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Abstract – HiPAS stands for “High Performance Adaptive 

Schema Migration” and is a self-adaptive software system, 

aimed at reducing downtime during offline database 

migrations by automatically adapting to available system 

resources. The process of a database migration can be 

shortened by parallelizing the data transfer up to a certain 

degree. In this article, we describe how HiPAS was enabled to 

continuously adapt the parallelization degree according to its 

operational environment in order to avoid both overloading 

and idle resources. To automate the developed method, we 

implemented HiPAS following decisions taken within the 

dimensions of design space for self-adaptive software. Based on 

a centralized control pattern in distributed systems, HiPAS 

uses a feedback loop to enable adaptions. Hence, according to 

monitored system information, the current utilization is 

adjusted whenever necessity is assumed. To enable a flexible 

adaption, the total amount of migration data is partitioned into 

equal sized transfer jobs, which are distributed across 

available instances and networks. HiPAS is invoked on 

database layer and controlled by a temporarily created 

autonomous database user. Therefore, migration metadata are 

stored inside tables and highly integrated with the actual 

migration data.  HiPAS was designed and evaluated iteratively 

following the IS research framework and reveals significant 

downtime reduction potential compared to non-adaptive 

migration approaches like Oracle “Data Pump”. Our results 

serve as a contribution for all practitioners, who seek to 

perform database migrations within a challenging timeframe, 

as well as researchers on self-adaptive software and their 

various fields of application.  

Keywords-Adaptability; Anticipation; Self-Adaptive Software; 

Database Migration; Parallelization. 

I.  INTRODUCTION 

The rapid technical developments inside changing 
markets, as well as the need for efficiency enhancements, 
mainly driven by cost pressure, require an occasional transfer 
of running information systems into a new environment, 
which fulfills the operational requirements in a more suitable 
way. This process is referred to as software migration [1], [2] 
and meanwhile the software’s availability can be limited 
depending on the chosen migration method. Regarding this, 
basically two approaches can be differentiated: 

 online Migration: continuous availability 

 offline Migration: interrupted availability 

In some critical environments, a downtime is not 
acceptable, thus online migrations need to be performed. 
This article deals with the variety of cases, which do not 
require a costly and complex online migration and a planned 
downtime is tenable. In that case, the main concern is to keep 
the downtime as short as possible since the duration of 
unavailability may result in opportunity costs. In particular, 
we target migrations applying the “big-bang” strategy [3], 
thus data is fully migrated at once in contrast to incremental 
migrations. Since the legacy system (source system) is shut 
down during the data transfer, starting the target system, 
referred to as cut-over [4], cannot be performed before all 
required data has been transferred to the target system’s 
database. The length of downtime depends on the migration 
approach taken. For database migrations, different system 
layers can be involved determining the performance and 
granularity of data selection (see Section II). We investigated 
the applicability of adaptive capabilities for database 
migration software in order to reduce the necessary 
downtime by parallelizing data transfer up to an optimal 
parallelization degree, which will be continuously adapted to 
the system’s load capacity. Prior tests indicated that 
overloading the target or source systems resources leads to a 
temporary stagnation of the whole migration progress, 
whereas a low utilization wastes available resources, thus 
underachieving existing downtime reduction potential. In 
this manner, we contribute to the field of self-adaptive 
software and support the statement by de Lemos et al. that 
“self-adaption has become an important research topic in 
many diverse application areas” and “software systems must 
become more versatile, flexible, dependable […] and self-
optimizing by adapting to changes that may occur in their 
operational contexts, environments and system 
requirements” [5]. 

Moreover, the developed approach “HiPAS” (High 
Performance Adaptive Schema Migration [1]) is intended to 
provide dependability and interruptibility, since migration 
software should be able to identify where to resume an 
interrupted migration process instead of starting from scratch 
avoiding the necessity of rescheduling a planned downtime.  

Further technically conditioned features will be added in 
Section III as consequences of the preliminary 
considerations. Section IV summarizes HiPAS´ architecture 
by means of introducing adaptability challenges of the 
subsequent described migration process (Section V). The 
adaptive capabilities are outlined in Sections VI and VII. 
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Finally, in Section VIII, we evaluate HiPAS, which refers to 
both the designed migration method and the migration 
software, currently implemented in Oracle PL/SQL syntax 
comprising 8,540 lines of source code. 

II. PRESENT MIGRATION APPROACHES 

As introduced previously, migration approaches can be 
differentiated regarding the availability of the migrated 
systems into online and offline migrations. For stated 
reasons, we focus on offline migrations, which can be further 
classified concerning their own characteristics and their 
applicability for certain database characteristics: 

 invocation layer 

 support for change of platform 

 support for change of endianness 

 support for change of character set 

 downtime proportionality 
To obtain an overview of present migration approaches, 

we classified existing available methods using the example 
of Oracle databases and the above enumerated 
characteristics: 

TABLE I.       CLASSIFICATION OF PRESENT MIGRATION APPROACHES. 

Migration Method 

Invocation 

Layer/ 

Granularity 

Downtime 

Proportionality 
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Storage Replication Storage/ 

Storage 

negligible no no no 

Transportable 

Database 

OS/ 

Database 

Database Size yes no no 

Transportable 

Tablespaces 

OS/ 

Tablespace 

Tablespace Size yes no no 

Cross Platform 

Transportable 

Tablespace 

OS/ 

Tablespace 

Tablespace Size yes yes no 

Transportable 

Tablespaces using 

Cross Platform 

Incremental 

Backups 

OS/ 

Tablespace 

Data Alteration 

Rate 

yes no no 

Oracle-to-Oracle 

(O2O) 

OS/ 

Schema 

Amount of 

Migration Data 

yes yes no 

Datapump Database/ 

Value 

Amount of 

Migration Data 

yes yes yes 

Export/Import Database/ 

Value 

Amount of 

Migration Data 

yes yes yes 

 
As shown in Table I, the divergence of the source and 

target database in terms of platform, endianness and 
character set technically limits the available migration 
methods.  

A critical decision criterion for the remaining 
contemplable methods is the demand for downtime shortness 
resulting in lower opportunity costs during the unavailability 
of the database and all relying applications. The fact that a 

high throughput for data transfer was achieved as yet by 
eliminating upper layers and protocols, leads to the 
conflicting goals of flexibility and performance when 
selecting a migration method. The lower a layer a migration 
is invoked on, the more flexibility is lost, since changes of 
database characteristics might not be supported and the 
possible granularity for migration data selection decreases. 
Finally, downtime proportionality refers to the entity, which 
the downtime length depends on; this can be the amount of 
migration data or the data alteration rate if incremental 
methods are used. 

When designing HiPAS, we pursued the goal of 
achieving a short downtime and at the same time providing 
the flexibility of migrating between divergent databases and 
selecting the data as granular as possible. This was achieved 
by invoking the migration on database layer without ever 
leaving this layer during the whole migration process and by 
parallelizing the data transfer adaptively in respect of the 
system’s resources. Therefore, we add “adaptability” as a 
further decision criterion for migration software capabilities.  

III. PRELIMINARY CONSIDERATIONS 

The performance of migration software highly depends 
on how well its design fits to the operating environment and 
the intended range of functions. Previous system and data 
analyses are necessary to conclude with a migration design, 
which has been aligned to the findings in multiple iterations 
following the guidelines of design science in information 
system research [6]. Figure 1 shows how the designed 
artefact HiPAS is related to its environment and 
knowledgebase base inside the information systems research 
framework. 
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Figure 1.   HiPAS as an IS Research Artefact (Adapted from Information 

Systems Research Framework [6]). 

HiPAS was intended to be built upon findings of 
preliminary analyses (Knowledgebase) described in this 
section, as well as business requirements (Environment) and 
from then on has been improved continuously, based on 
evaluation runs performed in a variety of different 
environments provided generously by customers. 
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A. Enterprise Data Structures 

When moving existing data files to the target system, as 
migration approaches invoked on storage and database layer 
do (see Section II), the valuable downtime is partly spent 
migrating unnecessary or useless data. The allocated size of a 
data file implies unused space and indexes. To gain an 
overview of typical storage occupancies, we analyzed 41 
SAP systems productively running at a German public 
authority by querying the allocated disk space, the used disk 
space and the space used for indexes with a result shown in 
Figure 2. 

 

 
Figure 2.   Average Structure of Allocated Data. 

For these 41 SAP Systems, we identified an overall 
amount of 93.08 TB allocated data. From this amount, about 
28 TB (30 %) represented allocated space, which was not yet 
filled with data. From the used space of 65 TB, about 22 TB 
(24% of the overall amount) were filled with indexes. The 
remaining 43 TB (46% of the overall amount) represent the 
actual relevant data, which necessarily needs to be 
transferred into the target database within a migration. 
Indexes can be created at the target system and do not have 
to be transferred, thus saving network bandwidth. Depending 
on the layer the migration is invoked on, unused but 
allocated data can be excluded as well. 

In this case, if all of the analyzed SAP systems needed to 
be migrated, migration tools not supporting data selection 
would utilize all involved system resources for transferring 
data, of which approximately 54% is useless on the target 
system. Invoking a migration method on software layer, 
enables both excluding useless data autonomously and 
implementing self-adaptability. 

B. Endianness 

When performing a database migration, the byte order in 
which the source and target system store bytes into memory 
needs to be considered. This byte order is referred to as 
endianness and data is stored into data files accordingly, so 
the endianness can affect the amount of available migration 
methods and the overall needed downtime. 

A major part of migration demanding customers served 
by the authors of this paper currently initiate migration 
projects due to licensing and maintenance costs, this amount 
is strongly influenced by an increasing number of platform 
migrations from Solaris to Linux, requiring subsequent 
migrations on upper layers such as the databases tier. The 
latest International Data Corporation (IDC) report on 
worldwide server market revenues substantiates this 

observation by stating that Linux server revenue raised from 
17% in Q4 2010 to 23.2% in Q2 2013 compared to Unix 
decreasing from 25.6% down to 15.1% [7]. The Unix-based 
Solaris operates on processors following Oracle´s SPARC 
architecture, whereas Linux distributions can be used on 
systems based on Intel processors. When migrating from 
Solaris to Linux, the endianness changes accordingly from 
big endian to little endian, so the data files cannot simply be 
moved without converting them before or after the transfer 
as shown in Figure 3. 

 

01010001 01101110 11110101 10100000 1010111001100011

10100000 11110101 01101110 01010001 0110001110101110

Source 
System

Target 
System

Big Endian Byte Order

Little Endian Byte Order  
Figure 3.   Change of Endianness between Source and Target System. 

Alternatively to converting data files, the database 
migration can be invoked on a layer, which supports saving 
the data into new files on the target system, such as export-
import-tools and HiPAS do. In this case, migration 
performance can be enhanced by means of adaptive 
capabilities. 

C. Storage I/O Controller 

As a consequence of the requirement for downtimes as 
short as possible, a utilization degree of the underlying 
storage systems has to be achieved, which enables short 
response times. The overall amount of requests inside a 
system (N) equals the product of arrival rate (a) and average 
response time (R) as expressed by Little´s Law [8]: 

  (1) 

In addition the Utilization Law [9] defines the utilization 
(U) of the I/O controller as the product of arrival rate and 
average processing time (RS): 

  (2) 

By combining these relations, it becomes clear that the 
response time depends on the I/O controller’s utilization as 
described within the following formula [10]: 

  (3) 
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The relation shows that the response time does not 
change linearly to the utilization. At higher utilizations, the 
response time grows exponentially as clarified in Figure 4. 
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Figure 4.   Relation of Utilization and Response Time. 

By adapting to the source and target system resources, 
HiPAS continuously changes the utilization of the I/O 
controller in order to achieve an optimal relation of response 
time and utilization supporting the shortest possible overall 
duration. The storage manufacturer EMC generally describes 
an average utilization of 70% as optimal [10]. 

IV. HIPAS ARCHITECTURE 

Following the goals introduced in Section I, we designed 
the HiPAS migration method as describes in the following.  

A. Everything is a Tuple 

When performing an automated and controllable 
migration, a number of interim results arise, e.g., during the 
analysis of source data. Keeping these information, as well 
as logging and status information is necessary for the 
administrator to manage and verify the migration and for the 
software itself to handle parallel job executions 
autonomously. The necessity for saving and querying 
migration metadata leads to HiPAS’s design paradigm of not 
leaving the database layer during the whole migration 
process. Interim results such as generated DDL and DML 
Statements for later execution are represented by tuples of 
tables inside a temporary migration schema enjoying 
advantages of the databases transactional control 
mechanisms. The paradigm of everything being a tuple is 
emphasized by the following list: 

 objects to create are tuples (table “cr_sql”) 

 data to transfer are tuples (table “transfer_job_list”) 

 running jobs are tuples (table “mig_control”) 

 parameters are tuples (table “param”) 

 logs are tuples (table “logging”) 
After a migration has been performed, its success and the 

transferred data´s integrity have to be verified. Since logging 
information was stored during the whole process inside the 
logging table, SQL can be leveraged to query for certain 
transferred objects or states or both. For optimizing the 
migration process, sorting, calculating and analytical 
capabilities of SQL are utilized, thus, there is no need for any 

other migration application on operating system level than 
the database management system (DBMS) itself. 

B. Adaptability and Dependability Problems 

When designing the migration method and 

implementing the related software, several challenges had to 

be faced. In this section, we will briefly introduce some of 

the most interesting problems and their intended solutions: 

 Utilization Problem 

 Knapsack Problem 

 Distribution Problem 

 Dependency Problem 

 Index Problem 

Subsequently described solution approaches for the above 

listed problems will provide an overview of the conceived 

migration method. In-depth sections are referenced. 

1) Utilization Problem: Utilization cannot be planned 

generally since systems behave differently depending on 

their resources and further running processes. We varified 

this statement during the evaluation phase by performing 

migration test runs that have a preliminary defined static 

parallelization degree. This leads to the risk of both 

overloading a system and on the other hand not utilizing idle 

resources. Derived from the relationship between utilization 

and response time described in Section III-C, Figure 5 

shows how the overall performance, in terms of transfer 

time, behaves at increasing parallelization degrees: 
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Figure 5.   Expansion when Overloading the Storage System. 

By choosing the currently optimal parallelization degree 

adaptively at any time, HiPAS targets an optimal and 

dynamic utilization, which leads to the shortest possible 

transfer phase. In this way, we reduced the risk of utilizing 

the systems too much or not enough. Parallelization is 

implemented by means of background jobs started through 

the database scheduler. In this way, the yet manual task of 

finding the optimal parallelization degree for the respective 

system environment is intended to be done by HiPAS 

automatically and adaptively, implicating the ability to 

change this value dynamically during the whole transfer 

process. 
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Figure 6.   HiPAS Architecture. 

 

 

 

2) Knapsack Problem: From an amount of objects, 

defined by their weights and values, a subset with limited 

weight and maximum total value has to be chosen [11]. This 

knapsack problem reflects the challenge of choosing optimal 

combinations of different sized tables to transfer in parallel, 

since the available computing resources are limited. Large 

tables should be preferred in a way of starting their transfer 

at the beginning of the migration process, because a possible 

failure can require a restart of the table transfer thus delaying 

the whole migration when started too late. HiPAS 

circumvents the knapsack problem by dividing large tables 

into equal sized partitions, which can be transferred in 

parallel. This offers flexibility in scheduling the data transfer 

and dynamically adapting the current parallelization degree. 

3) Distribution Problem: Depending on the migration 

environment, the accruing work load can be distributed on 

multiple instances of a cluster. In terms of network 

bandwidth, multiple database links can be created on 

different physical network connections between the source 

and target system. In this case, HiPAS will distribute data to 

be transferred equally on the available database links in order 

to utilize the total available bandwidths. In case of a real 

application cluster (RAC), HiPAS distributes running 

transfer jobs on the available instances. Then the fact of the 

previously mentioned partitioning of large tables needs to be 

considered. We optimized the data buffers of the instances 

by distributing transfer jobs, which continue a large table, to 

the instance, which already transferred previous parts of the 

same table to avoid reloading the table into multiple buffers 

of different instances. The corresponding algorithm is 

explained in Section VII-D. 

 

4) Dependency Problem: When invoking the migration 

on database layer, dependencies among the transferred 

objects need to be considered for the transfer order. Surely, 

users need to exist before importing data into created tables 

and granting permissions found in the source schema. 

Constraints like foreign keys have to be disabled temporary, 

so HiPAS does not have to spend time for calculate a strict 

and inflexible transfer order. If reference partitioning was 

used inside the source schema, a parent table needs to exist 

before the child table can be created following the same 

partitions. For considering such dependencies, HiPAS 

calculates a transfer schedule in the first place. Since 

possible existing triggers will be transferred as well, they 

need to be disabled during the migration process in order to 

avoid unexpected operations on the target system, e.g., 

invoked by an insert trigger. 

5) Index Problem: Indexes can either be created directly 

after table creation or after the table has been filled with data. 

When creating the index before data load, they will be built 

“on the fly” during the transfer phase, in contrast, after data 

load, an additional index buildup phase would need to be 

scheduled. The right time for indexing depends on the target 

storage system and network bandwidths. In case of a highly 

powerful storage system, it might be reasonable to build the 

indexes directly during data import since the network 

represents the bottleneck of the whole migration and the 

storage system would idle otherwise. On the other hand, 

storage systems can be overloaded when indexes have to be 

created at import time. Consequently, the decision about the 

indexing time is another use case for the adaptive capabilities 

of HiPAS explained in Section VII-C. 
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V. COMPONENTS AND MIGRATION PROCESS 

Assuming that both source and target database system 
have been physically connected preliminary and are 
configured to be accessible by each other, the migration 
process consists of three main phases invoked on the target 
system, which are briefly described subsequently: 

1. Installation and Pre-Transfer (Step 1-3) 
2. Adaptive Data Transfer (Step 4-6) 
3. Post-Transfer and Uninstallation (Step 7) 
Figure 6 shows the steps of these phases, which are 

invoked on the target system. 

A. Installation and Pre-Transfer  

Following the paradigm of not leaving the database layer, an 

additional and temporary schema is created inside both 

source and target database during an automated installation 

phase. All subsequent operations will be done by the owner 

of this schema. Creating this user, as well as creating and 

compiling a PL/SQL package, needed for performing the 

migration, is part of an automated installation process. Prior 

to the data transfer phase, the source schemas need to be 

analyzed and accordingly created inside the target database. 

For this purpose, SQL statements for creating the identified 

objects will be generated and stored inside the table 

“cr_sql_remote”. This table will be copied to the target site 

and contains information regarding the objects to be created 

and its creation status. In addition, every operation 

performed causes status information to be written into the 

table “logging” (see Figure 7), enabling the database 

administrator to perform any necessary analysis, e.g., by 

querying for possible errors during or after the migration: 

select logdate, loginfo from logging where info_level 
= ‘ERROR’;  

After the initial analyses of the source schema, all 

identified objects have the status “init” and, therefore, will 

be created by HiPAS at the target site. All objects 

containing “created” inside their corresponding status 

column will be ignored, enabling the whole migration 

process to be paused and continued at any time. The table 

“param” (see Figure 7) serves as a user interface for 

parameterizing HiPAS manually beforehand, in case certain 

adaptive capabilities shall not be utilized. 

Techniques like reference partitioning inside the source 

schema have to be considered and will determine the order 

of creation, since child tables will not be created and 

partitioned unless the related parent table exists. The Index 

creation is either part of the pre-transfer or will be initiated 

after all tables are filled with data. HiPAS decides 

automatically for the most suitable approach depending on 

the storage system and network bandwidth as described in 

Section VII-C. 

B. Adaptive Data Transfer  

The data transfer is based on two simple SQL statements: 

 Insert into a table as selecting from a source table 

 Querying remote tables through a database link 

The combination of these statements makes it possible to 

fill local tables with remotely selected data. The resulting 

command is generated and parameterized at runtime: 

sql_stmt := 'insert /*+ APPEND */ into "' || schema || 

'"."' || table_name || '" select * from "' || schema 

|| '"."' || table_name || '"@' || db_link; 

This statement is generated and executed by transfer 

jobs. The number of transfer jobs running in background is 

adapted continuously and depends on the resource 

utilization. As a pre-transfer stage, metadata of all objects 

stored in the source schema has been inserted into a table 

named “transfer_job_list”. Tables to be transferred, 

exceeding a defined size, will be partitioned and, thus, 

transferred by multiple transfer jobs. In this case, the job 

type changes from “table” to “table_range” and row IDs 

mark the range’s start and end (see Figure 7). 
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PARAM_COMMENT

 
Figure 7.   Metadata Entities for the Adaptive Data Transfer Phase. 

Through partitioning, HiPAS can adapt more flexible to the 

current utilization, since the number of parallel jobs can be 

reduced or increased more frequently. HiPAS’ table 

“mig_control” (see Figure 7) lists all background jobs 

transferring the objects stored in “transfer_job_list”. In this 

respect, the column “command” inside “mig_control” serves 

as an interface for controlling the transfer process, either 

autonomously by HiPAS or manually by the database 

administrator. When overwriting its content with keywords 

like “stop” or “continue”, individual jobs will be stopped 

after finishing or continued, causing timestamps to be written 

into the column “status_upd” and if necessary into “ended”. 

By this means, HiPAS is able to reduce or increase the 

number of parallel running transfer jobs transparently in 

respect of the optimizer’s decision, which is described in 

Section VII. For the migration time, all constraints will be 

disabled temporary by HiPAS, enabling the table 

“transfer_job_list” to be ordered by blocks instead of 

considering key dependencies. Existing database triggers 

will also be disabled avoiding any unintended execution 

during the database migration. 

C. Post-Transfer  

After all source data has been transferred into the target 

schemas, the data has to be validated. Documenting data 

consistency and integrity is mission critical both for target 
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database operation and for legal reasons. Only after verifying 

the equality of source and target data, the migration can be 

declared as successful, requiring HiPAS to not only 

compare source and target sizes, but also counting the rows 

of all tables. Finally, the disabled constraints and triggers 

will be enabled again. 

VI. ENABLING PARALLELIZATION 

In order to control the degree of HiPAS utilizing the 
available hardware resources the migration data transferred 
at the same time must be limitable. Restricting the number of 
parallel processed tables would be inappropriate since it 
required similar sized tables. Instead, a defined number of 
blocks form a pack of data and a certain number of packs can 
be processed at the same time. That is, each pack has the 
same size and will be transferred by a single transfer job. 
Thus, adding or removing a transfer job burdens respectively 
disburdens the source and target system. HiPAS adapts to the 
underlying system resources by deciding autonomously how 
many transfer jobs are possible at any time.  

To enable the amount of data to be partitioned into equal 
packs, a so called block split range defines their size. Since 
the tables on the target system are filled by generated “insert 
as select”-statements, its scope can be limited to a range 
between two row IDs, which represent the beginning and the 
end of each data pack. During the source schema analysis, 
these row IDs are identified by an analytical function. In this 
manner, large tables are partitioned into groups with row ID 
boundaries as Figure 8 shows exemplary. 

 

 
Figure 8.   Assigning Row IDs as Group Boundaries. 

The identified IDs will be used during the transfer phase 
to limit the data of a single transfer job to the given block 
split range by adding a “where rowid between”-clause when 
selecting from the remote database: 

insert into schema.table_name select * from 
schema.table_name@db_link where rowid 
between MIN_RID and MAX_RID;   

Having partitioned the full amount of migration data into 

parts of a maximum defined size (block split range), HiPAS 

creates equally treatable transfer entities. These entities can 

be parallelized up to a degree defined by an adaptive 

transfer optimizer. 

VII. ADAPTIVE CAPABILITIES 

For parallelizing the data transfer during phase 2 of the 
migration process (see Section V-B) with an optimal 
parallelization degree, we target an adaptive migration 
software. Adaptivity in general describes the capability of 
adjusting to an environment. In biology, the term is often 
used to describe physiological and behavioral changes of 

organisms in process of evolution. In informatics, the term is 
transferred to systems or components, which adapt to their 
available resources. However, here not to increase 
reproduction chances but often in order to achieve an optimal 
system performance. Adaption improves the resource 
efficiency and flexibility of software-intensive systems and 
means that a system adapts to changes of its environment, its 
requirements and its resources [12]. According to Martín et 
al. adaption can also be seen as the first of three stages of the 
currently conceivable system complexity extent. 
Anticipation and rationality follow as further stages [13] (see 
Figure 9). 

 

System Complexity

Adaption Anticipation Rationality

 
Figure 9.   Levels of System Complexity (Adapted from [13]). 

Thus, adaption describes the interaction of two elements: 
A control system and its environment. The goal is to reach a 
defined state of the environment by means of actions 
initiated by the control system [14]. The control system then 
reacts on the self-precipitated changes of the environment 
with initiating new changes. It has been defined that an 
adaptive system is present, if the probability of a change of a 
system S triggered by an event E is higher than the 
probability of the system to change independently from the 
event: 

  
[13]

 
(4)

 

Furthermore, the condition has to apply that the system 
reaches the desired state after a non-defined duration. This 
implies the convergence of the mentioned probabilities 
towards infinite: 

  
[13]

 
(5)

 

This law of adaption [13] requires the control system to 
know for each modification of its environment a sufficiently 
granulated attribute, which contributes to the desired state´s 
achievement allowing the adaption to end. For the first stage 
of complexity, the direction and the extent of modifications 
are built upon each other, thus, enabling the system to reach 
the desired state incrementally. If the modifications are not 
steps of a targeted adjustment process, but based on 
knowledge, predictions [15] or intuition, the process can be 
defined, in terms of system complexity, as anticipation. The 
third stage “rationality” implies intelligence; those systems 
are able to react to unpredictable changes of their 
environment and to balance contradictory objectives against 
each other [13]. This stage exceeds the objective of this 
paper and, therefore, was not scoped. Applying this 
differentiation on the design of an adaptive migration 
software, two approaches emerge for parallelizing the data 
transfer: 
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 A solely adaptive system, based on an incremental 
adjustment process, until changes do not evoke 
further improvements, thus, reaching the state of an 
optimal parallelization degree. 

 An anticipatory system, which makes 
continuously new modification decisions 
independently of each other, based on knowledge 
about used and monitored resources. 

These two approaches have been designed and 
implemented as described subsequently and evaluated as 
described in Section VIII. Due to HiPAS’ scalable 
architecture, the respective procedures could be implemented 
as plugins and additionally started for evaluation. Both 
plugins control the data transfer via values inside the table 
“mig_control” (see Section V-B) serving as an interface. 

A. Adaption 

The solely adaptive approach will successively increase 
the parallelization degree and, therefore, the source and 
target systems utilization. After each enhancement its 
consequences on the system environment meaning the 
migration performance is measured in terms of inserted 
megabytes per time unit. The adaption can be started by 
running an additional procedure “calibrate”, which invokes 
either the procedure “increase” or “decrease” for modifying 
the parallelization degree, starting from one transfer job per 
database link at the same time. The number of jobs to be 
added or deducted will be reduced after each time a change 
in direction was required, by this means the algorithm brings 
the number of parallel jobs closer to the optimum. After 
reaching a defined modification count (number of jobs to add 
or deduct) the algorithm assumes having approximated the 
optimal parallelization degree and the adaption ends, 
representing the finiteness requirement of adaptive systems.  

The variable “diff_level” describes the current 
modification extent, meaning the number of jobs to start 
additionally or to stop after finishing. To reach a required 
level of flexibility for changing the number of jobs shortly, 
the size of a transfer job is limited to the introduced 
block_split_range. The following code example shows how 
the number of jobs is reduced by the value of the variable 
“diff_level”: 

update mig_control set command = 'STOP' where job = 
'loop_while_jobs_todo' and command = 'continue' and 
rownum <= diff_level; commit; 

Since the tuples inside “mig_control” represent 
background jobs and each tuple has a row number, jobs can 
be stopped for each row number being smaller than 
“diff_level”. The mentioned value “loop_while_jobs_todo” 
is the name of the procedure every background job runs for 
processing all defined transfer jobs listed inside the table 
“transfer_job_list”. If a background job is marked with the 
command “STOP”, it will be deleted after finishing the 
current transfer job and afterwards marked with the keyword 
“ended”. 

B. Anticipation 

If the adaption is based on predictions, we call it 
anticipation as the next level of complexity [13]. In contrast 

to the solely adaptive approach, HiPAS now optimizes the 
parallelization degree during the whole data transfer phase 
and based on a different algorithm. For mapping the 
described theoretical insights to our migration use case, we 
implemented an optimizer package, which predicts the 
optimal amount of parallel running jobs for the upcoming 
period. In this manner, we developed self-adaptive software, 
for which several definitions exist.  

The anticipation-based version of HiPAS complies with a 
widely referenced definition [16], which was provided by the 
Defense Advanced Research Projects Agency (DARPA) in 
an Agency Announcement of 1997: “Self-adaptive software 
evaluates its own behavior and changes behavior when the 
evaluation indicates that it is not accomplishing what the 
software is intended to do, or when better functionality or 
performance is possible” [17]. In particular, we address the 
identification of possible performance improvements. 
Another definition is given by Oreizy et al.: “Self-adaptive 
software modifies its own behavior in response to changes in 
its operating environment. By operating environment, we 
mean anything observable by the software system, such as 
end-user input, external hardware devices and sensors, or 
program instrumentation” [18]. The operating environment 
in our case is formed by the relevant components of the 
source and target database system identified in the 
“Observation” Paragraph. 

Properties of self-adaptive software were introduced by 
the IBM autonomic computing initiative in 2001 [19]–[21]; 
these are known as eight self-properties. According to 
Salehie and Tahvildari, this classification serves as the de 
facto standard in this domain [16]. On major level the 
following self-properties exist: 

 Self-configuring 

 Self-healing 

 Self-optimizing 

 Self-protecting 
Salehie and Tahvildari provided a list of research projects 

in the domain of self-adaptive software from academic and 
industrial sectors, and classified these projects according to 
their supported self-properties. It was stated that the majority 
of the analyzed projects focus on one or two of the known 
self-properties [16]. When developing HiPAS, we strongly 
focused on self-optimizing capabilities, which are demanded 
by customers of our domain. In addition, some self-healing 
properties for transfer job interruptions are supported. In the 
following paragraphs, we explain the chosen design 
decisions for HiPAS according to the dimensions of design 
space for adaptive software [22] and the optimizer’s 
functionality by running through the phases of one adaption 
loop, also referred to as feedback loop or MAPE-K loop (see 
Section B-2). 

1) Design Space 
Design decisions about how the software will observe its 

environment and perform adaptions were defined by Brun et 
al. as design space for self-adaptive systems: “A design 
space is a set of decisions about an artifact, together with the 
choices for these decisions. […] A designer seeking to solve 
a problem may be guided by the design space, using it to 
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systematically identify required decisions, their alternatives, 
and their interactions” [22]. The following dimensions of 
design space were outlined by Brun et al.: 

 Observation 

 Representation 

 Control 

 Identification 

 Enabling Adaption 
Following this systematic approach, we describe the 

main decisions within these dimensions. 

a) Oberservation 

Observation is concerned with information about the 
external environment and the system itself, which needs to 
be observed by the system [5]. Therefore, Hinchey and 
Sterrit distinguish between environment-awareness and self-
awareness [23], whereby environment-awareness is also 
called context-awareness [16], [24]. Based on the primarily 
intended property of self-optimization with respect to 
performance, we identified the following environmental 
components, which need to be observed: 

 Storage system of the source database system 

 Storage system of the target database system 

 CPU resources of the source system’s instances 

 CPU resources of the target system’s instances 

 Memory resources of the source system’s instances 

 Memory resources of the target system’s instances 
The instances of both source and target database system 

use shared storage, but dedicated computing resources like 
CPU and memory, therefore, the monitored information must 
be analyzed on both global and instance-level. 

To support system-awareness, the software needs to be 
aware of the overall migration progress, the number of 
currently running transfer jobs on each instance, and the 
status of any job at any time. For implementing self-healing 
capabilities, information about failed jobs needs to be stored 
along with respective log information in order to identify 
root causes and enable retry decisions. 

Another important decision is related to the time of 
observation, which highly depends on domain knowledge 
about the expected frequency of environmental changes. 
According to our experiences with job modifications that 
need to be triggered manually, we implemented a timer, 
which triggers a cyclic observation every two minutes.  

b) Representation 

The identified information, which needs to be observed, 
is represented by performance values and monitored by the 
database management system. The DBMS stores these 
values inside performance views, which can be queried by 
HiPAS. The following values represent the necessary 
information to base adaption decisions on it: 

 Concurrency events on target system 

 Concurrency events on source system 

 Average write time on target system 

 Average read time on source system 

 Average read time on target system 

 Average write time on source system 

 Redo log buffer size 

 Available memory size 
In order to be self-aware, HiPAS stores all status 

information regarding running and pending jobs in tables as 
described in Section V. These tables can be queried by 
adaption plugins such as the HiPAS optimizer. 

c) Control 

Control related decisions determine the involved control 
loops and their interaction, as well as the computation of 
enacted changes for each adaption [16]. According to [22], 
different patterns for interacting control loops exist. HiPAS 
is based on a hierarchical relationship between one master 
that is located on the target system and multiple slaves 
represented by instances of the DBMS. This architecture 
results in a variation of the Master/Slave pattern [22], where 
the master is responsible for global monitoring, analyzing 
and planning, and the slaves for instance-specific monitoring 
and executing (see Figure 10). 

 

 
Figure 10. Variation of Master/Slave Control Pattern (adapted from [22]) 

The master aggregates and analyzes all collected 
information and then calculates a plan, which includes 
instance-specific commands. This plan is executed only 
against the target instances, since data is pulled by transfer 
jobs running on the target system. Reducing the amount of 
jobs will reduce the utilization on both target and source 
system. Hence, we decided for centralized control in a 
distributed system, which is comparably easy to realize, 
since all information that is required for performing 
adaptions is available at the target system through database 
links [22]. 

d) Identification and Enabling Adaption 

The identification dimension deals with identifying 
instantiations of the self-adaptive system, which describes 
the system structure and behavior at a specific point in time 
[5]. HiPAS’ system state is defined by the set of values for 
the observed performance attributes and the number of 
transfer jobs running on each target instance. Information 
about running jobs is stored inside a control table named 
“MIG_CONTROL” (see Figure 7). This table serves as a 
central interface for enabling adaptions because it allows 
plugins such as the HiPAS optimizer to access and change 
job information at runtime as described earlier in Section V. 
In the next paragraph, we explain how adaptions are 
performed by running through one adaption loop. 
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2) Adaption Loop 
The relevant system performance attributes, which 

represent the information identified for observation, is 
continuously monitored by the DBMS across all involved 
database instances. 

The optimizer analyzes the enumerated values and 
calculates a fail indicator, as well as the number of 
additionally possible jobs according to the measured 
available resources like memory size and disk utilization. In 
contrary, the fail indicator indicates possible bottlenecks and 
can prompt the optimizer to reduce the amount of currently 
running jobs. The introduced components form a feedback 
loop according to the MAPE-K (Monitor-Analyze-Plan-
Execute-Knowledge) loop reference model developed by 
IBM [21] as shown in Figure 11.  

 

DBMS

Monitor Analyse & Plan

optimizer()
loop_while_
jobs_todo()

Performance Views     mig_control

Execute

      logging
 

Figure 11.   MAPE-K Based Adaptive Feedback Loop. 

Typical indicators for possibly arising bottlenecks are 
increasing concurrency events while the redo log buffer size 
decreases. An important concurrency event, for instance, 
occurs when the high water mark of a segment needs to be 
increased, since new blocks are inserted into the same table 
by multiple and competing processes, this is known as high 
water mark enqueue contention [25]. 

If such a situation has been monitored, the optimizer will 
reduce the number of parallel jobs based on a high failure 
indicator. Whenever the optimizer acts, a log string is written 
to the logging table as in the following example: 

“Prev Jobs: 40/ Jobs: 40 Max Jobs: 400 # Read Avg:  
3.32(20-40) # Write Avg:  105.9(100-200) # R_Read Avg:  
.12(20-40) # R_Write Avg:  .3(20-40) # R Fail Ind:  3 
conc:3026(2607) redo:5720763732(5776886904) 
r_conc:5157(5069) # numjobs > 0 # Jobs being stopped: 
0 # (Resource Overload) and numjobs > minjobs and 
jobs_being_stopped = 0 # Running: 20/Stopping: 5 on 
inst:1 # Running: 20/Stopping: 5 on inst:2” 

In the above extracted example, 40 jobs are running in 
parallel. Due to increasing concurrency events, the optimizer 
detects a possible overload of the target system and decides 
to stop 5 running jobs on each instance. The jobs will 
terminate after they completed transferring their current 
objects. This is implemented by writing “stop” commands 
into the table “mig_control” (see Figure 7), which the 
procedure “loop_while_jobs_to_do()” will carry out. The 
next log string will start with the information “Prev Jobs: 40/ 
Jobs: 30” accordingly. Additionally, not only the overall 
amount of jobs is measured, but also the memory each server 
process allocates. This value highly depends on the data 
types of the currently transferred data. If too much memory 
is allocated, the number of jobs will be reduced as well. In 
order to avoid downward or upward spirals, e.g., due to the 
reducing redo log buffer size when stopping jobs, bottom 

lines and limits are defined. Hence, the optimizer decides on 
the basis of a branched search for indicating relations 
between the monitored information. Surely, these are only 
indicators not to be seen as evidence, so the algorithm 
follows a heuristic approach. In contrary to the solely 
adaptive approach and to a statically parallelized transfer, the 
optimizer is able to dynamically react to unexpected events 
and predict a possibly optimum level of system utilization 
during the whole migration process. In the following sections 
and for the evaluation, when mentioning the adaptive 
capabilities, we always refer to the anticipatory approach as 
it was performing more efficient during preliminary tests. 

C. Time of Indexing 

As previously termed as the “index problem”, the right 
time for indexing the data depends on the combination of 
storage system performance and network bandwidth. If not 
manually parameterized inside the “param” table, HiPAS 
decides by means of test tables filled with random data and 
having indexes on multiple columns, if it creates the indexes 
before or after data loading. For the two possibilities of index 
creation, the time for performing the respective steps is 
measured and compared to each other. After comparing the 
two measurements, HiPAS updates the parameter 
“index_while_transfer” inside the “param” table 
autonomously by inserting “true” or “false”. This test can be 
performed during a common migration test run on the actual 
system environment and excluded for the productive 
migration reusing the “param” table. 

D. Transfer Order and Instance Affinity 

The table “transfer_job_list” contains all objects, which 
need to be transferred to the target. When selecting the next 
object for transfer, this table needs to be ordered by blocks 
since large objects are preferred by HiPAS. Furthermore, an 
instance prefers table partitions of tables, which already have 
been started to be transferred by this instance. Accordingly, 
the next table or table range to be transferred is always 
selected as follow: 

select * from transfer_job_list where status = 
'PENDING' and object_type = 'TABLE' and (instance = 0 
OR instance = sys_context('USERENV', 'INSTANCE')) 
order by instance desc, blocks desc, partition_name; 

If an instance starts transferring a table range of a large 
table, it marks all other table ranges of the same table by 
inserting the instance number into all tuples related to this 
table. By this means, instances reserve tables in order to 
avoid loading the same table into data buffers of other 
instances. For this reason, instances prefer tuples marked by 
themselves and tuples not reserved by any other instance, 
which has been implemented by means of the above 
displayed “where clause”. In addition, the actual block split 
range, defining the limit for the size of all table ranges, is 
identified partly adaptively. For a given maximum block 
split range, HiPAS calculates the optimal block split range 
by counting tables and their sizes resulting in an optimal 
ratio of a ranges size and its total count. 
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Figure 12.   Adaptive Migration Process with HiPAS 

 

VIII. EVALUATION 

The migration method has been tested in several 
customer environments with differently powerful server, 
storage systems and networks.  Following the design science 
approach, HiPAS has been improved in multiple iterations 
based on test results. 

A. Experiment Setup 

For this paper, we set up a test environment consisting of 
a source and target system installed on physically separated 
virtual machines, each having 4 CPUs and 16 GB of main 
memory. Both the source and target database are real 
application cluster (RAC) environments running Oracle 
Database 11g Enterprise Edition Release 11.2.0.3.0. On each 
side two instances are available connected to the other side 
through a 1 Gigabit Ethernet. The source system reads from 
solid state drives and the target system writes on common 
SATA disks. For evaluation, we performed multiple test runs 
belonging to the following three different main tests: 

(1) Function test with a 300 GB schema (Test A) 
(2) Performance test with a 16 GB schema (Test B.1) 
(3) Performance test with a 32 GB schema (Test B.2) 

To create the different database schemata, we 
implemented a software package, which generates database 
schemata filled with random data and including all special 
cases we could imagine HiPAS to encounter at productive 
customer environments. By means of this software, we 
created different sized test schemata inside the source 
database for test migrations. For the function test (Test A), 
the schema included characteristics like foreign key 
constraints, a variety of character, numeric and binary data 
types, reference partitioning, indexes, table clusters, views, 
as well as different rights and roles. In this manner, we were 
able to test the compatibility of HiPAS with different data 
types, objects and complex data structures. The used schema 
has an overall size of 300 GB, which was large enough to 
analyze HiPAS adaptive behavior during the migration run. 
To compare HiPAS migration performance with the current 
Oracle standard migration tool for exports and imports “Data 
Pump” [26], [27], we reduced the size for being able to 
perform multiple test runs and to average out performance 
values across all performed runs. These performance focused 

migration runs are referred to as test B. After each migration, 
we fully deleted the migrated schema and rebooted the whole 
server in order to have the same initial cache situation for all 
runs. The results of all tests are shown subsequently. 

B. Results 

In the following the results of the function test (A) and 
the performance tests (B) are presented. 

1) Function Test (Test A): As described in Section VI-A, 
“Test A” aims at analyzing HiPAS adaptive behavior and 
compatibility. We implemented a package, which compares 
the created target schema with the original source schema by 
counting rows and columns. We verified that all data objects 
were created inside the target schema successfully. The 
optimizer, providing the adaptive capabilities of HiPAS, 
writes log information whenever an adaption is needed. An 
example of such a single log string has been introduced in 
Section VII-B. Analyzing all tuples, written into the logging 
table during a migration run, leads to the migration process 
shown in Figure 12. The transfer started at 12:08 pm and 
ended at 12:47 pm. HiPAS transferred the created test 
schema, filled with 300 GB of random data, starting with 20 
background jobs running in parallel meaning 10 jobs per 
instance, since HiPAS identified two available instances on 
the target system for job distribution. After 39 minutes, the 
transfer ended with a current total number of 116 parallel 
running jobs. The “block split range” was 25120 blocks, so, 
with a configured data block size of 8 KB, each job 
transferred a maximum amount of approximately 200 MB. 

Tables, smaller than the split range, were not partitioned 
and transferred at the end of the migration, since large tables 
are preferred by the data selection algorithm. If a job 
transfers less data (small table), more parallel jobs are 
possible, so HiPAS raised the number of running jobs as the 
migration time goes by, which explains the slope of the 
graph shown in Figure 12.  

In a different test using the same schema, we monitored 
the network interfaces in order to evaluate how the 1 Gigabit 
Ethernet is utilized by HiPAS. Figure 13 shows the number 
of kilobytes received and transmitted by one of the physical 
interfaces, which was monitored using the Linux command 
“sar”.  
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Figure 14.   Transfer Performance for a 16GB Schema (B.1). 

 

 
Figure 13.   Network interface Performance (Excerpt) 

During the monitored timeframe, the network interface, 
at its highest utilization, received up to 110138.34 KB per 
second. At that time 12849.31 KB were transmitted, 
resulting in a total amount of 122987.65 KB/s.  

2) Performance Test (Test B.1): For the first 

performance test, we created a schema of 16 GB including 

the mentioned data types in Section VIII-A. The different 

test runs of test B.1 are described as follows: 

(1) Migration by means of HiPAS adaptively and with 

enabled partitioning of large tables 

(2) Migration by means of HiPAS with a static 

parallelization degree of 20 running jobs and enabled 

partitioning of large tables 

(3) Migration by means of HiPAS with a static 

parallelization degree of 10 running jobs and enabled 

partitioning of large tables 

(4) Migration by means of HiPAS with a static 

parallelization degree of 10 running jobs and disabled 

partitioning of large tables 

(5) Migration by means of HiPAS without parallelization 

(sequential) and with disabled partitioning of large 

tables 

(6) Migration by means of Oracle Data Pump 
We performed the described test runs three times in order 

to compensate statistical outliers, possibly caused by 
uninfluenceable events of the database management system 
or the operating system. This was necessary because the test 
runs had to be performed successively to provide the same 
environment for all tested methods. Afterwards, we 
calculated for each method the average total duration of the 
three runs. The final result is shown in Figure 14. The small 
test schema of 16 GB has been transferred by HiPAS 
averagely within 11 minutes, enabling adaptive capabilities 
(more precisely “anticipation”) and partitioning of large 
tables. Transferring the same schema by means of the Oracle 
tool Data Pump, using the number of available CPUs as the 
“parallel” parameter [26], took averagely 53 minutes, which 
means a deceleration of approximately 382% compared to 
HiPAS. Comparing the different HiPAS migration runs with 
each other, it can be stated that parallelizing in general 
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noticeably reduces the transfer duration, which is indicative 
for our assumption of utilizing the available resources more 
efficiently by parallelizing. Comparing test run 3 and 4 
shows that partitioning large tables for the transfer barely 
improves the overall performance, since the partitioning 
feature was implemented to improve the flexibility of HiPAS 
when its optimizer needs to adapt quickly to changing 
resource availabilities. Thus, the adaptive migration run with 
enabled partitioning of large tables performed best in terms 
of downtime shortness. 

3) Performance Test (Test B.2): In addition to the 16 GB 
schema, we performed the same test runs with a schema size 
of 32 GB to evaluate how the adaptive capabilities work for 
a longer period of transfer time. The static parallelized runs 
have been performed as well and showed results proportional 
to test B.1, so we excluded them from Figure 15.  

 

 
Figure 15.   Transfer Performance for a 32GB Schema (B.2). 

HiPAS, with enabled partitioning, adaptively transferred the 
schema within 51 minutes, compared to 2.23 hours needed 
by Data Pump, meaning this time HiPAS took 38% of Data 
Pump’s transfer duration, whereas the single threaded 
configured HiPAS took about 75%. As a consequence, we 
assume that non-adaptive sequential and Data Pump 
migrations leave useful resources idle or need to be tuned 
manually. In addition to the introduced test runs for 
evaluation within the scope of this paper, we performed 
several further tests in customer environments achieving 
considerable results, especially for schemata storing large 
objects. In terms of network bandwidth, we reached transfer 
rates of 120 MB/s for each database link created on a 1 
Gigabit Ethernet. 

IX. CONCLUSION AND FUTURE WORK 

By designing and developing HiPAS, we applied 
adaptive software into the field of database migrations. We 
focused on self-optimization as the main adaptive property 
and implemented a system, which continuously optimizes 

the system utilization by adjusting the current amount of 
parallel workload. The observed environment is represented 
by monitoring information regarding the performance of the 
source and target database instances and their underlying 
storage systems. For optimizing the transfer phase, we state 
that implementing anticipatory capabilities into migration 
software using a MAPE-K feedback loop significantly 
improved the performance of migrations invoked on 
database layer, compared to a solely adaptive approach or 
non-adaptive migration software. Statically parallelized test 
runs did not adapt to changing utilization requirements, thus, 
performed less efficiently. The decisions taken in the design 
space for adaptive software and the paradigm of saving all 
migration metadata inside the database allows a highly 
reliable and transparent architecture, which supports an 
efficient interaction of all HiPAS migration components and 
the actual migration data. On the contrary, the 
implementation as a stored object leads to the disadvantage 
of having to develop separate implementations for different 
database systems. Therefore, we plan to build and evaluate 
further versions of HiPAS supporting different types of 
source and target systems. Another new version, we are 
working on, is intended to support online migrations, where 
the adaptive optimizer can be leveraged to utilize the source 
system up to a degree, which does not affect its availability 
and response time during productive use. Our results serve as 
a contribution for all practitioners in the field of database 
migrations, as well as researchers on self-adaptive software 
and their various fields of application. 
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