
Enterprise Integration Modeling

A Practical Enterprise Integration Solution Featuring an Incremental Approach via Prototyping

Mihaela Iridon
Cândea LLC

Dallas, TX, USA
e-mail: iridon.mihaela@gmail.com

Abstract— As larger and more complex line-of-business (LoB)
software systems emerge and grow within an organization so
does the need for such systems to interact with each other and
exchange data, making it imperative to design flexible, scalable
integration architectures and frameworks to support a robust
and well-performing enterprise system. System integration is a
multi-faceted undertaking, ranging from low-level data sharing
(Shared Repository or File Sharing), to point-to-point
communications (Remote Procedure Invocation via Service
Orientation), to decoupled data exchange architectures
(Messaging). It is not uncommon to build entire integration sub-
systems responsible not only for exchanging information
between systems (commands and notifications) but also for
potentially more complex business logic orchestration across the
entire enterprise (Message Broker). Moreover, implementing
large integration solutions carries a considerable amount of risk
so it is imperative that such solutions be validated by releasing
functional prototypes to a smaller client bases in order to
ascertain the benefits of - and perhaps the clients’ interest in -
delivering new features. This paper is contemplating a practical
data notification and synchronization integration solution that
allows multiple enterprise domains to share data that is critical
for business operations. The solution features an incremental
delivery approach based on initial prototyping that allowed for
additional market analysis and a gradual integration. The
article presents the architecture achieving this business
objective, together with the corresponding system models and
design artifacts. It described the data integration solution
realized using a broker-based messaging approach employing
various enterprise integration patterns, as well as the initial
synchronous functional prototype and the many benefits of
software system prototyping in general.

Keywords-enterprise integration; system modeling; data
integration; canonical model; integration patterns; prototyping;
simulation; testing.

I. INTRODUCTION

Within an enterprise, system integration solutions are
usually designed and implemented as an afterthought, as an
attempt to build or to expand a new or existing enterprise
architecture comprised of heterogeneous legacy system. It
may be safe to say that most companies do not start with an
integrated enterprise architecture but rather a core domain
(also referred to as a vertical), which will eventually grow and
become part of a larger enterprise system as the industry case
described in [1]. In many cases, such integration is achieved
by employing various off-the-shelf integration products, such

as Microsoft’s BizTalk [2] or TIBCO’s Integration Platform
[3].

Software system integration comes in different flavors,
depending on the business objectives, the overall enterprise
architecture, and ultimately the realization approach chosen.
In Section II, we will investigate these driving factors and then
present a concrete implementation approach and its models in
Section III, as it has been proposed and adopted by a provider
of the nation’s largest portfolio of benefit and payroll products
and services designed to help more than 200,000 small and
medium-sized businesses [1].

The beginning of Section III also examines the motivation
behind this paper by attempting to set the right expectations
with the reader and to rationalize the purpose of the technical
artifacts gathered here. It strives to provide relevant context
and comprehension that underscores the focal point of this
document: a practical application of integration patterns and
system integration modeling towards building a concrete
industry solution, with the intention of sharing experience,
approaches, challenges, and design artifacts that are neither
trivial nor stereotypical.

The present article is an elaboration of the “Enterprise
Integration Modeling: A Practical Enterprise Data Integration
and Synchronization Solution” paper presented at IARIA’s
First International Conference on Fundamentals and
Advances in Software Systems Integration (FASSI 2015) [1].
This paper focuses on architectural modeling applied in a real-
case enterprise implementation, but also captures relevant
aspects regarding prototyping as a tool for analysis and risk
mitigation that enabled a phased market release.

The central topic described in this paper represents a data
integration and synchronization blueprint aimed at
implementing the “Maintain Data Copies” data integration
pattern [4] by means of a decoupled integration mechanism
realized on a custom broker-based messaging architecture [1]
[5] [6]. The data payloads exchanged between the loosely
coupled sub-systems abide to a ubiquitous integration
language, referred to as the canonical model [7] and is
described in Section IV. This model is the unified abstraction
of the data structures that must be shared and synchronized
between these systems.

Section V describes the functional prototype that was
initially implemented and released to a reduced client base. It
features a synchronous messaging approach as a
generalization of the larger integration vision. The purpose of
the prototype was to provide the necessary tools for a deeper

116

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

analysis, both of the market reception and feature usability, as
well as of the overall integration challenges and effort.

Section V concludes by presenting various aspects and
benefits of software system prototyping – as identified in this
particular implementation – with emphasis on prototyping for
system integration. It also discusses how prototyping and
building synthetic components helped alleviate some of the
challenges encountered, including distributed teams’
collaboration, component development, and unit and system
integration testing.

Concluding remarks and highlights of the information
shared in this paper are summarized in the final section.

II. SYSTEM INTEGRATION PERSPECTIVES: COMPARING

AND CONTRASTING FUNCTIONAL AND DATA INTEGRATION

When building a large enterprise software system by
bringing together multiple domain applications, it is important
to first identify the level of abstraction at which the integration
specifications are being defined: Do the integrating sub-
systems only need the data that allows them to carry out their
own functions, or do they also require access to cross-domain
exposed functional features? In other words, should a system
expose data only or features as well?

The answers to these questions will determine the type of
integration that must be realized: data or functional
integration, and, perhaps even further, it will help discern
between the need of a flexible, lightweight, loosely-coupled
integration architecture and one that adds enterprise features
and interactions, transcending domain system boundaries.

It is also possible that, in some cases, a hybrid approach
will be pertinent, either to realize a quick and simple
integration with a narrower scope (e.g., a pilot or test product
implementation), or to overcome deep architectural and data
model discrepancies between the existing systems. In this
case, the solution must fulfill some imperative enterprise
needs - whether they are related to exposing new system
features in a short amount of time or at a lower cost until
further market research proves the worthiness of additional
funding for a comprehensive, scalable, extensible, and
suitable solution. These considerations are primarily relevant
when contemplating a phased delivery to the customer base in
order to reduce the amount of risk that larger, more complex
integration solutions usually incur.

A. Functional Integration

This type of integration involves exposing data and
behavior [8] to systems that participate in the integration in
order to trigger or invoke business features exposed by these
systems. Usually, a pure Service Oriented Architecture (SOA)
[9] [10] would be the simplest architectural approach that
could realize this requirement, but it would introduce system
coupling and would also lead to serious scalability concerns
[11]. However, a synchronous point-to-point integration
solution is perfectly suitable in many cases, and – as it will be
presented here – would make perfect candidate for an initial
system prototype. Web Services implement in effect the
Remote Procedure Invocation integration pattern paradigm
[7] and this implies mutual awareness of the presence of – and
the functionality provided by - each of the integrating systems.

Complexity becomes apparent when more than two
systems must interact at a logical and/or functional level of
abstraction by invoking these exposed features and generating
chattiness across the network, or when systems evolve,
possibly threatening the stability of the integration contracts
and hence of the solution. Several options are available to
alleviate these problems, from architectural ones to following
best practices, proper functional decomposition, and service
encapsulation, and eventually to making the proper
technology choices [10].

B. Data Integration

This type of integration assumes that the various
integrating systems were not designed to work together [12],
and that they do not have direct access to the entire enterprise
data but only to that which they provision directly. These
systems were built in order to fulfill certain functional and
business requirements, rather than architectural ones. It is also
possible that some systems were acquired later (e.g., corporate
mergers, third-party software acquisitions, etc.)

Given that the systems evolved independently, enabling
them to interoperate using multiple copies of the enterprise
data (i.e., multiple data sources) while providing enterprise-
level business features in a unified fashion is problematic,
since there is no single source of truth and, potentially, no
single source of data entry. Multiple applications may allow
users to enter the same type of data from different user
interfaces that sit atop of different business/logic layers and,
consequently, different data sources.

Achieving this type of data integration can rely on either
the delivery of custom solutions (for example, involving an
enterprise service bus), or commercial tools (such as
implementations of a Master Data Management system),
which may expedite the time-to-market of such an integration,
in some cases at lower costs than custom solutions [7] [13].

III. A PRACTICAL DATA INTEGRATION AND

SYNCHRONZATION SOLUTION

A. Setting the Expectations

1) This Paper Is Not a Comparative Study Including
Integration Solutions and Approaches

The solution described in this paper is an actual integration
design created for a client that had very specific requirements
for bringing together a couple of business verticals and lay the
foundation for adding a new vertical to the mix. The
integration involved both legacy systems as well as a newly
released one, and presented unique challenges that required
extensive analysis and prototyping before the final custom
solution was considered as a viable candidate. Enterprise
integration always caters to very specific needs, as unique as
the systems that they attempt to bring together.

This paper does not compare the solution designed for this
particular client with other enterprise integration solutions but
rather focuses on a particular implementation for an actual
client who elicited this solution and who delivered the initial
prototype to their client base. Some of the reasons for not
pursuing a comparative study against the solution presented
here are described next.

117

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Although at a high level architectural styles may be
compared and contrasted, including the technologies
employed, it is rather uncommon to come across detailed
technical specifications of actual integration solutions from
various industries to conduct such a comparative study. In
some cases, enterprise system architecture is shown as very
high-level, in the form of block diagrams, to the extent that
they are relevant from a Business and/or Sales view.
Component diagrams, architectural layers, interfaces and
frameworks are usually handled as proprietary technical
documentation and artifacts rather than being exposed for
public evaluation.

It is also understandable why such artifacts are not
publicized. Unless the company’s software is going to be
acquired by some other entity, the internal architecture of that
software system is not necessarily relevant to potential
consumers. Instead, its exposed features –functional and
perhaps non-functional – are shared – up to a certain degree
of detail. From a client’s perspective, a software system –
especially one that sits behind a service interface, will be
treated as a black box whose features are exposed via rich user
interfaces - web applications in most cases – whether the
software system is self-hosted (by the client’s infrastructure)
or vendor-hosted, cloud-based or on premise. An adequate
level of technical detail for other industry implementations is
rather scarce and difficult to come by in order to assemble a
meaningful comparison of behavior and/or performance.

One last important fact that prohibits the development of
a proper and relevant comparison analysis of integration
solutions is that various companies, even if they cater to
similar domains (e.g., payroll service providers), they may
adopt highly specialized system models and architectural
approaches to building their enterprise integration, as dictated
by the features they provide to their clients. Not uncommon,
dealing with legacy systems is also a relevant aspect of
modeling new features and/or adding integration capabilities
to existing domains, since the complexity of such tasks
increases significantly. This is primarily due to the difficulty
of bringing together old and new technologies and practices.
In any case, specific domain models are not usually shared
openly; and they may vary greatly from one enterprise to
another, despite the realization of similar functionality.

For this reason, any meaningful comparison with such
enterprise systems would not carry a significant value,
assuming that the specific solution’s topology details and/or
performance specs are disclosed and available for evaluation.

2) This Paper Does Not Introduce Groundbreaking Ideas
for Solving Integration Problems

Many books and online resources on software system
design and software system integration are very useful tools
for understanding the many ways in which one can build
robust, extensible, maintainable, scalable software [5] [7] [9]
[11]. Patterns, principles, and best practices are always
emphasized and more or less extensive examples are
provided. However, usually such books have a very precise
and well-organized agenda that they follow, introducing
and/or elaborating on various technologies, architectural
and/or integration styles, leaving it up to the reader to absorb
all that knowledge and apply it in ways that are best suitable

for the system that they are building. Rarely, if ever, is there a
“one size fits all” approach to software design. Nevertheless,
it takes skill, experience, and a good understanding of the
problem and the domain to devise the appropriate architecture,
layers, components, and how they interact with each other to
build the system that is required. Moreover, in many if not
most cases, architects and technical leads deal with various
departmental, organizational, and technological constraints
that may render the best solution unfeasible.

What this paper shows, however, is how various
approaches, practices and industry recommendations were
selected and chosen to build a practical solution for a client
with clear requirements and constraints, that would enable
their isolated business domains to share data.

B. The Businss Domains

Consider three major business domains, Human
Resources (HR), Payroll, and Benefits. The common ground
for all three is the demographic data that defines the
companies (or clients) that these systems are servicing and
their employees. As is quite often the case, neither domain was
built with a true enterprise vision in mind, neither
architecturally, nor functionally. Yet the main enterprise data
on employees and clients served must be shared across all
domains when multiple data copies exist, one per domain.
These data sources were designed for a very specific purpose,
making it prohibitively expensive to refactor the systems’
layers and the business applications so that they rely on a
single source of truth – a unified data source across the
enterprise. A solution employing Master Data Management
(MDM) tools has been evaluated but the business
requirements did not warrant such elaborate implementations
for this particular case. The proposed and agreed upon
solution was to implement the “Maintain data copies” data
integration pattern [4] by means of a custom scalable and
extensible middleware architecture (or integrating layer [5]),
reusable frameworks and models, and carefully-chosen
technologies, to fulfill the business need of providing multiple
services (HR, payroll, and benefits) to an array of small to
large size clients.

The following sub-section presents the main models of the
proposed integration solution, where data notifications are
being exchanged between the various domains via a broker-
based messaging architecture, using various enterprise
integration patterns, also depicted later in the EAI pattern-
mapping diagram in Figure 4. The data payload for these
messages is wrapped inside a context-based notification
model, allowing participating systems to take the appropriate
action – based on their own domain rules – using the data
received from the message broker. The individual domain
systems are not aware of each other, only of the message
broker through which they communicate.

C. The Structural and Behavioral Integration Models

All models, structural and behavioral, included in this
paper are excerpts from the technical design specifications
document created on behalf of the client’s Enterprise
Integration Solution [6] and they are being used hereby with
permission from this client.

118

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1) Structural Models: High-Level Enterprise Integration
Architecture and Components

The integration middleware was designed as an extensible,
highly responsive, and scalable broker-based topology
through which the formerly isolated domain systems will
exchange data notifications in near real-time and in a loosely
coupled fashion. The middleware is built on durable
messaging frameworks, such as an enterprise service bus
(ESB), queues, an entity mapping/correlation infrastructure,
and various service endpoints (SOA).

The high-level component diagram (Figure 1) shows the
three business verticals as clients to the enterprise services that
provide access to features that implement cross-cutting
concerns (logging, SSO, audit) while indirectly exchanging
data notification messages among each other.

This message exchange is intended to take place without
reciprocal system awareness or knowledge of the features they
provide, using the integration middleware exposed via a
service endpoint (i.e., the Data Notification Receiver Service).

This design ensures system scalability and plasticity of the
integration scope (data or functional), while hiding the actual
technology specifics from the participating systems.

2) Object/Data Models: The Canonical Model
The data notifications exchanged between the systems via

the service-broker integration middleware are structured as a
two-layered object model. One is the actual data payload
represented by the integration ubiquitous model, also referred
to as the Canonical Model [7], and the second is the
notification model which is wrapping (or encapsulating) the
canonical model payload, adding context, source, and target
details to the communication messages.

This allows for a reusable notification model, where - by
employing generic data types for the payload wrapped within
the notification together with the appropriate inheritance
(generic type inheriting from the non-generic type) – we can
design any number of notification schemata that could
encapsulate any business entity models inside a generic
payload. The payload is domain-specific (or enterprise
integration-specific in this case), whereas the notification
model is domain-agnostic. This is depicted in the object model
in Figure 2. The generic type T of the payload can be
represented by any domain entity. Section IV describes the
standalone object model used for the enterprise integration
solution presented here.

Figure 1. Overall enterprise integration topology: business verticals and integration middleware

119

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This allows for a reusable notification model, where - by
employing generic data types for the payload wrapped within
the notification together with the appropriate inheritance
(generic type inheriting from the non-generic type) – we can
design any number of notification schemata that could
encapsulate any business entity models inside a generic
payload. The payload is domain-specific (or enterprise
integration-specific in this case), whereas the notification
model is domain-agnostic. This is depicted in the object model
in Figure 2. The generic type T of the payload can be anything
that one would define for a given domain: employee, client,
address, benefit, participant, dependent, etc. In fact, a separate
object model for the enterprise integration has been defined
and is used in the implementation of this solution (see Section
IV for further details).

3) Behavioral Models: The Communication Model
Describing the Enterprise Data Synchronization Process

For the implemented solution, the data notification
exchange follows a very simple path through the hub-and-
spoke (or star) integration middleware topology (Figure 3).
However, the main challenge that had to be overcome is
associating the business entities from one system to business
entities in other systems, without introducing direct
dependencies between these systems or awareness of other
domains or domain-specific identifiers that – semantically –
tie these enterprise entities together. For this purpose, an entity
correlation service was introduced, using a separate repository
of entity IDs that represent logically - or semantically -
identical entities across the enterprise. Such correlations will
be specified during an initial data setup process by
administrative users or via custom automation tools and
import/export facilities.

DataNotification

- KnownTypes :Type ([]) {readOnly}

- DataNoti fication()

+ DataNoti fication()

+ ToString() :string

- LoadKnownTypes() :Type[]

«property»

+ PayloadType() :Type

+ Id() :Guid

+ Source() :string

+ Serial izedPayload() :string

+ Context() :NotificationContext

+ Target() :string

+ CreatedDate() :DateTime

+ CreatedBy() :string

Notification

«property»

+ Domain() :string

T > class, new()

Notification

- _payload :T

- LoadKnownTypes() :Type[]

«property»

+ PayloadTypeName() :string

+ Payload() :T

NotificationContext

+ ToString() :string

«property»

+ Operation() :Operation

«enumeration»

Operation

 Insert

 Update

 Delete

 Unknown

Agnostic of the payload type.

There is no explicit dependency

between the Notification Model

and the Canonical Model.

«System»

Components::Benefits
«System»

Components::

Payroll

«Router/Dispatcher»

Broker

SB Queue
Mapping/

Correlation

Repository

«System»

Components::HR

Source of data noti fication

1: ProcessBenefi tsEvent()

1.1: Translate()

1.2: HandleNoti fication()

1.3: PutMessage()

1.4: OK()

2: GetNextMessage()

2.1: LookupIDs()

2.2: HandleEvent()

2.2.1: Translate()

2.2.2: InvokePayrol lFeature()

2.2.3: Response(IDs)

2.3: HandleEvent()

2.3.1: Translate()

2.3.2: InvokeHRFeature()

2.3.3: Response(IDs)

2.4: DeleteMessage()

2.5: Update(IDs)

Figure 2. Data notification object model

Figure 3. High-level integration communication model mapped to the service broker (star) topology

120

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Integration Architecture Feature Highlights

Noteworthy features of this integration solution are
compiled below. They are grouped into functional and non-
functional characteristics. Several design details are included
to impart to the reader additional context and comprehension
of the architectural and technical approaches chosen.

1) Key Functional Attributes

a) Enterprise Data Coherence

Maintaining multiple data copies synchronized, all
integrators become symmetrical systems of record for the
core/common enterprise data.

All systems participating in the integration are able to
notify the enterprise about relevant data updates in a particular
line of business system without being aware of the other
systems that might need this information or of the way in
which this data will be consumed. They will do so by raising
notifications with the integration middleware alone.

Consequently, the systems will be notified of relevant data
updates occurring across the enterprise by receiving such
notifications that encapsulate data payloads following a
normalized model. These notifications are dispatched by the
integration middleware, potentially based on specific
integration rules and constraints.

This notification mechanism will in turn allows the
integrating systems to keep their own data copy synchronized
with the data across the enterprise, while continuing to
provision it independently, according to the domain’s
business rules.

b) Enterprise Functional Coherence

Specialized domain services offered to clients will
continue to be managed and augmented within each individual
vertical, without the need to cross domain boundaries, since
all necessary data is available at the domain level, nearly real-
time consistent with the enterprise data.

Decoupled and asynchronous notifications exchanged via
the messaging broker keep systems unaware and independent
of each other, while allowing the enterprise to grow as needed.
Additional applications may be added; if these applications
require their own data copy, they will start listening to
notifications from the middleware services. If they also
support or require data updates that must be synced with other
applications’ data sources, then the new participants will also
start sending notifications to the broker to be dispatched and
consumed throughout the enterprise, as needed.

2) Key Quality Attributes
Large integration undertakings - as the one described here

– can carry significant risks, require substantial effort to
realize, and are built with a very long-term plan in mind. For
this purpose, multiple non-functional features of the proposed
solution have been identified and analyzed. A subset of all
those considered with the client, mainly the critical ones, are
presented next.

a) Scalability

Without any architectural changes to the integration
framework or the domain systems, new systems can be added
to this topology and can be enabled to participate in the
integration (assuming they also use their own data source(s)

that require continuous or occasional synchronization with the
enterprise data).

The two main requirements for these systems are (a) to
expose a data notification service endpoint that will handle
enterprise notifications from the middleware (i.e., to react to
notifications from the broker) and (b) to have the ability to
raise such data notifications appropriately, while being aware
of the canonical model as the lingua franca of the enterprise
integration.

b) Testability

Although additional testing frameworks for the integration
components must be designed and built, individual systems
will continue to be tested independently of each other or the
integration middleware.

Components that simulate/generate notification traffic
through the integration framework can be built to allow for
independent testing of the service broker and the integration
infrastructure.

c) Maintainability

The basic SOLID design principles employed, and most
importantly the “separation of concerns” (or SoC) principle,
ensure a highly maintainable architecture and codebase due to
overall high cohesion and low coupling [5] [11].

Domain rules do not escape the boundaries of the system
to which they belong, and similarly integration logic is
isolated to the broker components and services.

d) High Availability

By employing load balancing and clustering around the
integration services and the choice of technology (e.g.,
Service Bus Farm), the deployment topology was designed to
ensure high availability as far as the integration components
are concerned.

e) Performance

Assuming appropriate technology choices, the integration
framework ensures a high throughput of notifications with
minimal integration logic (i.e., entity correlation map lookup)
required between the moment of receiving a notification and
that of dispatching one.

For example, Microsoft’s Windows Server Service Bus
1.1 (on premise) can process 20k messages/second (based on
1K message size) with an average latency of 20-25ms [14].

f) Stability

The integration middleware and the canonical model had
to be built in such a way that the overall system would not
require changes over time. Moreover, the middleware had to
be impervious to individual client failures. For this reason, a
lot of thought and design hours were spent on the various
models presented here, so that they can withstand various
changes (and potential failures) of the integrating systems.

E. Enterprise Integration Patterns Mapping

Hohpe and Woolf compiled an excellent collection of
asynchronous messaging integration patterns in their book [7].
Furthermore, their practical advice on designing such
integration systems and the various examples provided helped
with the design of this messaging architecture, while it also
facilitated the selection of the appropriate topology and

121

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

patterns that were fundamental to the delivery of an effective
system integration solution.

It is interesting to see how the key integration patterns
employed in the design and realization of the integration
architecture directly map to the business verticals and
integration middleware components. This mapping is shown
as an overlay atop the simplified enterprise system block
diagram in Figure 4.

IV. SUPPLEMENTAL INTEGRATION MODELS

A. The Canonical Model’s Base Class Details

The Canonical Model integration pattern [7] has been the
central theme of the solution implemented and is the only
integration element that was allowed to permeate the
enterprise (at each system’s integration endpoints). This
model can be envisioned as the ubiquitous integration
language, which describes entities that are shared across the
various domains of the enterprise. However, these entities in
turn share data elements that are best modeled separately, as
properties on base classes, using elemental inheritance,
aggregation, and composition modeling concepts. For the
domains in the presented case study, the need to support entity
identifiers of different types, active timeframes, and
traceability/audit features, led to the design of the model in
Figure 5 where all domain entities inherit from the abstract
class EntityBase shown in the center of the class diagram.

B. The Canonical Model and the Main Integration Entities

The main (aggregate root) entities in the integration’s
lingua franca are Group and Employee. They reflect the
primary integration objective: keep Employee and Group
demographics data in sync among all enterprise systems, by
allowing each system to maintain and operate on their
individual copy of the data. The model shown in Figure 6 is
specific to the integration solution proposed for the client,
aiming at integrating Benefits, Payroll, and Human Resources

domains, more specifically for achieving the business goal of
cross-selling services to various clients.

Noteworthy here is the fact that if we consider the
canonical model as the domain of the integration, then it is
following the anemic domain model design anti-pattern [15].
This is because these are simple data containers and do not
encapsulate functionality as the integration framework’s
domain itself is behavior-less. The model’s only purpose is to
capture and transport data notifications across systems –so,
from this (proper) perspective the model is abiding to the Data
Transport Object (DTO) pattern of enterprise application
architecture [11].

Generic functionality is exposed in the form of service
operation contracts for handling notifications (whether a
domain system raises a notification or must handle one), but
no enterprise features are being implemented here, hence data
representation and modeling is of essence and imperatively
affects the success of the proposed system integration
solution.

C. The Integration Activity Model

The overall system integration flow is modeled in the
activity diagram in Figure 7, where the various integrating
systems and the broker components are bounded by the
vertical swim lanes, to indicate where activities and actions
cross system boundaries. The diagram also shows how the
correlation service is being employed to allow the integration
framework to associate the same (logical) clients across
domains by looking up and populating the appropriate domain
identifiers, as part of the context that wraps the notification
data payload passing through the broker.

Behind the broker services, multiple queues were utilized
as a durable and priority-based messaging mechanism, in
order to decouple the various processes that take place at the
integration framework level: receiving messages, processing
notifications, and dispatching them to targets.

Figure 4. Mapping of enterprise integration patterns to domain systems and to integration middleware components

122

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

EntityBase

- LoadKnownTypes() :Type[]

«property»

+ Id() :Identifier

+ CreateUpdateDetail() :CreateUpdateDetail

+ Lifespan() :EffectivePeriod

Identifier

«Property»

+ Id :Guid

+ LogicalKey :string

+ AlternativeId :string

T

Identifier

+ Identi fier()

+ ToString() :string

«property»

+ Id() :T

«interface»

IEntityBase Marker I/F (used for

Reflection)

CreateUpdateDetail

«property»

+ CreatedBy() :string

+ CreatedDate() :DateTime?

+ UpdatedBy() :string

+ UpdatedDate() :DateTime?

Effectiv ePeriod

«property»

+ EffectiveEndpoint() :PeriodEndpoint

+ TerminateEndpoint() :PeriodEndpoint

PeriodEndpoint

«property»

+ Date() :DateTime

+ Reason() :string

Base class for all the main entities

in the enterprise-integration-

specific canonical model

Generic identi fier - to support entity

IDs of any (primitive) type

2

Enti tyBase

Models::Address

EntityBase

Models::Benefit

Enti tyBase

Models::Contact

Enti tyBase

Models::Employee

Enti tyBase

Models::Group

Enti tyBase

Models::Participant

Enti tyBase

Models::Person

Models::PersonInfo

ParentEnti tyDetail

Models::AddressCollection

ParentEnti tyDetail

Models::Div isionCollection

Models::GroupInfo

Models::ContactDetail

ParentEnti tyDetail

Models::EmployeeCollection

ParentEnti tyDetail

Models::ContactCollection

ParentEnti tyDetail

Models::

RelatedPersonCollection

ParentEnti tyDetail

Models::BenefitCollection

Models::EmployeeInfo

«required»

Benefi ts

1..*

Benefi ts

RelatedPersons

RelatedPersons

1..*

Divisions
1..*

«required»

Phones

0..*

Addresses

«required»

Employees

1..*

Contacts

Emails

0..*

Contacts

1..*

Addresses

1..*

Figure 5. Base class and common elements for the canonical model types

Figure 6. Canonical model’s main entities: the payload of the data notifications

123

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. A PHASED DELIVERY VIA PROTOTYPING

A. The Enterprise Integration Pilot Release

All of the artifacts presented so far are describing the
asynchronous enterprise integration solution proposed and
adopted by the client. It is important to note however, that this
design was preceded by the implementation of a synchronous
services middleware prototype, smaller in footprint and scope
than the original design. This prototype was exposed only to
a small set of customers, mainly in order to gain a deeper
understanding of the data integration needs, the customer
traction and adoption that such integration would yield, and
the overall value it would bring to the Business.

Although early on it became evident that without such
domain integration, independent systems would be forced to
duplicate data and functionality, leading to potentially
hazardous and undesired side effects as well as duplication of
effort, a pilot version of the data integration was requested by
the client, was implemented, and successfully released to the
market.

Aside from the business value mentioned above, the
prototype also allowed the teams to work out the means to a
successful collaboration, to get familiar with each other’s
development processes and expectations, and to support each
other during the system integration testing phase.

B. A Synchronous SOA-Based Prototype

For a faster turnaround, a combination of functional
integration and data integration using synchronous services
built around Microsoft’s Windows Communication
Framework (WCF) was designed and implemented as the
pilot release. This prototype enabled two distinct business
domains (benefits and payroll) and three isolated enterprise
applications (one very large benefits application, a legacy
payroll application, and a newly released, smaller payroll
system) to share data common across multiple customers that
these systems were actively servicing.

These customers for which common data required sharing
and synchronization across systems, are provisioned via a
lightweight web interface through which administrators have
the ability to enable or disable the main integration facilities
provided by the prototype – features that are specific to one or
the other of the two domains. Since the initial set of customers
to which this integration product was released was rather
small (up to 50), a semi-manual provisioning activity was
deemed acceptable. The web tool – developed as a Single
Page Application (SPA) using Angular, Bootstrap, and
JavaScript – just to mention a few of the technologies
employed - also allowed power users to settle any customer
identity (or reference) clashes that could not be automatically
resolved via logical key matching.

Figure 7. Enterprise integration activity model

124

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Following a pure SOA approach and employing the
industry-recommended SOA design patterns [9] [13], an
integration middleware layer was implemented as part of this
prototype solution, which included the correlation service and
integration feature activation service along with a small
database used to persist the data required by these services.

The middleware’s purpose is to enable access to
integration correlation data and resolve access queries against
the unifying customer reference tables. It is responsible for
activating or deactivating integration features for the targeted
customers, and it also serves as an operational service layer to
the provisioning web application.

At a high level, the architecture of the prototype and the
communication paths between the integrating systems and the
integration middleware are shown in Figure 8.

Figure 8. SOA-Based Synchronous Integration Prototype

The three integrating domains communicate directly with
each other via service calls that encapsulate along with the
payload, the correlation ID in order to reference a given
customer. The ID is obtained from the Correlation Service
(part of the integration services layer).

The service contracts designed for the domain-exposed
endpoints (shown as horizontal lollipops in Figure 8) are
simple yet symmetric (identical), allowing for a unified and
consistent mechanism for requesting and exchanging data.

To overcome some of the architectural shortcomings of
one of the legacy systems, changes to certain data required for
synchronization had to be captured at the data layer (i.e., the
database). For this purpose, a custom service component was
designed using Microsoft’s Change Tracking solution, which
constitutes a lightweight implementation of the Data Change
Tracking (DCT) solution.

This enabled monitoring and capturing the data updates
from a standalone service component, without having to make
changes to the domain services of the integrating system.
Given the ease of implementation and ability to build it in
isolation of other components, if was suggested as an alternate
solution to the other integrating systems to compensate for the
absence of reusable domain services, where and if applicable.

C. Key Benefits of Prototyping

Identifying specific areas of integration challenge and
collecting valuable market insight from building and
deploying a low-risk integration pilot (prototype) - even after
high-level design effort and some middleware prototyping for
the larger integration solution had already been wrapped by
up the architecture team – were compelling enough arguments
for the Product Management team.

Hence, the decision to spend the additional effort towards
building a simplified synchronous functional integration pilot
was made. As teams mobilized in the design elaboration and
realization of this interim solution, several immediate benefits
emerged, both for the development groups as well as for the
decision-making entities.

Some of these benefits – relevant for this particular
implementation – are captured below.

1) Refinement of the Integration Models and Contracts
Once concrete implementation artifacts started to take

shape around the proposed models and interfaces, various
gaps were identified and flagged with the design team. Such
gaps included missing data fields for certain key domain
entities – required for one system but not the others, ancillary
lookup data mismatch across systems, and the stringent need
for refining the composite logical (natural) keys used for
uniquely identifying critical data entities (specifically, the
aggregate roots) targeted for synchronization.

2) Identification of Edge-case synchronization issues
Certain customer data in one of the systems were found to

have multiple representations in that system and such
representations had to be handled accordingly by that system
during the synchronous data exchange. This raised questions
about handling data synchronization failures, both for the
synchronous as well as the asynchronous implementation,
which eventually lead to customizations to the durable
message design realized by the service bus implementation,
and the provisioning of nightly scheduled jobs that would
retry sending or queuing failed notifications.

3) Defining Cross-Team Collaboration Processes
Multiple geographically dispersed teams were involved in

the realization of the integration solution. Each system that
would participate in the integration already had its own
development team structure in place, its technical Subject
Matter Experts (SMEs) and leads, its own practices and
approaches to developing software.

Although all three teams involved in the original pilot
implementation and delivery were following agile
methodologies, the iteration schedules, task sizes and
assignments, and even the way scrum meetings were run,
differed quite a bit among them. Some effort was involved to
iron out these differences and bring the teams to work
together, to “speak the same language”, to set the right
expectations, and to meet the deliverables.

Moreover, issue escalation channels were established and
the need to allow teams to independently test the integration
points and, evidently, their own systems as they react to
integration notifications became a critical item on everyone’s
list. This fact points us to the next benefit of prototyping –
especially relevant in the case of systems’ integration.

125

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4) Building Synthetics
In general, when one thinks of software prototyping,

perhaps throwaway and/or wireframe prototypes come to
mind. Although some of the modules of the prototype
presented here had to be modified or replaced in order to
accommodate the larger integration solution, a big part of the
middleware and components that encapsulated the production
and consumption of notifications were fully reusable for the
larger integration. However, in order to test those components
while other teams were implementing their own handlers and
dispatchers –without having to wait on everyone else to
complete their implementation – specialized components that
targeted the production of synthetic data and behavior – had
to be built: both notification generators as well as mock
notification handlers.

The idea behind the need for these synthetics is the
distinction between unit testing and system integration testing;
whereas the latter should not be allowed to proceed before
independently validating first the integrating systems, the new
components and frameworks, in isolation from each other.

Not only did these additional components provide a
consistent testing framework for all teams, but also these
synthetics would continue to be used and enhanced as needed,
to support all ongoing unit and integration testing needs,
including regression testing. These components greatly helped
developers in catching integration point failures early on,
before system integration testing (SIT) would commence. It
identified the type of information that had to be monitored and
captured to facilitate troubleshooting integration bugs, and
made the overall integration testing much less painful than it
would have been otherwise.

Although such simulators and data generators do not have
a place in the final product, they are an absolute necessity in
developing systems that must interact with each other –
whether these systems are developed by the same company or
are involving third party components. It is imperative to
relieve individual component and/or system testing from any
external dependencies in order to ensure proper validation of
the system being built. Arriving at situations where it is
unclear what the origin of the failure is or, worst, slowing
down the development of your own system because of a faulty
or unavailable external system, should always be avoided.

5) Aiding the Quality Assurance (QA) Teams with the
Gradual Development of Integration Test Cases

Familiarizing themselves with a simpler system, the
synchronous service-based prototype, gave the QA team
ample time to prepare for the larger integration solution,
identifying gradually the appropriate tests to be developed.
This lead to a better comprehension of the key features of the
integration that were mission-critical from an overall system
perspective.

Finally, just as was the case for the development teams,
multiple testing teams were assembled, facing similar
challenges. Although with some additional effort and time, the
QA teams successfully identified and implemented the
necessary processes towards coordinating their testing efforts,
preparing the test data, and collaborating effectively in order
to validate the entire enterprise integration solution.

VI. CONCLUSION

Depending on the scope of system integration as well as
the functional and non-functional requirements, creating the
right frameworks and sub-systems that allow isolated domain
systems to seamlessly share key enterprise data between them
is a challenging undertaking. A variety of technology choices,
architectural and modeling approaches and patterns exist, but
features and limitations of the integrating systems, along with
organizational, budgetary, technical, and technological
constraints can make the integration task even more difficult.
Generally speaking, in multi-domain enterprise systems, data
integration and synchronization can be achieved in various
ways. One of them – as the one presented here and in [1] –
involves custom integration frameworks and components,
using various enterprise integration patterns.

This paper presented an actual industry integration
solution, explained via several structural and behavioral
system models, and provided details on how the “maintain
data copies” data integration pattern would be realized via a
broker-based messaging middleware. The data exchanged
between the various domains is encapsulated by the canonical
model, which is the common data abstraction across the
enterprise. This in turn is wrapped inside a context-based,
generic, and reusable notification model, allowing systems to
react to these notifications based on their own business rules.

This paper also captured essential enterprise integration
patterns chosen for this solution and how they were employed,
as well as the architectural topology designed to address
specific functional and non-functional requirements. Central
to the solution proposes here, the paper presented the common
integration model and described how this model played the
role of the semantic glue that unified the data exchange
mechanism between the various integrating systems and
components.

Following industry-recommended patterns and practices –
yet custom-tailored to meet the specific client integration
needs, the resulting architecture features scalability,
extensibility, and high-availability – to mention just a few
quality attributes. Concerning performance, it supports near-
real-time data synchronization between systems and allowing
them to operate without awareness of each other, while using
their individual data formats, features, and domain rules.

Finally, the paper introduced a generalized integration
prototype that was released to a reduced customer base as a
pilot implementation, in order to test the market response to
the new features enabled via integration. The prototype
development proved valuable in several ways, as discussed in
this article. The development of synthetics, in order to
facilitate the imperative unit testing of all systems and
components as a prerequisite to system integration testing,
proved to be an invaluable byproduct of prototyping system
integration.

A. Future Work

One of the benefits of being in the consulting business is
the exposure to a diverse array of problems and challenges,
leading the way by designing custom solutions, releasing the
product to the market, and then moving on to new problems
waiting to be solved. For the author of this paper, the solution

126

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

presented here has been a goal in itself, and it has been
accompanied by a successful release to the market of the
initial prototype, as well as the client’s adoption of the
extended asynchronous integration solution shown here. The
responsibility of maintaining the integration middleware, as
well as enhancing existing systems while adding new domains
(such as Human Resource (HR) vertical(s) and Time and
Attendance applications) into the integration mix stayed with
the client for which the solution presented here was
prototyped and delivered.

REFERENCES

[1] M. Iridon, “Enterprise Integration Modeling - A Practical
Enterprise Data Integration and Synchronization Solution,”
FASSI 2015 : The First International Conference on
Fundamentals and Advances in Software Systems Integration,
pp. 23-30, August, 2015.

[2] Microsoft BizTalk Integration Platform. [Online]. Available
from: https://www.microsoft.com/en-us/server-cloud/
products/biztalk/ [retrieved: June, 2016]

[3] TIBCO Integration Platform. [Online]. Available from:
http://www.tibco.com/products/integration [retrieved: May
2016]

[4] Microsoft, Data Integration. [Online]. Available from:
https://msdn.microsoft.com/en-us/library/ff647273.aspx
[retrieved: June, 2016]

[5] Microsoft, Integration Patterns. [Online]. Available from:
https://msdn.microsoft.com/en-us/library/ff647309.aspx
[retrieved: June, 2016]

[6] M. Iridon, “Technical Design Specifications for Enterprise
Integration Solution,” 2015, unpublished/internal document.

[7] G. Hohpe and B. Woolf, “Enterprise Integration Patterns;
Designing, Building, and Deploying Messaging Solutions,”
Addison-Wesley, 2012.

[8] Microsoft, Functional Integration. [Online]. Available from:
https://msdn.microsoft.com/en-us/library/ff649730.aspx
[retrieved: June, 2016]

[9] T. Erl, “SOA Design Patterns,” Prentice Hall, 2009.

[10] T. Erl et al., “Next Generation SOA: A Concise Introduction to
Service Technology & Service-Orientation,” Prentice Hall,
2014.

[11] M. Fowler, “Patterns of Enterprise Application Architecture,”
Addison-Wesley Professional, 2002.

[12] T. Erl, “Service-Oriented Architecture: A Field Guide to
Integrating XML and Web Services,” Prentice Hall, 2004.

[13] T. Erl, “Service-Oriented Architecture (SOA): Concepts,
Technology, and Design,” Prentice Hall, 2005.

[14] Microsoft, Service Bus for Windows Server Quotas. [Online].
Available from: https://msdn.microsoft.com/en-us/library/
dn441429.aspx [retrieved: June, 2016]

[15] M. Fowler, Anemic Domain Model. [Online]. Available from:
http://www.martinfowler.com/bliki/AnemicDomainModel.html
[retrieved: June, 2016]

127

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

