
A Study on the Difficulty of Accounting for Data Processing

in Functional Size Measures

Luigi Lavazza Sandro Morasca Davide Tosi

Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell’Insubria

Varese, Italy

{luigi.lavazza, sandro.morasca, davide.tosi}@uninsubria.it

Abstract—The most popular Functional Size Measurement

methods adopt a concept of “functionality” that is based

mainly on the data involved in functions and data movements.

Functional size measures are often used as a basis for

estimating the effort required for software development.

However, Functional Size Measurement does not take directly

into consideration the amount of data processing involved in a

process, even though it is well-known that development effort

does depend on the amount of data processing code to be

written. Thus, it is interesting to investigate to what extent the

most popular functional size measures represent the data

processing features of requirements and, consequently, the

amount of data processing code to be written. To this end, we

consider three applications that provide similar functionality,

but require different amounts of data processing. These

applications are then measured via a few Functional Size

Measurement methods and traditional size measures (such as

Lines of Code). A comparison of the obtained measures shows

that differences among the applications are best represented by

differences in Lines of Code. It is likely that the actual size of

an application that requires substantial amounts of data

processing is not fully represented by functional size measures.

In summary, the paper shows that not taking into account data

processing dramatically limits the expressiveness of the

functional size measures. Practitioners that use size measures

for effort estimation should complement functional size

measures with measures that quantify data processing, to

obtain precise effort estimates.

Keywords- functional size measurement; Function Point

Analysis; IFPUG Function Points;COSMIC method.

I. INTRODUCTION

Functional Size Measurement (FSM) methods aim at
quantifying the “functional size” of an application. Such size
should represent the “amount of functionality” provided to
the user by a software application. It is quite reasonable to
expect that the “amount of functionality” is to some extent
correlated to the amount of data processing performed by the
application. In this respect, there are some doubts that FSM
methods properly account for the amount of data processing
when sizing software applications [1].

In fact, the most popular FSM methods adopt a concept
of “functionality” that is based mainly on the number of
operations that can be performed by the users via the
software application and the amount of data managed by the

application. More precisely, the most popular FSM methods
take into account

− the processes, named Elementary Processes (EP) in
IFPUG and Functional Processes (FPr) in COSMIC;

− the data that cross the boundary of the application being
measured or that are used (i.e., read or written) in the
context of a process.

In this paper, we consider the most widely known and
used FSM methods:

− IFPUG (International Function point User Group)
Function Points [2][3], which were originally proposed
in 1979 [4] and are widely known and used today;

− Mark II Function Points [5][6], which were proposed to
improve Function Points;

− COSMIC (Common Software Measurement
International Consortium) [7], which aims at further
improving the characteristics of functional size
measures;

− Use Case Points [8], a method that was proposed for
usage with the Objectory process [9] (which was then
incorporated into UML).

Quite noticeably, none of the mentioned methods
satisfactorily considers the amount of data processing
involved in a process. As a matter of fact, some methods
propose an adjustment of the size based on the characteristics
of data processing, but quite imprecisely and ineffectively, as
discussed in Section VIII, while other methods do not take
the amount of data processing into account at all.

The goal of the paper is to provide evidence, based on
examples, that not considering data processing dramatically
limits the expressiveness of functional size measures.

The core of the paper can be described as follows:

− Three applications are specified. These applications are
similar with respect to the aims and functionality offered
to the user, but they are very different in the amount of
data processing required.

− The considered applications are modeled and measured
according to four different functional size measurement
methods.

− It is highlighted that the applications have the same
functional size measures, even though the amount of
functionality to be coded is dramatically different.

− When measured via Lines of Code, it is apparent that the
implementations of the applications have quite different

276

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

sizes. The reason is that –quite obviously– more data
processing requires more code.

It is unlikely that the additional code required for
additional data processing requires a negligible additional
amount of development effort. Thus, using only the
functional size to estimate development effort for
applications that require a substantial amount of data
processing may lead to large and dangerous effort
underestimations.

Currently, development effort is commonly estimated
based on the functional size and possibly some other
environmental factors, but without taking in due
consideration the amount of data processing required.
Sometimes this practice is justified by the fact that the
application to be developed is estimated using productivity
models derived from the analysis of previous projects in the
same application domain. There is an underlying assumption
that applications in the same domain require approximately
the same amount of data processing. In this paper, we show
that the contrary is true, by measuring programs that belong
to the same domain.

The difficulty to quantitatively represent the amount of
data processing appears as an intrinsic –though not generally
recognized– limit of FSM methods. It should be noted that
this paper does not aim at proposing a method to account for
data processing in functional size measures. Instead, we aim
at providing some evidence of the problem, to raise the
awareness of the limits of FSM methods and solicit research
efforts towards working out solutions. At the same time, we
warn practitioners about the risks connected with assuming
that the amount of data processing is somewhat
automatically incorporated in traditional functional size
measures, as such assumption could lead to severely
underestimating the actual size of the application to be
developed.

The paper is structured as follows. Section II reports a
few basic concepts of functional size measurement. Section
III illustrates the case studies used in the paper. Section IV
describes the models and measures of the considered
applications: the collected measures are then compared in
Section V. In Section VI, additional examples showing the
limitations of FSM methods in accounting for data
processing are given. Section VII discusses the alternatives
that should be considered for complementing standards
functional size measures with measures that represent data
processing. Section VIII accounts for related work. Finally,
Section IX draws conclusions and briefly sketches future
work.

This paper is an extended version of a previous paper [1].
Here, we use two additional sizing methods (namely Use
Case Points and Mark II Function Points): this allows us to
generalize the presented results. Moreover, we considered an
additional application in the board games with artificial
intelligence domain, which confirms the results given in [1],
thus increasing the reliability of our conclusions. To this end,
a discussion of different domains has also been added in
Section VI.

II. FSM CONCEPTS

Functional Size Measurement methods aim at providing
a measure of the size of the functional specifications of a
given software application. Here, we do not need to explain
in detail the principles upon which FSM methods are based.
Instead, for our purposes it is important to consider what is
actually measured, i.e., the model of software functional
specifications that is used by FSM methods.

A. Function Point Software Model

The model used by Function Point Analysis (FPA) is
given in Figure 1. Briefly, Logical files are the data
processed by the application, and transactions are the
operations available to users. The size measure in Function
Points is computed as a weighted sum of the number of
Logical files and Transactions. The weight of logical data
files is computed based on the Record Elements Types
(RET: subgroups of data belonging to a data file) and Data
Element Types (DET: the elementary pieces of data). The
weight of transactions is computed based on the Logical files
involved –see the FTR (File Type Referenced) association in
Figure 1– and the Data Element Types used for I/O.

SW application functional specifications

Logical file Transaction

Data Element TypeRecord Element Type

FTR

0..*

I/O
1..*

Figure 1. The model of software used in Function Point Analysis.

It is possible to see that in the FPA model of software,
data processing is not represented at all.

B. COSMIC Software Model

The model used by COSMIC is given in Figure 2.

SW application functional specifications

Functional Process

Data processing Data movement

Data group

Figure 2. The model of software used by the COSMIC method.

277

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The size of the functional specification expressed in
COSMIC function points (CFP) is the sum of the sizes of
functional processes; the size of each functional process is
the number of distinct data movements it involves. A data
movement concerns exactly one data group.

Although represented in Figure 2, neither data groups nor
data processing are directly used in the determination of an
application’s functional size. In particular, data processing is
not measured, since the COSMIC method assumes that a
fixed amount of data processing is associated with every data
movement; however, this is not the case in the examples
considered in this paper.

C. Mark II FP Model

Symons proposed Mark II Function Points as an
improvement of Albrecht’s FPA in 1988 [5].

The application to be measured is modeled (see Figure 3)
as a set of “logical transactions,” which are essentially
equivalent to IFPUG FP transactions and COSMIC
functional processes. Each logical transaction is
characterized in terms of the number of input DET, the
number of output DET, and the number of Data Entity Types
Referenced. In the Mark II FP model, DET have the same
meaning as in the IFPUG FP model, while entities replace
logical files (however, today the meaning associated with
logical files is the same as that of Symons’s entities).

The functional size in Mark II FP is the weighted sum,
over all Logical Transactions, of the Input Data Element
Types (Ni), the Data Entity Types Referenced (Ne), and the
Output Data Element Types (No).

So the Mark II FP size for an application is:

Size = Wi × ΣNi + We × ΣNe + Wo × ΣNo

where ‘Σ’ means the sum over all Logical Transactions, and
the industry average weights are Wi = 0.58, We = 1.66, and
Wo = 0.26 [6].

SW application functional specifications

Logical transaction

Input Data

Element

Entity

Output Data
Element

Data Entity
Type Reference

Figure 3. The model of software used in Mark II FP measurement.

D. Use Case Points Software Model

Use Case Points (UCP) were proposed by Karner to
measure the size of applications specified via use cases [8].
Thus, the model of software considered for UCP
measurement is centered on the concept of use case [9], as
shown in Figure 4.

The UCP measurement process involves two phases. In
the first one, the given application is measured in Unadjusted
Use Case Points (UUCP). In the second one, the size
expressed in UUCP can be “corrected” with the Technical
Complexity Factor (TCF), which represents how difficult to
construct the program is, and the Environmental Factor (EF),
which represents how efficient our project is.

To compute size in UUCP, the considered factors are the
application’s users, the use cases, the transactions carried out
in each use case, and the ”analysis objects” (i.e., (interface,
control, and entity objects, as defined in Objectory process
[9]) used to realize the use case.

SW application functional specifications

Use case

Transaction

ActorAnalysis object

Figure 4. The model of software used in Use Case Points measurement.

The functional size in UUCP is the weighted sum of the
Actors and the Use Cases. Both use cases and actors are
weighted according to their “complexity.” The complexity of
actors is determined by nature of the actor (human or
external system) and the type of interaction (e.g., via a GUI,
or a command line interface). The complexity of use cases is
determined by the number of involved transactions and the
number of analysis objects needed to implement the use
case.

The size in Use Case Points is calculated as follows.

TCF = 0.6 + 0.01 × Σ FCi × Wi

EF = 1.4 - 0.03 × Σ FEi × Wi

UCP = UUCP × TCF × EF

Where FCi are 13 factors contributing to complexity and
FEi are 8 factors contributing to efficiency. Wi are the
weights (integer value in the [0,5] interval) assigned to
factors.

The details of the measurement can be found in [8].

III. CASE STUDIES

In this section, we describe the functional specifications
of the software applications that will be used to test the
functional sizing ability of FPA and COSMIC.

The chosen applications are programs for playing board
games against the computer. They are similar as for the
functionality they provide, but they require different amounts
of data processing.

278

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The specifications that apply to both applications are as
follows.

− The program lets a human player play against the
computer.

− The program features a graphical interface in which the
game board is represented.

− The player makes his/her moves by clicking on the
board. Illegal moves are detected and have no effect. As
soon as the human player has made a move, the
computer determines its move and shows it on the
board.

− When the game ends, the result is shown, and the player
is asked if he/she wants to play another game.

The use case diagram of the considered applications is
shown in Figure 5. From the point of view of the player, two
main operations are available: to initiate a new game and to
perform a move. In the latter case, the program will also
compute its move. In both cases, the board is updated and
displayed. A minor functionality of the program allows the
player to show a few pieces of information concerning the
application and its authors.

System

Player

New game

Display board

Move
Computer move

Show credits

<<include>>

<<include>>

<<include>>

Figure 5. Use case diagram of the considered applications.

It is worth stressing that the use case diagram in Figure 5
describes all the considered applications, which differ from
each other only for the implemented game, hence for the
logic employed to compute the moves.

A. A Software Application to Play Tic-tac-toe

Tic-tac-toe is a very simple, universally known game. It
is played on a 3×3 board, as shown in Figure 6.

Each player in turn puts his/her token in a free cell. The
first player to place three tokens in a line (horizontally,
vertically, or diagonally) wins. When the board is filled and
no three-token line exists, the match is tie.

Playing Tic-tac-toe is very simple. In fact, to play
optimally, a software program has just to evaluate the
applicability of a short sequence of rules: the first applicable
rule determines the move.

Figure 6. Tic Tac Toe playing board.

There are a few possible rule sequences: the one
implemented in the considered application is the following:
1) If there is a line (row, column, or diagonal) such that

two cells contain your token and the third cell X is
empty, put your token in the free cell X, to win.

2) If there is a line in which your opponent has two tokens
and the third cell X is free, put your token in the free cell
X, so to prevent your opponent from winning at next
turn.

3) If there is a move that lets you gain a winning position,
make it.

4) If there is any move such that the adversary will not be
able to gain a winning position at next turn, make such
move. If possible, put the token in central cell.

5) If there is any cell free, put your token there.
A position is a winning one for a player when there are

two lines each occupied by two tokens of the player, while
the third cell is free.

The code that implements the playing logic described
above is very simple and very small: we can expect that a
few tens of lines of code are sufficient to code the game
logic.

B. A Software Application to Play “five in a row”

Five in a row (aka Gomoku) can be seen as a
generalization of Tic-tac-toe. In fact, it is played on a larger
board (typically 19×19, as in Figure 7) and the aim of the
game is to put five tokens of a player in a row (horizontally,
vertically, or diagonally).

Figure 7. Gomoku playing board.

279

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The functional specifications of Gomoku are exactly the
same as the specifications of Tic-tac-toe, except that the size
of the board is larger and the number of tokens to put in a
row is 5 instead of 3.

The combinations of tokens and free cells that can occur
on a Gomoku board are many more than in a Tic-tac-toe
game. Accordingly, a winning strategy is much more
complex, as it involves considering a bigger graph of
possibilities.

As a matter of fact, Gomoku has been a widely
researched artificial intelligence research domain, and there
are Gomoku professional players and tournaments.

Accordingly, we can safely state that Gomoku is a much
more complex game than Tic-tac-toe and requires a large
amount of processing, so that the machine can play at a level
that is comparable with that of a human player.

On the contrary, Tic-tac-toe is a very simple game: you
do not need to be particularly smart to master it and always
play perfectly.

C. A Software Application to Play “Reversi”

Reversi (aka Othello) is played on an 8×8 board. The
initial configuration is shown in Figure 8 a). Suppose player
A has black tokens. At his/her turn, player A has to put its
token in a position so as to form a horizontal, vertical, or
diagonal line of adjacent tokens that has black tokens at the
extremes and includes only white tokens (at least one). As an
effect of the move, the white tokens between the black
extremes become black. For instance, in the situation shown
in Figure 8 a), player A could place his/her black token
below the rightmost white token: such token is between two
black tokens and becomes black, as shown in Figure 8 b).
The game is named “Reversi” because usually the tokens are
black on one side and white on the opposite one, so to
change the color of a token you reverse it.

a) b)

Figure 8. Reversi playing board.

The strategy required to win a Reversi game is definitely
more complex than the strategy required to play Tic-tac-toe.
However, it is simpler than the strategy required for playing
Gomoku, as the move search space is smaller.

IV. APPLICATION SIZING

A. Measurement of the Tic-tac-toe Application

Let us apply the FSM methods described in Section II to
measure the Tic-tac-toe specifications given in Section III.A
above.

1) Measuring Tic-tac-toe with IFPUG Function Points.
The software model to be used includes just a Logical

data file: the board, which is a matrix of cells, each having
one of three possible values (circle, cross, free). So, it is easy
to see that there is only one Logical data file (the board),
which is a simple Internal Logical File (ILF), contributing 7
FP.

The software model to be used involves the following
elementary processes:

− Start a new game

− Make a move

− Show credits.
Start a new game is a simple External Input (EI),

contributing 3 FP. Make a move is a simple external output,
contributing 4 FP. One could wonder whether this operation
should be considered an input (because the move involves
inputting a position) or an output (because of the
computation and visualization of the move by the computer).
We consider that the latter is the main purpose of this
transaction, which is thus an external output. Show credits is
a simple External Query (EQ), contributing 3 FP.

In summary, the FPA size of the Tic-tac-toe application
is 17 FP.

2) Measuring Tic-tac-toe with the COSMIC Method
The COSMIC functional processes of the application are

the same as the FPA elementary processes. When measuring
the application using the COSMIC method, we have to
consider the data movements associated with each functional
process:

− Start a new game involves clearing the board and
possibly updating it, if the computer is the first to move
(a Write) and showing it (a Read and an Exit).
Therefore, this functional process contributes 3 CFP.

− Make a move involves entering a move (an Entry),
updating the board with the human player move (a
Write), reading it (a Read), and then updating it again
with the computer move and showing it (an Exit). In
addition, if a move concludes the game, the result is
shown (an Exit). Therefore, this functional process
contributes 5 CFP.

− Show credits involves the request to show credits (an
Entry), reading the credits (a Read) and outputting them
(an Exit). Thus, this functional process contributes 3
CFP.

In summary, the COSMIC size of the Tic-tac-toe
application is 11 CFP.

3) Measuring Tic-tac-toe with Use Case Points
The Tic-tac-toe application has one user, who interacts

with the system through a graphical user interface.
According to UCP rules, such user is a complex actor, with
weight 3.

280

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The Tic-tac-toe application has three use cases, as shown
in Figure 5. All of these use cases have 3 or fewer
transactions and can be realized with less than 5 analysis
objects; hence they are simple and their weight is 5.

So, the size of Tic-tac-toe is 3+5+5+5=18 UUCP.
TCF and EF involve several factors. However, only the

“Complex internal processing” factor of TCF is relevant for
our study, so we assume that all the factors considered in the
TCF and EF have value 3, i.e., average relevance. As a

consequence TCF×EF is 0.99 + 0.01 × CIP, where CIP is the
value of the Complex Internal Processing.

The Complex Internal Processing factor is supposed to
represent the complexity of the processing that is carried out
in the application. It is rated on a scale 0, 1, 2, 3, 4, and 5.
Unfortunately, in the original definition, Karner did not
provide criteria to rate Complex internal processing;
therefore, different persons could rate the same application
differently. Tic-tac-toe surely is a very simple application,
but it is very difficult to say if its Complex Internal
Processing factor should be rated 0 or 1. So, we can conclude

that the size of Tic-tac-toe is 18 × (0.99 + 0.01 CIP), that is,
either 17.82 or 18, depending on the value assigned to CIP.

4) Measuring Tic-tac-toe with Mark II Function Points
To size the Tic-tac-toe application using Mark II FP, it is

first necessary to identify the involved entities and Logical
transactions. This is very easy, since we have only two
entities (the board and the credits) while the logical
transactions correspond to IFPUG FP transactions, COSMIC
functional processes and UCP Use Cases (i.e., New game,
Move, Show credits).

The size is computed according to the number of input
data, entities referenced and output data as shown in TABLE
I. While New game and Show credits have just one input
(the event that triggers the operation), Move has two inputs:
the row and column where the player puts his/her token.

New game and Show credits also have just one output
(the board and the credits’ text, respectively); Move outputs
the board and the users’ tokens, or a diagnostic message
(when the player clicks on an already occupied cell).

New game and Move access the board entity, Show
credits accesses the credits entity.

TABLE I. MEASURES OF TIC-TAC-TOE APPLICATION IN MARK II FP

Logical transaction Ni Ne No MKII FP

New game 1 1 1 2.5

Move 2 1 3 3.6

Show credits 1 1 1 2.5

Total 8.60

In conclusion, the application to play Tic-tac-toe has size
8.60 MKII FP.

5) Tic-tac-toe Code Measures
Since we are also interested in indications concerning the

amount of computation performed by the application, we
selected an open source implementation of Tic-tac-toe and
measured it.

To evaluate the “physical” size of the Tic-tac-toe
application, we looked for an open source application that
implements the specifications described above. Two such
applications are the programs available from [10] and [11].
To make the considered program functionally equivalent to
the other applications, we performed a merge of the code
from [10] and [11]. The main measures that characterize the
obtained code are given in TABLE II.

TABLE II. MEASURES OF THE TIC-TAC-TOE APPLICATION CODE

Measures
Tic-tac-toe

Total AI part

LoC 286 146

Number of Java statements 187 101

McCabe (method mean) 3.6 4.5

Num. classes 2 1

Num. methods 26 13

In TABLE I (and in TABLE II), column “AI part”

indicates the measures concerning exclusively the part of the
code that contains the determination of the computer move.

We reported both the number of lines of code and the
number of actual Java statements: the latter is a more precise
indication of the amount of source code, since it does not
consider blank lines, comments and lines containing only
syntactic elements, like parentheses. We also reported the
mean value of McCabe complexity of methods.

B. Measurement of Gomoku Application

Let us measure the Gomoku specifications given in
Section III.B above

1) Measuring Gomoku with IFPUG Function Points

and COSMIC
The functional size measures of the Gomoku application

are exactly the same as the measures of the Tic-tac-toe
application. In fact, the specifications of the two applications
are equal, except for the board size and winning row size,
which do not affect the measurement, because both IFPUG
FPA and COSMIC consider data types, not the value or
number of instances.

2) Measuring Gomoku with Use Case Points
Gomoku has the same actor and use cases as Tic-tac-toe.

Therefore, the size of Gomoku measured in UUCP is equal
to Tic-tac-toe’s.

As for Tic-tac-toe, we assume that the factors that
determine TCF and EF are all average, except for the CIP;

therefore, TCF×EF is 0.99 + 0.01 × CIP.
Gomoku is definitely a much more complex game than

Tic-tac-toe; therefore, the Gomoku playing program has to
perform quite complex processing to achieve an acceptable
playing level. We can therefore assign the Complex Internal
Processing a high rating, even though it is not clear whether
we should set CIP=5 or CIP=4. In conclusion, the size of
Gomoku is 18.54 or 18.72, depending on the value of CIP.

3) Measuring Gomoku with Mark II FP

281

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The Gomoku application is characterized by the same
actors, use cases, transactions and entities as the Tic-tac-toe
application. Therefore, they have the same size measure
expressed in Mark II FP.

4) Gomoku Code Measures
As for Tic-tac-toe, we selected an open source

implementation of Gomoku and measured it. More precisely,
we looked for a program capable of sophisticated
“reasoning” that lets the program play at the level of a fairly
good human player. One such application is the Gomoku
Java program available from [12].

The main measures that characterize the code are given
in TABLE III.

TABLE III. MEASURES OF THE GOMOKU APPLICATION CODE

Measures
Gomoku [12]

Total AI part

LoC 859 373

Number of Java statements 419 212

McCabe (method mean) 2.6 5.4

Num. classes 17 3

Num. methods 83 25

Measures in TABLE III were derived using the same

tools and have the same meaning as the measures in TABLE
II.

C. Measurement of Reversi Application

1) Measuring Reversi with IFPUG Function Points and

COSMIC
The functional size measures of the Reversi application

are exactly the same as the measures of the Tic-tac-toe and
Gomoku applications. In fact, the specifications of the three
applications are characterized by the same basic functional
components.

2) Measuring Reversi with Use Case Points
Reversi has the same actor and use cases as Tic-tac-toe

and Gomoku. Therefore, the size of Reversi measured in
UUCP is equal to Tic-tac-toe’s and Gomoku’s.

As for the other applications, we assume that the factors
that determine TCF and EF are all average, except for the

CIP; therefore, TCF×EF is 0.99 + 0.01 × CIP.
Reversi is definitely more complex than Tic-tac-toe, but

less complex than Gomoku. We can therefore assign the
Complex Internal Processing a high rating, but not as high as
Gomoku’s. So, it is probably reasonable to set CIP=4 or
CIP=3. In conclusion, the size of Reversi is 18.36 or 18.54,
depending on the value of CIP.

Note that the value assigned to CIP is largely subjective:
this is due to the fact that the definition of UCP does not
provide precise guidelines for determining the values of TCF
and EF factors.

3) Measuring Reversi with Mark II Function Points
When measuring the Reversi applications with Mark II

FP, the same considerations reported for Tic-tac-toe and

Gomoku apply. The only difference is that when the New
game logical transaction is performed, the initial situation of
the board is not empty, therefore we have 2 additional output
DET associated to New game. This is shown in TABLE IV.

TABLE IV. MEASURES OF THE REVERSI APPLICATION IN MARK II FP

Logical transaction Ni Ne No MKII FP

New game 1 1 3 3.02

Move 2 1 3 3.6

Show credits 1 1 1 2.5

Total 9.12

In conclusion, the application to play Reversi has size
9.12 MKII FP.

4) Reversi Code Measures
Like with the other applications, we selected an open

source Java implementation of Reversi [13] and measured it.
More precisely, the implementation of Reversi that we

found [13] was richer than the implementations of Tic-tac-
toe and Gomoku in functionality (e.g., it features a help
function, the possibility of choosing the playing level and the
dashboard color, etc.). To make the Reversi application
comparable to the others, we simplified the implementation,
deleting all the additional functions and the corresponding
code.

The main measures that characterize the resulting code
are given in TABLE V.

TABLE V. MEASURES OF THE REVERSI APPLICATION CODE

Measures
Reversi [13]

Total AI part

LoC 419 218

Number of Java statements 290 180

McCabe (method mean) 3.1 4.4

Num. classes 6 4

Num. methods 36 17

Measures in TABLE V were derived using the same

tools and have the same meaning as the measures in TABLE
II and TABLE III.

V. COMPARISON OF MEASURES

The measures reported in Section IV and summarized in
TABLE VI show that a few applications may have the same
functional size, but very different code size: for instance, the
Gomoku application is twice as big as the Tic-tac-toe
application. Considering the nature of these applications, the
difference in code is largely explained by the different
amount of processing required. In the case of Tic-tac-toe, the
number of possible moves is very small, as is the number of
different possible configurations that can be achieved by
means of a move: hence, every move computation has to
explore a very small space. The contrary is true for the

282

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Gomoku application. The consequence is that Gomoku
requires an amount of code devoted to move computation
that is more than twice as much as the code required by Tic-
tac-toe. Reversi requires more data processing than Tic-tac-
toe and less processing than Gomoku; accordingly, its
implementation is bigger than Tic-tac-toe’s and smaller than
Gomoku’s.

The collected measures are summarized in TABLE VI.
Both measures concerning the complete application (column
Total) and measures concerning the artificial intelligence
part of the application (column AI) are given. It should be
noted that the functional size makes sense only concerning
the complete application, since it is not allowed in FSM
methods to measure only a portion of the application (this
would actually be possible with the COSMIC method, but
the resulting measure would not be comparable to those of
the complete applications, though).

TABLE VI. SUMMARY OF THE APPLICATIONS’ MEASURES.

Tic-tac-toe Reversi Gomoku

Total AI Total AI Total AI

Data proc. Average
Very

low
Average

Medium

-high
Average High

Java statem. 187 101 290 180 419 212

McCabe 3.6 4.5 3.1 4.4 2.6 5.4

Classes 2 1 6 4 17 3

Methods 26 13 36 17 83 25

IFPUG FP 17 17 17

CFP 11 11 11

UUCP 18 18 18

UCP 17.8–18 18.4–18.5 18.5–18.7

Mark II FP 8.60 9.12 8.60

These observations suggest a few important

considerations, which are reported below.

A. Functional Size and Data Processing

The definitions of IFPUG FP, COSMIC FP, Mark II FP,
and UUCP do not properly take into account the amount of
processing required by software functional specifications. If
we plot the three considered applications in a Cartesian
plane, where the axes represent the amount of required data
processing and the functional size (expressed via any
functional size measure), we get the situation described in
Figure 9 (note that the y axis is not in scale). It appears that
there is no relationship that links the functional size and the
amount of processing required.

Functional Size

Tic-tac-toe

Reversi

Gomoku

Data

processing

Figure 9. Plot of data processing vs. functional size for the considered

applications.

For the sake of precision, we must note that Mark II FP
and UUCP measures are not equal for all the applications,
but are only slightly different, while the differences in terms
of data processing are fairly large.

If we plot the three considered applications in a Cartesian
plane, where the axes represent the amount of required data
processing and the physical size (expressed in LoC, or
number of statement, or in number of methods, etc.), we get
the situation described in Figure 9 (note that axis scales are
just indicative). It is possible to see that there is a clear
relationship between the physical size and the amount of
processing required.

Data

processing

Physical Size

Tic-tac-toe

Reversi

Gomoku

Figure 10. Plot of data processing vs. physical size for the considered

applications.

If we assume –as is generally accepted– that the effort
required to implement a software application is related to the
number of Lines of Code to be written, the possibility of
having widely different sizes in LoC for applications that
have the same functional size implies that functional size is
not a good enough predictor of development effort.

B. Mark II FP Measures

In the considered cases, Mark II FP size measures
indicate that Reversi is marginally bigger than the other
applications. This is misleading when considering that the
Gomoku application is actually much bigger than Reversi. In
addition, the difference with respect to Tic-tac-toe’s size
does not give a proper idea of the actual difference: the
implementation of Reversi is 55% bigger than Tic-tac-toe’s,
while the functional size in Mark II FP is only 6% bigger.

283

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Effort Required for Non-coding Activities

The observation reported in Section V.A above does not
apply only to the coding phase. In fact, the difference in the
number of classes and methods (shown in TABLE VI)
suggests that also the effort required by design and testing
activities is better estimated based on measures that represent
the size of the code structure –like the number of classes–
rather than the functional size.

D. The Explanation Power of TCF

In the analyzed cases, the correction to UUCP due to the
TCF appears largely insufficient. In fact, assigning to CIP
the biggest possible value (i.e., 5) for Gomoku and the
smallest (i.e., 0) for Tic-tac-toe causes the size of Gomoku
(18.72 UCP) to be only 5% bigger than the size of Tic-tac-
toe (17.82 UCP). Such difference does not appear to be able
to predict the difference in terms of Java statements to be
written, as the AI code of Gomoku is twice as big as the AI
code of Tic-tac-toe.

We should note that in this paper we considered
Unadjusted Function Points, as defined in the ISO standard
[3]. However, the IFPUG also defines “adjusted” Function
Points, which are obtained by applying to the unadjusted
measure a value adjustment factor (VAF) that is based on a
few characteristics of the application being measured,
including “Complex Processing” [2]. Actually, the definition
of UCP’s TCF and EF were inspired by Function Points’
VAF. The considerations reported above concerning the
representativeness of TCF apply to VAF as well. The
“Complex Processing” component of VAF affects the size
by less than 8%: too little to explain the observed differences
in the considered applications’ code size.

E. The Explanation Power of McCabe Complexity

As a final remark, we can observe that mean McCabe
complexity is fairly similar in all the considered applications.
The mean McCabe complexity of the AI part of the
applications increases with the amount of data processing
required by the games, but the differences are very small:
from 4.5 of Tic-tac-toe to 5.4 of Gomoku. This means that
applications dealing with more complex games (like
Gomoku) do not need code that is much more complex (in
McCabe’s sense), but just more code. In other words, it is the
difference in the amount of data processing, not in the
complexity of the processing that is relevant, and that
existing functional size measures fail to represent.

VI. ADDITIONAL EVIDENCE

The problems described above are at the level of
elementary processes (alias transactions, alias functional
processes). Namely, the problem with the considered board
games is located in the Move process, which has the same
functional size in all applications, but requires quite different
data processing in the three considered applications.

Readers might wonder whether the described problem is
due to the nature of the considered applications, which
involve the usage of artificial intelligence. Actually, the same
type of problem can be found in different application
domains. Let us consider the measurement of source code.

Several processes that are frequently found in measurement
programs share the same set of properties, namely:

− Inputs: the request to measure and the name of the
source code file to be measured.

− Output: the value of the measure.

− Data read: the code file.
Examples of such processes are the measurement of LoC,

the measurement of Non commenting LoC (i.e., LoC not
including comments), the measurement of McCabe
complexity and the measurement of the coupling between
objects (CBO) [14].

It is easy to see that these processes have the same
functional size, whatever measure they compute. More
precisely, they all have the same functional size if IFPUG
FP, COMSIC FP or Mark II FP are used. If UCP are used,
the sizes could differ of up to 5%, because of differences in
the “Complex Internal Processing” factor.

However, different measures require different amounts of
data processing:

− Total LoC: the processing is extremely simple, as it just
involves counting the number of ‘new line’ characters.

− Non commenting: the required processing is more
complex than in the former case, but still rather simple.
In fact it is sufficient to recognize the beginning and end
of comments and exclude lines that are entirely included
in comments.

− McCabe complexity: the processing is more complex
than in the previous case, since syntax analysis is
required to recognize functions (or procedures or
methods, depending on the programming language) and
decision statements (if, while, for, etc.). The
computation of McCabe complexity is usually
performed by first parsing the code to obtain an abstract
syntax tree, and then visiting the tree to count the
relevant syntactic elements (if, while, etc.).

− CBO: the processing is still more complex. In fact,
semantic analysis of code is also required, in addition to
syntax analysis. For instance, when a statement like
a = b.new_class(x,y,z); is found in class C, it is

necessary to understand the type (class) returned by
method new_class, to properly count the number of
dependencies of class C.

So, a program that measures McCabe complexity and
CBO has the same functional size as a program that counts
total LoC and non-comment LoC; however, it is quite clear
that implementing the former program is much more
demanding in terms of development effort, since a greater
amount of data processing has to be implemented.

Similar examples in different domains are easily found.
For instance, in the statistical domain, a few processes have
to show a series of data concerning a time period, via
different representations. All the processes have the same
inputs, read similar data, and output similar information
(although using different graphical styles): accordingly, all
the processes have the same functional size, since graphical
styles are irrelevant. However, some of these process could
require a very small amount of data processing. For instance,
the process that shows data via a bar chart (Figure 11)

284

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

consists of a simple loop: at every iteration a value is read
and a bar of length proportional to the value is drawn. On the
contrary, a process that shows the data via a “smooth”
interpolation line, e.g., a lowess (locally weighted scatterplot
smoothing) curve [15] (Figure 12) has to perform a definitely
greater amount of data processing, since the computation of
weighted linear least squares regression is required.

Figure 11. Output of a transaction that represents a time series via an

histogram.

Figure 12. Output of a transaction that represents a time series via a

LOWESS curve.

Summarizing, there are many examples of transactions (alias
elementary processes, alias functional processes, etc.) whose
functional size measure does not appear effective in
representing the functionality delivered to the user, since the
–quite variable– amount of data processing is not accounted
for.

VII. DISCUSSION: WHAT SOLUTIONS ARE POSSIBLE?

The usefulness of the evidence given in this paper stems
from a few well-known facts:

− We need to estimate, during the early phases of a
project, the overall software development effort.

− Development effort has been widely reported to be
directly related to the size in LoC of software.
Unfortunately, the size in LoC is not available in the
early phases of projects, when estimates are most
needed.

− Therefore, we need FSM methods, i.e., we need
measures of functional specifications, because
specifications are available in the early phases of
projects.

− In this paper, we provided some evidence that current
FSM methods appear limited in representing the amount
of data processing required by functional specifications.
Therefore, we need to somehow enhance FSM methods
to remove such limitation.

So, we are facing the following research question: how
can we improve FSM methods so that the delivered
functional size measures account for the amount of data
processing described or implied by the functional
specifications?

This is an open research question, which calls for a
substantial amount of further studies. In the following
sections, we report a few observations, ideas, and evaluations
that could be useful considering when tackling the problem.

A. Software Models

FSM methods –like any measurement method– are
applied to models of the object to be measured. Hence, a
rather straightforward consideration is that data processing
must be represented in the model that describes the software
application to be measured.

We can observe that the conceptual model of software
proposed in the COSMIC method includes data processing,
but no criteria or procedures for measuring data processing
are given in the context of the COSMIC method.

In COSMIC, data processing is a sub-process of a
functional process. Therefore, functional processes should be
described in a manner that makes it possible to identify and
measure the extent of data processing that occurs within a
functional process.

Given the similarity of COSMIC functional processes
and FPA elementary processes (or transactions) any
technique used to enhance the expressivity of COSMIC
models as far as data processing is concerned should be
readily applicable to FPA models as well.

285

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Software Specifications

A question that should be considered is if the information
required for identifying and measuring data processing is
always available from the software specifications that are
derived from user requirements.

FSM methods use models of functional specifications: if
functional specifications do not include information on data
processing, neither do their models, and FSM methods will
not be able to account for data processing.

So, another open question is the following: is it necessary
to go beyond user requirements related specifications to be
able to represent data processing? In other words: should
elements of design be anticipated, to get better measures of
the amount of data processing to be implemented?

C. Qualitative Knowledge

Current FSM methods are inherently quantitative. Even
though some measurement activities –like deciding if two
sets of data should be two RET of a unique logic file or they
should belong to separate logic files– involve some
subjectivity, they are always meant to provide measures (the
number of ILF, RET, etc.) at the ratio level of measurement.

One could wonder if the use of more qualitative
knowledge, derived through inherently subjective
evaluations and expressed via ordinal scales, would be more
suitable for expressing the relevant information concerning
data processing.

For instance, after talking with stakeholders, an analyst
could easily classify the functional process “Make a move”
of the Tic-tac-toe application as very simple, while the same
process of the Gomoku application could be classified as
very complex.

D. Towards a Measure of Data Processing

As mentioned above, proposing a solution to the problem
outlined above is very difficult. Here, we outline a few
directions to be considered when addressing the problem.

A first consideration concerns the level of description of
data processing. At a high level, the “variability” of the
processes in terms of number of different cases to be
considered could easily determine the amount of data
processing required. Consider for instance a process that
starts by identifying users: if the specifications indicate that
the user can be identified in three different ways (e.g., by
name, by social security number, and by email address) it is
likely that it will have to process three times as much data as
a process that identifies users in a single way.

Another observation concerns how to differentiate
functionalities. A possibility is to account for the internal
states a function has to deal with. In the case of tic-tac-toe,
the number of states in which the game can be is quite small;
on the contrary, the states of a Gomoku game are very
numerous. Accordingly, the amount of computation could be
proportional to the number of states, since the function has to
properly deal with all states. However, the quantification of
data processing could be further complicated by the presence
of equivalent states, i.e., sets of states that are managed in the
same way, so that having N or N+1 states in such sets would
not affect the amount of processing required. For instance, a

date increase function has to account for months having 28
(or 29), 30, or 31 days: the fact that there are 7 months
having 31 days and just one having 28 days is irrelevant. In
complex cases, identifying the relevant states could be very
difficult; for instance, in Gomoku several token patterns can
be identified, and each pattern calls for a specific strategy.
So, the interesting states are the token patterns, but
imagining in advance all the possible patterns is quite hard.
A qualitative indication concerning the number of states
would probably be more appropriate, in this case.

VIII. RELATED WORK

Although several FSM methods (e.g., Mark II FP,
NESMA and FiSMA) have been proposed as extensions or
replacements of Function Point Analysis, very little attention
has been given to the measurement of data processing.

A noticeable exception is the proposal of Feature Points
by Capers Jones [16]. In this functional size measure,
algorithms were added to the set of FPA basic functional
components (ILF, EIF, EI, EO and EQ), and each component
type was assigned a unique value, i.e., the notion of
complexity was removed. The method was soon abandoned,
mainly due to the difficulty of identifying algorithms, which
are typically not documented in functional specifications.

Function Point Analysis and other methods –like Use
Case Points [8]– introduce a mechanism for “adjusting” the
size measure to take into account additional complexity
factors that are likely to increase the effort required for
implementation. In fact, among FPA value adjustment
factors (VAF) we find “Complex Internal Processing,”
which represents to what degree the application includes
extensive logical or mathematical processing. This
mechanism is similar to what we need, but has a few
shortcomings, including:

− In FPA the considered VAF’s value increases the
application size by 4% to 8%: at least one order of
magnitude less than needed in the Tic-tac-toe vs.
Gomoku case.

− The VAF applies to the whole application, so that it is
not possible to distinguish simple and complex
processes.

Noticeably, only the definition of unadjusted Function
Points was standardized [3].

The Path measure [17][18] represents the complexity of
processes in terms of the number of execution paths that are
required for each process. Although this measure proved
fairly effective in improving effort estimation based on
functional size measures, it is not applicable in cases like
those considered in this paper, since the alternative courses
of the specified processes are not known.

IX. CONCLUSIONS

In this paper, we have shown by means of examples that
FSM methods fail to represent the amount of data processing
required by software functional specifications.

One could wonder how general are the results reported in
the paper. As for this issue, we showed in Section VI that the

286

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

limits of FSM methods discussed in the paper apply to
several application domains.

The work reported in the paper indicates that we need a
measure that can complement traditional FSM methods to
represent the amount of data processing that is needed to
provide the required functionality.

We are interested in representing and quantifying the
amount of data processing not because of an abstract interest
in the definition of functional size measures, but because –as
shown in the paper– data processing is logically related to
code size, which in its turn is linked to the amount of
development effort required to build a software application.

How to measure the amount of data processing required
by the specifications of a software application is an open
research question of great practical interest that should
receive much more attention than it currently does.

ACKNOWLEDGMENT

The work presented here has been partly supported by the
FP7 Collaborative Project S-CASE (Grant Agreement No
610717), funded by the European Commission and by
project “Metodi, tecniche e strumenti per l’analisi,
l’implementazione e la valutazione di sistemi software,”
funded by the Università degli Studi dell’Insubria.

REFERENCES

[1] L. Lavazza, S. Morasca, and D. Tosi, “On the Ability of
Functional Size Measurement Methods to Size Complex
Software Applications,” 9th Int. Conf. on Software
Engineering Advances - ICSEA 2014, October 12-16 2014,
Nice. pp. 404-409.

[2] International Function Point Users Group. Function Point
Counting Practices Manual - Release 4.3.1, January 2010.

[3] ISO/IEC 20926: 2003, Software engineering – IFPUG 4.1
Unadjusted functional size measurement method – Counting
Practices Manual, Geneva: ISO, 2003.

[4] A. J. Albrecht, “Measuring Application Development
Productivity,” Joint SHARE/ GUIDE/IBM Application
Development Symposium, 1979, pp. 83-92.

[5] C. R. Symons, “Function point analysis: difficulties and
improvements,” IEEE Transactions on Software Engineering,
14.1, 1988.

[6] ISO/IEC 20968:2002, “Software engineering – Mk II
Function Point Analysis – Counting Practices Manual,” 2002.

[7] COSMIC – Common Software Measurement International
Consortium, The COSMIC Functional Size Measurement
Method - version 4.0 Measurement Manual, April 2014.

[8] G. Karner, “Resource estimation for objectory projects,”
Objective Systems SF AB, 17. 1993.

[9] I. Jacobson, G. Booch, and J. Rumbaugh. “The Objectory
Software Development Process,” Addison Wesley, 1997.

[10] http://algojava.blogspot.it/2012/05/tic-tac-toe-game-
swingjava.html, last accessed 15 May, 2105.

[11] http://sourceforge.net/projects/tictactoe-javab/files, last
accessed 15 May, 2105.

[12] http://sourceforge.net/p/gomoku/, last accessed 15 May, 2105.

[13] https://reversi.java.net/, last accessed 15 May, 2105.

[14] S.R. Chidamber and C.F. Kemerer. “A metrics suite for object
oriented design,” IEEE Transactions on Software Engineering
20.6, 1994.

[15] W.S. Cleveland, “LOWESS: A program for smoothing
scatterplots by robust locally weighted regression,” American
Statistician, 1981.

[16] C. Jones, “The SPR Feature Point Method,” Software
Productivity Research, 1986.

[17] G. Robiolo and R. Orosco, “Employing use cases to early
estimate effort with simpler metrics,” Innovations in Systems
and Software Engineering, 4(1), 2008, pp. 31-43.

[18] L. Lavazza and G. Robiolo, “Introducing the evaluation of
complexity in functional size measurement: a UML-based
approach,” ACM-IEEE Int. Symp. on Empirical Software
Engineering and Measurement, September 2010.

287

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

