
CommJ: An Extension to AspectJ for Improving the Reuse and Maintainability of

Communication-related Crosscutting Concerns

Ali Raza

SaaS Cloud Engineer

ItsOn Inc.

Silicon Valley, California, USA

ali.raza@itsoninc.com

Stephen Clyde

Computer Science Department

Utah State University

North Logan, Utah, USA

Stephen.Clyde@usu.edu

Abstract—This paper presents advances of research on

CommJ, a framework for weaving communication-aware

aspects into application code. Specifically, it presents a

simplified Universe Model for Communication (UMC) and an

enhanced implementation of CommJ. It also summarizes a

preliminary experience that tests seven hypotheses about how

CommJ might improve reusability and maintainability of

software applications that rely on network communications.

The summary includes a description of a quality model

consisting of factors that impact reusability and

maintainability, attributes that the factors depend on, and

metrics for assessing those attributes. The experiment was a

two-group study involving seven aspect-oriented programmers.

Despite the small number of study participants, the experiment

yielded encouraging results about CommJ’s potential.

Specifically, CommJ can improve reusability and

maintainability of application code when there are

communications-related crossing-cutting concerns.

Keywords – aspect orientation; aspect-oriented programming

languages; AspectJ; communications; cross-cutting concerns;

software reuse; software maintainability.

I. INTRODUCTION

Inter-process communications are ubiquitous in today’s
software systems, yet they are rarely treated as first-class
programming concepts. Consequently, developers have to
implement communication protocols manually using
primitive operations, such as connect, send, receive, and
close. For many communication protocols, the sequencing
and timing of these primitive operations can be relatively
complex. For example, consider a distributed system that
uses the Passive File Transfer Protocol (Passive FTP) to

move large datasets between clients and servers. With
Passive FTP, a server would enable communications by
listening for connections requests on a published port,
usually port 21. A client would then initiate a conversation,
i.e., start an instance of the Passive FTP protocol, by sending
a connect request to the server on that port. The server sets
up a dedicated port, 2024 in this example, and sends its
number back to the client. The client connects to that port
and the server sends back an acknowledgment. At this point,
two processes can start exchanging data on this dedicated
communication channel. The arrows in Figure 1 illustrate
this initial sequence of messages.

Neither the client’s nor the server’s side of the
conversation is trivial. In fact, both usually execute different
parts of the conversation on different threads. For example,
Figure 1 shows two threads for a FTP server and two threads
for a FTP client. Although multi-threading has many
advantages, it can create complexities while trying to follow
a conversion’s execution in the code because different parts
of the conversation end up being handled by different
components in the code.

A distributed system with concurrent conversations based
on one or more non-trivial communication protocols may be
further complicated by other communication-related
requirements, such as logging, detecting network or system
failures, monitoring congestion, balancing load across
redundant servers, and supporting multiple versions of one or
more of the protocols [1][2].

From a communication perspective, these concerns are
examples of what Aspect Orientation (AO) refers to as
crosscutting concerns, because they pertain to or cut through
multiple parts of a core or base system. Implementing one or
more of these concerns without careful attention to
encapsulation, modularization, cohesion, and coupling can
cause undesirable scattering and tangling of code.

AO, which first appears in the literature in 1997 [3][4],
reduces scattering and tangling of code by encapsulating
crosscutting concerns in first-class programming
constructions, called aspects [5]. An aspect is an Abstract
Data Type (ADT), just like classes in strongly-typed, class-
based, object-oriented programming languages. However, an
aspect can also contain advice methods that encapsulate logic
for addressing crosscutting concerns and pointcuts for
describing where and when the advice needs to be executed.
A pointcut identifies a set of joinpoints, which are temporal
points during the execution of the system when weaving of

Figure 1. The Starting of a Passive FTP Conversation

: FTP Client

: Controller
: Data

Manager

: FTP Server

: Command
Manager

: Data
Manager

1

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

advice may take place. Each joinpoint corresponds to static
place in the source code, called a shadow [5].

AspectJ is an extension to Java for aspects and, like many
other AOPLs and Aspect-oriented Frameworks (AOFs)
[5][6][7][8], it allows programmers to weave advice for
crosscutting concerns into joinpoints that correspond to
various programming construct, such as constructor
calls/executions, methods calls/executions, class attribute
references, and exceptions. For documentation on AspectJ,
see The AspectJ Project website [5].

Since aspects are just special ADTs, it is possible for
skilled software developers using traditional object
orientation (OO) to implement classes that do basically the
same thing. However, these classes would have to manage
all the joinpoint contexts and weaving of crosscutting
behaviors explicitly. Furthermore, hooks into crosscutting
behaviors would most likely have to be introduced into the
core application code. In other words, the real difference
between AO and OO is that AO offers a convenient
mechanism for separating crosscutting concerns from core
functionality. It encourages obliviousness, which is the idea
that core functionality should not have to know about
crosscutting concerns [9][10]. With obliviousness,
programmers should be able to add or remove the
crosscutting concerns at build time without changing any
source code.

The problem is that AspectJ and other AOPLs do not
support the weaving of advice into core high-level
application abstractions, such as conversations among
processes in a distributed system, since those abstractions are
based on run-time context information beyond code
constructs, a single thread flow of execution, or its call stack.
This paper introduces an extension to AspectJ, called
CommJ [1][2] that allows developers to weave crosscutting
concern into conversations in a modular and reusable way,
while keeping the core functionality oblivious to those
concerns.

We elaborate on the problem and review related literature
in Section II. Then, in Section III, we formalize the notion of
communication joinpoints and introduce CommJ. Next,
Section IV demonstrates the feasibility and utility of CommJ
by describing a library of reusable communication aspects
and providing examples from a non-trivial sample
application.

To explore CommJ’s utility as a valuable extension to
AspectJ, we conducted a preliminary experience that
measured the quality of applications and extensions to
applications built with CommJ compared to the same built
with only AspectJ. Section V describes the quality model
that we used for the comparison and evaluation of the
application software. It is an adaption of the Comparison
Quality Model by C. Sant’Anna et al. [11]. Sections VI &
VII explain the hypotheses and experimental method, while
Section VIII presents the results of the experiment along
with our interpretations and conclusions for each hypothesis.

Overall, the experiment provides preliminary evidence
that the applications written with CommJ are more cohesive
and oblivious and that they have less scattering and tangling
of cross-cutting concerns then their AspectJ-only comparison

applications. Furthermore, those using CommJ were more
loosely coupled, less complex, and smaller in size. The
results are encouraging and provide ample motivation to
continue work on CommJ and to pursue other opportunities
for weaving aspects into application-level abstractions.
Section IX summarizes the contributions of this paper and
discusses future work.

II. BACKGROUND AND RELATED WORK

To explain CommJ and its contributions, it is first
necessary to establish a foundation of background concepts
and related work in four areas: The AOP paradigm, AOP
development tools (i.e, languages and frameworks),
communications, and cross-cutting concerts with respect to
communications.

A. The AOP Paradigm

In general, a skilled programmer can do anything in an
OO programming language (OOPL) that could be done in an
AOPL by making careful design decisions that encapsulate
crosscutting concerns in well-modularized classes and
hooking those features into the base application. To do this, a
programmer could use software constructs, such as
delegates, callbacks, and events, or apply various design
patterns, like the Strategy, the Decorator, and the Template
Method patterns [13]. However, the developer may still end
up with code tangling and scattering, unnecessary coupling,
lack of obliviousness, and compromised flexibility. AO
provides an elegant way of weaving new behaviors into
existing code, such that their functionality is less scattered,
tangled, and decoupled from the base application, without
compromising that functionality.

With AO, programmers should only need modular
reasoning to discover the code and structure of the
crosscutting concerns; whereas they would most likely need
global reasoning when using traditional OO techniques [13].
Additionally, when using only OO techniques, separating out
tangled code from core functionality can cause inheritance
anomalies [14]. AO programmers, on the other hand, can
refactor tangled code by moving it into loosely coupled
aspects. So, the attraction of AO is not that a developer can
do more, but that a developer can do certain things better,
particularly in terms of modularizations or crosscutting
concerns with less scattering and less tangling.

B. AOP Languages and Framework

Other techniques that address the same problems solved
by OO, including Monads [15], Subject-oriented
Programming [16][17], Reflection [18][19], Mixins [20], and
Composition Filters [18]. The AO approach seems to have
risen to the top as the most influential because it allows for
better modularity of crosscutting concerns and it does not
alter or violate principles of the OO paradigm.

There are many AOPLs and AOFs available today, such
as AspectJ [5], AspectWorkz [6], Spring AOP [8] and JBoss
AOP [7]. Though they are semantically similar in terms of
their aspect invocation, initialization, access and exception
handling routines, they differ in programming constructs,
syntax, binding, expressiveness, approaches to advise

2

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

weaving, static or dynamic analysis, and their overall
acceptance in academia and industry. Currently, AspectJ
(powered by IBM) is the de facto standard and the most
widely used AOPL. Perhaps, this is because it is an
extension to Java and takes advantage of Java class libraries
and development environments.

None of the these AOPLs and AOFs allow developers to
consider a conversation as a context into which cross-cutting
concerns may be woven. They all focus on either compile-
time contexts, like methods and classes) or primitive run-
time contexts, like the objects and call stacks. To allow
conversations to be contexts, without forcing programmers
to create the necessary infrastructure manually as part of the
application code, an AOF for communications would have to
define model of communications and then automatically
track individual conversations.

C. Communications, Conversations, and Protocols

In general, inter-process communications are either
connection-oriented or connectionless. Connection-oriented
communications require two concurrent processes to
establish a communication link before exchanging data. This
style of communication is very much like a person-to-person
telephone call. In contrast, with connectionless
communications, one process can send a message to another
process without knowing whether that process is ready to
receive the message or if it even exists yet. This style of
communication is like traditional postal mail.
Communication subsystems or libraries, like the JDK’s
Channels and Sockets, typically support both styles of
communication.

A conversation is a series of interactions between two or
more processes for some purpose. It may include the
formation of a connection (only for connection-oriented
communications), exchange of messages among the
processes, and the termination of the connection (again, only
for connection-oriented communications). A conversation is
like a phone call with a doctor’s office to setup an
appointment or a series for postal mailings that were
necessary for the signing of a contract. Conversations can
last for just a millisecond or go on for days.

Like a formal interaction between two parties signing a
contract, an electronic conversation between processes
follows a protocol that governs the expected behavior of the
participating processes. Some protocols are symmetrical,
meaning that all participants follow the same rules. However,
it is more common for protocols to be asymmetrical,
meaning that each participant acts according to the role it is
playing. Many protocols, like the Passive FTP example
mentioned earlier, involve two roles: a conversation initiator
and responder. Sometimes, these roles are simply referred to
as client and server. However, these terms have broader
meanings that imply other software architectural issues
beyond communications, so we avoid them here.

Implementations of communication details can vary
depending on the underlying communication libraries, e.g.,
Channels and Sockets. These differences are, however, only
of secondary importance and can be easily supported by
different adapters in CommJ implementation. So, further

explanation of diversity and subtleties of the various
communication implementation techniques are beyond the
scope of this paper.

D. Crosscutting Concerns in Communications

Despite AspectJ’s rich set of pointcut designators, there
is still a weakness relative to weaving crosscutting concerns
into communications. Specifically, AspectJ and any other
similar AOPLs or AOFs do not work with conversations
directly. Specifically, they do not track individual
conversation contexts or link together messages of the same
conversation. Consequently, programmers cannot weave
behaviors directly into individual conversations.
Furthermore, since the execution of conversation may be
spread across multiple software components and multiple
threads, tracking individual conversations is beyond what
language-construct-based aspect weaving can accomplish.

Consider a communication-related crosscutting concern
that involves tracking the total time for all connectionless
conversations in a distributed application. If a programmer
wants to implement crosscutting concern in AspectJ, he or
she would have to implement some advice for the
conversation’s initiation that would capture the time when
the first message was sent, as well as other advice that would
capture the time when the last message was received and
then compare the two times. However, send and receive
logic for the conversation may be in separate code modules,
may be separated in the execution flow by an unpredictable
amount of time, and may even be handled on separate
execution threads. Furthermore, a process may start or
participate in many conversations at the same time, and the
advice would have to manually correlate the first message of
particular conversation with the last message of that
conversation. In a nutshell, the programmer would have to
build all of the message tracking and correlation objects into
the aspect and its advice.

III. COMMJ

To enable the weaving of advice into individual
conversations, we first define a general model, i.e., the
Universe Model of Communication (UMC), for connection-
oriented and connectionless communications and use it as a
basis for formalizing the notation of communication
joinpoints. We then implement CommJ according to the

Figure 2. CommJ and its associated components

Application Aspects

Reusable Aspect Library

CommJ

UMC AspectJ

d
ep

en
d

en
ci

es

3

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

UMC and on top of the aspect capabilities provided by
AspectJ (see Figure 2). The CommJ implementation
provides a) base aspects with abstract pointcuts for
communications, independent of the underlying
communications subsystem and b) behind-the-sense
components to track individual conversation contexts at
runtime. Application programmers simply include the
CommJ library into their build and create their own
communication aspects that inherit from the base CommJ
aspects. To help them integrate common communication-
related cross-cutting concerns into their application, we also
provide a Reusable Aspect Library (RAL). The rest of this
section describes the communications model,
communication joinpoints, and the CommJ library in more
detail. Then Section IV highlights some of the aspects in the
RAL and shows how that can be used in a sample
application.

A. A Universe Model of Communications

The UMC describes a minimal set of general concepts
that cover both connection-oriented and connectionless
communications provided by most communication systems.
In doing so, it models events, threads, messages,
conversations, and protocols, as well as the relationships
among these concepts.

1) Events
An event can be described as the happening of

something. The UMC contains three event types:
Communication Event, Connection Event, and Exception
Event (not shown in Figure 3). A Communication Event is
the happening of something (related to send or receive) in
message-based communications, at a particular point in time.
It is further divided in two types: Communication Send
Event and Communication Receive Event, respectively. The
UMC states that every receive event must have a
corresponding send event. In other words, a send event can
exist without a receive event but not conversely.
Communication Events also exhibit one more special
characteristic, namely they can relate to each other; an event
can contain or be associated with many other events. For
example, in a distributed application, a thread T1 can send a

message which corresponds to a send event. Eventually, that
can lead to a receive-message event on some other thread T2.
The relation between these two events is modeled by the
“happened before” relationship on Event in Figure 3.

Connection Events are happenings related to the setting
up of communication channels, and are specialized into four
types:

 A Connect Event occurs when an initiator sends the
connect request to a responder

 An Accept Event occurs when a responder accepts a
connect request from an initiator

 A Listen Event occurs when a responder listens for
incoming data

 A Close Event occurs when a responder or an
initiator closes the connection

UMC does not need to include exception events
explicitly because AspectJ already defines a rich set of
pointcuts for defining crosscutting concerns that involve
exceptions.

A Thread can instantiate and encapsulate multiple send
or receives events. A Communication Event can be
associated with at most one thread. One process can have
multiple threads, and a node can host multiple processes. In
communication systems, an application may be using
multiple nodes, each with several processes, which in turn
may have multiple threads.

2) Conversations
In general, a conversation from single process’s

perspective is a sequence of messages that follow
communication rules that either comprise all or part of
exchange with other process:

A. an entire conversion from a process’s perspective
(see the bracket sequence, A, in Figure 4)

B. any sequence of send or receive events in the
conversation as seen by a process (see B in Figure
4)

C. a single send or receive event in a conversation (C
in Figure 4)

In Figure 5, we see that each conversation in UMC can
use a set of Communication Events. A Communication
Event occurs on a Communication Channel and is indirectly

Figure 3. UMC for Events

4

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Conversations in UMC

associated with a protocol through it conversation to which
the event belongs. A conversation is also capable of keeping
track of Communication Events that occur in a multithreaded
application with multiple channels.

With CommJ, a distributed application can consider a
conversation all or just subset of the messages exchanged
between specific processes, previously illustrated in Figure
4. This gives developer a freedom to organize the
conversations in a manner that seems appropriate for the
application and the freedom to use virtual any kind of
communication protocol or pattern.

3) Channel
Every Conversation happens on a Channel (Figure 5). A

Channel also acts as a way of connecting the Communication
Events with the Connection Events. In addition, a Channel
also abstracts the underlying network-specific components,
e.g., JDK’s Sockets and Channels, into higher level concepts
that are consistent across platforms. In design pattern terms,
the UMC’s Communication Channel is like an Adapter [12]
to underlying communication mechanisms, but for
crosscutting concern.

4) Messages
A message is a class that encapsulates data exchanged

during IPC. Processes or threads in communication systems
exchange data through events invocations in UMC.
Communication Events are strongly associated with Message
instances in the model. Each Message can be associated with
at most one send and one receive event. Further, Messages
and Communication Events follow similar specialization

hierarchies; from a process’s perspective both are specialized
into send and receive types. An instance of Message received
keeps track of its Received Event, and a Message sent knows
about its Sent Event.

All CommJ applications derive their specific message
classes from the base Message class (see Figure 6), which is
in the CommJ Infrastructure. The Message class contains
getter and setter methods for the properties shown in Figure
6. Collectively, the first five properties are referred to
Message Identifying Information (MIF). These five elements
provide the necessary information to identify the context of
any message, thus enabling CommJ to create and manage
conversation metadata, represented by the Conversation class
in Figure 5.

The CommJ Infrastructure implements abstract Message
with an interface, call IMessage. CommJ then dynamically
introduces it into the core software during aspect initialize
(see Section IV.A). The interface IMessage is the only direct
dependency between the core application and CommJ.

5) Connections
A process may be acting in the role of a sender or receiver

while handling communication events and as an initiator or a
responder while handling connection events. An initiator can
handle only connect and close events, whereas a responder
can handle listen, accept and close events, respectively.
Figure 7 illustrates the connection-related concepts in UMC.

IV. COMMJ ASPECT LIBRARY AND SAMPLE APPLICATION

This section describes the general architecture of CommJ
along with some fundamental concepts, mostly about low-
level design and implementations. Finally, it discusses some
sample applications, developed using CommJ.

A. Joinpoints

The UMC serves as a foundation for formalizing
communication joinpoints, which fall into two general
categories: communication joint points and connection-
related join points, respectively.

1) Communication Joinpoints
Joinpoints represent places and times where/when advice

can be executed. In AspectJ, they correspond to constructors,
methods, attributes, and exceptions. Advice can be executed
before, after, or around these various contexts. CommJ adds

Figure 5. UMC for Conversations

5

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

conversations to AspectJ as possible contexts. Unlike
AspectJ contexts, however, a conversation is not tied to a
single programming construct but to the runtime abstraction
of an inter-process conversation.

Figure 8 represents different kinds of message related
joinpoints in CommJ. A Send Event JP, is the region of code,
where advice can be woven into, when a communication
event related to sending of data, occurs in a process or
thread, where as a Receive Event JP is related to receiving of
data respectively. Request Reply Conversation JP, represents
a joinpoint for complete conversations, but they follow basic
request-reply protocols. It contains a Send Event JP and a

Receive Event JP. A Send Event JP keeps track of message
Id whereas a receive Event JP records a response Id for a
request-reply type of conversation. An initialization aspect
dynamically introduces MIF information for all CommJ
joinpoints. While sending a message, CommJ creates an
instance of a Send Event JP and adds it to the
communication registry, which contains communication
joint points. Similarly on receiving a message, it creates an
instance of a Receive Event JP and finds a Send Event JP
from the registry where the message Id of the former equals
the response Id of the later. Finally, Multi-step Conversion
JP, represents joinpoints for across multiple events or for
entire conversations. Multiple send and receive events are
modeled using a state machine in a Multi-step Conversation
JP.

2) Connection Joinpoints
The other types of joinpoints are connection-related

sequence of events such as connect, accept, listen, and close
events. Connection joinpoints in CommJ are either owned by
an initiator or a responder (see Figure 9 for more details
about the following types of connection-related joinpoints in
CommJ).

An initiator creates a Connect Event JP. It encapsulates
the connection information related to underlying sockets and

Figure 6. UMC for Messages

Figure 8. Communication Joinpoint and Registry

Figure 7. UMC for Connections

6

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. CommJ Message Event Join Points and Reusable Aspects

channels along with their local and remote addresses.
Responder creates an Accept JP on receiving a connection
request from the initiator. Both the initiator and responder
instantiate a Close Event JP when a connection closes.

Channel JP acts like a bridge between communication
joinpoints and connection joinpoints. It also maintains links
between a responder Accept JP and an initiator Connect
Event JP. Additionally, a Channel JP Registry is used to
correlate different connection-related events that belong to
the same conversation.

B. Joinpoint Trackers

Behind the scenes, CommJ relies on JoinpointTrackers,
which are monitors [13] that perform pattern matching on
communication events and connection events to track
individual events and to organize them into high-level
conversation contexts. Since the monitoring of
communications is itself a crosscutting concern, Joinpoint
Trackers are implemented as aspects that weave the

necessary monitoring logic into places where a
communication event may take place. In CommJ, there can
be two types of event trackers: message-joinpoint trackers
and connection-joinpoint tracker.

1) Message Joinpoint Trackers
The Message Joinpoint Tracker (see Figure 10) crosscuts

the send and receive events for both reliable and unreliable
communications in the core application and defines a set of
pointcuts in the simple send and receive abstractions.
Message Joinpoint Tracker is an aspect that hides
communication related abstractions in the core application.

The Message Joinpoint Tracker aspect defines pointcuts
in the send and receive abstractions (Figure 11) by
overcoming the syntactic and semantic variations, defined in
JDK Sockets and Channels libraries. It provides simple and
elegant communication pointcuts, which are rich enough to
encapsulate abstractions for both connection-oriented and
connectionless protocols. Hence, Message Joinpoint Tracker
creates two clean, well-encapsulated communications related

Figure 9. Connection Joinpoint and Registry

7

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

abstractions for all types of read and write
operations.

2) Connection Joinpoint Trackers
The Message Joinpoint trackers are categorized into
Initiator Joinpoint Tracker and Responder Joinpoint
Tracker, which crosscut the syntactic and semantic
variations, exist in both reliable and unreliable
communications, and unify them into a set of
pointcuts in the abstractions of channel, connect,
accept and close.

The Responder Joinpoint Tracker, defines two
simple pointcuts, i.e., Accept and Close, where
Initiator Joinpoint Tracker, defines three pointcuts,
i.e., Channel Connect, Channel Connect Finish and
Channel Close pointcuts. These two trackers
manage all connection-related abstractions and
styles related to both the responder and initiator for
connectionless and connection-oriented communications.
Figures 12 & 14 describe the general architecture of
responder and initiator, and Figures 13 & 15 present their
code snippets.

C. Base Aspects

The CommJ Infrastructure implements high-level IPC
abstractions as base aspects, which fall into two categories,
i.e., Communication aspects and Connection aspects. They

Figure 12. Responder Joinpoint and Base Aspects

public aspect ResponderJoinPointTracker {

 private pointcut SocketAccept(Socket _socket, InetSocketAddress _remoteEP):

 call(* Socket+.accept(..)) && target(_socket) && args(_remoteEP);

 pointcut ChannelAccept(ServerSocketChannel _serverSocketChannel) :

 call(* ServerSocketChannel+.accept()) && target(_serverSocketChannel) ;

 pointcut ChannelClose(ServerSocketChannel _serverSocketChannel) :

 call(* ServerSocketChannel.close()) && target(_serverSocketChannel);

 public pointcut ChannelOpen(DatagramChannel _channel, SocketAddress _addr) :

 call(* DatagramChannel.bind(..)) && target(_channel) && args(_addr);

 …

}

Figure 13. A Code Snippet of ResponderJoinPointTracker

public aspect MessageJoinPointTracker {

 private pointcut SocketRead(Socket _socket, byte[] _buffer, int _len) :

 call(* Socket+.read(byte[], ..)) && target(_socket) && args(_buffer, _len);

 private pointcut ChannelRead(SocketChannel _channel, ByteBuffer _buffer) :

 call(* SocketChannel+.read(ByteBuffer)) && target(_channel) && args(_buffer) ||

 call(* DatagramChannel+.receive(ByteBuffer)) && target(_channel) && args(_buffer) ;

 public pointcut SocketWrite(Socket _socket, byte[] _data, int _length) :

 call(void Socket+.write(byte[], int)) && target(_socket) && args(_data, _length);

 public pointcut ChannelWrite(SocketChannel _channel, ByteBuffer _data) :

 call(* SocketChannel+.write(ByteBuffer)) && target(_channel) && args(_data);

 public pointcut DatagramChannelWrite(DatagramChannel _channel, ByteBuffer _data, SocketAddress _addr) :

 call(* DatagramChannel+.send(ByteBuffer, SocketAddress)) && target(_channel) && args(_data, _addr) ;

 private pointcut DatagramChannelRead(DatagramChannel _channel, ByteBuffer _buffer) :

 call(* DatagramChannel+.receive(ByteBuffer)) && target(_channel) && args(_buffer) ||

 call(* DatagramChannel+.read(ByteBuffer)) && target(_channel) && args(_buffer);

 ….

}
Figure 11. CommJ Message Event Join Points and Aspects

8

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

public abstract aspect MessageAspect {

 public pointcut MessageSend(SendEventJP jp) ...

 public pointcut MessageRecieve(ReceiveEventJP jp) ...
}

Figure 16. Pointcuts in MessageAspect

cut through their respective joinpoint trackers and provide
communication-related crosscutting concerns.

1) Message Aspects
All communication aspects are ultimately derived from

the abstract Message Aspect class, which provides concrete
pointcuts that dynamically track send and receive events (see
Figure 16).

It is important to note that these pointcuts take CommJ
joinpoint objects as parameters, because this is how advice is
woven into these pointcuts, and can access conversation
contexts.

The four specializations of Message
Aspect correspond to four different kinds
of conversation contexts. Developers can
create their own application-level
communication aspects that inherit from
these aspects and include their own
advice based on these pointcuts.

One-way send (OWS). An OWS
conversation involves only one send
event on the initiator’s side. For the
initiator, the conversation automatically
ends after send event is finished (see
Figure 17).

One way receive (OWR). An OWR
conversation for a responder involves
only one receive event. The conversation
automatically ends for the responder after
a receive event (see Figure 18).

Bi-directional (Request/Reply style of
Conversation). Bi-directional
conversations require a successful round-
trip of a send and receive events. An RR
Conversation Aspect, which applies to bi-

directional conversations, defines pointcuts Start
Conversation and End Conversation. The Start Conversation
creates a Request Reply Conversation JP and starts a
conversation when a sender invokes a sent event, the End
Conversation retrieves the matching Request Reply
Conversation JP from the Message JP Registry and ends a
conversation when a Receiver invokes a receive event (see
Figure 19 for more details).

Multi-step Conversation. It involves any combination of
send and receive events without any specific order. For
example, few variations in multi-step conversations are as
follows: one send event and multiple receive events; multiple
send events and one receive event; multiple send events and
multiple receive events or any complex model of send and
receive events.

We implemented the multi-step conversation aspect (see
Figure 20) by deriving from Message Aspect class and
thereby inheriting the Message Send and Message Receive

public aspect InitiatorJoinPointTracker {

 private pointcut SocketConnectStyle1():

 call(Socket.new());

 private pointcut SocketConnectStyle2(InetAddress _address, int _port):

 call(Socket+.new(InetAddress, int)) && args(_address, _port);

 private pointcut SocketConnectStyle4(String _host, int _port):

 call(Socket.new(String, int)) && args(_host, _port);

 private pointcut SocketConnectStyle5(Socket _socket, InetSocketAddress _endPoint):

 call(void Socket+.connect(SocketAddress)) && target(_socket) && args(_endPoint);

 pointcut ChannelConnect(SocketChannel _socketChannel, InetSocketAddress _remoteEP) :

 call(* SocketChannel.connect(..)) && target(_socketChannel) && args(_remoteEP);

 pointcut ChannelConnectFinish(SocketChannel _socketChannel) :

 call(* SocketChannel+.finishConnect(..)) && target(_socketChannel);

 private pointcut SocketClose(Socket _socket):

 call(* Socket+.close(..)) && target(_socket);

 pointcut ClientChannelClose(SocketChannel _channel) :

 call(* SocketChannel.close()) && target(_channel);

 …
}

 Figure 15. A Code Snippet of InitiatorJoinPointTracker

Figure 14. Connection Joinpoint and Base Aspects

9

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

pointcuts. A multistep conversation retrieves message, role,
protocol and conversation information from Message class
and creates a state machine instance if it does not already
exist. During one application session, an aspect may apply
several concurrent conversations for one type of state
machine (i.e., a protocol as it applies to one role). The
context for each conversation is maintained in terms of its
own current state and associated state machine instance. In
general, there are two types of state machines. Mealy and
Moor state machines [19]. Mealy state machine is a finite
state machine whose output values are determined both by its
current state and the current inputs whereas in the Moore
state machine, the output values are determined solely by its
current state. Mealy state machines are better suited for
CommJ because they can be defined in terms of transitions

triggers, which correspond to message events and message
types.

The design of the state machine for multistep
conversation is shown in Figure 21 and code snippet is in
Figure 22. A CommJ state machine has two components:
State and Transition. A State encapsulates the state name,
whether it is in initial or final state, and its list of transitions.
Transition is defined using four basic elements: Action Type,
Message Type, From State, and To State. The Action Type is
transition trigger and can be either a send or receive action.
The Message Type is a filter or guard that specifies what
types of messages may trigger the transition. From State
defines the state before transition and To State defines the
target state after transition.

When an application is loaded into memory, all
application-level state machine classes are initialized and
stored in State Machine Types - a hash map between
application classes and state machine types. The Register
methods, declared in abstract state machine and implemented
by each application-level state machine, are called when
applications are loaded through a static initialization block.

2) Connection Aspects
A Connection Aspect derives from a CommJ base aspect,

which crosscuts Responder Joinpoint Tracker and Initiator
Joinpoint Tracker pointcuts. The base connection aspect
defines the following four pointcuts (see Figure 22):

Connect pointcut. It crosscuts Initiator Joinpoint Tracker
connection related pointcut and provides Connect pointcut.

Accept pointcut. It crosscuts Responder Joinpoint Tracker
accept related pointcuts and provides an Accept pointcut.

Close Server pointcut. It crosscuts Responder Joinpoint
Tracker and provides a Close Server pointcut.

Close Client pointcut. It crosscuts Initiator Joinpoint
Tracker “close connection” pointcuts and provides Close
Client pointcut.

Complete Connection Conversation. It inherits from
Connection Aspect (Figure 23) and defines following

public abstract aspect OneWaySendAspect

 extends MessageAspect {

 public pointcut ConversationBegin(SendEventJP jp)....

}

Figure 17. OneWaySend aspect in RAL

public abstract aspect OneWayReceiveAspect

 extends MessageAspect {

 public pointcut ConversationEnd(ReceiveEventJP jp)....

}

Figure 18. OneWayReceive aspect in RAL

public abstract aspect RRConversationAspect

 extends MessageAspect {

 public pointcut ConversationBegin(RRConversationJP jp)

 public pointcut ConversationEnd(RRConversationJP jp)

}

Figure 19. RRConversation aspect in RAL

public abstract aspect MultistepConversationAspect

 extends MessageAspect {

 public pointcut ConversationBegin(MultistepConversationJP jp)....

 public pointcut ConversationEnd(MultistepConversationJP jp)....
 ….

}

Figure 20. MultistepConversation aspect in RAL

Figure 21. Design of Multi-step State Machine

10

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

pointcuts that help programmers to define conversations for
total connection time on both responder and initiator sides.

The Conversation Begin On Initiator and
Conversation End On Initiator pointcuts crosscut
the state of request to establish and end a
connection on the initiator.

The Conversation Begin On Responder and
Conversation End On Responder pointcuts mark
the start and end of connection related
conversation on the responder.

We also define a helping initialization aspect,
which loads application specific state machines
and introduces conversation, role, protocol and
message identity information before the
application sends or receives any messages.

D. Re-usable Aspect Library (RAL)

Aspects in the RAL are also derived from the
base aspects in CommJ. They represent general
crosscutting concerns commonly found in
applications with significant communication

requirements. Figure 24 shows part of the
implementation of first one, i.e., Total Turn Around
Time Monitor. Note how the advice in this aspect
follows the Template Method pattern [12]. This
allows developers to quickly adapt it to the specific
needs of their application by overriding the Begin
and End methods. Other aspects in the RAL make
use of this and other reuse techniques so developer
can easily integrate them into existing or new
applications. We expect that RAL will continue to
grow as new generally applicable communication
aspects are discovered, implemented, and
documented.

E. Application-level Aspects

This section provides four examples of
communication and connection related crosscutting
concerns implemented with CommJ.

1) Measure Performance in Multi-step

Conversation Process
This example discusses the design and
implementation of measuring the total turnaround
time for a multistep conversation. Consider a
communication protocol involving three processes,
A, B, and C, wherein A starts a conversation by
sending a message to B and waits for a response.
When A receives a response from B, it sends a
message to C and waits for a response. When A
receives a response from C, it sends a final message
to both B and C. Figure 25 shows a finite state
machine for the A Process Role of this protocol. The
behaviors for B and C Process Roles are
considerably simpler and are shown in Figures 26
and 27, respectively.

The CommJ State Machine class includes a
Build Transitions method that allows developers to
define state machines in terms of states and

message-event transitions. Figure 28 shows the
implementation of this method to define a State Machine for
the A Process Role

public abstract aspect CompleteConnectionAspect extends ConnectionAspect {

 public pointcut ConversationBeginOnInitiator(ChannelJP _channelJp) :

 execution(* CompleteConnectionAspect.BeginOnInitiator(ChannelJP)) &&
args(_channelJp);

 public pointcut ConversationBeginOnResponder(ChannelJP _channelJp) :

 execution(* CompleteConnectionAspect.BeginOnListner(ChannelJP)) &&

 args(_channelJp);

 public pointcut ConversationEndOnResponder(ChannelJP _channelJp) :

 execution(* CompleteConnectionAspect.EndResponder(ChannelJP)) &&

 args(_channelJp);

 public pointcut ConversationEndOnInitiator(ChannelJP _channelJp) :
 execution(* CompleteConnectionAspect.EndInitiator(ChannelJP)) &&

 args(_channelJp);

 …

}

Figure 23. A Code Snippet of Complete Connection Aspect

public aspect TotalTurnAroundTimeMonitor

 extends MultistepConversationAspect{

 private long startTime = 0;
 private long turnAroundTime = 0;

 before(MultistepConversationJP jp): ConversationBegin(jp){

 startTime = System.currentTimeMillis();

 Begin(jp);

 }

 after(MultistepConversationJP jp): ConversationEnd(jp){

 long turnaroundTime = (System.currentTimeMillis() –

 startTime)/1000;

 End(multiStepJP);
 }

 public getTurnAroundTime { return turnAroundTime; }

 protected void Begin(MultistepConversationJP jp){

 // Specialization of this aspect should override the method

 }

 protected void End(MultistepConversationJP jp){

 // Specialization of this aspect should override the method

 }

 …

}

Figure 24. A code snippet of Total Turn Around Time Monitor

public abstract aspect ConnectionAspect {

 public pointcut Connect(ConnectEventJP _connectJp) :

 within(InitiatorJoinPointTracker) &&
 execution(* InitiatorJoinPointTracker.ChannelConnect(..))

 && args(_connectJp);

 public pointcut Accept(ConnectEventJP _connectJp) :

 within(ListenerJoinPointTracker) &&

 execution(void ResponderJoinPointTracker.ChannelAccept(..))

 && args(_connectJp);

 public pointcut CloseServer(CloseEventJP _closeJp) :

 within(ResponderJoinPointTracker) &&
 execution(void ResponderJoinPointTracker.CloseServerEventJointPoint(..))

 && args(_closeJp);

 public pointcut CloseClient(CloseEventJP _closeJp) :

 within(InitiatorJoinPointTracker) &&

 execution(void InitiatorJoinPointTracker.CloseClientEventJointPoint(..))

 && args(_closeJp);

}

Figure 22. A Code Snippet of Connection Aspect

11

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 For discussion purposes, assume that the performance
measurements are a rolling window of throughput and
average-conversation turn-around time statistics. Also,
assume that the core application considers a unit of work to
be the completion of a conversation that follows this
protocol. So, throughput can be measured for a unit of time,
say 1 minute, by simply counting the number of these
conversations completed in 1 minute. The average turn-
around time is the average of timespans from conversations
start times to conversations end times. The rolling window
keeps track of these statistics for the current minute and the
10 previous minutes. Figure 29 shows the key pieces of code
for an aspect that implement this performance measure
crosscutting concern.

First notice how the aspect is derived from Total Turn
Around Time Aspect and in doing so, it can reuse its
implementation of the conversation turnaround time concept
directly. Then, it adds the Stats array for holding the rolling
window of statistics and some additional behavior to the
ending of a conversation to compute the statistics.

2) Version Control Aspect
This example discusses the design and implementation of

an aspect that can coordinate communications when different
processes are following different versions of a protocol.
Imagine that the protocol discussed in the previous example
has evolved over time, resulting in multiple versions of the
messages’ syntax. If process A is following the updated

syntax rules and trying to communicate with B or C
processes that are following rules from prior versions, there
will be communication errors. Ideally, it would be nice to
allow seamless independent upgrading to any of the
processes without effecting the communications.

public aspect ProcessRoleA extends StateMachine{

....

 @Override

 public void buildTransitions(){

 addTransition("Initial", "S", "M1", "WaitingRspFromB");

 addTransition("WaitingRspFromB", "R", "M2", "ReceivedRspFromB");

 addTransition("ReceivedRspFromB", "S", "M3", "WaitingRspFromC");

 addTransition("WaitingRspFromC", "R", "M4", "ReceivedRspFromC");
 addTransition("ReceivedRspFromC", "S", "M5", "Final");

 }

}

Figure 28. State Machine Configuration for ProcessRoleA

public aspect MyAppPerformanceMonitor

extends TotalTurnAroundTimeMonitor {

 private ArrayList<Stats> statsList = new ArrayList(11);

 private int currentStatsIndex = 0;

 @Override

 public void End(MultistepConversationJP jp) {

 //Get number of elapsed minutes since begining of current Stats

 long elapsedMinutes = Min(Stats[currentStatsIndex]

.getMinutesSinceStartTime(),

 10);

 //Roll Stats window forward, if necessary

 for (int i=0; i<elapsedMinutes; i++) {

 currentStatsIndex++;
 if (currentStatsIndex>10){

 currentStatsIndex=0;

 Stats[currentStatsIndex].Reset();

 }

 currentStats.addCompleteConversation(getTurnaroundTime);

 }

 }

 class Stats {
 private long startTime;

 private int completeConvCount;

 private double avgTurnaround;

 public Stats() {Reset(); }

 public void Reset() {

 startTime = currentTime;

 completeConvCount = 0;

 avgTurnaround = 0;

 }

 public long getMinutesSinceStartTime() {
 //using current time, compute and return the number of minutes

 //since the start time of this Stats object. A zero means we still

 // in the same minute.

 }

 public void addCompleteConversation(double turnaroundTime) {

 avgTurnaround = ((completeConvCount*avgTurnaround) +

 turnaroundTime)/(++completeConvCount);

 }

 }
}

Figure 29. Performance Measure Crosscutting Concern

public aspect SendVersionControlAspect

extends OneWaySendAspect {

 void around(SendEventJP _sendEventJp):

ConversationBegin(_sendEventJp){

 //code that check and update the most recent version
 //of messages being sent

 }

}

Figure 30. Version Control Aspect for Messages Sent

public aspect ReceivedVersionControlAspect

extends OneWayReceiveAspect {

 void around(ReceiveEventJP _receiveEventJp):

ConversationBegin(_receiveEventJp) {

 //code that check and update the most recent version of
 // received message

 }

}

Figure 31. Version Control Aspect for Messages Received

Figure 25. State Machine for the A ProcessRole

Figure 26. State Machine for the B ProcessRole

Figure 27. State Machine for the C ProcessRole

12

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The application-level version control aspects in Figures
30 and 31 extend RAL communication aspects discussed in
Section IV.C. On sending the messages, One Way Send
Aspect ensures that it is sending the most recent version of
messages. Similarly, on receiving the messages,
OneWayReceiveAspect verifies that received message is
also in the most recent version.

3) Logging Responder and Initiator Connection Times

for FTP
This section describes aspects for logging responder and

initiator connection times for the processes using FTP for file
transfer. Assume that an FTP client establishes a TCP
connection to an FTP server. Then it requests the server for
transferring a file. The server receives the request. If the file
is too big to transfer in one send, it divides the file into
smaller chunks of fixed block sizes and sends each chunk
with its completion status. After sending the final chunk,
both the server and client close the connections.

As mentioned above, with FTP, there are two processes:
an FTP client and FTP server. The server and client
communicate using two messages, i.e., File Transfer Request
and File Transfer Response. FTP client sends a File Transfer
Request message to FTP server, after a connection has been
established between the two processes. The File Transfer
Request message contains the requested file name. When
FTP server receives the request, it starts sending the response
message (File Transfer Response) to the client, which
includes the file information, data chunk number and its
completion status. Following paragraphs describe related
application-level aspects for initiator and responder.

Aspect - Logging Initiator Connection Time. This is an
application-level connection aspect, developed using the
RAL connection aspect, i.e., Complete Connection Aspect in
Section IV.C. It logs the time between initiating connection
request to the responder (FTP server) and ending of
connection on the initiator (FTP client) using Conversation
Begin On Initiator and Conversation End On Initiator
pointcuts (see Figure 32).

Aspect - Logging Responder Connection Time. This is an
application-level connection aspect, developed using RAL
connection aspect, i.e., Complete Connection Aspect in
Section IV.C. It logs the time period between acceptance of
connection request from initiator and ending of connection
on the responder using Conversation Begin On Responder
and Conversation End On Responder pointcuts (see Figure
33).

V. EXTENDED QUALITY MODEL

To measure the maintainability and reuse, we use
Sant’Anna’s Comparison Quality Model (CQM) [21] and
extends it with new factors and internal attributes, forming
the Extended Quality Model (EQM); see Figure 34. We use
Sant’Anna’s model because it is more generalized to
measure different concerns of reuse and maintenance as
compared to Lopes’ work [22]. Additionally, this model is
strong enough to be applied to different types of
implementations, discussed in this paper.

Sant’Anna builds the CQM using Basili’s General
Quality Methodology (GQM) [23], which provides a three-
step framework: (1) list the major goals of the empirical

public aspect ResponderTimeAspect extends CompleteConnectionAspect{

 private long startTime = 0;

 static String timingInfo = "";

 Object around(ChannelJoinPoint _channelJp) : ConversationBeginOnResponder(_channelJp){

 startTime = Systems.currentTimeMillis();

 return proceed(_channelJp);

 }

 Object around(ChannelJoinPoint _channelJp) : ConversationEndOnResponder(_channelJp){

 String Time = String.format("%.3g%n", bew Double(System.currentTimeMillis() - startTime)/1000);

 timingInfo = "Total Time of responder " + thisJoinPointStaticPart.getSignature().getName()
+ " localEP turn-around time (nano seconds) : " + Time + "\n";

 return proceed(_channelJp);

 }

}

Figure 33. Fourth Code Snippet of TurnAroundTimeAspect

public aspect InitiatorTimeAspect extends CompleteConnectionAspect {

 private long startTime = 0;

 static String timingInfo = "";

 before(ChannelJoinPoint _channelJp) : ConversationBeginOnInitiator(_channelJp) {

 startTime = Systems.currentTimeMillis();

 }

 after(ChannelJoinPoint _channelJp) : ConversationEndOnInitiator(_channelJp) {

 String Time = String.format("%.3g%n", bew Double(System.currentTimeMillis() - startTime)/1000);

 timingInfo = "Total Time of Initiator " + thisJoinPointStaticPart.getSignature().getName() + " localEP "

+ channelJp.getConnectJp().getLocalEP()
 + " turn-around time (nano seconds) : " + Time + "\n";

 }

}

Figure 32. Third Code Snippet of TurnAroundTimeAspect

13

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

study, (2) derive from each goal the questions that must be
answered to determine if the goals have been met, and (3)
decide what must be measured to be able to answer the
questions adequately.

Santa’Anna organized the CQM into four components:
qualities, factors, attributes, and metrics. The qualities are the
high level characteristics that we want to primarily observe
in our software. Factors are the secondary quality attributes
(more granular than qualities) that influence the defined
primary attributes, i.e., qualities. Internal attributes are
properties of software systems related to well-established
software-engineering principles, which in turn are essential
to the achievement of the qualities and their respective
internal factors. Finally, the metrics are ways to measure the
attribute.

We also made a few enhancements in EQM and believe
that doing so will further strengthen the model. First, our
model creates a dependency of maintainability and
reusability upon flexibility and understandability factors.
Secondly, because our experiment involves crosscutting
concerns, so we introduced two important missing factors,
i.e., code obliviousness [24] and localization of design
decisions [25]. Research and practice also validate that
modular code is more maintainable [26] when obliviousness
and localization of design decisions are present.

A. Qualities

Qualities are the highest level of abstractions in EQM.
For our experiment with CommJ, we considered
maintainability and reusability would be the two most
important qualities to focus on.

 Reusability: Reusability exists for a given software
element, when developers can use it for the
construction of other elements or systems [27].

 Maintainability: Maintainability is the activity of
modifying a software system after initial delivery
[28]. It is the ease with which software components
can be modified.

B. Factors

Following are the list of factors in our EQM.

 Understandability: indicates the level of difficulty
for studying and understanding a system design and
code.

 Flexibility: indicates the level of difficulty for
making drastic changes to one component in a
system without any need to change others.

 Localization of Design Decisions: indicates the level
of information hiding for a component’s internal
design decisions. Hence, it is possible to make
material changes to the implementation of a
component without violating the interface [29].

 Obliviousness: is a special form of low coupling
wherein base application functionality has no
dependencies on crosscutting concerns [21].

Localization of design decisions, and code obliviousness

were not part of CQM. However, we introduced them into
our EQM for two reasons. First, in his landmark paper [25],
Parnas proposes three important characteristics of modular
code: understandability, flexibility and localization of design
decisions (information hiding). Hence, reasoning
maintainability and reusability only in terms of
understandability and flexibility is not complete.
Introduction of localization of design decisions is also
equally important. Second, by the time Parnas proposed the
definition of modular code, obliviousness had not been
invented as a fundamental design principle. However, in the
context of our research experiment, which depends heavily
on measuring crosscutting concerns, code obliviousness
becomes critical.

C. Attributes

Following are the internal attributes in our EQM.

 Separation of Concerns (SoC): defines ability to
identify, encapsulate and manipulate those parts of
software that are relevant to a particular concern.

 Coupling: is an indication of the strength of
interconnections between the components in a
system. In other words, it measures number of
collaborations between components or number of
messages passed between components.

 Cohesion: is a measure of the closeness of
relationship among the internal components of a
method, class, subsystem, etc.

 Size: represents the length of a software system’s
design and code.

 Complexity: characterizes how and how much
components are structurally interrelated to one
another.

 Tangling: exists when a single component includes
functionality for two or more concerns, and those
concerns could be reasonably separated into their
own components.

 Scattering: exists when two or more components
include similar logic to accomplish the same or
similar activities. The most serious causes of
scattering occur when design decisions have not
been properly localized.

Figure 34. Extended Quality Model (EQM)

14

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Measurement Metrics

Figure 35 presents the metrics the EQM uses to measure
each of the internal attributes. Detail descriptions of these
metrics follow below.

1) SoC Metrics
EQM includes the following metrics for SoC and code

scattering: Concern Diffusion of Application (CDA) and
Concern Diffusion over Operations (CDO). CDA counts the
number of primary components (a class or aspect) whose
main purpose is to contribute to the implementation of a
concern. It counts the number of components that access the
primary components by using them in attribute declarations,
formal parameters, return types or method calls. CDO counts
the number of primary operations whose main purpose is to
contribute to the implementation of a concern. It also counts
the number of methods and advices that access any primary
component by calling their methods or using them in formal
parameters, return types, and it throws declarations and local
variables. Constructors also are counted as operations.

2) Coupling Metrics
The EQM uses the following metrics for measuring

coupling: Coupling between Components (CBC), Depth
Inheritance Tree (DIT) and Number of Children (NOC).
CBC counts the number of other classes and aspects to
which a class or an aspect is coupled. On the other hand,
excessive coupling of AspectJ concerns increases to CBC,
which can be detrimental to the modular design and prevent
reuse and maintenance. DIT counts how far down in the
inheritance hierarchy a class or aspect is declared. As DIT
grows, the lower-level components inherit or override many
methods. This leads to difficulties in understanding the code
and design complexity when attempting to predict the
behavior of a component. NOC counts the number of
children for each class or aspect. The subcomponents that are
immediately subordinate to a component in the component
hierarchy are termed as its children. However, as NOC
increases, the abstraction represented by the parent
component can be diluted if some of the children are not
appropriate members of the parent component.

3) Cohesion Metrics
The EQM uses the Lack of Cohesion in Operations

(LCO) for measuring cohesion and tangling among
components.

Specifically, LCO measures the lack of cohesion of a
class or aspect by looking at lines of code within method and

advice pairs, which do not access the same instance
variables. If the related methods do not access the same
instance variable, they logically represent unrelated
components and hence should be separated.

4) Complexity Metrics
McCabe’s Cyclomatic Complexity (CC) [30] is the

EQM’s chosen metric for measuring complexity.
Mathematically, the cyclomatic complexity of a structured
program is defined with reference to the control flow graph
of the program, a directed graph containing the basic blocks
of the program, with an edge between two basic blocks if
control may pass from the first to the second. The
complexity M is then defined as:

M = E − N + 2P
Where:
E = the number of edges of the graph
N = the number of nodes of the graph
P = the number of connected components (exit nodes).

CC measures the logical complexity of the program. The

metric defines the number of independent paths and provides
you with an upper bound for the number of test cases that
must be conducted to ensure that all statements have been
executed at least once. High value of CC affects program
maintenance and reuse.

5) Obliviousness Metrics
The EQM introduces the following new metrics for

obliviousness metrics: Number of Inter-type Declarations
(NITD), Aspect Scattering over Components (ASC), and
Aspect Scattering over Component Operations (ASCO).
NITD counts the number of inter-type declarations. A higher
value of NITD indicates a tighter coupling between the
aspect and application components. ASC counts the number
of aspect components scattered over application components.
It measures the tangling of aspects in the application
components. More tangling of aspects in the program makes
the original application less reusable and maintainable.
ASCO counts the number of aspect components scattered
over application component operations. ASC (discussed
above) gives a high-level overview of the application
tangling in the aspect components but ASCO provides more
insight on operations-level tangling of applications inside
aspect components.

6) Size Metrics
The EQM uses the following size metrics: Lines of Code

(LOC), Method Lines of Code (MLOC), Number of
Operations (NO), Number of Parameters (NP), Vocabulary
Size (VA) and Weighted Operations per Component (WOC).

LOC counts the lines of code. The greater the LOC, the
more difficult it is to understand the system and harder to
manage the software reuse and maintenance. MLOC counts
the method lines of code. Kremer [31] states that the greater
the average of MLOC for a component, the more complex
the component would be. NO counts the number of
operations in a component. Objects with large number of
operations are less likely to be reused. Sometimes LOC is
less but NO is more, which indicates that the component is
more complex. NP counts the number of parameters for

Figure 35. Measurement Metrics in EQM.

15

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

methods in each class or aspect. NP is an Operation-Oriented
Metric. A method with more parameters is assumed to have
more complex collaborations and may call many other
method(s). VA counts the number of system components,
i.e., the number of classes and aspects into the system. Sant’
Anna [21] points out that if number of components increase,
it is an indication of more cohesive and less tangled set of
ADT.

Finally, WOC metric measures the complexity of a
component in terms of its operations. WOC does not specify
the operation complexity measure, which should be tailored
to the specific contexts. The operation complexity measure is
obtained by counting the number of parameters of the
operation, assuming that an operation with more parameters
than another is likely to be more complex. It is an object-
oriented design metric, proposed by Kemerer [31] and sums
up the complexity of each method. The number of methods
and complexity is an indication of how much time and effort
is required to develop and maintain the object. The larger the
value of weighted operations, the more complex the program
would be.

VI. HYPOTHESES

 CommJ’s theoretical foundation and design lead to the
following seven hypotheses, with respect to comparing the
reusability and maintainability of IPC software built with
CommJ instead of just AspectJ.

 Hypothesis 1: If crosscutting IPC concerns are
effectively encapsulated in CommJ aspects, then the
software has better separation of concerns and less
scattering (as described by CDA, CDO in Section
V.D.1.) than equivalent systems developed with AOP
design techniques.

 Hypothesis 2: If crosscutting IPC concerns are
encapsulated in CommJ aspects, then the software has
lower coupling (as described by CBC, DIT, NOC in
Section V.D.2) than equivalent systems developed with
AOP design techniques.

 Hypothesis 3: If crosscutting IPC concerns are
encapsulated in CommJ aspects, then the software has
higher cohesion and less tangling (as described by LCO
in Section V.D.3. than equivalent systems developed
with AOP design techniques.

 Hypothesis 4: If crosscutting IPC concerns are
encapsulated in CommJ aspects, then the software is not
significantly complex (as described by CC in Section
V.D.4) than equivalent systems developed with AOP
design techniques.

 Hypothesis 5: If crosscutting IPC concerns are
encapsulated in CommJ aspects, then the software is
significantly more oblivious (as described by NITD,
ASC, ASCO in Section V.D.5) than equivalent systems
developed with AOP design techniques.

 Hypothesis 6: If crosscutting IPC concerns are
encapsulated in CommJ aspects, then the software is not
significantly larger (as described by LOC, MLOC, NO,
NP, VA, WOC in Section V.D.6) than equivalent
systems developed with AOP design techniques.

 Hypothesis 7: If crosscutting communication concerns
are encapsulated in CommJ aspects, then extension for
new requirements touches fewer components or lines of
code (as measured by Eclipse IDE diff function) than
equivalent systems developed with AOP design
techniques.

VII. EXPERIMENT METHOD

The following sections briefly describe the steps of a
preliminary experiment that authors used to test the
hypotheses.

A. Experimental Planning and Approval

In the first step, we developed a plan and submitted an
application for conducting this Human Research Experiment
to the IRB [32], and received approval. Each of us also had
to pass an online human research experiment-training course
offered through Collaborative Institutional Training Initiative
(CITI) [33].

B. Selection of Applications and Crosscutting Concerns

We selected sample software applications (see Table I)
that were multithreaded, distributed, and used either JDK
sockets or channels for communications. The applications
were diverse in the way they implemented IPC and therefore
provide good coverage of different types of communication
heterogeneities. Finally, each application supported more
than one communication protocol.

Since the experiment would eventually require
developers to modify or extend applications for requirements
that represented communication-related crosscutting
concerns, our methodology included a step, which
systematically selected our representative crosscutting
concerns. Developers would have to apply each of these to
the applications, individually. Additionally, to minimize
noise in our data, we wanted to make sure that these
crosscutting concerns were sufficiently simple that novice
programmers could understand them and come up with a

TABLE I. SELECTED SAMPLE APPLICATIONS

Application Name Description

Levenshtein Edit-Distance
Calculator (LD)

A server will calculate the LD between two input strings, provided by the client,
over a connection-oriented communication.

File Transfer Program (FTP) A file transfer protocol over connection-oriented communication.

Weather Station Simulator (WS) A simple weather station simulator, supported by a Transmitter and a Receiver.

16

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

solutions in less than 10 hours. We also come up with a list
of possible crossing concerns that the subject programmers
would have to implement in the applications (See Table II).
Those marked with “**” represent the ones selected for the
experiment.

C. Recruitment and Training of Participants

To transparently recruit the candidates, we sent invitation
letters and recruited seven volunteer developers who met the
participation criteria, specifically they were experienced in
object-oriented software development, Java, and with
software-engineering design principles, such as modularity
and reusability. We then randomly organized them into two
study groups: A and B. Group A would use AspectJ only and
Group B would use CommJ on top of AspectJ. Next, the
participants completed a survey that assessed their
background and skill levels. We also provided AOP training
to developers in Group A, and worked through some practice
applications with them. Similarly, we trained Group B
developers in CommJ, and worked through some practice
applications with them.

D. Experiment Phases

In the first phase, participants filled a pre-implementation
questionnaire, developed the application using initial
requirements, recorded hourly journals and completed a post
implementation questionnaire. In the second phase, we
requested enhancements (sample applications and
crosscutting concerns), had them revised their
implementation accordingly, and then collected those
software systems. Participants again completed the pre and
post questionnaire and wrote their experiences in the hourly
journals.

Finally, after the second phase, we analyzed and
evaluated the reusability and maintainability using various
software artifacts, which included surveys, questionnaires,
hourly journals, and actual code.

We used both manual computation and automated tools
to compute measurements for all 16 metrics. Experiment
generated a total of 28 software systems. With 16 code
metrics in the EQM, we had a total of 448 measurements,
280 computed automatically with a tool [34] and 168
calculated manually.

VIII. EXPERIMENT RESULTS AND CONCLUSIONS

This section presents the data collected from the
experiment and our results in context of the seven
hypotheses. In the following graphs, the vertical axes
represent the measurements, and the horizontal axes
represent the activities of the experiment. For each activity
there are two bars: a blue bar is for the results of AspectJ-
only group and a green bar for CommJ group.

A. Separation of Concerns

Hypothesis #1 theorized that if crosscutting
communication concerns are effectively encapsulated in
CommJ aspects, the software has better separation of
concerns and less scattering as measured by CDA and CDO
than equivalent systems developed with AOP design
techniques. In other words, the CDA and CDO metric values
for CommJ should be less than AspectJ (See Section V.D.1.
for details on metrics). We found CDA and CDO did
decrease for the CommJ group. In Figure 36, the vertical
axes represent the CDA and CDO measurements, and the
horizontal axes represent the four activities of the
experiment.

Not only were CDA and CDO values reduced using
CommJ, but they were zero in all four activities of the
experiment. The reason for phenomena is that CommJ
pointcuts provide total obliviousness between the application
and communication-related crosscutting concern. In AspectJ,
components and their operations for crosscutting concern
were significantly more diffused in the application because
the pointcuts had to be tied to programming constructs
instead of communication abstractions.

TABLE II. SELECTED SAMPLE CROSSCUTTING CONCERNS

Aspect Name Description

Version Compatibility**

This concern adapted one version of the message to another, so processes running

different versions could still communicate with each other. The crosscutting

concern included knowledge of converting one version to another and conversely

Measuring Performance**
It measured some performance related statistics for message-based

communications between a sender and receiver

Symmetric-Key Encryption**
It encrypted the communication between a sender and receiver using symmetric-

key encryption

NetworkNoiseSimulator Allows developers to add noise, message log, and message duplication to network

communications, which is useful for system testing

NetworkLoadBalancer Helps programmers balance message loads across two more communication

channels

MessageLoggingByConversation Log messages by conversations in a developer-defined format and repository

** Selected cross-cutting concerns for the experiment

17

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

From these results, we can conclude that Hypothesis#1
holds true for better separation of concerns in CommJ
implementations than in AspectJ.

B. Coupling

Hypothesis #2 theorized that if crosscutting
communication concerns are effectively encapsulated in
CommJ aspects, the software has lower coupling as
measured by CBC, DIT and NOC than equivalent systems
developed with AOP design techniques. In other words,
CBC, DIT and NOC metric values for CommJ should be less
than AspectJ (see Section V.D.2. for details on metrics).
Figure 37 indicates that CommJ implementations
significantly reduced the values of CBC, DIT and NOC,
respectively, as compared to AspectJ implementations in all
the four phases of the experiment. CommJ crosscutting
concerns did not maintain any direct relationship with the
application components and thus had a lower CBC value.
However, in AspectJ, excessive coupling of concern with the
application increased CBC, which hindered reuse and
maintenance.

The reason for higher DIT and NOC values in AspectJ
was that the participants preferred to override parent methods
in crosscutting concerns to share data structures across aspect
and application components during message passing.
However, CommJ provides a comprehensive set of pointcuts,
which fully encapsulates the IPC abstractions, and thus
participants did not need to override or inherit the aspect
components. From these results, we can conclude that

Hypothesis#2 holds true for reduced coupling in CommJ
than in AspectJ.

C. Cohesion

Hypothesis #3 theorized that if crosscutting concerns are
effectively encapsulated in CommJ aspects, the software has
higher cohesion (as described by LCO in Section V.D.3.)
than equivalent systems developed with AOP design
techniques. In other words, the LCO metric value for CommJ
should be less than AspectJ. The results shown in Figure 38
demonstrates that CommJ maintains a lower value for LCO
than AspectJ in all four phases of the experiment. Sant’Anna
[21] says that LCO measures the degree to which a
component implements a single logical function. These
results indicate that CommJ implementations were more
cohesive and logical than AspectJ, hence have a lower LCO
value. Therefore, we conclude that Hypothesis #3 holds true
for increased cohesion in CommJ than in AspectJ.

D. Complexity

Hypothesis #4 theorized that if crosscutting
communication concerns are effectively encapsulated in
CommJ aspects, the software is significantly less complex
(as described by CC in Section V.D.4.) than equivalent
systems developed with AOP design techniques. In other
words, the CC value for CommJ should be less than AspectJ.
Figure 39 shows that the value of CC is smaller for CommJ
than AspectJ, because CommJ hides complex IPC
abstractions, which result in simple conditional statements
and less tangled code.

 From these results, we conclude that Hypothesis #4
holds true for less complex software in CommJ than AspectJ.

Figure 36. CDA, CDO coverage over phases.

Figure 37. CBC, DIT, NC coverage over phases.

Figure 38. LCO coverage over phases.

Figure 39. CC coverage over phases.

18

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

E. Obliviousness

Hypothesis #5 theorized that if crosscutting
communication concerns are effectively encapsulated in
CommJ aspects, the software will be more oblivious (as
described by NITD, ASC, ASCO in Section V.D.5.) than
equivalent systems developed with AOP design techniques.
In other words, NITD, ASC, ASCO for CommJ should be
less than AspectJ. Figure 40 shows that CommJ
implementations significantly reduced the values of NITD,
ASC and ASCO metrics.

In comparison with AspectJ, the reason for having a zero
value for NITD in CommJ was that the participants used IPC
constructs and did not need to use inter-type declarations
(ITD) for sharing of data structures between application and
aspect component. Significant reduction in ASC and ASCO
was due to the layers of indirection between the application
and aspect components, which CommJ provides but are
missing in AspectJ. Therefore, we conclude that Hypothesis
#5 holds true for less oblivious software concerns in CommJ
than AspectJ.

F. Reduced Size

Hypothesis #6 theorized that if crosscutting
communication concerns are effectively encapsulated in
CommJ aspects, the software is not significantly larger (as

described by LOC, MLOC, NO, NP, WOC, VA in Section
V.D.6.) than equivalent systems developed with AOP design
techniques. In other words, LOC, MLOC, NO, NP, WOC
metrics values for CommJ should be less and VA be more
than AspectJ. Figure 41 shows that CommJ implementations
significantly reduced the metrics values for LOC, MLOC,
NP, NO and WOC in all phases of the experiment.

In comparison with AspectJ, CommJ participants found a
more neat and clean set of pointcuts in IPC abstractions,
which helped them to code the crosscutting concerns in less
LOC. CommJ conceptually models various general network
and distributed abstractions using UMC (Section III.A.) into
rich set of communication and connection join points along
with general purpose family of conversations, which helped
the participants to implement the application crosscutting
concerns in simpler and more logical method bodies, with no
extra lines of code and less number of operations. Hence it
reduced MLOC, NO, NP and WOC.

As predicted by the above hypothesis, results shown in
Figure 41 gives sufficient evidence that average VA for all
programs was more for CommJ than AspectJ. Although the
number of components were more in CommJ
implementations, they were more cohesive. Thus, from these
results, we can conclude that Hypothesis#6 holds true for
improved code size in CommJ than in AspectJ.

G. Reuse and Maintenance of Concern

Hypothesis #7 theorized that if crosscutting
communication concerns are effectively encapsulated in
CommJ, the crosscutting concern will require a smaller
number of changes (as measured by CR, CM as follow) than
equivalent systems developed with AOP design techniques,
where CR and CM are as follows:

 CR. Number of changes required to reuse the
concern for another application. The eclipse IDE
calculates this metric.

 CM. Number of changes required to maintain the
concern. The eclipse IDE calculates this metric.

Figure 41. LoC, MLoC, NP, NO, WoC coverage over phases.

Figure 40. ASC, ASCO, NITD coverage over phases.

19

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In other words, CR, CM values for CommJ should be
less than AspectJ. From the results shown in Figure 42, we
can see that CommJ implementation significantly reduced
the changes required to reuse the previous implementations
in the second phase of the experiment than AspectJ. CommJ
aspects were overall more oblivious, logical and independent
from the base application than AspectJ concerns and so they

reduced the CR value in all four phases of the experiment.
Figure 43 provides another graphical representation to

analyze reuse for AspectJ and CommJ. The light green
colored-graphs represent scattering in CommJ (aspects only)
and light blue colored-graphs represent AspectJ
implementations. The scattered points in graph indicate the
number of changes for reusing a concern with CommJ and
AspectJ in different activities of Phases 1 and 2, respectively.
The scattered points in blue represent ASC and in red
represent ASCO metrics results. Overall, the results of the
graph indicate that ASC and ASCO remained zero for all the
activities of CommJ (highly reusable), but it was highly
scattered in AspectJ. The reason for less scattering is
discussed in Section VIII.A above.

 Figure 44 shows the number of changes required to
maintain the program in its initial activity (Activity 1 of
Phase 1) to its maintenance activity (Activity 2 of Phase 2),
reduced significantly for CommJ than AspectJ. The
difference between CR and CM is that in CR we are only
considering changes in the concern; however, in CM we are
interested in number of changes both in the concern and
application. We found that CommJ concerns were overall
more oblivious, logical and independent from the base
application than AspectJ concerns, and so they have reduced
CM values in all four phases of the experiment.

Figure 42. CR over Extensions

Figure 43. ASC and ASCO over Phases in AspectJ and CommJ

20

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Figure 45 presents another representation for
maintenance. The light green colored-graphs represent
scattering in CommJ and light blue colored-graphs represent
AspectJ respectively. The scattered points in blue, red and
green represents CDA, CDO and NITD metrics results
respectively. The points in the above graph indicate the
number of changes for maintaining a program with CommJ

and AspectJ in different activities of Phases 1 and 2,
respectively. The results of the graph indicate that CDA,
CDO and NITD were zero for all the activities of CommJ
(highly maintainable) but were highly scattered in AspectJ.
The reason for reduced values for CDA, CDO and NITD is
already discussed in Section VIII.A and Section VIII.E,
respectively.

From these results, we conclude that Hypothesis#7 holds
true for more reusable and maintainable software in CommJ
than AspectJ.

H. Other Useful Observations

Besides analysis of the hypotheses, we also collected a
handful observations from participants’ questionnaires and
daily journals during each phase of the experiment.

In regards to understandable code, we found that 100%
of AspectJ participants in the Phase 1 were confused in
identifying pointcuts for implementing the given extension
part, and 33% of the same participants were still confused
during Phase 2. On the other hand, none of the CommJ
participants struggled with identifying pointcuts during either
phase. This tells us that CommJ implementation provides
simple pointcuts with understandable IPC abstractions.

For reusability, we observed that 67% of the AspectJ
participants in Phase 1 agreed that their applications might

Figure 44. CM over phases

Figure 45. CDA, CDO and NITD in AspectJ and CommJ

21

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

not run after removing the extension part from the original
application. This percentage further increased to 100% in
Phase 2. On the other hand, none of the CommJ participants
made this observation for either phase. This indirectly
reconfirms Hypothesis #7, which states that CommJ
implementations help in developing more reusable
crosscutting concerns.

Similarly, for maintainability, 100% of the AspectJ
participants said that their changes introduced new
dependencies in the original sample application after both
phases. However, none of the CommJ participants felt that
they introduced any dependencies during either phase. So,
this reconfirms our Hypothesis #7, which asserts that CommJ
implementation helps in developing more maintainable
programs.

The survey also provides information on frequency of
bugs. Specifically, 67% of the participants in AspectJ group
said that their extensions introduced new failures, i.e., bugs,
into the application code during Phase 1. This percentage
further increased to 100% for Phase 2. However, only 25%
of the CommJ participants in Phase 1 and Phase 2 made this
statement. This tells us that CommJ’s modularization and
obliviousness decreased the failures and debugging time.

IX. SUMMARY AND FUTURE WORK

Our research introduces the notation of communication
and connection aspects and discusses an AspectJ framework,
namely CommJ, for weaving aspects into IPC. It then
describes the design and implementation of some of CommJ
components, such as the base aspects. It also provides an
overview of a toolkit, i.e., the RAL that consists of reusable
communication aspects and doubles as a proof of concept,
since these aspects can be directly applied to a wide range of
existing applications. We believe that CommJ is capable of
encapsulating a wide range of communication-related and
connection-related crosscutting concerns in aspects. We hope
to gather more empirical evidence of the CommJ’s value by
increasing the number of aspects in the RAL and by
continuing to expand the number and types of applications
that use CommJ. We also conducted a research experiment
to compare AspectJ with CommJ for various software design
attributes related to reuse and maintenance through an
extended quality model. Findings from this initial
experiment revealed that crosscutting concerns programmed
in CommJ delivered more modular, reusable and
maintainable programs. We hope to pursue larger and varied
software-engineering productivity experiments to verify this
belief.

We envision a number of extensions or spins off to
CommJ. First, distributed transaction processing systems is
another high-level programming concept that can be
unnecessarily complex when crosscutting concerns, e.g.,
logging, concurrency controls, transaction management, and
access controls, are scattered throughout the transaction
processing logic or tangled into otherwise cohesive modules.
We can use the same approach that we used for CommJ to
extend AspectJ for the weaving of crosscutting concerns in
transactions. Second, CommJ can also be extended for
distributed pointcuts that would simplify the implementation

of even more complex crosscutting concerns, such as object-
replication, migration, or fragmentation in a distributed
system.

Finally, CommJ has the potential to be very useful for
testing various kinds of time-sensitive communication
related errors in IPC. We plan to explore this potential and
additional experiments focus on quality of service and timing
issues related to IPC.

REFERENCES

[1] A. Raza, S. Clyde, and J. Edison, “Communication Aspects
with CommJ: Initial Experiment Show Promising
Improvements in Reusability and Maintainability,” In ICSEA
2014, Nice, France.

[2] A. Raza and S. Clyde, “Weaving Crosscutting Concerns into
Inter-Process Communication (IPC) in AspectJ,” In ICSEA
2013, Venice, Italy, pp. 234-240.

[3] L.D. Benavides Navarro et al., “Invasive patterns for
distributed programs,” In OTM Confederated Int. Conf.,
Vilamoura, Portugal, 2007, pp. 772-789.

[4] G. Kiczales et al., “Aspect-oriented programming,”
(ECOOP), 1997, pp. 220-242.

[5] ApectJ, http://www.eclipse.org/aspectj/, last updated on May
13, 2016.

[6] AspectWorkz2, http://aspectwerkz.codehaus.org/ss, last
updated on May 13, 2016.

[7] JBoss AOP, http://www.jboss.org/jbossaop, last updated on
May 13, 2016.

[8] Spring AOP, org.springframework, last updated on May 13,
2016.

[9] Y. Coady et al., “Can AOP support extensibility in client-
server architectures?” in Proc. ECOOP Aspect-Oriented
Programming Workshop, Budapest, Hungary, 2001.

[10] C. Clifton and G T. Leavens, “Obliviousness, modular
reasoning, and the behavior subtyping analogy,” In Proc. 2nd
Int. Conf. AOSD SPLAT Workshop, Boston, MA, 2003, pp.
1-6.

[11] C. Sant'Anna, A. Garcia, C. Chavez, C. Lucena, and A. Von
Staa, “On the Reuse and Maintenance of Aspect-Oriented
Software: An Assessment Framework,” in 17th Brazilian
Symposium on Software Engineering (SEES 2003), Manaus,
Brazil (2003), PUC-RioInf.MCC26/03.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design
Patterns: Elements of Reusable Object-Oriented Software,”
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA. 1995.

[13] G. Kiczales and M. Mezini, “Aspect-oriented programming
and modular reasoning,” In Proc. 27th Int. Conf. Software
Engineering, St. Louis, MO, 2005, pp. 49-58.

[14] R. Douence, D.L. Botlan, J. Noye, and M. Sudholt,
“Concurrent aspects,” In. Proc. 5th Int. Conf. GPCE,
Portland, OR, 2006, pp. 79-88.

[15] W. De Meuter, “Monads as a theoretical foundation for
AOP”, In Int. Workshop on AOP at 11th ECOOP, 1997,
Springer-Verlag. doi: 10.1.1.2.4757.

[16] P. Tarr, H. Ossher, W. Harrison, and S.m. Sutton, “N degrees
of separation: Multi-dimensional separation of concerns,” In
Proc.21st Int. Conf. Software Engineering, Los Angeles, CA,
1999, pp. 107-119.

[17] H. Ossher and P.Tarr, “Multi-dimensional separation of
concerns and the hyperspace approach,” IBM, Yorktown
Heights, NY, IBM Res. Rep. 21452, April,1999.

[18] W. Harrison and H. Ossher, “Subject-oriented programming -
A critique of pure objects,” In Proc. 8th Conf. on Object-

22

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Oriented Programming Systems, Languages, and
Applications, Oakland, CA,1993, pp. 411-428.

[19] S. Chiba, “Load-time structural reflection in Java,” In
Proc.14th ECOOP, Cannes, France, 2000, pp. 313-336.

[20] T.J. Brown, I. Spence, and P. Kilpatrick, “Mixin
programming in Java with reflection and dynamic
invocation,” In Proc. 2nd Workshop on Intermediate
Representation Engineering for Virtual Machines, Dublin,
Ireland, 2002, pp. 25-34.

[21] C. Sant’Anna, A. Garcia, C. Chavez, C. Lucena, and A. Staa,
“On the reuse and maintenance of Aspect-Oriented Software:
An assessment framework,” In Proc. 17th Brazilian Symp.
Software Engineering, Manaus, Brazil, 2003, doi: PUC-
RioInf, MCC26/03.

[22] C. Lopes, “D: A language framework for distributed
programming,” PhD. dissertation, Coll. Comp. Sci.,
Northeastern University, Boston, MA, 1997.

[23] R. Basili, G. Caldiera, and H. Rombach, “The goal question
metric approach,” In Encyclopedia of Software Engineering,
vol. 2, J.J. Marciniak, Ed. Hoboken, NJ: Wiley, 1994, pp.
528-532.

[24] C. Kaewkasi and J. R. Gurd, “A distributed dynamic aspect
machine for scientific software development,” In Proc.1st
Workshop on VMIL, 2007, ACM. doi:
10.1145/1230136.1230139.

[25] D. L. Parnas, “On the criteria to be used in decomposing

systems into modules,” Commun. ACM, vol. 15, no.12, pp.
1053-1058, Dec. 1972.

[26] G. Kiczales and M. Mezini, “Aspect-oriented programming
and modular reasoning,” In Proc. 27th Int. Conf. Software
Engineering, St. Louis, MO, 2005, pp. 49-58.

[27] J. McCall, P.K. Richards, and G.F. Walters, “Factors in
software quality,” NTIS, Alexandria, VA, Tech. Rep. AD-
A049-014, 015, 055, 1977.

[28] IEEE Standard for Software Maintenance, IEEE Standard
1219-1998, 1998.

[29] R.E. Filman and D. P. Friedman, “Aspect-oriented
programming is quantification and obliviousness,” IEEE
RIACS Tech. Rep. 01.12, May 2001.

[30] T.J. McCabe, “A complexity measure,” IEEE Trans. Softw.
Eng., vol. 2, no. 4, pp. 308-320, Dec. 1976.

[31] S.R. Chidamber and C. F. Kemerer, “A metrics suite for
object-oriented design,” IEEE Trans. Softw. Eng., vol. SE-20,
no. 6, pp. 476–493, June 1994.

[32] Institutional Review Board (IRB), http://rgs.usu.edu/irb,
retrieved: Mayss 13, 2016.

[33] Collaborative Institutional Trainig (CIIT),
https://www.citiprogram.org, retrieved: May 13, 2016.

[34] Metrics plugin, http://metrics2.sourceforge.net, retrieved:
May 13, 2016.

23

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

