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Abstract—Considerable effort has been devoted to the de-
velopment of software to support the detection of fraud in
published financial statements of companies. Until the present
date, however, the applied use of such research has been
extremely limited due to the “black box” character of the
existing solutions and the cumbersome input task they require.
The application described in this paper solves both problems
while significantly improving performance. It is based on Web-
mining and on the use of three Multilayer Perceptron where a
modified learning method leads to the formation of meaningful
internal representations. Such representations are then input
to a features’ map where trajectories towards or away from
fraud and other financial attributes are identified. The result
is a Web-based, self-explanatory, financial statements’ fraud
detection solution.

Keywords–Fraud Detection; Financial Knowledge Discovery;
Predictive Modelling of Financial Statements; Type of Informa-
tion Mining.

I. INTRODUCTION
This paper describes a software solution to help detecting

fraud in published financial statements. The objective is to
streamline a widely researched but scarcely used application
area. Parts of the paper were presented at the Fifth Interna-
tional Conference on Advances in Information Mining and
Management (IMMM 2015) [1] as work-in-progress.

Fraud may cost US companies over USD 400 billion
annually. Amongst different types of fraud, manipulation
of published financial statements is paramount. In spite of
measures put in place to detect fraudulent book-keeping,
manipulation is still ongoing, probably on a huge scale [2].

Auditors are required to assess the plausibility of finan-
cial statements before they are made public. Auditors apply
analytical procedures to inspect sets of transactions, which
are the building blocks of financial statements. But detecting
fraud internally is a difficult task as managers deliberately
try to deceive auditors. Most frauds stem from the top levels
of the organization where controls are least effective. The
general belief is that internal procedures alone are rarely
effective in detecting fraud [3].

In response to concerns about audit effectiveness in
detecting fraud internally, quantitative techniques are being
applied to the modelling of relationships underlying pub-
lished statements’ data with a view to discriminate between
fraudulent and non-fraudulent cases [5]. Such external, ex-
post approach would be valuable as a tool in the hands of

users of published reports, such as investors, analysts and
banks. Artificial Intelligence (AI) techniques are likewise
being developed to the same end. Detailed review articles
covering this research are available [6][7].

A discouraging fact is that analysts do not use tools
designed to help detecting fraud in published reports. This
is largely due to the fact that such tools are “black boxes”
where results cannot be explained using their expertise [3].
Since analysts are responsible for their decisions, tools
they may use to support decisions must be self-explanatory.
Moreover, the required Extract, Transform and Load (ETL)
tasks are time-consuming.

The paper aims at overcoming the above limitations.
Web-mining is first employed to find, download and store
data from published financial statements. Then fraud and two
other attributes known to widen fraud propensity space are
predicted by three Multilayer Perceptron (MLP) classifiers
where a modified learning method leads to internal repre-
sentations similar to financial ratios, readily interpretable
by analysts. Such ratios then input a features’ map where
trajectories towards or away from fraud and other financial
attributes are visualized. Diagnostic interpretation is further
enhanced with the display of past cases where financial
attributes are similar to those being analysed.

The most valuable contribution of the application de-
scribed here is its strict adherence to users’ requirements.
The paper also offers a theoretical foundation for the predic-
tion of financial attributes. Using such foundation, the paper
then shows that it is possible to improve significantly the ac-
curacy, robustness and balance of financial statements’ fraud
detection. Finally, the paper unveils an MLP training method
leading to meaningful internal representations, which are
capable of supporting analysts’ financial diagnostic.

Section II characterizes the issue at hand, mentions previ-
ous research and lays down the foundations upon which the
application is based; Section III describes the methodologies
used; Section IV reports results and data used to obtain
such results; Section V briefly describes the output and
architecture of the application; finally, Section VI discusses
limitations and benefits.

II. THEORETICAL FOUNDATIONS
Fraud detection covers many types of deception: pla-

giarism, credit card fraud, identity theft, medical prescrip-
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tion fraud, false insurance claim, insider trading, financial
statements’ manipulation and other types of fraud [8][9].
Conceptual frameworks used in the detection of, say, credit
card fraud (such as Game Theory), are not necessarily
efficient in detecting other types of fraud. Neural Networks
are widely used in research devoted to the detection of
published financial statements’ fraud [10][11][12][13][14].
The latter citation contains an extensive and updated list of
papers applying analytical AI algorithms, such as the nearest
neighbour classifier, Back-propagation, the Support Vector
machine and others, to the detection of financial statements’
fraud and to other Financial Technology (Fin-Tech) tasks
namely bankruptcy prediction.

It is pointless to compare accuracy results reported in
the above-mentioned literature because samples used by
authors to test such accuracy are extremely dissimilar, some
being small and homogeneous while others are large and
varied. Class frequencies are also imbalanced in one di-
rection or in the other. Broadly, an out-of-sample overall
classification accuracy of 65% to 75% is reported for large,
non-homogeneous samples whereas for small, same-industry
same-size samples, accuracy may be as high as 86% [14]. In
all reported cases, accuracy is imbalanced: Type I and Type
II errors differ by no less than 10% often being as high as
30% in both directions.

The increasing demand for Fin-Tech tools [15][16][17]
has fostered the development of software to help detecting
several types of fraud [18]. Tools which probe transactions
for suspect patterns, as well as other internal auditing support
software, are widely available but, as far as an exhaustive
search may tell, the detection of fraud in published sta-
tements is not on offer, probably for the reasons already
stated: “black boxes” fail to meet analysts’ professional
needs while the input task required by such tools would
be cumbersome. Thus, evidence on published statements’
fraud detection performance is the one summarized above.
In any case, claims made by vendors, even when they exist,
should not be taken as evidence, especially in areas, such as
the wide and fast-growing Fin-Tech market, where products
seldom are the object of scientific scrutiny.

Using large, non-homogeneous data and strictly balanced
random sampling, the classification precision of the appli-
cation described here is 87%–88% with an imbalance of
5%. Such result is indifferently attained when using Neural
Networks, Logistic regressions, C5.0, or algorithms rely-
ing on Ordinary Least Squares (OLS) assumptions. While
most authors emphasise comparisons between performances
attained by different algorithms, in the present case the
algorithm is important solely as a knowledge-discovery tool.
The reported increase in performance should be credited
to the use of input variables reflecting the cross-sectional
characteristics of data found in financial statements. In the
following, the nature of such variables is discussed.

A. Financial Analysis
Business companies, namely those listed in stock mar-

kets, are required, at the end of each period, to account for
their financial activity and position. To this end, companies
prepare and report to the public, a collection of monetary

Figure 1. Hierarchical dependence of the topmost financial attributes.

amounts with an attached meaning: revenues of the period,
different types of expenses, asset values at the end of the
period, liabilities and others. Such reports are obtained via
a book-keeping process involving recognition, adjustments
and aggregation into a standardised set of “accounts”, of
all meaningful transactions occurring during the period. The
resulting “set of accounts” is made available to the public
together with notes and auxiliary information, being known
as the “financial statement” of the company for that period.

After being published, financial statements are routinely
scrutinised by investors, banks, regulators and other entities,
with the object of taking decisions regarding individual
companies or industrial sectors. Such scrutiny, and the
corresponding diagnostic, is known as “Financial Analysis”.

Financial Analysis aims to diagnose the financial outlook
of a company. The major source of data for such diagnostic
is the set of accounts regularly made public by the company
and by other companies in the same industrial sector. The
diagnostic itself consists of identifying and in some cases
measuring the state of financial attributes, such as Trustwor-
thiness, Going Concern, Solvency, Profitability and others.
After being identified and measured, financial attributes con-
vey a clear picture of a company’s future economic prospects
and may support the taking of momentous decisions, such
as to buy or not to buy shares or to lend money. Financial
attributes, therefore, are the knowledge set where investing,
lending and other financial decisions are based.

In the hands of an experienced analyst, sets of accounts
are extremely efficient in revealing financial attributes. It
is possible, for instance, to accurately predict bankruptcy
more than one year before the event [19]. The direction of
future earnings (up or down) is also predictable [20]. Such
efficiency in conveying useful information is the ultimate
reason why accounts are so often manipulated by managers.
Fortunately, manipulation may also be detected [4][5].

Financial analysis of a company is typically based on
the comparison of monetary amounts taken from sets of
accounts. The tool used by analysts to perform such compar-
ison is the “ratio”, a quotient of appropriately chosen mone-
tary amounts. For instance, when a company’s income at the
end of a given period is compared with assets required to
generate such income, an indication of Profitability emerges.
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Since the effect of company size is similar in all accounts
taken from the same company and period, size cancels out
when a ratio is formed. Thus, by using ratios, analysts
are able to compare attributes, such as Profitability, of
companies of different sizes [21]. Besides their size-removal
ability, ratios directly measure attributes, which are implicit
in reported numbers: Liquidity, Solvency, Profitability and
other attributes are associated with specific ratios. Thus, the
use of ratios has extended to cases where size-removal is not
the major goal. Indeed, ratios are used because they embody,
to some extent, analysts’ knowledge [23]. Most analytical
tasks involving accounting information require the use of
appropriately chosen ratios so that companies of different
sizes can be compared while their financial attributes are
highlighted.

Attributes examined by financial analysts are hierarchi-
cally linked: the significance and meaning of one depends on
the state of others higher up in the hierarchy (Figure 1). The
top attribute, which allows all the others to be meaningful,
is Trustworthiness: whether a set of accounts is reliable or
not. If accounts are free from manipulation, then it may
be asked whether the company is a Going Concern (it
is likely that the company will continue to exist) or not.
Only in going concerns it makes sense to assess ratio-
defined, numerical attributes, such as Solvency, Profitability
and Liquidity, which also are at the root of hierarchies.

B. Ratios as model predictors
Knowledge-discovery in financial statements is the pro-

cess of assigning each company in the database a set of logi-
cal classes/numerical values pertaining to attributes forming
taxonomies similar to those of Figure 1. The assignment
process is carried out using a corresponding set of models
that, in turn, are built using “supervised learning” where
algorithms learn to recognize classes from instances where
diagnostics are already made; but unsupervised learning is
also possible [14]. When completed, such process greatly
facilitates the task of analysts, allowing them to concentrate
on companies and conditions where algorithms may not be
able to produce accurate diagnostics. If, however, for most
of the attributes, modelling is unreliable, then knowledge-
discovery is of little use. Such is the present situation,
where only one of the many attributes analysts work with is
accurately predictable.

As mentioned, in the hands of an experienced ana-
lyst, statements published by companies reveal their fi-
nancial condition. If most attempts to extract knowledge
from such rich content did not succeed, it is probably
due to the very success of analysts. When trying to build
knowledge-discovery algorithms, authors tend to imitate
analysts, namely in the use of ratios. But, in spite of
being the chief tool of analysts, ratios are inadequate for
knowledge-discovery: first, because their random character-
istics, together with constraints they are subject to, are both
unfavourable for modelling purposes; and second, because
ratios are themselves knowledge, not just data.

First, ratios are inadequate because monetary amounts
taken from sets of accounts, as well as their ratios, obey
a multiplicative law of probabilities, not an additive law.

Figure 2. Influential cases in a scatter-plot of two typical ratio components.

Figures reported in a given set of accounts are accumula-
tions. As such, they obey a specific generative mechanism
where distributions are better described by the Lognormal
and other similar functions with long tails (influential cases)
and inherent heteroscedasticity [21], not by the Normal,
symmetrical, well-behaved distribution. Where the multi-
plicative character of financial statements’ data is ignored,
any subsequent effort to model such data is fruitless, not
so much because OLS or other modelling and estimation
assumptions are violated but due to the distorting effect
of influential cases (Figure 2). And when predictive per-
formance is the issue, the use of robust algorithms is not
recommended because the cost of such robustness is less-
ened performance. Amongst the three types of measurement,
Nominal, Ordinal and Scalar, the latter is the richest in
content. When scales are treated as ordered categories, as
in most robust algorithms, such content is lost. Ratios are
also affected by the interaction between their components,
which are bounded together by book-keeping rules [22].
The numerator of several widely used ratios, for instance,
is constrained to be smaller than the denominator. Such
constraints, in turn, curb the variability made available to
the predicting algorithm.

Second, the use of pre-defined ratios as input to most AI
algorithms, namely those performing knowledge-discovery,
entails a contradiction. When a ratio is chosen instead of
other ratios, knowledge is required to make such choice.
Each ratio embodies the analyst’s knowledge that, when two
monetary amounts are set against each other, a financial
attribute is evidenced. Ratios, therefore, convey previous
knowledge thus limiting knowledge that may be extracted
from them. Analysts use ratios because they assess one piece
of information at a time. They are unable to jointly assess
collections of distributions, their moments and variance-
covariance matrices, as algorithms do. Analysts need focus,
machines do not. Predictive models can only lose by mim-
icking analysts’ separation of knowledge in small bits in
order to rearrange it in a recognisable way.

In the following, adequate knowledge-discovery algori-
thms are shown to be able to choose, amongst a set of
monetary amounts, pairs that perform the same task as ratios.
Algorithms build their own representations in a way that is
similar to analysts’ task of selecting, amongst innumerable
combinations of monetary amounts, the ratio that highlights
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a desired attribute.

C. Cross-section characterisation of reported numbers
Studies on the statistical characteristics of reported mon-

etary amounts brought to light two facts. First, in cross-
section, the probability density function governing such
amounts is nearly lognormal. Second, amounts taken from
the same set of accounts share most of their variability as the
size effect is prevalent [21]. Thus, variability of logarithm
of account i from set of accounts j, log xij , is explained as
the size effect sj , which is present in all accounts from j,
plus some residual variability εi:

log xij = µi + sj + εi (1)

µi is an account-specific expectation. Formulations, such
as (1), as well as the underlying random mechanism, apply to
accumulations only. Accounts, such as Net Income, Retained
Earnings and others, that can take on both positive- and
negative-signed values, are a subtraction of two accumula-
tions. Net Income, for instance, is the subtraction of Total
Costs from Revenue, two accumulations, not the direct result
of a random mechanism.

Given two accounts i = 1 and i = 2 (Revenue
and Expenses for instance) and the corresponding reported
amounts x1 and x2 from the same set, the logarithm of the
ratio of x2 to x1 is

log
x2

x1
= (µ2 − µ1) + (ε2 − ε1) (2)

It is clear why ratios formed with two accounts from the
same set are effective in conveying information to analysts:
the size effect, sj , cancels out when a ratio is formed. In
(2), the log-ratio has an expected value (µ2 − µ1). The
median ratio exp(µ2−µ1) is a suitable norm against which
comparisons may be made while exp(ε2 − ε1) indicates the
deviation from such norm observed in j. Ratios thus reveal
how well j is doing no matter its size. For instance, if the
median of Net Income to Assets ratio is 0.15, any company
with one such ratio above 0.15, no matter small or large, is
doing better than the industry.

In (2), upward or downward deviations from the log-
arithm of the industry norm are the result of subtracting
two residuals, each of them account- and size-independent.
The deviation ε2− ε1 from industry norms plays the crucial
role of conveying to analysts the size-independent, company-
specific data they seek. It is clear, however, that ε2 − ε1 is
only part of the size-independent, company-specific infor-
mation available in x1 and x2. When the ratio is formed, all
variability common to x1 and x2 is removed. Residuals ε1
and ε2 are uncorrelated and the size-independent, company-
specific information contained in x1 and x2 but not conveyed
by ε2 − ε1 is the variable orthogonal to ε2 − ε1, which is
ε2+ε1 [24]. Therefore, ε2+ε1 is size-independent informa-
tion not conveyed by the ratio. It is thus demonstrated that
the use of ratios as model predictors curbs the information
made available to the model. Only one dimension of the size-
independent information, ε2 − ε1, is made available while
the other dimension, ε2 + ε1, is ignored. This is yet another
disadvantage associated with the use of ratios in predictive
modelling.

D. An alternative to ratios
Given this fundamental limitation of pre-selected ratios,

it is worth asking whether amounts directly taken from
sets of accounts would not do a better job than ratios
as predictors in statistical models. Such possibility is at-
tractive because predictors obeying (1) behave exceedingly
well: distributions are nearly Normal, relationships are ho-
moscedastic and influential cases, when present, are true
outliers. Log-transformed numbers allow the use of powerful
algorithms, which make the most of existing content. In the
downside, one obvious concern is how to deal with accounts
that can take on both positive- and negative-signed values:
logarithms apply only to positive values. Another, equally
pressing concern is how to keep the influence of company
size out of such models: ratios are size-independent variables
but log-transformed account numbers are size-dependent,
indeed, most of their variability reflects just the effect of
size. Finally, the interpretation of coefficients of such models
would not be straightforward.

Consider the usual linear relationship where y is ex-
plained by a set of predictors x1, x2, . . .

y = a+ b1x1 + b2x2 + · · · (3)

In the case of a Logistic regression, y may be seen as
the linear score leading to the binary prediction. If, instead
of x1, x2, . . . log-transformed predictors obeying (1) are
included in (3), such relationship becomes

y = A+ b1ε1 + b2ε2 + · · ·+ (b1 + b2 + · · · )sj (4)

where A = a + b1µ1 + b2µ2 + . . . is a constant value and
residuals ε1, ε2, . . . now play the role of linear predictors.
The term (b1 + b2 + . . .)sj apportions the proportion of sj
(size) variability required by y. Coefficients b1, b2, . . . are
under a constraint: their summation b1+b2+. . . must reflect
the extent and sign of size-dependence in y; and where y
is size-independent, b1 + b2 + . . . must assume the value of
zero so as to bar information conveyed by sj from entering
the relationship.

Suppose, for instance, that y is indeed size-independent.
Moreover, y is being predicted by two accounts only, x1

and x2. In this case b2 = −b1 = b and (4) becomes y =
a+ b(µ2 − µ1) + (ε2 − ε1) or

y = a+ b log
x2

x1
(5)

In other words, a ratio is automatically formed so that size is
removed from the relationship modelling y. Given the vari-
ety of companies’ sizes found in cross-section relationships,
the predictive power of sj on y is, in most practical cases,
small or non-existent. In such type of models b1 + b2 + . . .
in (4) add to nearly zero. Size-related variability is allocated
to a given predictor in order to counterbalance size-related
variability from other predictors, so that y is modelled
by size-independent or nearly size-independent variability.
When building an optimal model, the algorithm assigns
the role of denominator to some predictors (negative-signed
b coefficients) and that of numerator to others (positive-
signed b coefficients). Logarithmic representations similar
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Figure 3. Graphical form where the Y-axis represents log-modulus of x.

to financial ratios are thus formed. In this way, financial
attributes possessing optimal predicting characteristics, are
unveiled without the intervention of the analyst. This is a
notable trait of the methodology.

The above reasoning presupposes that y is size-
independent. By forcing the modelling algorithm to obey
b1+ b2+ . . . = 0 in (4), it is possible to build models where
y is explained solely by size-independent variability, even
in cases where the relationship is size-related. Thus, ratios
are not needed to build size-independent models. Ratios are
needed solely because financial analysts, and other users,
demand that predictors be interpretable.

The other concern, how to deal with accounts that can
take on both positive- and negative-signed values, may be
solved by using the “log-modulus” [25] or other similar
transformation. The log-modulus expands the logarithmic
transformation so as to encompass zero and negative values.
Given variable x, the log-modulus consists of using

sgnx log(|x|+ 1) (6)

instead of x (Figure 3). In this way, accumulations or
subtractions of accumulations, no matter their sign, become
statistically well-behaved.

The log-modulus transformation considerably reduces
the frequency of missing values in random samples. Missing
values are a source of bias because the probability that a
reported number is missing often is correlated to the attribute
being predicted. For instance, it is frequent to find values
of zero in Dividends and other accounts. When ratios are
formed with such values in the denominator, as is the case
of the ratio “Changes in Dividends in relation to the Previous
Year”, a missing value is created; and such missing value is
correlated with the paying or not of dividends, a predictor
of future Earnings’ changes. Other changes in relation to
the previous period will suffer from the same difficulty. But
after the log-modulus transformation, such ratios become
subtractions:

δ log x = log xt−1 − log xt (7)

where t and t− 1 express subsequent time periods and the
operator log may refer to (6) in the case of positive- and
negative-signed x. Changes expressed as in (7) no longer
increase the number of missing values. Incidentally, unlike
ratios, transformed values cannot have two meanings. In
ratios, negative-valued numerators and denominators lead

to the same ratio sign as positive-valued numerators and
denominators.

The coming sections show that models using log-
modulus transformed accounts as predictors perform better
than those using ratios; but where ratios cannot be avoided,
then the modelling algorithm is capable of extracting ratios
with optimal predicting characteristics from logarithmic and
log-modulus transformed accounts.

III. METHODOLOGY
The application described here makes use of the follow-

ing methodologies: Web-mining of financial statements; the
use, as input, of logarithmic-transformed monetary amounts
directly taken from such statements; pre-selection of model
input variables amongst a wider set of monetary amounts;
the specific architecture and training of three MLPs so
that internal representations similar to financial ratios are
formed; and finally, the interpretation of such MLP’s internal
representations via a features’ map. This section briefly
discusses such methodologies.

A. Web-mining of financial statements
Until recently, financial statements were published in a

variety of formats including PDF, MS Word and MS Excel.
Such variety, forced users and their supporting tools into
a significant amount of interpretation and manual manip-
ulation of meta-data and led to inefficiencies and costs.
From 2010 on, the Securities and Exchange Commission
(SEC) of the US, as well as the United Kingdom’s Revenue
& Customs (HMRC) and other regulatory bodies, require
companies to make their financial statements public using
the XML-based eXtensible Business Reporting Language
(XBRL). Users of XBRL now include securities’ regulators,
banking regulators, business registrars, tax-filing agencies,
national statistical agencies plus, of course, investors and
financial analysts worldwide [26]. XML syntax and related
standards, such as XML Schema, XLink, XPath and Names-
paces are all incorporated into XBRL, which can thus extract
financial data unambiguously. Communications are defined
by metadata set out in taxonomies describing definitions of
reported monetary values as well as relationships between
them. XBRL thus brings semantic meaning into financial
reporting, promoting harmonization, interoperability and
greatly facilitating ETL tasks. Web-mining of financial data
is now at hand.

The initial module of the application carries out Web-
mining of XBRL content. The user first introduces a se-
lection criteria, namely a company name or code, such as
the “Central Index Key” (CIK) and the period. Then, the
search of pre-existing indexes will identify Web locations
containing the required statement. In the US, for instance,
such location is the Securities and Exchange Commission
repository (known as “EDGAR”) containing “fillings” of
companies’ statements and other data.

The Electronic Data Gathering, Analysis, and Retrieval
(EDGAR) repository performs automated collection, valida-
tion, indexing, acceptance, and forwarding of submissions
by companies and others who are required by law to file
forms with the SEC. Its primary purpose is to increase the
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efficiency and fairness of the securities market for the benefit
of investors, corporations, and the economy by accelerating
the receipt, acceptance, dissemination, and analysis of time-
sensitive corporate information filed with the agency. The
SEC’s File Transfer Protocol (FTP) server for EDGAR
filings allows comprehensive access by corporations, funds
and individuals.

The actual annual statement of companies need not be
submitted on EDGAR, although some companies do so
voluntarily. However, a report on a standardised format,
known as “Form 10-K”, which contains much of the same
information, is required to be filed on EDGAR; and since
recently filers are also required to submit documents in
XBRL format. Besides the 10-K form, other widely used
form is the 10-Q, which refers to quarterly statements. Rules
established by the SEC offer guidelines for the content and
format, including which data may be provided as part of an
Interactive Data document, and the relationship to the related
official filing.

An extremely helpful resource for FTP retrieval is the
set of EDGAR indices listing the following information for
each filing: company name, form type, CIK of the company,
date filed, and file name (including folder path). Four types
of indexes are available:

1) company, sorted by company name
2) form, sorted by form type, 10-K or 10-Q
3) master, sorted by CIK code
4) XBRL, list of submissions containing XBRL finan-

cial files, sorted by CIK code.
The application described here uses the package “XBRL”
from the R language [27] to access and retrieve SEC
filings. The XBRL package offers access to functions to
extract business financial information from a XBRL instance
file and the associated collection of files that defines its
Discoverable Taxonomy Set (DTS).

When the report from a given company and period is re-
quested by a user, an index is searched and the corresponding
document is retrieved from its Web location on EDGAR.
Next, the relevant information is put in place. Functions
provided by the XBRL package return readily available data,
complete with standard descriptions, including taxonomies.
As published taxonomy files are immutable and are used by
most filers, the package offers the option of downloading
them only the first time they are referred, keeping a local
cache copy that can be used from then on.

B. Data description and variable selection
Financial analysts base their diagnostic on several con-

curring pieces of evidence, in favour or against a priori hy-
potheses. On the other hand, the extant research on financial
statements’ manipulation suggests that fraudulent numbers
lead to detectable imbalances in financial features. For
instance, income may increase without the corresponding
increase in free cash. In order to respond to the need, in the
part of analysts, to examine concurring facts, the application,
besides predicting fraud, also predicts the state of two other
attributes mentioned in published research [4][5] as capable
of detecting such imbalances.

Therefore, after Web-mining and the log-transformation
of monetary amounts as described in Subsection II-D, three
MLP are set to separately predict three financial attributes
known to widen fraud propensity space, namely:

• Trustworthiness, comprising two classes (states):
fraudulent (manipulated, misstated) vs non-fraud-
ulent statement [4][5][7];

• Going Concern, comprising two classes: bankrupt
vs solvent [19][28][29];

• Unexpected Increase in Earnings One Year Ahead,
comprising two classes: Earnings’ increase vs Earn-
ings’ decrease one year ahead [20][30].

Trustworthiness and Going Concern are the two basic at-
tributes of financial analysis, directly influencing the way all
other attributes are interpreted. As for Earnings’ direction
one year ahead, it is, amongst the attributes occupying a
place further down in the hierarchy, one often scrutinized
by investors.

So far, Going Concern is the only predictable attribute.
In spite of the large research effort devoted to improving
Trustworthiness prediction, until now, as mentioned, results
are below the feasibility level, at 75% out-of-sample correct
classification at best, for large, non-homogeneous samples.
Besides being meagre, such results are unbalanced: one of
the states is significantly better predicted than the other. All
the previously cited authors use ratios as predictors.

Instances employed in the training and testing of the
three MLP and the corresponding input and target attributes
are extracted from the following sources:

• UCLA-LoPucki Bankruptcy Research Data [31] as
well as a list of bankrupt companies kindly provided
by Professor Edward Altman (New York Univer-
sity), covering the period 1978-2005.

• The collection of Accounting and Auditing Enforce-
ment Releases (AAER) resulting from investigations
made by the SEC against a company, an auditor,
or an officer for alleged accounting and/or auditing
misconduct, identifying a given set of accounts as
fraudulent [5], covering the period 1983-2013. This
data is made available by the Centre for Financial
Reporting and Management of the Haas School of
Business (University of California at Berkeley) [32].

• The “Compustat” repository of financial data by
Standard & Poor’s, where monetary amounts are
collected, and from which unexpected Earnings in-
creases and decreases are estimated [20][30].

Input to each of the three MLP are logarithms or log-
modulus, (6), of accounts pre-selected amongst all the aggre-
gated accounts in published statements. Accounts are taken
from two consecutive statements of a company, forming
instance j of actual period, t, and of previous period, t− 1.
Log-differences in relation to such previous period, (7), are
computed and included in the pre-selection process.

Pre-selection of input variables is carried out using the
“Forward Selection” algorithm attached to most Logistic
regressions [33]. Accounts and log-differences selected in
this way are then used as input to the corresponding MLP.
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TABLE I. BK = BANKRUPTCY, FR = FRAUD, EA = EARNINGS.

Log Cash and Short Term Investments Bk Fr
Log Receivables (total) Fr
Log Assets (total) Fr Ea
Log Long-Term Debt Fr
Log Liabilities (total) Bk Fr Ea
Log Liabilities (total) change Fr
Lmd Retained Earnings Bk Ea
Lmd Retained Earnings change Ea
Log Common Stock (equity) Fr
Log Revenue (total) Fr
Lmd Gross Profit Ea
Lmd Gross Profit change Ea
Lmd Tax Expense Bk Ea
Lmd Cash-Flow from Operations Bk Ea
Lmd Dividends per Share Ea
Lmd Dividends per Share change Ea

Table I lists the 16 variables that were pre-selected using
such method, together with the attribute they predict and
the type of transformation applied in each case: “log” for
the logarithmic transformation (positive-only accounts) and
“lmd” for the log-modulus transformation (accounts which
may take both positive and negative values).

C. MLP architecture and training
When analysing attributes, such as Trustworthiness, fi-

nancial analysts need to know which ratios are at work,
their position in relation to industry standards and in which
direction they are moving. In order to respond to the first of
such demands, MLP architecture and training are designed
so that internal representations similar to financial ratios are
formed in hidden nodes. Before training, MLP architecture
consists of:

1) A total of 41 input nodes corresponding to the 16
variables listed on Table I plus 24 dummies, one for
each of the “Global Industry Classification Stan-
dard” (GICS) groups [34] (each instance belongs to
one such industrial group), plus a constant-valued
dummy.

2) one hidden layer with 10 nodes in each of which
an internal representation similar to a ratio may be
formed;

3) two output nodes where outcomes are symmetrical
about zero, plus the corresponding “biases” as-
signed to the constant value of 1 and -1. Symmetry
and output node duplication is not required, in
theory, but it may facilitate training.

Hyperbolic tangents (threshold functions symmetrical about
zero) are used as transfer functions in all nodes.

Given the inclusion of 24 dummies, hidden nodes’ biases
assigned to the constant value of 1 should be redundant.
But since, during training, MLP connections (weights) are
subject to a stringent pruning whereby most connections
disappear, the constant bias often is the sole remaining
dummy.

MLP training is carried out in the usual way until a
minimum is found. Then a popular weight pruning technique
known as “Optimal Brain Surgeon” [35] is applied. The
result is a significant reduction in the number of connections.
Typically, all of the industry dummies, plus a significant
number of input variables and, often, entire hidden-layer
nodes are discarded at this stage.

Figure 4. Given values xk and xi, the ratio xkj/xij from statement j,
is formed in an MLP hidden node as log xkj − log xij when wk = −wi.

The next training step consists of an extremely crude
penalisation of synaptic weights linking inputs, the log xi in
(1), to hidden nodes: each epoch reduces the absolute value
of weights by a small margin, typically 0.001. This leads
to a kind of competition for survival amongst weights; and
it is verified that some weights are resilient in the sense
that they regain their values while others are non-resilient,
quickly decaying to zero, and are pruned.

Then, beginning with the most significant node, all but
the two largest-valued input weights are pruned. The pruning
is repeated in the other nodes, one at a time, while synaptic
weights linking input variables to all hidden nodes keep
on being subject to the described penalisation. When the
relationship being modelled is strong, as is the case of
bankruptcy prediction, this procedure is sufficient to bring
about internal representations similar to ratios; in the case
of weak relationships, the procedure requires trial and error
in the choice of the first hidden nodes to be subject to the
forced pruning of all but two weights.

Instances used in MLP training greatly differ in size
while the predicted variable is indeed predictable. Hidden
nodes, therefore, have a tendency towards self-organizing
themselves into size-independent variables, which are, at
the same time, efficient in explaining the attribute being
modelled. This is basically the definition of a financial ratio;
and the described procedure simply avoids ratios with more
than one numerator and denominator.

According to (5), in a nearly size-independent predicting
context, synaptic weights tend to survive in each node so
that their summation is nearly zero. And if nodes are further
forced into having two weights only, then such two weights
will be symmetrical (opposite signs and approximately sim-
ilar absolute values). Internal representations thus mimic the
logarithm of ratios and can be interpreted similarly to ratios
(Figure 4). Note that the term “internal representation” refers
to values assumed by each hidden node after summation
(SUM in Figure 4) but before transfer function.

In some hidden nodes, only one weight survives, not
two. This may happen where input variables are themselves
ratios, such as Dividends per Share or changes from the
previous- to the current-year account (7). This may also
happen when the relationship to be modelled requires the
presence of size as a predictor.

Although absolute values of the two surviving weights in
each hidden node are not much different from one another,
they differ across nodes. Such difference, together with
the magnitudes of synaptic weights linking them to output
nodes, crudely reflects the importance of each node for the
final classification performance. In the final step of training,
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Figure 5. Position of financial attributes’ classes in 4 by 3 features’ map.

the less important hidden node is also tested for pruning us-
ing trial and error, the pruning criterion being non-significant
reduction in performance. The final result is a parsimonious
model with meaningful internal representations.

After appropriate ratios are selected, analysts interpret
their observed, company-specific deviations from expecta-
tion. In this way, expected µi from (1) are also modelled
and accounted for inside such node. Since node outputs and
attributes’ classes are both balanced, the effect of industry
dummies is to subtract industry-specific log-ratio standards
from internal representations thus making them similar to
a difference of two εi in (1). Such difference is, in log
space, what analysts seek when they compare a ratio with its
expectation. As mentioned, for the modelling tasks at hand,
industry dummies are not significantly distinctive.

D. Graphical interpretation of results
Internal representations from the three MLP are input

to a 2-dimensional features’ map [36] with 4 by 3 nodes.
When self-organisation has taken place, specific nodes or
groups of nodes in the map become associated with classes
of attributes, such as fraud and bankruptcy (Figure 5). Visual
examination of the features’ map facilitates interpretation,
both proximity to a given node and trajectories towards or
away from nodes, being informative. In this way, analysts
observe in which direction attributes move and whether a
company is approaching nodes where fraud, bankruptcy and
unexpected changes in Earnings are likely.

The self-organised map aims at facilitating the graphical
interpretation of representations created by the three MLP;
no inferential role is attributed to it.

IV. RESULTS
For the three MLP, this section lists the input weights

which survive pruning, the ratios formed from them in
hidden layers and their relative importance for explaining
the outcome. Test-set classification accuracy is also reported.
MLP performance is compared with that of Logistic regres-
sion classifiers using similar data-sets and MLP’s surviving
inputs as predictors. In this way, the performance of models
using the newly discovered ratios as predictors is compared
with that of models using ratio components as predictors.
The section concludes by showing the self-organised fea-
tures’ map at work.

A. Bankruptcy prediction
From a total of 2,997 cases of US bankruptcy filings, and

after discarding bankruptcies but the first in each company
as well as cases about which detailed financial figures are
not available, two random samples of nearly 900 different
cases each are drawn. The two samples contain companies
listed in US exchanges and present in the Standard & Poor’s
“Compustat” database. They span the period 1979-2008.
The deciles of the logarithm of Assets (total) are used
as a discrete size measure, all sizes being represented in
samples. Similarly, all the 24 GICS groups are significantly
represented in samples. Cases in the two samples are then
matched with an equal number of records from non-bankrupt
companies. Pairing is based on the GICS group, on size
decile and on year. Among financial statements fulfilling the
pairing criteria, one case is randomly selected for matching
and then such case is made unavailable for future matching.
Although the same case is not used to match more than
one bankruptcy case, other cases from the same company
in different years remain available for matching. The two
matched samples have nearly 1,800 cases each. One of the
two samples, always the same, is used as the learning-set
and the other as the test-set. Due to missing observations,
samples contain less than 1,800 cases:

Learning-set: non-bankrupt 845 (50.1%)
Learning-set: bankrupt 841 (49.9%)
Test-set: non-bankrupt (N) 837 (49.8%)
Test-set: bankrupt (P) 845 (50.2%)

When the MLP learning process is concluded, only 4 hidden
nodes persist. In each of these, the two input weights which
survive pruning are of a crudely similar magnitude and
opposite sign. Therefore, the MLP has formed 4 internal
representations, B1 to B4, which are similar to financial
ratios in log space. When ordered by magnitude of the
weight leading to output nodes, a rough measure of pre-
dictive importance, such ratios are:

B1 ratio of Cash and Short Term Investments to
Liabilities (total)

B2 ratio of Retained Earnings to Liabilities (total)
B3 ratio of Cash-Flow from Operations to Cash and

Short Term Investments
B4 ratio of Tax Expenses to Liabilities (total)

All industry-specific weights are also pruned away during
training, denoting no significant influence of the industrial
group on bankruptcy prediction. Therefore, the final MLP
model has 5 inputs (detailed in Table I), 4 hidden nodes and
2 symmetrical but otherwise identical outputs.

Test-set performance of the MLP using the above 4
log ratios (internal representations) formed from 5 inputs,
is reported in Table II together with the performance of a
Logistic regression using the same 5 inputs as predictors.

As mentioned, bankruptcy prediction is the sole case of
successful modelling of financial attributes. This is probably
due to the fact that statements were perfected so as to warn
against solvency problems. Therefore, the relationship is
strong. Performance reported here is not inferior to that
found in the literature while balance increases markedly.
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TABLE II. BANKRUPTCY PREDICTION CLASSIFICATION RESULTS.

Bankruptcy MLP Logistic
predicting models (4 ratios) (5 variables)
Non-bankrupt correct (TN) 822 (98.2%) 822 (98.2%)
Non-bankrupt incorrect (FP) 15 (1.8%) 15 (1.8%)
Bankrupt correct (TP) 811 (96.0%) 814 (96.3%)
Bankrupt incorrect (FN) 34 (4.0%) 31 (3.7%)
Precision: TP / (TP + FP) 98.18% 98.19%

The number of variables and synaptic weights engaged
in modelling is less than that reported in the literature.
Robustness is therefore higher. When predictors are ratio
components rather than ratios (Logistic regression), perfor-
mance increases slightly.

B. Fraud detection
The methodology used in the building of fraud-detecting

samples is similar to the bankruptcy-prediction case. Data
used for learning and testing consists of a collection of
3,403 AAERs. It contains enforcement releases issued be-
tween 1976 and 2012 against 1,297 companies, which had
manipulated financial statements. After removing cases for
which no detailed financial data is available, the database
contains 1,152 releases. Manipulated statements from the
same company in different years are not removed from the
sample. Enron, for instance, was the object of 6 releases and
all of them are included. Two random samples of nearly 550
different cases each are then drawn. They span the period
1976-2008. All sizes and all GICS groups are significantly
represented. The two samples are matched with an equal
number of statements from companies that are neither the
object of releases throughout the period nor bankrupt in the
year of the release. Matched samples have nearly 1,100 cases
each. One of the two samples, always the same, is used to
build models and the other to test performance of models.
Due to missing observations, the size of samples available
for model-building and model-testing ends up being less than
800 cases each:

Learning set: non-fraud cases 335 (45.7%)
Learning set: fraud cases 398 (54.2%)
Test set: non-fraud cases (N) 353 (46.2%)
Test set: fraud cases (P) 411 (53.8%)

When the MLP learning process is concluded, 6 hidden
nodes persist. Five of these 6 nodes have two surviving input
weights with a relatively similar magnitude and opposite
sign. The remaining node, F5, has only one surviving weight.
The MLP has formed 5 internal representations, F1 to F4
plus F6, which are similar to financial ratios in log space.
The following list displays the representations in the 6
hidden nodes ordered by magnitude of weight leading to
the output node, a rough measure of predictive importance:

F1 ratio of Liabilities (total) to Assets (total)
F2 ratio of Cash and Short Term Investments to

Revenue (total)
F3 ratio of Long Term Debt to Common Stock

(equity)
F4 ratio of Receivables (total) to Common Stock

(equity)
F5 Change in Liabilities (total)
F6 ratio of Revenue (total) to Common Stock (eq-

TABLE III. FRAUD DETECTION CLASSIFICATION RESULTS.

Fraud MLP Logistic
predicting models (6 ratios) (8 variables)
Non-fraud correct (TN) 299 (84.7%) 303 (85.8%)
Non-fraud incorrect (FP) 54 (15.3%) 50 (14.2%)
Fraud correct (TP) 369 (90.0%) 371 (90.5%)
Fraud incorrect (FN) 41 (10.0%) 39 (9.5%)
Precision: TP / (TP + FP) 87.2% 88.1%

uity)
All industry-specific weights are pruned away during train-
ing. Therefore, the final MLP model has 8 inputs (detailed
in Table I), 6 hidden nodes and 2 symmetrical but otherwise
identical outputs.

Test-set performance of fraud-detecting MLP using 8
inputs and 6 hidden nodes is reported in Table III together
with the performance of the Logistic regression using the
same 8 inputs. The model shows a substantial increase in
out-of-sample performance, of more than 10% in relation
to previous studies using large, diversified samples, while
imbalance in the recognition of classes is reduced. Type II
error (the most expensive in this case) is clearly subdued.
When predictors are ratio components rather than ratios
(Logistic regression), performance increases.

C. Earnings prediction
The task of predicting Earnings’ changes one year ahead

is generally considered as having theoretical rather than
practical interest: it is indeed possible to predict Earnings
but, so far, the attained increase in accuracy over the tossing
of a coin is barely 10% [20].

Samples used in the prediction of the sign of unexpected
changes in Earnings (in fact Earnings per Share, EPS) one
year ahead, are not matched: classes to be predicted are
estimated from data available in each set of accounts [20]. In
the present case, after withdrawing cases with missing values
in the predicted dichotomous variable (Earnings increase vs
Earnings non-increases) or in predictors, a total of nearly
140,000 cases remain, where some 90,000 are non-increases
and 50,000 are increases. The size of the sample is higher
than in previous cases and classes are unbalanced: after
adjusting for expectation, non-increases are more frequent
than increases. Other methodological details are the same as
in previous cases. The final number of cases in the learning-
and test-set is:

Learning set: EPS non-increases 41,851 (64.3%)
Learning set: EPS increases 23,275 (35.7%)
Test set: EPS non-increases (N) 41,750 (64.4%)
Test set: EPS increases (P) 22,811 (35.6%)

Class proportions are significantly dissimilar in this case.
When the MLP learning process is concluded, 10 hidden

nodes persist, 5 of which have only 1 synaptic weight. In
the remaining 5 nodes the two surviving input weights are
of a relatively similar magnitude and opposite sign. The
MLP has formed 5 internal representations, E2, E3, E5, E6
and E7, which are similar to financial ratios in log space.
The following list displays the 10 representations formed in
hidden nodes ordered by the magnitude of weight leading to
the output node, a rough measure of predictive importance:
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TABLE IV. EARNINGS PREDICTION CLASSIFICATION RESULTS.

Earnings MLP Logistic
predicting models (10 ratios) (10 variables)
EPS non-increases correct (TN) 35,783 (85.7%) 35,783 (85.7%)
EPS non-increases incorrect (FP) 5,967 (14.3%) 5,967 (14.3%)
EPS increases correct (TP) 16,153 (70.8%) 16,153 (70.8%)
EPS increases incorrect (FN) 6,658 (29.2%) 6,658 (29.2%)
Precision: TP / (TP + FP) 73.02% 73.02%

E1 Dividends per Share
E2 ratio of Cash-Flow from Operations to Tax

Expenses
E3 ratio of Retained Earnings to Liabilities (total)
E4 Change in Gross Profit
E5 ratio of Retained Earnings to Tax Expenses
E6 ratio of Gross Profit to Cash Flow from Oper-

ations
E7 Assets (total)
E8 ratio of Tax Expenses to Assets (total)
E9 Change in Retained Earnings
E10 Change in Dividends per Share

All industry-specific weights are pruned away. The final
MLP model has 10 inputs (detailed in Table I), 10 hidden
nodes and 2 symmetrical but otherwise identical outputs.

Test-set performance of the MLP Earnings-predicting
model using the 10 input just mentioned, is reported in
Table IV together with the performance of the Logistic
regression model using the same 10 inputs differently organ-
ised: instead of ratios, ratio components are used as input.
Performance is, in this case, similar for ratios (MLP) and
their components (Logistic regression).

One of the internal representations is not a ratio but the
logarithm of Assets (total). This introduces in the modelling
of Earnings’ changes the effect of size, required by this
particular relationship.

Classification results should be interpreted in the light
of the strong class imbalance observed in the training-
set [37], which is nearly 14% in this case. Namely, a
classification accuracy of 73%, obtained from an initial class
imbalance of 14% means a gain, in relation to a classifi-
cation made at random (without any previous information)
of 9% = 73% − (50% + 14%). Contrary to published
results [20][30], the final classification imbalance is not
worsened by the modelling process. In the present case,
imbalance is similar to that of the sample used to build
models while performance is significantly increased by 4%
in relation to such previously reported performance.

D. The features’ map
Data employed to self-organise the features map con-

tains instances used in the learning and testing of two of
the MLP, namely bankruptcy-prediction and fraud-detection
data. Classes, such as fraud, bankruptcy and their opposites
may occur together in some instances; and all instances
include the two classes of unexpected Earnings’ increases
and decreases. The total number of instances is 5,369.

When self-organised, the 4 by 3 nodes in the features’
map are sensitive to distinct financial attributes. Considering
the lattice of 12 nodes defined as x, y where x = 1, . . . 4
and y = 1, . . . 3, the strongest sensitivities observed are as
follows:

• Fraud in node x = 1, y = 4
• Bankruptcy in node x = 4, y = 1 and its opposite,

Solvency, in node x = 1, y = 1
• Earnings’ decrease in nodes x = 1, y = 1 and x =

1, y = 3

Figure 6 compares the frequencies associated with, respec-
tively, fraud, bankruptcy and unexpected Earnings’ decreases
in the self-organised map.

Besides graphically locating the financial position of
companies with reference to fraud and bankruptcy, the self-
organised features’ map shows the trajectory drawn by
companies, from the previous into the current year. Figure 7
illustrates the yearly evolution of the accounts of some, well-
known, financial scandals and failures, as mapped into the
self-organised lattice.

V. ARCHITECTURE, OUTPUT AND DEPLOYMENT
The most informative result provided by the application

is the set of three probabilities obtained from MLP outputs.
After being adjusted so as to become 0-1 variables, such
outputs may be interpreted as conditional probabilities of ob-
serving the associated input values when the predicted class
is fraud, bankruptcy and Earnings decrease respectively. And
when combined with Prevalence numbers (prior probabilities
of fraud, bankruptcy and Earnings decrease), MLP outputs
become posterior probabilities of fraud, bankruptcy or Earn-
ings decrease given the values observed in input variables.
Posterior probabilities are then made available to users as
outputs. Output node representations (after summation but
before the transfer function) can also be used as scores.

Each analysed company generates two sets of results
corresponding to time periods t−1 and t. Output to analysts
consists of the following:

1) Three posterior probabilities: fraud, bankruptcy and
Earnings’ decrease, with a sign indicating the di-
rection of their change from t− 1 to t.

2) The respective scores.
3) The 9 most significant values internal representati-

ons assume at period t, three from each MLP, with
a sign indicating the direction of change from t−1
to t. Values are labelled as the respective ratio.

4) Graphical description of financial position in the
self-organised features’ map and trajectories from
t− 1 to t, allowing the detection of trends towards
a given class.

5) Names, year and attributes of three instances from
the learning- and test-set, which are closest to the
instance being investigated respectively regarding
fraud, bankruptcy and unexpected Earnings’ de-
crease. The proximity criterion used in the three
cases is the value of the internal representation
formed in one of the output nodes.

The application uses a variety of packages and languages,
namely the R-language; it has been set-up, tested and
deployed in two versions, stand-alone and Web-based, the
latter having no training capability. The stand-alone version
is a Java-based set of modules, as depicted in Figure 8.
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Figure 6. Class frequencies in features’ map. Node x = 4, y = 1, bankruptcy; node x = 1, y = 3, fraud; nodes x = 1, y = 1 to 3, Earnings’ decreases.

Figure 7. Trajectories drawn by well-known cases in the features’ map.

VI. CONCLUSION
Notwithstanding the abundance of research devoted to

the subject, until now, the surge in marketed Financial Tech-
nology applications did not contemplate software to support
the detection of fraud in published financial statements. This
is due to difficulties in extracting and put in place of the
required input data and also due to the “black box” nature
of researched solutions. The application presented here aims
at solving both problems, producing automated Web-mined
input and interpretable diagnostics. In the hands of analysts,
the application’s output is self-explanatory, not just pointing
out companies likely to have committed fraud but showing,
rather than hiding, financial attributes that are capable of
supporting such diagnostic.

Limitations of ratios highlighted in the paper, some of
which persist after appropriate logarithmic or log-modulus
transformations, are not sufficient to erode performance sig-
nificantly. Experiments reported in the paper show that log-
ratio use, as an alternative to log-transformed accounts, is
acceptable for predictive modelling purposes. This probably
stems from the fact that such log-ratios are discovered by
the optimisation algorithm, rather than being pre-selected by
analysts. In this way, the most performance-damaging ratios
will not be selected, meaningful as they may seem to be. Ra-
tios, in turn, bring with them some noteworthy advantages,
namely diagnostic interpretability and size-independence,
including much needed currency-independence.

The application illustrates a case of close alignment

Figure 8. Modular architecture of the stand-alone application deployed.

between users’ needs and algorithmic characteristics. The
application is also an example of knowledge-discovery,
whereby explanatory variables are discovered amongst many
candidates so that a predicting task is carried out with
optimal performance. The choice of the algorithm, the MLP,
was dictated solely by its ability to form meaningful internal
representations. Neither algorithmic performance nor the
testing of novel algorithmic capabilities was the goal here.
Out-of-sample classification results obtained are more than
10% above those reported by other authors for large-non-
homogeneous samples; but such increase in performance is
obtained simply by using, as input variables, log-transformed
accounts rather than previously-defined ratios. Appropriately
transformed variables, not algorithms, led to the discovery
of log-ratios and then to parsimonious, precise, balanced and
robust prediction.

The final goal is to build a usable tool, an apparently
simple task but which, in this particular subject area, has
eluded research effort during the last 20 years. Thus, the
ultimate test is yet to be carried out, namely whether analysts
will use the application or not.
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