
Extending Interface Roles to Account for Quality of Service Aspects in the DAiSI

Dirk Herrling, Andreas Rausch and Karina Rehfeldt

Technical University Clausthal
Julius-Albert-Straße 4,

38678 Clausthal-Zellerfeld, Germany
email: dirk.herrling@tu-clausthal.de

andreas.rausch@tu-clausthal.de
karina.rehfeldt@tu-clausthal.de

Abstract—Dynamic adaptive systems are systems that change
their behavior according to the needs of the user at run time.
Since it is not feasible to develop these systems from scratch every
time, a component model enabling dynamic adaptive systems
is called for. Moreover, an infrastructure is required that is
capable of wiring dynamic adaptive systems from a set of
components in order to provide a dynamic and adaptive behavior
to the user. To ensure a wanted, emergent behavior of the
overall system, the components need to be wired according to
the rules an application architecture defines. In this paper, we
present the Dynamic Adaptive System Infrastructure (DAiSI). It
provides a component model and configuration mechanism for
dynamic adaptive systems. To address the issue of application
architecture conform system configuration, we introduce interface
roles that allow the consideration of component behavior during
the composition of an application. Moreover, we extend the
interface roles and application specifications by a quality of
service concept. This enables a component to not only require
a syntactical and semantical correct wiring, but also to demand
the – from its viewpoint – best service.

Keywords–dynamic adaptive systems; component model; adap-
tation; interface roles; application architecture awareness.

I. INTRODUCTION

This paper is an extended version of a paper presented at
the Seventh International Conference on Adaptive and Self-
Adaptive Systems and Applications (ADAPTIVE) [1].

Software-based systems are present at all times in our daily
life. This ranges from our private life where nearly everyone
owns and uses a smart mobile phone to large scale business
applications and the public administration that are managed
entirely by software systems. In every household, dozens of
devices run software and a modern car will not even start its
engine without the proper software. Some software systems
have grown to be among the most complex systems ever made
by mankind [2], due to their increase in size and functionality.

Through smaller mobile devices with accurate sensors and
actuators and the ubiquitous availability of the Internet, the
number of integrated devices in large scale applications has
increased drastically within the last twenty years. These de-
vices and the software running on them are used in organically
grown, heterogeneous, and dynamic information technology
(IT) environments. Users expect them to not only provide
their primary services, but also to collaborate with each other
to provide some kind of emergent behavior. The challenge is
therefore to be able to build systems that are robust enough to
withstand changes in their environment, deal with a steadily

increasing complexity, and match requirements that might be
defined in the future [3].

Due to the increasing complexity of large systems, be it in
size or in functionality, those systems are no longer developed
from scratch by one vendor. While the development usually
takes place in a component-based way [4], it is usually split
among a number of companies. Additional components for
mobile devices are often developed against documented or
reverse-engineered interfaces by independent developers.

To ease the development of dynamically integratable com-
ponents, a common component model is called for. The
development of DAiSI started in 2004 to address this issue [5].
Over the years, a component model was defined that allows
developers to implement a component for dynamic adaptive
systems easily. In contrast to adaptive systems, which adapt to
changes in their environment only, dynamic adaptive systems
can also integrate components into themselves, which were
not known at design-time. DAiSI provides a component model
and run-time infrastructure for such dynamic adaptive systems.
The latter can run and integrate DAiSI components by linking
required services with compatible provided services and thus
forming one ore more DAiSI applications. Compatibility has
been only syntactical at first, requiring that for every method in
the required service, a method with the same signature (name,
parameters, return types, etc.) is defined in the corresponding
provided service [6]. The aspect was later extended to support
semantic compatibility by additionally requiring equivalent
behavior of each method [7].

Obviously, an application is more than just the sum of
its components. This already becomes evident in very small
examples. Consider cross country skiers and their trainer. A
dynamic adaptive application connects vital data monitoring
devices of the athletes to the management system of their
trainer. In a competition with a competing team on the same
track, athletes and trainers should only be connected to each
other if they belong to the same team. While it is possible to
work around this issue by, e.g., ensuring in the implementation
of components that they only exchange data if they belong to
the same team, this is just that – a work around.

An application architecture that is enforced by the infras-
tructure can define rules that can address the challenge our
athlete– and trainer-components face. It can specify that only
components of members of the same team are allowed to be
connected to each other. More generically, the consideration of
an application architecture during system configuration helps
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to ensure wanted, emergent behavior of dynamic adaptive
systems. It does that by enabling application architects to limit
the configuration space and thus prevent the connection of
components that should not be connected. This paper will show
the introduction of an application architecture into the field of
dynamic adaptive system configuration and how we integrate
it with the DAiSI infrastructure.

The rest of this paper is structured as follows: In Section
II, we present an overview of other works in the field of
dynamic adaptive systems. This is followed by an introduction
to the DAiSI component model and the notation of DAiSI
components in Section III. As a first step towards architecture
conform configuration, we introduce interface roles and the
consideration of local quality of service (QoS) aspects in
Section IV. Afterwards, we briefly discuss the DAiSI config-
uration mechanism in Section V. In Sections VI and VII, an
introduction of applications and application templates together
with application-wide quality of service optimization follows.
The paper ends with a conclusion in Section VIII.

II. RELATED WORK

Component-based development is one of the state-of-the-
art techniques in modern software engineering. Components as
units of deployment and their component frameworks provide
a well-understood, solid approach for the development of
large-scale systems. This is not surprising, considering that
components can be added to, or removed from the system
at design-time easily. This allows high flexibility and easy
maintenance [4].

If components should be added to, or removed from a
system at run-time things get a little bit more difficult, as
techniques for this were not implemented in early component
models. However, service oriented approaches allowed the
dynamic integration of components at run-time. Those systems
usually maintain a service directory. Components entering the
system register their provided– and query for candidates of
their required services. Once a suitable service provider is
identified for a required service, it can be easily connected
to the component [8].

Service-oriented approaches are capable of handling dy-
namic behavior. Components that have not necessarily been
previously known to the system can be integrated into it.
However, they have the uncomfortable characteristic that the
system itself does not care for the dynamic adaptive behavior.
The component needs to register and integrate itself. Also,
it has to monitor itself whether the used services are still
available and adapt its behavior accordingly, if that is no longer
the case. To address these issues a couple of frameworks have
been developed to support dynamic adaptive reconfiguration.

CONIC was one of the first frameworks for dynamic
adaptive, distributed applications. It provided a description
technique that could be used to change the structure (and thus
the architecture) of the integrated modules of an application.
A CONIC application was maintained by a centralized con-
figuration manager [9]. It allowed to spawn new component
instances and to link them to each other.

Another framework, building on the knowledge gained
through the research in CONIC, was a framework for Re-
configurable and Extensible Parallel and Distributed Systems
(REX). It provided support for dynamic reconfiguration in

distributed, parallel systems. It visioned those systems as com-
ponent instances, connected through interfaces for which an
own interface description language was defined. Components
were considered as types, allowing multiple instances of any
component to be present at run-time. The framework allowed
the dynamic change of the number of running instances and
their wiring [10], [11]. Both, the CONIC– and REX framework
allowed the dynamic adaptation of distributed applications,
but only through explicit reconfiguration programs for every
possible reconfiguration.

This issue was addressed in [12]. They took a more abstract
approach and defined sets of valid application configurations.
Following this approach, a system can then adapt itself from
one valid application configuration to another, whenever the
system changes. The declaration of reconfiguration steps be-
came obsolete.

Another framework to build dynamic adaptive systems
upon is ProAdapt. It is set in the field of service-oriented
architectures and reacts to four classes of situations:

• Problems that stop the execution of the application
• Problems that require the execution of a non-optimal

system configuration
• New requirements
• Presence of services with a better service quality

ProAdapt is capable of replacing certain services and can,
together with its service composition capabilities, replace
composed services [13].

In [14], [15], a framework for the dynamic reconfiguration
of mobile applications on the basis of the .NET framework was
introduced. Applications are composed of components, and
application configurations are specified initially in XML. A
centralized configuration manager interprets this specification
and instantiates and connects the involved components. The
specification can include numerous different configurations
which are distinguished by conditions under which they apply.
The framework monitors its surroundings with the help of a
special Observer component and evaluates which application
configuration is applicable. The framework allows the dynamic
addition and removal of components and connections.

In [16], the authors present a solution to ensure syntactical
and semantical compatibility of web services. They used the
Web Service Definition Language (WSDL) and enriched it
with the Web Service Semantic Profile (WSSP) for seman-
tical information. Additionally they allowed an application
architect to further reduce the configuration space through
the specification of constraints. While their approach is able
to solve the sketched problem of preventing the wiring of
components that should not be connected, they only focus on
the service definition and compatibility. Our DAiSI approach
defines an infrastructure in which components are executed
that implement a specific component model. We do want to
compose an application out of components that can adapt their
behavior at run-time.

We achieve this by mapping sets of required services to
sets of provided services and thus specifying which provided
services depend on which required services. The solution
presented in [16] does not offer a component model. All
rules regarding the relation between required and provided
services would have to be specified as external constraints. The
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authors in [17] provided a different solution to ensure semantic
compatibility of web services. However, the same arguments
as for [16] regarding the absence of a high level component
model hold true.

With regard to the application architecture aware adapta-
tion, Rainbow [18], [19] is one of the most dominant and well-
known frameworks. Rainbow uses invariants for the specifica-
tion of constraints in its architecture description language. For
each invariant an operation for the adaptation of the system
can be specified. The operation is then executed whenever
the invariant is violated. However, this approach requires
the knowledge of all component types at design-time, which
is opposing our goal of an open system. Additionally, the
developer has to implement the adaptation steps individually
for every invariant. This imperative method for adaptation
requires the component requiring the adaptation to have a
view of the complete system and additionally introduces a big
overhead at design-time as well as at run-time.

R-OSGi [20] takes advantage of the features developed for
centralized module management in the OSGi platform, like
dynamic module loading and –unloading. It introduces a way
to transparently use remote OSGi modules in an application
while still preserving good performance. Issues like network
disruptions or unresponsive components are mapped to events
of unloaded modules and thus can be handled gracefully – a
strength compared to many other platforms. However, R-OSGi
does not provide means to specify application architecture
specific requirements. As long as modules are compatible with
each other they will be linked. The module developer has to
ensure the application architecture at the implementation level.
Opposed to that, our approach proposes a high level description
of application architectures through application templates that
can be specified even after the required components have been
developed.

III. THE DAISI COMPONENT MODEL

This section will introduce the foundations of the DAiSI
component model. As already briefly mentioned in the intro-
duction of this paper, DAiSI components communicate with
each other through services. Different component configura-
tions map required– to provided services.

AS an example, we assume that a self-organizing system
is to be developed, which supports the training of biathletes.
A biathlon team consists of several athletes and trainers. Each
trainer requires an overview of his athletes’ performance data,
which includes the current pulse and skiing-technique of the
athlete. Based on this data, the trainer can give guidance to
his athletes. Figure 1 shows a sketch of a DAiSI component
with some explanatory comments for an athlete in the biathlon
sports domain.

A component is depicted as a rectangle, in this example
of a light blue color. Component configurations are bars that
extend over the borders of the component and are depicted in
yellow here. Associated to component configurations are the
provided and required services. The notation is similar to the
Unified Markup Language (UML) lollipop notation [21] with
full circles resembling provided, and semi circles representing
required services. A filled circle indicates that the associated
service is directly requested by the end user and thus should
be provided, even if no other service requires its use.

Figure 1. Example notation of a DAiSI component with explanatory
comments.

Figure 1 shows the CAthlete component, consisting of
two component configurations: conf1 and conf2. The first
component configuration requires exactly one service variable
r1 of the IPulse interface. The second component configuration
does not require any services to be able to provide its service p2

of IPerson. The service could be used by any number of service
users (the cardinality is specified as ∗). The other component
configuration (conf1) could provide the service p1 of the type
IAthlete, which could again be used by any number of users.

Figure 2 shows the DAiSI component model as an UML
class diagram [21]. The component itself, represented as the
light blue box in the notation example, is represented by
the DynamicAdaptiveComponent class. It has three types of
associations to the ComponentConfiguration class, namely
current, activatable, and contains. The contains association
resembles the non-empty set of all component configurations.
It is ordered by quality from best to worst, with the best com-
ponent configuration being the most desirable, e.g., because
of best service qualities of the provided services. The order is
defined by the component developer. A subset of the contained
are the activatable component configurations. These have their
required services resolved and could be activated. An active
component configuration produces its provided services. At
run-time, only one or zero component configurations per com-
ponent can be active. The active component configuration is
represented by the current association in the component model,
with the cardinality allowing one or zero current component
configurations for each component.

The required services (represented by a semi circle in
the component notation in Figure 1) are represented by the
RequiredServiceReferenceSet class. Every component config-
uration can declare any number of required services. Those
that are resolved are represented by the resolved association.
The cardinalities of the required service are stored in the
attributes minNoOfRequiredRefs and maxNoOfRequiredRefs.
Provided services (noted as full circles on the left hand side in
Figure 1) are represented by the ProvidedService class. They
can be associated to more than one component configuration,
if more than one component configuration provides the same
service. The runRequestedBy association is relevant at run-time
and resembles the component configuration that actually wants
the provided service to be produced.

Not all provided services can be used any number of times.
The attribute maxNoUsers indicates the maximum number
of allowed users. The flag requestRun, represented by the
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Figure 2. DAiSI component model.
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full circle being filled with black in the component notation,
indicates that the service should be produced, even if no other
service requires its use. This is typically the case for services
that provide graphical user interfaces or that provide some
functionality directly requested by the end user.

The provided and required service, more precisely their
respective classes in the component model, are associated with
each other through three associations. The first association
canUse represents the compatibility between two services. If
a provided service can be bound to the service requirement
of another class, these two are associated through a canUse
association. A subset of the canUse association is wantsUse.
At run-time, it resembles a kind of reservation of a particular
provided service by a required service reference set. It does
not already use the provided service, but would like to use it.
After the connection is established and the provided service
satisfies the requirement, they are part of the uses association
which represents the actual connections. All classes covered
to this point implement a state machine to maintain the state
of the DAiSI component. If you want to know more about the
state machines and the configuration mechanism, please refer
to our last years paper [22].

To this point, we have covered the building blocks of
a DAiSI component. An application in a dynamic adaptive
environment is composed of any number of such components
that are linked with each other through services. Those ser-
vices are defined through DomainInterfaces. Required services
(represented by the RequiredServiceReferenceSet class) refer
to exactly one domain interface, while provided services (rep-
resented by the ProvidedService class) implement a domain
interface. The set of all defined domain interfaces composes
the DomainArchitecture. The interface roles, which will be
presented in the next section, are contained by the domain
architecture. They refine domain interfaces and are required by
any number of required service reference sets. Any provided
service can conform to an interface role. However, this is not
a static information, but changes during run-time.

For our example, it is assumed that the component pre-
sented in Figure 3 is available.

Figure 3. The CAthlete component.

The component defines three ComponentConfigurations
with conf 1 specified as best configuration and conf 3 as worst.
The conf 3 configuration can be activated if r1 can be connected
to a service that implements the interface IPulse. The conf 2
configuration can be activated, if r2 and r3 are each connected
with a ski stick. The conf 1 configuration is activated if the
dependencies of all three RequiredServiceReferenceSets can be
resolved. In all three configurations, the component provides
a service that implements the domain interface IAthlete. It

defines a method getPulse():int to query the current pulse
and also a method getSkiingTechnique():String, which returns
the currently used skiing technique (double poling/diago-
nal technique). Additionally, it provides a method getLoca-
tion():double[2] to query the current location of the athlete. If
the conf 3 configuration is active, the call getSkiingTechnique
returns the value null. If, in contrast, the conf 2 configuration
is active, the call getPulse returns the value -1.

The component presented in Figure 4 represents the trainer.

Figure 4. The trainer component available in the system.

The required functionality is provided by the service pl,
which implements the interface ITrainer. The service defines
a dependency on services that implement the interface IAthlete.
The individual athletes’ performance data within the appli-
cation are provided by components providing this interface.
However, ITrainer can also be run when no athlete is available
in the system.

Figure 5. The CShootingLine component.

Shooting training is another requirement of our example
system. Each shooting line is represented by a component,
providing a service described by the domain interface IShoot-
ingLine. Figure 5 presents the DAiSI component CShooting-
Line.

Figure 6. The CSupervisor component.

The shooting line may be monitored by a supervisor. This
is represented in the system by a service that implements
the domain interface ISupervisor. The component presented
in Figure 6 provides such a service. It can make use of a
shooting line component.

All provided services of these components (trainer, shoot-
ing line, and supervisor) start, even if there is no other
component requiring them. The flag requestRun is set, which
is indicated by the filled circle.

IV. INTERFACE ROLES

With the RequiredServiceReferenceSet class many com-
ponent local requirements can be specified. However, this
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is not sufficient for self-organizing systems.To illustrate the
problem, let us consider Figure 7. It shows a simplified DAiSI
component for an athlete. It specifies only one of the three con-
figurations we defined in the previous section. The component
provides a service of the type IAthlete and requires two IStick
services to be able to do so. The provided service calculates
the current skiing technique and needs measurement data of
the sticks movements, which is provided by the two required
services. However, with the component model as presented
in Section III, a binding between only the left ski stick with
both required service reference sets would be possible and
allow the component to run. Of course the domain interface
IStick provides a method to query at which side a ski stick is
being used. However, this information is not considered in the
configuration process. Obviously, the IAthlete service can not
perform as expected as the measurement data of the right ski
stick is missing.

Figure 7. A DAiSI component for a biathlon athlete.

There are numerous other examples in which return values
of operations of domain services have to be considered in order
to establish the desired system configuration. For that reason,
we extended the component model by the class InterfaceRole.
In our previous understanding, provided and required services
were compatible, if they referred to the same domain interface.
Those interfaces can be seen as a contract between service
provider and service user. We now extended this contract by
interface roles. An interface role references exactly one domain
interface and can define additional requirements regarding
the return values of specific methods defined in that domain
interface. A provided service only fulfills an interface role if
it implements the domain interface and as well complies to
the conditions defined in the interface role. Consequently, a
required service reference set not only requires compatibility
of the domain interface, but also of the interface role to be
able to use a provided service.

Figure 8 shows the same DAiSI component as Figure 7,
but with specified interface roles. With this addition it can be
ensured that the athlete component in fact is connected with
one left and one right stick. The LeftStickRole interface role
refines the IStick domain interface and compares the return
value of the method that returns the side of the ski stick is
used on against a reference value for left ski sticks. This could
be implemented by a method called getSide():String and the
return value would be compared against the string “left”. The
interface role RightStickRole can be implemented accordingly.

This solution introduces new challenges for the configura-
tion process of dynamic adaptive systems. Was it previously
sufficient to connect a pair of required service reference set and
provided service, this decision has to be monitored now. As
the interface roles take return values of services into account,
the fulfillment of an interface role is not static. The provided

Figure 8. A DAiSI component for a biathlon athlete with interface roles.

service supposedly conforming to the interface role has to be
evaluated either cyclically, or event based whenever relevant
return values change. For our implementation, we took a cyclic
approach, however, in [7] we described a way to re-evaluate
the semantic compatibility of services whenever return values
change equivalence classes.

The interface roles provide a possibility to include run-time
information in the configuration process. But the true or false
expressiveness of interface roles is not enough in some cases.
Consider the following example: Every trainer is able to train
three athletes at once. In addition, the energy consumption of
the IAthlete service depends on the distance between trainer
and athlete. To maximize the outcome of the training and
minimize the energy consumption each trainer should see and
analyze performance data of the three nearest athletes instead
of the ones miles away. In Figure 9 the trainer should see the
performance data of athletes A, B and C.

Figure 9. Locale optimization of energy consumption and training outcome.

The DAiSI component model and domain architecture
presented above are not sufficient to express a constraint like
this. There are other examples when the services referenced in
RequiredServiceReferenceSets should be ordered by require-
ments of the component.

To achieve this, we expand the interface role by a com-
parator. The method compare(DomainInterface ps1, Domain-
Interface ps2, DomainInterface req) : int takes three domain
interfaces as parameter. ps1 and ps2 are provided services
which will be compared. The last domain interface req is
an optional parameter, which may be used to take run-time
information of the requiring component into account. It may be
a provided service of the requiring component, which provides
important run-time information for the comparator. In our
example of trainer and athletes, the current position of the
trainer is crucial for the ordering of IAthlete services.

The compare method returns either a negative integer, zero
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or a positive integer. In the manner of known comparators, like
Java’s comparator, a negative value, zero, or a positive value
mean the quality of ps1 is less than, equal or greater than the
quality of ps2. Whether there are finer granularities in return
values in the sense of -1000 is much worse than -1 depends
on the particular implementation of the compare–method. It
is important to notice that only provided services which are
conform to the interface role are comparable. The standard
implementation for the compare method treats every service
as equal and returns always zero.

Now, the RequiredServiceReferenceSet of a component has
the possibility to order the provided services by a chosen
criterion. The available criteria are determined by the domain.
Consequently, the configuration process has to take the order
into account when configuring the system. All possibly usable
services are represented by canUse. These are the services
which implement the domain interface and which are conform
to a required interface role. If there is a request for dependency
resolution, the services in canUse are ordered with the help
of compare. The resulting list of ordered services is then
used to place a usage request for the currently best services.
Their service references are copied to the wantsUse set. The
configuration mechanism will be explained in more detail in
the next section.

Figure 10. CAthletes components sorted by distance to CTrainer component.

Figure 10 shows our example from before with ordered
components. The interface role NearestAthlete is now re-
quired by t, the CTrainer component. The compare method of
NearestAthlete compares two IAthlete services with the help
of one ITrainer service. Both IAthlete and ITrainer provide
a method getLocation():double[2], which returns the current
GPS coordinates of the athlete or trainer. The compare method
of NearestAthlete compares the distance of given athletes to the
trainer. Of course, regarding our example a shorter distance is
considered better, as a longer distance. To fulfill the specified
meaning of the compare method’s return value, ps2’s distance
minus ps1’s distance is returned.

This results in the situation pictured in Figure 10. t can
use all CAthlete components but in the end it uses b, a, and
c, since this is the resulting order from sorting by distance to
t. Concluding, the interface role comparator provides a rather
simple method for the component to state which services it
would like to use ”the most”.

V. CONFIGURATION MECHANISM

Beside the DAiSI component model and the DAiSI domain
architecture model, a decentralized dynamic configuration
mechanism was also already established in the DAiSI platform.
Three types of relations between RequiredServiceReference-
Sets and ProvidedServices exist, represented by the associ-
ations canUse, wantsUse and uses. The set of services that
implement the domain interface referred by the RequiredSer-
viceReferenceSet is represented by canUse. Note, this only
guarantees a syntactically correct binding. Interface roles in
addition provide a compatibility check with respect to a given
common domain architecture.

The wantsUse set holds references to those services for
which a usage request has been placed. Last, the uses set
contains references to those services, which are currently in
use by the component or by RequiredServiceReferenceSet.
Each time a new service becomes available in the system,
it is added to all canUse sets, if the corresponding Re-
quiredServiceReferenceSet refers to the same DomainInterface
as the ProvidedServices. The management of these three
associations – canUse, wantsUse and uses – between Re-
quiredServiceReferenceSets and ProvidedServices is handled
by DAiSI’s decentralized dynamic configuration mechanism.
This configuration mechanism relies on the state machines,
presented more detailed in [23] and sketched in the following
paragraphs.

Figure 11. CTrainer component.

Figure 12. Sequence diagram showing the triggers and states of a standalone
DAiSI component.

Consider again the biathlon example. Assume a given
CTrainer component as shown in Figure 11. It has one single
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configuration and provides a service of type ITrainer to the
environment, which can be used by an arbitrary number of
other components. The component requires zero to any number
of references to services of type IAthlete.

The boolean flag requestRun is true for the service pro-
vided. Hence, DAiSI has to run the component and provide
the service within the dynamic adaptive system to other com-
ponents and users. DAiSI can run the component directly and
thereby provides the component service to other components
and users as shown in the sequence diagram in Figure 12.

Figure 13. CAthlete and CPulse components.

Now assume two components: The CAthlete component,
shown on the left hand side of Figure 13, requires zero or one
reference to a service of type IPulse. The second component,
CPulse, shown on the right hand side of Figure 13, provides
such a service of type IPulse. Figure 14 shows the states and
triggers of the involved state machines in a sequence diagram
for this example.

Once the CPulse component is installed, DAiSI integrates
the new service in the canUse relationship of the RequiredSer-
viceReferenceSet r1 of the component CAthlete. Then DAiSI
informs the CAthlete component that a new usable service is
available. DAiSI indicates that CAthlete wants to use this new
service by adding this service in the set wantsUse of CAthlete.
Once the service runs, it is assigned to the CAthlete component,
which uses the service from now on (added to the set uses of
CAthlete).

Figure 14. Inter-component configuration mechanism.

VI. APPLICATION SPECIFIC SYSTEM CONFIGURATION

Imagine the following situation: the example biathlon ap-
plication already introduced shall now fulfill a number of new
requirements:

• The ITrainer service can only be run when it has
access to at least one athlete service

• Each athlete must have access to a shooting line
• Shooting lines can only be used when they are super-

vised
• The skiing technique is to be analyzed in particular
Currently, the implementation of the components would

have to be adapted in order to meet the requirements. For
example, the attribute minNoOfRequiredRefs of r1 from Figure
11 would have to be set to 1. However, a component’s code
cannot always be adapted in this way, for example because
it is proprietary software and the source code not available.
In addition, adapting it manually for the specific application
purpose contradicts one of the original purposes of component
based software development – reuse of components among
different applications. The solution presented in the remainder
of this section allows the application–specific specification of
the minimum and maximum number of required references
for RequiredServiceReferenceSets without having to adapt the
component’s source code.

Since the skiing technique is to be analyzed in particular,
only the conf 2 ComponentConfiguration of the athlete com-
ponent ’tim’ of Figure 3 is relevant. Even if one pulse service
and two ski stick services are available, the conf 1 configu-
ration should not be activated. In this section, expansions of
the existing framework are described, which enable such an
application–specific influence on the activation of component
configurations.

The system must guarantee that exactly one shooting line
component is available for each athlete connected to the trainer
component. This means that the number of those services used
by the shooting supervisor component must be in accordance
with the athlete components, which the trainer component
accesses. One system configuration that meets all criteria
described above is presented in Figure 15. A trainer component
is connected with an athlete component, which in turn is
connected to a left and a right ski stick. In addition, the
application consists of a shooting supervisor component, which
in turn is connected to a shooting line component.

In the DAiSI as it was presented on the previous pages,
such system configuration requirements cannot be specified
and, therefore, not be guaranteed. Moreover, further require-
ments would be relevant for this application, such as: if a new
athlete component is added to the system in the configuration
described above, it should only be integrated into the appli-
cation when a shooting line component is available for this
athlete. The application also needs to be stopped for example,
when the athlete component from Figure 15 is only connected
with one ski stick component.

To address these issues, we introduce application config-
urations. An application configuration consists of a number
of components, as well as connections between these compo-
nents. The primary task of DAiSI is to select the components
that can be considered for a configuration conforming to the
application architecture out of the number of all available
components. In addition, the components must be connected
in such a way that all specified requirements are met.

The criteria for the selection of suitable components for an
application are defined with the assistance of so–called tem-
plates. An application specification consists of one or more of
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Figure 15. A system configuration that meets the requirements.

such templates. In this way, the biathlon application described
above could, for instance, consist of a template for trainer com-
ponents, and one for athlete components, one for shooting line
components, etc. For each of these templates, requirements can
be stored that specify under which circumstances a component
is compatible with a template. The framework ensures that at
runtime, only components matching the outline are allocated
to the template. Graphically, a template is represented by a
rectangle with dashed lines. Requirements related to required
and provided component services are represented visually by
circles and semi-circles with dashed lines (described in detail
below). In Figure 16, two placeholders within an application
template can be seen. One or two components can be allocated
to the application, while one of the given components remains
ignored, as it is not compatible.

Figure 16. Suitable components for an application configuration.

The components selected must be connected with each
other in order to obtain an executable system. For this purpose,
in addition to the templates, the links between templates are
defined, and represented as dashed arrows (see Figure 16).
They provide information on how the allocated components
are to be connected with each other. In this way it is possible to
define that each component allocated to the tTrainer template
in Figure 16 must be connected with at least one component,
which is allocated to the tAthlete template. Later (during run–
time), the framework ensures that the requirements related
to the links between the components are considered. Figure

17 shows one possible resulting system configuration, while
Figure 18 presents a possible application specification for the
complete biathlon application.

Figure 17. Generation of a valid configuration.

Figure 18. Graphical and textual application specification.

An application itself is graphically represented as a rect-
angle with the name of the application noted at the top. As
stated before, each Template is represented as a rectangle
with dashed outer lines and identified by a name. Within a
template, the contents of the attributes minNoOfRequiredCom-
ponents and maxNoOfRequiredComponents are noted at the top
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right. A ProvidedTemplateInterface is represented as a dashed
circle, which is labeled with its name, and the referenced
domain interface. RequiredTemplateInterfaces are represented
correspondingly as dashed semi-circles. They are also labeled
with the referenced domain interface, the referenced interface
role, if applicable, and a name. Links between RequiredTem-
plateInterfaces and ProvidedTemplateInterfaces (connectedTo)
are visualized with a dashed arrow. The predicate specification
(appConstraint)is specified in a separate area beneath the
templates.

The aim of the DAiSI run–time infrastructure is to create
an application configuration, which meets all specified require-
ments. As soon as this is achieved, the applications’ state
machine transitions from NOT RUNNING to RUNNING. In
other words: if an application is in the state RUNNING, the
application configuration created conforms to the application
architecture.

The following paragraphs describe how a valid application
configuration can be generated automatically. The method
suggested here follows a brute-force approach, which iter-
atively generates all possible configurations. It is sketeched
in Listing 1 as pseudo code. While this is not optimal with
regard to resources, it is sufficient to generate a valid system
configuration.

1 boolean c r e a t e V a l i d C o n f i g u r a t i o n ( ) {
2 whi le ( p o s s i b l e C o m p o n e n t A s s i g n m e n t S e t s . hasNext ( ) ) {
3 p o s s i b l e C o m p o n e n t A s s i g n m e n t S e t s . n e x t ( ) .
4 r e a l i z e ( ) ;
5
6 whi le ( p o s s i b l e I n t e r f a c e A s s i g n m e n t S e t s . hasNext ( ) )

{
7 p o s s i b l e I n t e r f a c e A s s i g n m e n t S e t s . n e x t ( ) .
8 r e a l i z e ( ) ;
9

10 whi le ( p o s s i b l e U s a g e S e t s . hasNext ( ) ) {
11 p o s s i b l e U s a g e S e t s . n e x t ( ) . r e a l i z e ( ) ;
12
13 i f ( i s V a l i d C o n f i g u r a t i o n ( ) ) {
14 re turn true ;
15 }
16 }
17 }
18 }
19 re turn f a l s e ;
20 }

Listing 1. createValidConfiguration() method, pseudo code listing.

Since a valid configuration, which meets the requirements
can change at any time in such a way that it no longer conforms
to the application architecture, the application configuration
is checked cyclically for conformance to the application ar-
chitecture. As soon as the configuration no longer meets
the defined application architecture–specific requirements, and
therefore the predicate isValidConfiguration is evaluated as
false, the applications’ state machine changes back to the state
NOT RUNNING.

The algorithm is divided into two parts: the first part creates
an application configuration (lines 2-9 in Listing 1), while the
second checks the generated configuration for conformity with
the requirements (lines 11-12 in Listing 1). Creating a config-
uration requires three steps. Firstly, selecting the components,
then the ProvidedService– and RequiredServiceReferenceSets
must each be allocated to a ProvidedTemplateInterface and
RequiredTemplateInterface, respectively. Therefore, the two

assignedTo quantities must be defined. Finally, the uses set
must be determined for each RequiredServiceReferenceSet.

The initial situation of the configuration process is a set of
available components. A selection must be made to obtain an
application configuration. To accomplish this, an assignment of
the selectedComponents set is created for each template, with
the static properties already being considered. The configura-
tion mechanism then calculates the set of all possible assign-
ment combinations and makes them available via an iterator
(possibleComponentAssignmentSets from Listing 1), based on
the components available and the application specification, the
method realize implements the specific assignment.

Figure 19. Allocation of components to templates.

In the example in Figure 19, the components a and b can
be allocated to the tTrainer template. Only one component
needs to be allocated to the template in order to fulfill the
application requirements. Both components provide a service
that implements the ITrainer domain interface and define a Re-
quiredServiceReferenceSet that references the IAthlete domain
interface. Only component d can be allocated to the tAthlete
template since this component is the only one that meets
the structural requirements of the template. A total of two
components are available for the tLStick and tRStick templates
and exactly one component must be allocated to each of these,
in order to be able to meet the application requirements. This
results in a number of possible allocations of components
to templates. The configuration algorithm makes a selection,
which is then realized by the configuration mechanism.

ProvidedServices of a component can fit to several Pro-
videdTemplateInterfaces. Since ProvidedServices must be al-
located to ProvidedTemplateInterfaces during run–time, the
framework needs to decide which to use. This applies ac-
cordingly to RequiredServiceReferenceSets and RequiredTem-
plateInterfaces. For example, the RequiredTemplateInterface
of the tAthlete template in Figure 19, do not reference any
interface roles but only the IStick domain interface as presented
in Figure 20. In this example, the RequiredServiceReferenceSet
r1 can be allocated to RequiredTemplateInterface rtA1 as well
as rtA2. The same applies to RequiredServiceReferenceSet r2.

Within the algorithm in Listing 1, all possible allocation
configurations, which result from the allocation of components
to templates in the previous step are now iterated. In the
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Figure 20. Allocation of component interfaces to template interfaces.

component model, the allocation between RequiredServiceRef-
erenceSet and RequiredTemplateInterface, and between Pro-
videdService and ProvidedTemplateInterface are represented
by the assignedTo association. All possibilities are iterated with
the possibleInterfaceAssignmentSets iterator and a returned
assignment is then realized by calling realize. In the next step,
the uses set is assigned to the RequiredServiceReferenceSets
of the components, which were allocated previously to the se-
lectedComponents. As a last step, the configuration algorithm
creates the use relations between the components.

After creating a component selection, subsequently allo-
cating the services and then assigning the uses set of all
RequiredServiceReferenceSets creates a running application
configuration automatically. Every component that is part of
the application is informed about their role in the application,
i.e., which template they will fill, to which templates their
services are assigned to, and to which provided services they
should connect. The individual iterators of the algorithm are
realized for individual components.

After creating a configuration with the algorithm described
above, the remaining applications of the application specifica-
tion can now also be checked for conformity. The predicate
isValidConfiguration needs to be evaluated at this stage. Only
if this predicate is evaluated to true, the application changes
its state to RUNNING. Otherwise, a new configuration needs
to be created. The algorithm presented here is only a sketch
of the procedure for creating a configuration, which conforms
to the defined application architecture-specific requirements.

VII. APPLICATION SPECIFIC QUALITY CRITERIA

In Section IV, we introduced a possibility for a component
to sort its RequiredServiceReferenceSets by a quality criterion.
This concept strives for local optimization. But consider again
our biathlon training example. Each trainer wants to see the
data of the nearest athletes to maximize the training outcome
and minimize the energy consumption, but can at most train
three athletes. Now, in contrast to our first example (see Figure
9), two trainers are available to the system instead of one.

Figure 21 shows the possible distributions of athletes and
trainers if both CTrainer components require the interface role
NearestAthlete. Situation I in the upper left corner of Figure 21
is optimal from the viewpoint of trainer 1, whereas situation
II in the upper right is optimal from the viewpoint of trainer
2. In contrast to their individual views, the global optimum of
energy consumption and training benefit is reached in situation
III.

In this section, we present an extension to the previously
introduced application configuration, which allows to define
such global optimization criteria. The application from DAiSI’s
component model is extended by a compare method. The

method compareTo(Application a):int compares the current
application with the application given by a. As before, the
return value is either negative, zero or positive meaning the
current application’s quality is less than, equal to, or greater
than a’s quality. The method is implemented by the application
(and therefore the person defining the application template).
The standard implementation treats all applications as equal.

Figure 22. Simple graphical application specification for energy
minimization scenario.

The biathlon application for minimized energy consump-
tion is described by the application specification seen in
Figure 22. Some parts like the pulse or stick services are
missing but it shows the most important components. Listing 2
shows an implementation of compareTo for our desired energy
minimization. Firstly, the overall distance between trainers and
athletes in the current application is calculated. For all chosen
CTrainer components in the template tTrainer the distance
to its used IAthlete services is summed up. Afterwards, the
same is done for the given application. The return value is
the resulting difference between the compared and current
application’s sum of distances.

1 i n t compareTo ( A p p l i c a t i o n a ) {
2
3 d i s t a n c e C u r r e n t = 0 ;
4 whi le ( t T r a i n e r . s e l e c t e d C o m p o n e n t s . hasNext ( ) ) {
5 C T r a i n e r t = t T r a i n e r .
6 s e l e c t e d C o m p o n e n t s . n e x t ( ) ;
7
8 whi le ( t . d e c l a r e s . u s e s . hasNext ( ) ) {
9 d i s t a n c e += t . d e c l a r e s . u s e s . n e x t ( ) .

10 g e t L o c a t i o n ( ) . d i s t a n c e T o ( t . g e t L o c a t i o n ( ) ) ;
11 }
12 }
13
14 d i s t a n c e O t h e r = 0 ;
15 whi le ( a . t T r a i n e r . s e l e c t e d C o m p o n e n t s . hasNext ( ) ) {
16 C T r a i n e r t = a . t T r a i n e r .
17 s e l e c t e d C o m p o n e n t s . n e x t ( ) ;
18
19 whi le ( t . d e c l a r e s . u s e s . hasNext ( ) ) {
20 d i s t a n c e += t . d e c l a r e s . u s e s . n e x t ( ) .
21 g e t L o c a t i o n ( ) . d i s t a n c e T o ( t . g e t L o c a t i o n ( ) ) ;
22 }
23 }
24 re turn d i s t a n c e O t h e r−d i s t a n c e C u r r e n t ;
25 }

Listing 2. compareTo method for biathlon application with minimized
energy consumption, pseudo code listing.

Remember the createValidConfiguration() method from
Listing 1. We will extend this algorithm with the compareTo
method. Instead of realizing and accepting the first valid
configuration, the algorithm will compare all possible valid
configurations and realize the best one. Of course, this brute-
force approach is not practical. The testing of sophisticated
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Figure 21. Possible distribution of athletes and trainers.

configuration algorithms and determining suitable heuristics
are future work.

The extended configuration algorithm is sketched in Listing
3. It realizes the behavior described before. It is important to
notice that lines 19 and 27 hide more complicated technical
aspects. In line 19, the currently realized application config-
uration is saved. This could be done by saving all realized
components, interfaces and usages, i.e., connections between
components and services. This saved configuration is realized
again in line 27.

1 boolean c r e a t e V a l i d C o n f i g u r a t i o n ( ) {
2
3 A p p l i c a t i o n b e s t = n u l l ;
4
5 whi le ( p o s s i b l e C o m p o n e n t A s s i g n m e n t S e t s . hasNext ( ) ) {
6 p o s s i b l e C o m p o n e n t A s s i g n m e n t S e t s . n e x t ( ) .
7 r e a l i z e ( ) ;
8
9 whi le ( p o s s i b l e I n t e r f a c e A s s i g n m e n t S e t s . hasNext ( ) )

{
10 p o s s i b l e I n t e r f a c e A s s i g n m e n t S e t s . n e x t ( ) .
11 r e a l i z e ( ) ;
12
13 whi le ( p o s s i b l e U s a g e S e t s . hasNext ( ) ) {
14 p o s s i b l e U s a g e S e t s . n e x t ( ) . r e a l i z e ( ) ;
15
16 i f ( i s V a l i d C o n f i g u r a t i o n ( ) ) {
17
18 i f ( compareTo ( b e s t ) >0) {
19 b e s t = t h i s ;
20 }
21 }
22 }
23 }
24 }
25
26 i f ( b e s t != n u l l ) {
27 b e s t . r e a l i z e ( )
28 re turn true ;

29 }
30
31 re turn f a l s e ;
32 }

Listing 3. createValidConfiguration() method expanded by usage of
compareTo method, pseudo code listing.

This concludes the section about application specific qual-
ity criteria. The compareTo provides a tool to the application
designer, which allows him to specify which (of a set of syn-
tactically and semantically correct) application configuration is
considered “best” and therefore should be realized. Since this
depends on run–time information the configuration has to be
checked whenever run–time information changes. Like before,
a cyclical or more advanced approach could be taken.

VIII. CONCLUSION

This paper presented an extended version of the DAiSI
framework. While the system configuration, more precisely
the component wiring, in older versions of DAiSI and other
dynamic adaptive system infrastructures were only consider-
ing syntactic and semantic compatibility, the newest findings
enable developers to specify interface roles and application
templates. These open the possibility to define local and
application–wide constraints on the configuration.

We introduced a concept, which takes quality and service
aspects into account. A service comparator defined on interface
roles enables components to define not only which semantic
domain interface they require, but also which quality criteria
they prefer. Global quality of service is achieved on the
application level.

Currently, DAiSI only supports service–oriented architec-
tures. Upcoming technologies and paradigms, like the Internet
of Things (IoT) or cyber–physical systems demand for other
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improvements, like pub/sub and message–based communica-
tion. We will extend concept and implementation of the DAiSI
to account for these developments.

However, the extension presented in this paper provides
a sustainable concept for the realization of decentralized,
dynamic adaptive systems, while considering quality of service
aspects.
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