, which refers to
both the designed migration method and the migration
software, currently implemented in Oracle PL/SQL syntax
comprising 8,540 lines of source code.

II. PRESENT MIGRATION APPROACHES

As introduced previously, migration approaches can be
differentiated regarding the availability of the migrated
systems into online and offline migrations. For stated
reasons, we focus on offline migrations, which can be further
classified concerning their own characteristics and their
applicability for certain database characteristics:

 invocation layer

 support for change of platform

 support for change of endianness

 support for change of character set

 downtime proportionality
To obtain an overview of present migration approaches,

we classified existing available methods using the example
of Oracle databases and the above enumerated
characteristics:

TABLE I. CLASSIFICATION OF PRESENT MIGRATION APPROACHES.

Migration Method

Invocation

Layer/

Granularity

Downtime

Proportionality

P
la

tf
o

r
m

C
h

a
n

g
e

E
n

d
ia

n
n

e
ss

C
h

a
n

g
e

C
h

a
ra

c
te

r
 S

e
t

C
h

a
n

g
e

Storage Replication Storage/

Storage

negligible no no no

Transportable

Database

OS/

Database

Database Size yes no no

Transportable

Tablespaces

OS/

Tablespace

Tablespace Size yes no no

Cross Platform

Transportable

Tablespace

OS/

Tablespace

Tablespace Size yes yes no

Transportable

Tablespaces using

Cross Platform

Incremental

Backups

OS/

Tablespace

Data Alteration

Rate

yes no no

Oracle-to-Oracle

(O2O)

OS/

Schema

Amount of

Migration Data

yes yes no

Datapump Database/

Value

Amount of

Migration Data

yes yes yes

Export/Import Database/

Value

Amount of

Migration Data

yes yes yes

As shown in Table I, the divergence of the source and

target database in terms of platform, endianness and
character set technically limits the available migration
methods.

A critical decision criterion for the remaining
contemplable methods is the demand for downtime shortness
resulting in lower opportunity costs during the unavailability
of the database and all relying applications. The fact that a

high throughput for data transfer was achieved as yet by
eliminating upper layers and protocols, leads to the
conflicting goals of flexibility and performance when
selecting a migration method. The lower a layer a migration
is invoked on, the more flexibility is lost, since changes of
database characteristics might not be supported and the
possible granularity for migration data selection decreases.
Finally, downtime proportionality refers to the entity, which
the downtime length depends on; this can be the amount of
migration data or the data alteration rate if incremental
methods are used.

When designing HiPAS, we pursued the goal of
achieving a short downtime and at the same time providing
the flexibility of migrating between divergent databases and
selecting the data as granular as possible. This was achieved
by invoking the migration on database layer without ever
leaving this layer during the whole migration process and by
parallelizing the data transfer adaptively in respect of the
system’s resources. Therefore, we add “adaptability” as a
further decision criterion for migration software capabilities.

III. PRELIMINARY CONSIDERATIONS

The performance of migration software highly depends
on how well its design fits to the operating environment and
the intended range of functions. Previous system and data
analyses are necessary to conclude with a migration design,
which has been aligned to the findings in multiple iterations
following the guidelines of design science in information
system research [6]. Figure 1 shows how the designed
artefact HiPAS is related to its environment and
knowledgebase base inside the information systems research
framework.

People
Usability

Organizations
License Costs

Platform Change
Downtime Shortness

Technology
Compatibility

Reliability
Interruptibility

No temporary storage

Developed Artefact
HiPAS

Utilizing Adaption for
Database Migrations

Evaluation
Multiple Test Runs

Varying Storage Systems
Varying Networks

Foundations
Law of Adaption
Utilization Law

Little´s Law
Implementation

Methodologies
Data Analyses

KPI based Measures

Environment IS Research Knowledge Base

Assess Refine

Application in the
Environment

Additions to the
Knowledgebase

B
u

si
n

es
s

N
ee

d
s

A
p

p
lic

ab
le

 K
n

o
w

le
d

ge

Figure 1. HiPAS as an IS Research Artefact (Adapted from Information

Systems Research Framework [6]).

HiPAS was intended to be built upon findings of
preliminary analyses (Knowledgebase) described in this
section, as well as business requirements (Environment) and
from then on has been improved continuously, based on
evaluation runs performed in a variety of different
environments provided generously by customers.

263

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Enterprise Data Structures

When moving existing data files to the target system, as
migration approaches invoked on storage and database layer
do (see Section II), the valuable downtime is partly spent
migrating unnecessary or useless data. The allocated size of a
data file implies unused space and indexes. To gain an
overview of typical storage occupancies, we analyzed 41
SAP systems productively running at a German public
authority by querying the allocated disk space, the used disk
space and the space used for indexes with a result shown in
Figure 2.

Figure 2. Average Structure of Allocated Data.

For these 41 SAP Systems, we identified an overall
amount of 93.08 TB allocated data. From this amount, about
28 TB (30 %) represented allocated space, which was not yet
filled with data. From the used space of 65 TB, about 22 TB
(24% of the overall amount) were filled with indexes. The
remaining 43 TB (46% of the overall amount) represent the
actual relevant data, which necessarily needs to be
transferred into the target database within a migration.
Indexes can be created at the target system and do not have
to be transferred, thus saving network bandwidth. Depending
on the layer the migration is invoked on, unused but
allocated data can be excluded as well.

In this case, if all of the analyzed SAP systems needed to
be migrated, migration tools not supporting data selection
would utilize all involved system resources for transferring
data, of which approximately 54% is useless on the target
system. Invoking a migration method on software layer,
enables both excluding useless data autonomously and
implementing self-adaptability.

B. Endianness

When performing a database migration, the byte order in
which the source and target system store bytes into memory
needs to be considered. This byte order is referred to as
endianness and data is stored into data files accordingly, so
the endianness can affect the amount of available migration
methods and the overall needed downtime.

A major part of migration demanding customers served
by the authors of this paper currently initiate migration
projects due to licensing and maintenance costs, this amount
is strongly influenced by an increasing number of platform
migrations from Solaris to Linux, requiring subsequent
migrations on upper layers such as the databases tier. The
latest International Data Corporation (IDC) report on
worldwide server market revenues substantiates this

observation by stating that Linux server revenue raised from
17% in Q4 2010 to 23.2% in Q2 2013 compared to Unix
decreasing from 25.6% down to 15.1% [7]. The Unix-based
Solaris operates on processors following Oracle´s SPARC
architecture, whereas Linux distributions can be used on
systems based on Intel processors. When migrating from
Solaris to Linux, the endianness changes accordingly from
big endian to little endian, so the data files cannot simply be
moved without converting them before or after the transfer
as shown in Figure 3.

01010001 01101110 11110101 10100000 1010111001100011

10100000 11110101 01101110 01010001 0110001110101110

Source
System

Target
System

Big Endian Byte Order

Little Endian Byte Order
Figure 3. Change of Endianness between Source and Target System.

Alternatively to converting data files, the database
migration can be invoked on a layer, which supports saving
the data into new files on the target system, such as export-
import-tools and HiPAS do. In this case, migration
performance can be enhanced by means of adaptive
capabilities.

C. Storage I/O Controller

As a consequence of the requirement for downtimes as
short as possible, a utilization degree of the underlying
storage systems has to be achieved, which enables short
response times. The overall amount of requests inside a
system (N) equals the product of arrival rate (a) and average
response time (R) as expressed by Little´s Law [8]:

 (1)

In addition the Utilization Law [9] defines the utilization
(U) of the I/O controller as the product of arrival rate and
average processing time (RS):

 (2)

By combining these relations, it becomes clear that the
response time depends on the I/O controller’s utilization as
described within the following formula [10]:

 (3)

264

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The relation shows that the response time does not
change linearly to the utilization. At higher utilizations, the
response time grows exponentially as clarified in Figure 4.

R
es

p
on

se
 T

im
e

70% 100%0%

Figure 4. Relation of Utilization and Response Time.

By adapting to the source and target system resources,
HiPAS continuously changes the utilization of the I/O
controller in order to achieve an optimal relation of response
time and utilization supporting the shortest possible overall
duration. The storage manufacturer EMC generally describes
an average utilization of 70% as optimal [10].

IV. HIPAS ARCHITECTURE

Following the goals introduced in Section I, we designed
the HiPAS migration method as describes in the following.

A. Everything is a Tuple

When performing an automated and controllable
migration, a number of interim results arise, e.g., during the
analysis of source data. Keeping these information, as well
as logging and status information is necessary for the
administrator to manage and verify the migration and for the
software itself to handle parallel job executions
autonomously. The necessity for saving and querying
migration metadata leads to HiPAS’s design paradigm of not
leaving the database layer during the whole migration
process. Interim results such as generated DDL and DML
Statements for later execution are represented by tuples of
tables inside a temporary migration schema enjoying
advantages of the databases transactional control
mechanisms. The paradigm of everything being a tuple is
emphasized by the following list:

 objects to create are tuples (table “cr_sql”)

 data to transfer are tuples (table “transfer_job_list”)

 running jobs are tuples (table “mig_control”)

 parameters are tuples (table “param”)

 logs are tuples (table “logging”)
After a migration has been performed, its success and the

transferred data´s integrity have to be verified. Since logging
information was stored during the whole process inside the
logging table, SQL can be leveraged to query for certain
transferred objects or states or both. For optimizing the
migration process, sorting, calculating and analytical
capabilities of SQL are utilized, thus, there is no need for any

other migration application on operating system level than
the database management system (DBMS) itself.

B. Adaptability and Dependability Problems

When designing the migration method and

implementing the related software, several challenges had to

be faced. In this section, we will briefly introduce some of

the most interesting problems and their intended solutions:

 Utilization Problem

 Knapsack Problem

 Distribution Problem

 Dependency Problem

 Index Problem

Subsequently described solution approaches for the above

listed problems will provide an overview of the conceived

migration method. In-depth sections are referenced.

1) Utilization Problem: Utilization cannot be planned

generally since systems behave differently depending on

their resources and further running processes. We varified

this statement during the evaluation phase by performing

migration test runs that have a preliminary defined static

parallelization degree. This leads to the risk of both

overloading a system and on the other hand not utilizing idle

resources. Derived from the relationship between utilization

and response time described in Section III-C, Figure 5

shows how the overall performance, in terms of transfer

time, behaves at increasing parallelization degrees:

Tr
an

sf
er

 R
at

e

Figure 5. Expansion when Overloading the Storage System.

By choosing the currently optimal parallelization degree

adaptively at any time, HiPAS targets an optimal and

dynamic utilization, which leads to the shortest possible

transfer phase. In this way, we reduced the risk of utilizing

the systems too much or not enough. Parallelization is

implemented by means of background jobs started through

the database scheduler. In this way, the yet manual task of

finding the optimal parallelization degree for the respective

system environment is intended to be done by HiPAS

automatically and adaptively, implicating the ability to

change this value dynamically during the whole transfer

process.

265

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

logging

transfer_job_list

mig_control

cr_sql

Temporary Migration Schema: MIG_ADM

Target Schema:
 e.g. SAPSR3

Source Schema:
e.g. SAPSR3

cr_sql_remote

logging

other

Temporary Migration

Schema: MIG_ADM

copy_table(_range)

build_transfer_schedule

get_schemas

_and_tables

paramexecute_next_

tab_job

Create schemas,

create_tables

otherS
o

u
rc

e
 D

a
ta

b
a

s
e

T
a

rg
e

t D
a
ta

b
a

s
e

1

2

3

4

5 optimizer6 migration_report7

Figure 6. HiPAS Architecture.

2) Knapsack Problem: From an amount of objects,

defined by their weights and values, a subset with limited

weight and maximum total value has to be chosen [11]. This

knapsack problem reflects the challenge of choosing optimal

combinations of different sized tables to transfer in parallel,

since the available computing resources are limited. Large

tables should be preferred in a way of starting their transfer

at the beginning of the migration process, because a possible

failure can require a restart of the table transfer thus delaying

the whole migration when started too late. HiPAS

circumvents the knapsack problem by dividing large tables

into equal sized partitions, which can be transferred in

parallel. This offers flexibility in scheduling the data transfer

and dynamically adapting the current parallelization degree.

3) Distribution Problem: Depending on the migration

environment, the accruing work load can be distributed on

multiple instances of a cluster. In terms of network

bandwidth, multiple database links can be created on

different physical network connections between the source

and target system. In this case, HiPAS will distribute data to

be transferred equally on the available database links in order

to utilize the total available bandwidths. In case of a real

application cluster (RAC), HiPAS distributes running

transfer jobs on the available instances. Then the fact of the

previously mentioned partitioning of large tables needs to be

considered. We optimized the data buffers of the instances

by distributing transfer jobs, which continue a large table, to

the instance, which already transferred previous parts of the

same table to avoid reloading the table into multiple buffers

of different instances. The corresponding algorithm is

explained in Section VII-D.

4) Dependency Problem: When invoking the migration

on database layer, dependencies among the transferred

objects need to be considered for the transfer order. Surely,

users need to exist before importing data into created tables

and granting permissions found in the source schema.

Constraints like foreign keys have to be disabled temporary,

so HiPAS does not have to spend time for calculate a strict

and inflexible transfer order. If reference partitioning was

used inside the source schema, a parent table needs to exist

before the child table can be created following the same

partitions. For considering such dependencies, HiPAS

calculates a transfer schedule in the first place. Since

possible existing triggers will be transferred as well, they

need to be disabled during the migration process in order to

avoid unexpected operations on the target system, e.g.,

invoked by an insert trigger.

5) Index Problem: Indexes can either be created directly

after table creation or after the table has been filled with data.

When creating the index before data load, they will be built

“on the fly” during the transfer phase, in contrast, after data

load, an additional index buildup phase would need to be

scheduled. The right time for indexing depends on the target

storage system and network bandwidths. In case of a highly

powerful storage system, it might be reasonable to build the

indexes directly during data import since the network

represents the bottleneck of the whole migration and the

storage system would idle otherwise. On the other hand,

storage systems can be overloaded when indexes have to be

created at import time. Consequently, the decision about the

indexing time is another use case for the adaptive capabilities

of HiPAS explained in Section VII-C.

266

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. COMPONENTS AND MIGRATION PROCESS

Assuming that both source and target database system
have been physically connected preliminary and are
configured to be accessible by each other, the migration
process consists of three main phases invoked on the target
system, which are briefly described subsequently:

1. Installation and Pre-Transfer (Step 1-3)
2. Adaptive Data Transfer (Step 4-6)
3. Post-Transfer and Uninstallation (Step 7)
Figure 6 shows the steps of these phases, which are

invoked on the target system.

A. Installation and Pre-Transfer

Following the paradigm of not leaving the database layer, an

additional and temporary schema is created inside both

source and target database during an automated installation

phase. All subsequent operations will be done by the owner

of this schema. Creating this user, as well as creating and

compiling a PL/SQL package, needed for performing the

migration, is part of an automated installation process. Prior

to the data transfer phase, the source schemas need to be

analyzed and accordingly created inside the target database.

For this purpose, SQL statements for creating the identified

objects will be generated and stored inside the table

“cr_sql_remote”. This table will be copied to the target site

and contains information regarding the objects to be created

and its creation status. In addition, every operation

performed causes status information to be written into the

table “logging” (see Figure 7), enabling the database

administrator to perform any necessary analysis, e.g., by

querying for possible errors during or after the migration:

select logdate, loginfo from logging where info_level
= ‘ERROR’;

After the initial analyses of the source schema, all

identified objects have the status “init” and, therefore, will

be created by HiPAS at the target site. All objects

containing “created” inside their corresponding status

column will be ignored, enabling the whole migration

process to be paused and continued at any time. The table

“param” (see Figure 7) serves as a user interface for

parameterizing HiPAS manually beforehand, in case certain

adaptive capabilities shall not be utilized.

Techniques like reference partitioning inside the source

schema have to be considered and will determine the order

of creation, since child tables will not be created and

partitioned unless the related parent table exists. The Index

creation is either part of the pre-transfer or will be initiated

after all tables are filled with data. HiPAS decides

automatically for the most suitable approach depending on

the storage system and network bandwidth as described in

Section VII-C.

B. Adaptive Data Transfer

The data transfer is based on two simple SQL statements:

 Insert into a table as selecting from a source table

 Querying remote tables through a database link

The combination of these statements makes it possible to

fill local tables with remotely selected data. The resulting

command is generated and parameterized at runtime:

sql_stmt := 'insert /*+ APPEND */ into "' || schema ||

'"."' || table_name || '" select * from "' || schema

|| '"."' || table_name || '"@' || db_link;

This statement is generated and executed by transfer

jobs. The number of transfer jobs running in background is

adapted continuously and depends on the resource

utilization. As a pre-transfer stage, metadata of all objects

stored in the source schema has been inserted into a table

named “transfer_job_list”. Tables to be transferred,

exceeding a defined size, will be partitioned and, thus,

transferred by multiple transfer jobs. In this case, the job

type changes from “table” to “table_range” and row IDs

mark the range’s start and end (see Figure 7).

TRANSFER_JOB_LIST

OWNERPS

ROW_ID_START

ROW_ID_END

OBJECT_NAMEPS

OBJECT_TYPEPS

PARTITION_IDPS

BLOCKS

STATUS

MIG_CONTROL

JOB_IDPS

COMMAND

STATUS

STARTED

ENDED

STATUS_UPD

JOB_ID
PS
FK

LOGGING

LOGDATEPS

LOGINFOPS

SQLPS

MODULE

INFO_LEVEL

PARAM

PARAM_NAMEPS

PARAM_VALUE

PARAM_COMMENT

Figure 7. Metadata Entities for the Adaptive Data Transfer Phase.

Through partitioning, HiPAS can adapt more flexible to the

current utilization, since the number of parallel jobs can be

reduced or increased more frequently. HiPAS’ table

“mig_control” (see Figure 7) lists all background jobs

transferring the objects stored in “transfer_job_list”. In this

respect, the column “command” inside “mig_control” serves

as an interface for controlling the transfer process, either

autonomously by HiPAS or manually by the database

administrator. When overwriting its content with keywords

like “stop” or “continue”, individual jobs will be stopped

after finishing or continued, causing timestamps to be written

into the column “status_upd” and if necessary into “ended”.

By this means, HiPAS is able to reduce or increase the

number of parallel running transfer jobs transparently in

respect of the optimizer’s decision, which is described in

Section VII. For the migration time, all constraints will be

disabled temporary by HiPAS, enabling the table

“transfer_job_list” to be ordered by blocks instead of

considering key dependencies. Existing database triggers

will also be disabled avoiding any unintended execution

during the database migration.

C. Post-Transfer

After all source data has been transferred into the target

schemas, the data has to be validated. Documenting data

consistency and integrity is mission critical both for target

267

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

database operation and for legal reasons. Only after verifying

the equality of source and target data, the migration can be

declared as successful, requiring HiPAS to not only

compare source and target sizes, but also counting the rows

of all tables. Finally, the disabled constraints and triggers

will be enabled again.

VI. ENABLING PARALLELIZATION

In order to control the degree of HiPAS utilizing the
available hardware resources the migration data transferred
at the same time must be limitable. Restricting the number of
parallel processed tables would be inappropriate since it
required similar sized tables. Instead, a defined number of
blocks form a pack of data and a certain number of packs can
be processed at the same time. That is, each pack has the
same size and will be transferred by a single transfer job.
Thus, adding or removing a transfer job burdens respectively
disburdens the source and target system. HiPAS adapts to the
underlying system resources by deciding autonomously how
many transfer jobs are possible at any time.

To enable the amount of data to be partitioned into equal
packs, a so called block split range defines their size. Since
the tables on the target system are filled by generated “insert
as select”-statements, its scope can be limited to a range
between two row IDs, which represent the beginning and the
end of each data pack. During the source schema analysis,
these row IDs are identified by an analytical function. In this
manner, large tables are partitioned into groups with row ID
boundaries as Figure 8 shows exemplary.

Figure 8. Assigning Row IDs as Group Boundaries.

The identified IDs will be used during the transfer phase
to limit the data of a single transfer job to the given block
split range by adding a “where rowid between”-clause when
selecting from the remote database:

insert into schema.table_name select * from
schema.table_name@db_link where rowid
between MIN_RID and MAX_RID;

Having partitioned the full amount of migration data into

parts of a maximum defined size (block split range), HiPAS

creates equally treatable transfer entities. These entities can

be parallelized up to a degree defined by an adaptive

transfer optimizer.

VII. ADAPTIVE CAPABILITIES

For parallelizing the data transfer during phase 2 of the
migration process (see Section V-B) with an optimal
parallelization degree, we target an adaptive migration
software. Adaptivity in general describes the capability of
adjusting to an environment. In biology, the term is often
used to describe physiological and behavioral changes of

organisms in process of evolution. In informatics, the term is
transferred to systems or components, which adapt to their
available resources. However, here not to increase
reproduction chances but often in order to achieve an optimal
system performance. Adaption improves the resource
efficiency and flexibility of software-intensive systems and
means that a system adapts to changes of its environment, its
requirements and its resources [12]. According to Martín et
al. adaption can also be seen as the first of three stages of the
currently conceivable system complexity extent.
Anticipation and rationality follow as further stages [13] (see
Figure 9).

System Complexity

Adaption Anticipation Rationality

Figure 9. Levels of System Complexity (Adapted from [13]).

Thus, adaption describes the interaction of two elements:
A control system and its environment. The goal is to reach a
defined state of the environment by means of actions
initiated by the control system [14]. The control system then
reacts on the self-precipitated changes of the environment
with initiating new changes. It has been defined that an
adaptive system is present, if the probability of a change of a
system S triggered by an event E is higher than the
probability of the system to change independently from the
event:

[13]

(4)

Furthermore, the condition has to apply that the system
reaches the desired state after a non-defined duration. This
implies the convergence of the mentioned probabilities
towards infinite:

[13]

(5)

This law of adaption [13] requires the control system to
know for each modification of its environment a sufficiently
granulated attribute, which contributes to the desired state´s
achievement allowing the adaption to end. For the first stage
of complexity, the direction and the extent of modifications
are built upon each other, thus, enabling the system to reach
the desired state incrementally. If the modifications are not
steps of a targeted adjustment process, but based on
knowledge, predictions [15] or intuition, the process can be
defined, in terms of system complexity, as anticipation. The
third stage “rationality” implies intelligence; those systems
are able to react to unpredictable changes of their
environment and to balance contradictory objectives against
each other [13]. This stage exceeds the objective of this
paper and, therefore, was not scoped. Applying this
differentiation on the design of an adaptive migration
software, two approaches emerge for parallelizing the data
transfer:

268

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 A solely adaptive system, based on an incremental
adjustment process, until changes do not evoke
further improvements, thus, reaching the state of an
optimal parallelization degree.

 An anticipatory system, which makes
continuously new modification decisions
independently of each other, based on knowledge
about used and monitored resources.

These two approaches have been designed and
implemented as described subsequently and evaluated as
described in Section VIII. Due to HiPAS’ scalable
architecture, the respective procedures could be implemented
as plugins and additionally started for evaluation. Both
plugins control the data transfer via values inside the table
“mig_control” (see Section V-B) serving as an interface.

A. Adaption

The solely adaptive approach will successively increase
the parallelization degree and, therefore, the source and
target systems utilization. After each enhancement its
consequences on the system environment meaning the
migration performance is measured in terms of inserted
megabytes per time unit. The adaption can be started by
running an additional procedure “calibrate”, which invokes
either the procedure “increase” or “decrease” for modifying
the parallelization degree, starting from one transfer job per
database link at the same time. The number of jobs to be
added or deducted will be reduced after each time a change
in direction was required, by this means the algorithm brings
the number of parallel jobs closer to the optimum. After
reaching a defined modification count (number of jobs to add
or deduct) the algorithm assumes having approximated the
optimal parallelization degree and the adaption ends,
representing the finiteness requirement of adaptive systems.

The variable “diff_level” describes the current
modification extent, meaning the number of jobs to start
additionally or to stop after finishing. To reach a required
level of flexibility for changing the number of jobs shortly,
the size of a transfer job is limited to the introduced
block_split_range. The following code example shows how
the number of jobs is reduced by the value of the variable
“diff_level”:

update mig_control set command = 'STOP' where job =
'loop_while_jobs_todo' and command = 'continue' and
rownum <= diff_level; commit;

Since the tuples inside “mig_control” represent
background jobs and each tuple has a row number, jobs can
be stopped for each row number being smaller than
“diff_level”. The mentioned value “loop_while_jobs_todo”
is the name of the procedure every background job runs for
processing all defined transfer jobs listed inside the table
“transfer_job_list”. If a background job is marked with the
command “STOP”, it will be deleted after finishing the
current transfer job and afterwards marked with the keyword
“ended”.

B. Anticipation

If the adaption is based on predictions, we call it
anticipation as the next level of complexity [13]. In contrast

to the solely adaptive approach, HiPAS now optimizes the
parallelization degree during the whole data transfer phase
and based on a different algorithm. For mapping the
described theoretical insights to our migration use case, we
implemented an optimizer package, which predicts the
optimal amount of parallel running jobs for the upcoming
period. In this manner, we developed self-adaptive software,
for which several definitions exist.

The anticipation-based version of HiPAS complies with a
widely referenced definition [16], which was provided by the
Defense Advanced Research Projects Agency (DARPA) in
an Agency Announcement of 1997: “Self-adaptive software
evaluates its own behavior and changes behavior when the
evaluation indicates that it is not accomplishing what the
software is intended to do, or when better functionality or
performance is possible” [17]. In particular, we address the
identification of possible performance improvements.
Another definition is given by Oreizy et al.: “Self-adaptive
software modifies its own behavior in response to changes in
its operating environment. By operating environment, we
mean anything observable by the software system, such as
end-user input, external hardware devices and sensors, or
program instrumentation” [18]. The operating environment
in our case is formed by the relevant components of the
source and target database system identified in the
“Observation” Paragraph.

Properties of self-adaptive software were introduced by
the IBM autonomic computing initiative in 2001 [19]–[21];
these are known as eight self-properties. According to
Salehie and Tahvildari, this classification serves as the de
facto standard in this domain [16]. On major level the
following self-properties exist:

 Self-configuring

 Self-healing

 Self-optimizing

 Self-protecting
Salehie and Tahvildari provided a list of research projects

in the domain of self-adaptive software from academic and
industrial sectors, and classified these projects according to
their supported self-properties. It was stated that the majority
of the analyzed projects focus on one or two of the known
self-properties [16]. When developing HiPAS, we strongly
focused on self-optimizing capabilities, which are demanded
by customers of our domain. In addition, some self-healing
properties for transfer job interruptions are supported. In the
following paragraphs, we explain the chosen design
decisions for HiPAS according to the dimensions of design
space for adaptive software [22] and the optimizer’s
functionality by running through the phases of one adaption
loop, also referred to as feedback loop or MAPE-K loop (see
Section B-2).

1) Design Space
Design decisions about how the software will observe its

environment and perform adaptions were defined by Brun et
al. as design space for self-adaptive systems: “A design
space is a set of decisions about an artifact, together with the
choices for these decisions. […] A designer seeking to solve
a problem may be guided by the design space, using it to

269

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

systematically identify required decisions, their alternatives,
and their interactions” [22]. The following dimensions of
design space were outlined by Brun et al.:

 Observation

 Representation

 Control

 Identification

 Enabling Adaption
Following this systematic approach, we describe the

main decisions within these dimensions.

a) Oberservation

Observation is concerned with information about the
external environment and the system itself, which needs to
be observed by the system [5]. Therefore, Hinchey and
Sterrit distinguish between environment-awareness and self-
awareness [23], whereby environment-awareness is also
called context-awareness [16], [24]. Based on the primarily
intended property of self-optimization with respect to
performance, we identified the following environmental
components, which need to be observed:

 Storage system of the source database system

 Storage system of the target database system

 CPU resources of the source system’s instances

 CPU resources of the target system’s instances

 Memory resources of the source system’s instances

 Memory resources of the target system’s instances
The instances of both source and target database system

use shared storage, but dedicated computing resources like
CPU and memory, therefore, the monitored information must
be analyzed on both global and instance-level.

To support system-awareness, the software needs to be
aware of the overall migration progress, the number of
currently running transfer jobs on each instance, and the
status of any job at any time. For implementing self-healing
capabilities, information about failed jobs needs to be stored
along with respective log information in order to identify
root causes and enable retry decisions.

Another important decision is related to the time of
observation, which highly depends on domain knowledge
about the expected frequency of environmental changes.
According to our experiences with job modifications that
need to be triggered manually, we implemented a timer,
which triggers a cyclic observation every two minutes.

b) Representation

The identified information, which needs to be observed,
is represented by performance values and monitored by the
database management system. The DBMS stores these
values inside performance views, which can be queried by
HiPAS. The following values represent the necessary
information to base adaption decisions on it:

 Concurrency events on target system

 Concurrency events on source system

 Average write time on target system

 Average read time on source system

 Average read time on target system

 Average write time on source system

 Redo log buffer size

 Available memory size
In order to be self-aware, HiPAS stores all status

information regarding running and pending jobs in tables as
described in Section V. These tables can be queried by
adaption plugins such as the HiPAS optimizer.

c) Control

Control related decisions determine the involved control
loops and their interaction, as well as the computation of
enacted changes for each adaption [16]. According to [22],
different patterns for interacting control loops exist. HiPAS
is based on a hierarchical relationship between one master
that is located on the target system and multiple slaves
represented by instances of the DBMS. This architecture
results in a variation of the Master/Slave pattern [22], where
the master is responsible for global monitoring, analyzing
and planning, and the slaves for instance-specific monitoring
and executing (see Figure 10).

Figure 10. Variation of Master/Slave Control Pattern (adapted from [22])

The master aggregates and analyzes all collected
information and then calculates a plan, which includes
instance-specific commands. This plan is executed only
against the target instances, since data is pulled by transfer
jobs running on the target system. Reducing the amount of
jobs will reduce the utilization on both target and source
system. Hence, we decided for centralized control in a
distributed system, which is comparably easy to realize,
since all information that is required for performing
adaptions is available at the target system through database
links [22].

d) Identification and Enabling Adaption

The identification dimension deals with identifying
instantiations of the self-adaptive system, which describes
the system structure and behavior at a specific point in time
[5]. HiPAS’ system state is defined by the set of values for
the observed performance attributes and the number of
transfer jobs running on each target instance. Information
about running jobs is stored inside a control table named
“MIG_CONTROL” (see Figure 7). This table serves as a
central interface for enabling adaptions because it allows
plugins such as the HiPAS optimizer to access and change
job information at runtime as described earlier in Section V.
In the next paragraph, we explain how adaptions are
performed by running through one adaption loop.

270

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Adaption Loop
The relevant system performance attributes, which

represent the information identified for observation, is
continuously monitored by the DBMS across all involved
database instances.

The optimizer analyzes the enumerated values and
calculates a fail indicator, as well as the number of
additionally possible jobs according to the measured
available resources like memory size and disk utilization. In
contrary, the fail indicator indicates possible bottlenecks and
can prompt the optimizer to reduce the amount of currently
running jobs. The introduced components form a feedback
loop according to the MAPE-K (Monitor-Analyze-Plan-
Execute-Knowledge) loop reference model developed by
IBM [21] as shown in Figure 11.

DBMS

Monitor Analyse & Plan

optimizer()
loop_while_
jobs_todo()

Performance Views mig_control

Execute

 logging

Figure 11. MAPE-K Based Adaptive Feedback Loop.

Typical indicators for possibly arising bottlenecks are
increasing concurrency events while the redo log buffer size
decreases. An important concurrency event, for instance,
occurs when the high water mark of a segment needs to be
increased, since new blocks are inserted into the same table
by multiple and competing processes, this is known as high
water mark enqueue contention [25].

If such a situation has been monitored, the optimizer will
reduce the number of parallel jobs based on a high failure
indicator. Whenever the optimizer acts, a log string is written
to the logging table as in the following example:

“Prev Jobs: 40/ Jobs: 40 Max Jobs: 400 # Read Avg:
3.32(20-40) # Write Avg: 105.9(100-200) # R_Read Avg:
.12(20-40) # R_Write Avg: .3(20-40) # R Fail Ind: 3
conc:3026(2607) redo:5720763732(5776886904)
r_conc:5157(5069) # numjobs > 0 # Jobs being stopped:
0 # (Resource Overload) and numjobs > minjobs and
jobs_being_stopped = 0 # Running: 20/Stopping: 5 on
inst:1 # Running: 20/Stopping: 5 on inst:2”

In the above extracted example, 40 jobs are running in
parallel. Due to increasing concurrency events, the optimizer
detects a possible overload of the target system and decides
to stop 5 running jobs on each instance. The jobs will
terminate after they completed transferring their current
objects. This is implemented by writing “stop” commands
into the table “mig_control” (see Figure 7), which the
procedure “loop_while_jobs_to_do()” will carry out. The
next log string will start with the information “Prev Jobs: 40/
Jobs: 30” accordingly. Additionally, not only the overall
amount of jobs is measured, but also the memory each server
process allocates. This value highly depends on the data
types of the currently transferred data. If too much memory
is allocated, the number of jobs will be reduced as well. In
order to avoid downward or upward spirals, e.g., due to the
reducing redo log buffer size when stopping jobs, bottom

lines and limits are defined. Hence, the optimizer decides on
the basis of a branched search for indicating relations
between the monitored information. Surely, these are only
indicators not to be seen as evidence, so the algorithm
follows a heuristic approach. In contrary to the solely
adaptive approach and to a statically parallelized transfer, the
optimizer is able to dynamically react to unexpected events
and predict a possibly optimum level of system utilization
during the whole migration process. In the following sections
and for the evaluation, when mentioning the adaptive
capabilities, we always refer to the anticipatory approach as
it was performing more efficient during preliminary tests.

C. Time of Indexing

As previously termed as the “index problem”, the right
time for indexing the data depends on the combination of
storage system performance and network bandwidth. If not
manually parameterized inside the “param” table, HiPAS
decides by means of test tables filled with random data and
having indexes on multiple columns, if it creates the indexes
before or after data loading. For the two possibilities of index
creation, the time for performing the respective steps is
measured and compared to each other. After comparing the
two measurements, HiPAS updates the parameter
“index_while_transfer” inside the “param” table
autonomously by inserting “true” or “false”. This test can be
performed during a common migration test run on the actual
system environment and excluded for the productive
migration reusing the “param” table.

D. Transfer Order and Instance Affinity

The table “transfer_job_list” contains all objects, which
need to be transferred to the target. When selecting the next
object for transfer, this table needs to be ordered by blocks
since large objects are preferred by HiPAS. Furthermore, an
instance prefers table partitions of tables, which already have
been started to be transferred by this instance. Accordingly,
the next table or table range to be transferred is always
selected as follow:

select * from transfer_job_list where status =
'PENDING' and object_type = 'TABLE' and (instance = 0
OR instance = sys_context('USERENV', 'INSTANCE'))
order by instance desc, blocks desc, partition_name;

If an instance starts transferring a table range of a large
table, it marks all other table ranges of the same table by
inserting the instance number into all tuples related to this
table. By this means, instances reserve tables in order to
avoid loading the same table into data buffers of other
instances. For this reason, instances prefer tuples marked by
themselves and tuples not reserved by any other instance,
which has been implemented by means of the above
displayed “where clause”. In addition, the actual block split
range, defining the limit for the size of all table ranges, is
identified partly adaptively. For a given maximum block
split range, HiPAS calculates the optimal block split range
by counting tables and their sizes resulting in an optimal
ratio of a ranges size and its total count.

271

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. Adaptive Migration Process with HiPAS

VIII. EVALUATION

The migration method has been tested in several
customer environments with differently powerful server,
storage systems and networks. Following the design science
approach, HiPAS has been improved in multiple iterations
based on test results.

A. Experiment Setup

For this paper, we set up a test environment consisting of
a source and target system installed on physically separated
virtual machines, each having 4 CPUs and 16 GB of main
memory. Both the source and target database are real
application cluster (RAC) environments running Oracle
Database 11g Enterprise Edition Release 11.2.0.3.0. On each
side two instances are available connected to the other side
through a 1 Gigabit Ethernet. The source system reads from
solid state drives and the target system writes on common
SATA disks. For evaluation, we performed multiple test runs
belonging to the following three different main tests:

(1) Function test with a 300 GB schema (Test A)
(2) Performance test with a 16 GB schema (Test B.1)
(3) Performance test with a 32 GB schema (Test B.2)

To create the different database schemata, we
implemented a software package, which generates database
schemata filled with random data and including all special
cases we could imagine HiPAS to encounter at productive
customer environments. By means of this software, we
created different sized test schemata inside the source
database for test migrations. For the function test (Test A),
the schema included characteristics like foreign key
constraints, a variety of character, numeric and binary data
types, reference partitioning, indexes, table clusters, views,
as well as different rights and roles. In this manner, we were
able to test the compatibility of HiPAS with different data
types, objects and complex data structures. The used schema
has an overall size of 300 GB, which was large enough to
analyze HiPAS adaptive behavior during the migration run.
To compare HiPAS migration performance with the current
Oracle standard migration tool for exports and imports “Data
Pump” [26], [27], we reduced the size for being able to
perform multiple test runs and to average out performance
values across all performed runs. These performance focused

migration runs are referred to as test B. After each migration,
we fully deleted the migrated schema and rebooted the whole
server in order to have the same initial cache situation for all
runs. The results of all tests are shown subsequently.

B. Results

In the following the results of the function test (A) and
the performance tests (B) are presented.

1) Function Test (Test A): As described in Section VI-A,
“Test A” aims at analyzing HiPAS adaptive behavior and
compatibility. We implemented a package, which compares
the created target schema with the original source schema by
counting rows and columns. We verified that all data objects
were created inside the target schema successfully. The
optimizer, providing the adaptive capabilities of HiPAS,
writes log information whenever an adaption is needed. An
example of such a single log string has been introduced in
Section VII-B. Analyzing all tuples, written into the logging
table during a migration run, leads to the migration process
shown in Figure 12. The transfer started at 12:08 pm and
ended at 12:47 pm. HiPAS transferred the created test
schema, filled with 300 GB of random data, starting with 20
background jobs running in parallel meaning 10 jobs per
instance, since HiPAS identified two available instances on
the target system for job distribution. After 39 minutes, the
transfer ended with a current total number of 116 parallel
running jobs. The “block split range” was 25120 blocks, so,
with a configured data block size of 8 KB, each job
transferred a maximum amount of approximately 200 MB.

Tables, smaller than the split range, were not partitioned
and transferred at the end of the migration, since large tables
are preferred by the data selection algorithm. If a job
transfers less data (small table), more parallel jobs are
possible, so HiPAS raised the number of running jobs as the
migration time goes by, which explains the slope of the
graph shown in Figure 12.

In a different test using the same schema, we monitored
the network interfaces in order to evaluate how the 1 Gigabit
Ethernet is utilized by HiPAS. Figure 13 shows the number
of kilobytes received and transmitted by one of the physical
interfaces, which was monitored using the Linux command
“sar”.

272

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14. Transfer Performance for a 16GB Schema (B.1).

Figure 13. Network interface Performance (Excerpt)

During the monitored timeframe, the network interface,
at its highest utilization, received up to 110138.34 KB per
second. At that time 12849.31 KB were transmitted,
resulting in a total amount of 122987.65 KB/s.

2) Performance Test (Test B.1): For the first

performance test, we created a schema of 16 GB including

the mentioned data types in Section VIII-A. The different

test runs of test B.1 are described as follows:

(1) Migration by means of HiPAS adaptively and with

enabled partitioning of large tables

(2) Migration by means of HiPAS with a static

parallelization degree of 20 running jobs and enabled

partitioning of large tables

(3) Migration by means of HiPAS with a static

parallelization degree of 10 running jobs and enabled

partitioning of large tables

(4) Migration by means of HiPAS with a static

parallelization degree of 10 running jobs and disabled

partitioning of large tables

(5) Migration by means of HiPAS without parallelization

(sequential) and with disabled partitioning of large

tables

(6) Migration by means of Oracle Data Pump
We performed the described test runs three times in order

to compensate statistical outliers, possibly caused by
uninfluenceable events of the database management system
or the operating system. This was necessary because the test
runs had to be performed successively to provide the same
environment for all tested methods. Afterwards, we
calculated for each method the average total duration of the
three runs. The final result is shown in Figure 14. The small
test schema of 16 GB has been transferred by HiPAS
averagely within 11 minutes, enabling adaptive capabilities
(more precisely “anticipation”) and partitioning of large
tables. Transferring the same schema by means of the Oracle
tool Data Pump, using the number of available CPUs as the
“parallel” parameter [26], took averagely 53 minutes, which
means a deceleration of approximately 382% compared to
HiPAS. Comparing the different HiPAS migration runs with
each other, it can be stated that parallelizing in general

273

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

noticeably reduces the transfer duration, which is indicative
for our assumption of utilizing the available resources more
efficiently by parallelizing. Comparing test run 3 and 4
shows that partitioning large tables for the transfer barely
improves the overall performance, since the partitioning
feature was implemented to improve the flexibility of HiPAS
when its optimizer needs to adapt quickly to changing
resource availabilities. Thus, the adaptive migration run with
enabled partitioning of large tables performed best in terms
of downtime shortness.

3) Performance Test (Test B.2): In addition to the 16 GB
schema, we performed the same test runs with a schema size
of 32 GB to evaluate how the adaptive capabilities work for
a longer period of transfer time. The static parallelized runs
have been performed as well and showed results proportional
to test B.1, so we excluded them from Figure 15.

Figure 15. Transfer Performance for a 32GB Schema (B.2).

HiPAS, with enabled partitioning, adaptively transferred the
schema within 51 minutes, compared to 2.23 hours needed
by Data Pump, meaning this time HiPAS took 38% of Data
Pump’s transfer duration, whereas the single threaded
configured HiPAS took about 75%. As a consequence, we
assume that non-adaptive sequential and Data Pump
migrations leave useful resources idle or need to be tuned
manually. In addition to the introduced test runs for
evaluation within the scope of this paper, we performed
several further tests in customer environments achieving
considerable results, especially for schemata storing large
objects. In terms of network bandwidth, we reached transfer
rates of 120 MB/s for each database link created on a 1
Gigabit Ethernet.

IX. CONCLUSION AND FUTURE WORK

By designing and developing HiPAS, we applied
adaptive software into the field of database migrations. We
focused on self-optimization as the main adaptive property
and implemented a system, which continuously optimizes

the system utilization by adjusting the current amount of
parallel workload. The observed environment is represented
by monitoring information regarding the performance of the
source and target database instances and their underlying
storage systems. For optimizing the transfer phase, we state
that implementing anticipatory capabilities into migration
software using a MAPE-K feedback loop significantly
improved the performance of migrations invoked on
database layer, compared to a solely adaptive approach or
non-adaptive migration software. Statically parallelized test
runs did not adapt to changing utilization requirements, thus,
performed less efficiently. The decisions taken in the design
space for adaptive software and the paradigm of saving all
migration metadata inside the database allows a highly
reliable and transparent architecture, which supports an
efficient interaction of all HiPAS migration components and
the actual migration data. On the contrary, the
implementation as a stored object leads to the disadvantage
of having to develop separate implementations for different
database systems. Therefore, we plan to build and evaluate
further versions of HiPAS supporting different types of
source and target systems. Another new version, we are
working on, is intended to support online migrations, where
the adaptive optimizer can be leveraged to utilize the source
system up to a degree, which does not affect its availability
and response time during productive use. Our results serve as
a contribution for all practitioners in the field of database
migrations, as well as researchers on self-adaptive software
and their various fields of application.

ACKNOWLEDGMENT

We strongly like to thank all members of the Pasolfora
Performance Research and Innovation Group (PPRG) for the
support and possibility of performing the countless number
of test and demo migrations during the development and
evaluation of HiPAS. Furthermore, we thank Prof. Dr.
Michael Höding of the Brandenburg University of Applied
Sciences for giving scientific relevant input when mapping
adaptive insights to the requirements of offline database
migrations.

REFERENCES

[1] H. Müller, A. Prusch, and S. Agel, “HiPAS: High

Performance Adaptive Schema Migration – Evaluation of a

Self-Optimizing Database Migration,” in DEPEND 2014,

The Seventh International Conference on Dependability,

2014, pp. 41–50.

[2] H. M. Sneed, E. Wof, and H. Heilmann, Softwaremigration

in Praxis. dpunkt.verlag, 2010.

[3] M. L. Brodie and M. Stonebraker, Migrating legacy

systems: gateways, interfaces & the incremental approach.

Morgan Kaufmann Publishers Inc., 1995.

[4] J. Bisbal, D. Lawless, B. Wu, and J. Grimson, “Legacy

information systems: Issues and directions,” IEEE software,

vol. 16, no. 5, pp. 103–111, 1999.

[5] R. De Lemos, H. Giese, H. A. Müller, M. Shaw, J.

Andersson, M. Litoiu, B. Schmerl, G. Tamura, N. M.

Villegas, T. Vogel, et al., “Software engineering for self-

adaptive systems: A second research roadmap,” in Software

274

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Engineering for Self-Adaptive Systems II, Springer, 2013,

pp. 1–32.

[6] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design

Science in Information Systems Research,” MIS quarterly,

vol. 28, no. 1, pp. 75–105, 2004.

[7] M. Eastwood, J. Scaramella, K. Stolarski, and S. M.,

“Worldwide Server Market Revenues Decline -6.2% in

Second Quarter as Market Demand Remains Weak,

According to IDC.” International Data Corporation, 2013

[Online]. Available:

http://www.reuters.com/article/2013/08/28/ma-idc-

idUSnBw276497a+100+BSW20130828 [Accessed: 29-

May-2015]

[8] J. D. Little, “A proof for the queuing formula: L= λ W,”

Operations research, vol. 9, no. 3, pp. 383–387, 1961.

[9] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C.

Sevcik, Quantitative System Performance: Computer

System Analysis Using Queueing Network Models, vol. 84.

Prentice-Hall Englewood Cliffs, 1984.

[10] R. et al. Alves, Information Storage and Management -

Storing, Managing, and Protecting Digital Information.

EMC Education Services, 2009.

[11] R. M. Karp, Reducibility Among Combinatorial Problems.

Springer, 1972.

[12] “Fraunhofer. Adaptive Systems. Fraunhofer Institute for

Embedded Systems and Communication Technologies.”

[Online]. Available:

http://www.esk.fraunhofer.de/de/kompetenzen/adaptive_sys

teme.html [Accessed: 29-May-2015]

[13] J. A. Mart𝚤n H, J. de Lope, and D. Maravall, “Adaptation,

anticipation and rationality in natural and artificial systems:

computational paradigms mimicking nature,” Natural

Computing, vol. 8, no. 4, pp. 757–775, 2009.

[14] N. Wiener, E. Henze, and E. H. Serr, Kybernetik. Econ-

Verlag Düsseldorf, 1963.

[15] R. Rosen, Anticipatory Systems. Springer, 2012.

[16] M. Salehie and L. Tahvildari, “Self-adaptive Software:

Landscape and Research Challenges,” ACM Transactions

on Autonomous and Adaptive Systems (TAAS), vol. 4, no. 2,

2009.

[17] R. Laddaga, “Self-adaptive Software,” Defense Advanced

Research Projects Agency, 1997.

[18] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G.

Johnson, N. Medvidovic, A. Quilici, D. S. Rosenblum, and

A. L. Wolf, “An architecture-based approach to self-

adaptive software,” IEEE Intelligent systems, vol. 14, no. 3,

pp. 54–62, 1999.

[19] P. Horn, “Autonomic Computing: IBM’s Perspective on the

State of Information Technology.” IBM, 2001 [Online].

Available:

http://people.scs.carleton.ca/ soma/biosec/readings/autonom

ic_computing.pdf [Accessed: 29-May-2015]

[20] “The 8 Elements.” IBM [Online]. Available:

http://www.personal.psu.edu/users/a/l/alw/autonomic/auton

omic8.pdf [Accessed: 29-May-2015]

[21] “An Architectural Blueprint for Autonomic Computing,”

IBM White Paper. Citeseer, 2005 [Online]. Available:

http://www-

03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%2

0Paper%20V7.pdf [Accessed: 29-May-2015]

[22] Y. Brun, R. Desmarais, K. Geihs, M. Litoiu, A. Lopes, M.

Shaw, and M. Smit, “A Design Space for Self-Adaptive

Systems,” in Software Engineering for Self-adaptive

Systems II, Springer, 2013, pp. 33–50.

[23] M. G. Hinchey and R. Sterritt, “Self-Managing Software,”

Computer, vol. 39, no. 2, pp. 107–109, 2006.

[24] M. Parashar and S. Hariri, “Autonomic Computing: An

overview,” in Unconventional Programming Paradigms,

Springer, 2005, pp. 257–269.

[25] “Enqueue: HW, Segment High Water Mark - Contention.”

Oracle, 2009 [Online]. Available:

http://docs.oracle.com/cd/B16240_01/doc/doc.102/e16282/

oracle_database_help/oracle_database_wait_bottlenecks_en

queue_hw_pct.html [Accessed: 29-May-2015]

[26] G. Claborn, W. Fisher, C. Palmer, J. Stenoish, and R.

Swonger, “Data Pump in Oracle Database 11g Release 2:

Foun-dation for Ultra High-Speed Data Movement

Utilities.” Oracle, 2010 [Online]. Available:

http://download.oracle.com/otndocs/products/database/enter

prise_edition/utilities/pdf/datapump11gr2_techover_1009.p

df [Accessed: 29-May-2015]

[27] K. Rich, “Oracle Database Utilities 11g Release 2.” Oracle,

2014 [Online]. Available:

http://docs.oracle.com/cloud/latest/db112/SUTIL.pdf

[Accessed: 29-May-2015]

275

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

