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Abstract—Developing a compiler and an IDE for a programming
language is time consuming and it poses several challenges,
even when using language workbenches like Xtext that provides
Eclipse integration. A complex type system with powerful type
inference mechanisms needs to be implemented efficiently, other-
wise its implementation will undermine the effective usability of
the IDE: the editor must be responsive even when type inference
takes place in the background, otherwise the programmer will
experience too many lags. In this paper, we will present a real-
world case study: N4JS, a JavaScript dialect with a full-featured
Java-like static type system, including generics, and present some
evaluation results. We will describe the implementation of its type
system and we will focus on techniques to make the type system
implementation of N4JS integrate efficiently with Eclipse. For the
implementation of the type system of N4JS we use Xsemantics,
a DSL for writing type systems, reduction rules and in general
relation rules for languages implemented in Xtext. Xsemantics is
intended for developers who are familiar with formal type systems
and operational semantics since it uses a syntax that resembles
rules in a formal setting. This way, the implementation of formally
defined type rules can be implemented easier and more directly
in Xsemantics than in Java.
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I. INTRODUCTION

In this paper, we present N4JS, a JavaScript dialect imple-
mented with Xtext, with powerful type inference mechanisms
(including Java-like generics). In particular, we focus on the
implementation of its type system. The type system of N4JS is
implemented in Xsemantics, an Xtext DSL to implement type
systems and reduction rules for DSLs implemented in Xtext.

The type system of N4JS drove the evolution of Xseman-
tics: N4JS’ complex type inference system and the fact that it
has to be used in production with large code bases forced us
to enhance Xsemantics in many parts. The implementation of
the type system of N4JS focuses both on the performance of
the type system and on its integration in the Eclipse IDE.

This paper is the extended version of the conference
paper [1]. With respect to the conference version, in this paper
we describe more features of Xsemantics, we provide a full
description of the main features of N4JS and we describe its
type system implementation in more details. Motivations, re-
lated work and conclusions have been extended and enhanced
accordingly.

The paper is structured as follows. In Section II we
introduce the context of our work and we motivate it; we also
discuss some related work. We provide a small introduction to
Xtext in Section III and we show the main features of Xseman-
tics in Section IV. In Section V, we present N4JS and its main
features. In Section VI, we describe the implementation of the
type system of N4JS with Xsemantics, with some performance
benchmarks related to the type system. Section VII concludes
the paper.

II. MOTIVATIONS AND RELATED WORK

Integrated Development Environments (IDEs) help pro-
grammers a lot with features like syntax aware editor, compiler
and debugger integration, build automation and code comple-
tion, just to mention a few. In an agile [2] and test-driven
context [3] the features of an IDE like Eclipse become essential
and they dramatically increase productivity.

Developing a compiler and an IDE for a language is usually
time consuming, even when relying on a framework like
Eclipse. Implementing the parser, the model for the Abstract
Syntax Tree (AST), the validation of the model (e.g., type
checking), and connecting all the language features to the
IDE components require lot of manual programming. Xtext,
http://www.eclipse.org/Xtext, [4], [5] is a popular
Eclipse framework for the development of programming lan-
guages and Domain-Specific Languages (DSLs), which eases
all these tasks.

A language with a static type system usually features
better IDE support. Given an expression and its static type,
the editor can provide all the completions that make sense
in that program context. For example, in a Java-like method
invocation expression, the editor should propose only the
methods and fields that are part of the class hierarchy of the
receiver expression, and thus, it needs to know the static type
of the receiver expression. The same holds for other typical
IDE features, like, for example, navigation to declaration and
quickfixes.

The type system and the interpreter for a language imple-
mented in Xtext are usually implemented in Java. While this
works for languages with a simple type system, it becomes
a problem for an advanced type system. Since the latter is
often formalized, a DSL enabling the implementation of a
type system similar to the formalization would be useful. This



284

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

would reduce the gap between the formalization of a language
and its actual implementation.

Besides functional aspects, implementing a complex type
system with powerful type inference mechanisms poses sev-
eral challenges due to performance issues. Modern IDEs and
compilers have defined a high standard for performance of
compilation and responsiveness of typical user interactions,
such as content assist and immediate error reporting. At the
same time, modern statically-typed languages tend to reduce
the verbosity of the syntax with respect to types by imple-
menting type inference systems that relieve the programmer
from the burden of declaring types when these can be inferred
from the context. In order to be able to cope with these high
demands on both type inference and performance, efficiently
implemented type systems are required.

In [6] Xsemantics, http://xsemantics.sf.net,
was introduced. Xsemantics is a DSL for writing rules for
languages implemented in Xtext, in particular, the static se-
mantics (type system), the dynamic semantics (operational
semantics) and relation rules (subtyping). Given the type
system specification, Xsemantics generates Java code that can
be used in the Xtext implementation. Xsemantics specifications
have a declarative flavor that resembles formal systems (see,
e.g., [7], [8]), while keeping the Java-like shape. This makes it
usable both by formal theory people and by Java programmers.

Originally, Xsemantics was focused on easy implemen-
tation of prototype languages. While the basic principles of
Xsemantics were not changed, Xsemantics has been improved
a lot in order to make it usable for modern full-featured
languages and real-world performance requirements [9]. In
that respect, N4JS drove the evolution of Xsemantics. In
fact, N4JS’ complex type inference system and its usage
in production with large code bases forced us to enhance
Xsemantics in many parts. The most relevant enhanced parts in
Xsemantics dictated by N4JS can be summarized as follows:

• Enhanced handling of the rule environment, simplify-
ing implementation of type systems with generics.

• Fields and imports, simplifying the use of Java utility
class libraries from within an Xsemantics system
definition.

• The capability of extending an existing Xsemantics
system definition, improving the modularization of
large systems.

• Improved error reporting customization, in order to
provide the user with more information about errors.

• Automatic caching of results of rule computations,
increasing performance.

Xsemantics itself is implemented in Xtext, thus it is com-
pletely integrated with Eclipse and its tooling. From Xseman-
tics we can access any existing Java library, and we can even
debug Xsemantics code. It is not mandatory to implement
the whole type system in Xsemantics: we can still implement
parts of the type system directly in Java, in case some tasks
are easier to implement in Java. In an existing language
implementation, this also allows for an easy incremental or
partial transition to Xsemantics. All these features have been
used in the implementation of the type system of N4JS.

A. Related work

In this section we discuss some related work concerning
both language workbenches and frameworks for specifying
type systems.

Xsemantics can be considered the successor of Xtypes [10].
With this respect, Xsemantics provides a much richer syntax
for rules that can access any existing Java library. This implies
that, while with Xtypes many type computations could not
be expressed, this does not happen in Xsemantics. Moreover,
Xtypes targets type systems only, while Xsemantics deals with
any kind of rules.

XTS [11] (Xtext Type System) is a DSL for specifying
type systems for DSLs built with Xtext. The main difference
with respect to Xsemantics is that XTS aims at expression
based languages, not at general purpose languages. Indeed, it
is not straightforward to write the type system for a Java-like
language in XTS. Type systems specifications are less verbose
in XTS, since it targets type systems only, but XTS does not
allow introducing new relations as Xsemantics, and it does
not target reductions rules. Xsemantics aims at being similar
to standard type inference and semantics rules so that anyone
familiar with formalization of languages can easily read a type
system specification in Xsemantics.

OCL (Object Constraint Language) [12], [13] allows the
developer to specify constraints in metamodels. While OCL
is an expression language, Xsemantics is based on rules.
Although OCL is suitable for specifying constraints, it might
be hard to use to implement type inference.

Neverlang [14] is based on the fact that programming
language features can be plugged and unplugged, e.g., you can
“plug” exceptions, switch statements or any other linguistic
constructs into a language. It also supports composition of
specific Java constructs [15]. Similarly, JastAdd [16] sup-
ports modular specifications of extensible compiler tools and
languages. Eco [17], [18] is a language composition editor
for defining composed languages and edit programs of such
composed languages. The Spoofax [19] language workbench
provides support for language extensions and embeddings.
Polyglot [20] is a compiler front end for Java aiming at Java
language extensions. However, it does not provide any IDE
support for the implemented extension. Xtext only provides
single inheritance mechanisms for grammars, so different
grammars can be composed only linearly. In Xsemantics a
system can extend an existing one (adding and overriding
rules). These extensibility and compositionality features are not
as powerful as the ones of the systems mentioned above, but
we think they should be enough for implementing pluggable
type systems [21].

There are other tools for implementing DSLs and IDE
tooling (we refer to [22], [23], [24] for a wider com-
parison). Tools like IMP (The IDE Meta-Tooling Plat-
form) [25] and DLTK (Dynamic Languages Toolkit),
http://www.eclipse.org/dltk, only deal with IDE
features. TCS (Textual Concrete Syntax) [26] aims at providing
the same mechanisms as Xtext. However, with Xtext it is easier
to describe the abstract and concrete syntax at once. Morever,
Xtext is completely open to customization of every part of the
generated IDE. EMFText [27] is similar to Xtext. Instead of
deriving a metamodel from the grammar, the language to be
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implemented must be defined in an abstract way using an EMF
metamodel.

The Spoofax [19], language workbench mentioned above,
relies on Stratego [28] for defining rule-based specifications for
the type system. In [29], Spoofax is extended with a collection
of declarative meta-languages to support all the aspects of
language implementation including verification infrastructure
and interpreters. These meta-languages include NaBL [30] for
name binding and scope rules, TS for the type system and
DynSem [31] for the operational semantics. Xsemantics shares
with these systems the goal of reducing the gap between the
formalization and the implementation. An interesting future
investigation is adding the possibility of specifying scoping
rules in an Xsemantics specification as well. This way, also the
Xtext scope provider could be easily generated automatically
by Xsemantics.

EriLex [32] is a software tool for generating support
code for embedded domain specific languages and it supports
specifying syntax, type rules, and dynamic semantics of such
languages but it does not generate any artifact for IDE tooling.

An Xsemantics specification can access any Java type,
not only the ones representing the AST. Thus, Xsemantics
might also be used to validate any model, independently from
Xtext itself, and possibly be used also with other language
frameworks like EMFText [27]. Other approaches, such as,
e.g., [33], [34], [35], [36], [37], [32], [14], instead require the
programmer to use the framework also for defining the syntax
of the language.

The importance of targeting IDE tooling when implement-
ing a language was recognized also in older frameworks,
such as Synthesizer [38] and Centaur [33]. In both cases, the
use of a DSL for the type system was also recognized (the
latter was using several formalisms [39], [40], [41]). Thus,
Xsemantics enhances the usability of Xtext for developing
prototype implementations of languages during the study of
the formalization of languages.

We just mention other tools for the implementation of
DSLs that are different from Xtext and Xsemantics for the
main goal and programming context, such as, e.g., [42], [43],
[44], which are based on language specification preprocessors,
and [45], [46], which target host language extensions and
internal DSLs.

Xsemantics does not aim at providing mechanisms for
formal proofs for the language and the type system and it
does not produce (like other frameworks do, e.g., [47], [29]),
versions of the type system for proof assistants, such as
Coq [48], HOL [49] or Isabelle [50]. However, Xsemantics
can still help when writing the meta-theory of the language.
An example of such a use-case, using the traces of the applied
rules, can be found in [9].

We chose Xtext since it is the de-facto standard frame-
work for implementing DSLs in the Eclipse ecosystem, it
is continuously supported, and it has a wide community,
not to mention many applications in the industry. Xtext is
continuously evolving, and the main new features introduced in
recent versions include the integration in other IDEs (mainly,
IntelliJ), and the support for programming on the Web (i.e., an
Xtext DSL can be easily ported on a Web application).

Finally, Xtext provides complete support for typical Java
build tools, like Maven and Gradle. Thus, Xtext DSLs also
automatically support these build tools. In that respect, Xse-
mantics provides Maven artifacts so that Xsemantics files
can be processed during the Maven build in a Continuous
Integration system.

III. XTEXT

In this section we will give a brief introduction to Xtext. In
Section III-A we will also briefly describe the main features of
Xbase, which is the expression language used in Xsemantics’
rules.

It is out of the scope of the paper to describe Xtext and
Xbase in details. Here we will provide enough details to make
the features of Xsemantics understandable.

Xtext [5] is a language workbench (such as MPS [51]
and Spoofax [19]): Xtext deals not only with the compiler
mechanisms but also with Eclipse-based tooling. Starting from
a grammar definition, Xtext generates an ANTLR parser [52].
During parsing, the AST is automatically generated by Xtext as
an EMF model (Eclipse Modeling Framework [53]). Besides,
Xtext generates many other features for the Eclipse editor for
the language that we are implementing: syntax highlighting,
background parsing with error markers, outline view, code
completion.

Most of the code generated by Xtext can already be
used as it is, but other parts, like type checking, have to
be customized. The customizations rely on Google-Guice, a
dependency injection framework [54].

In the following we describe the two complementary
mechanisms of Xtext that the programmer has to implement.
Xsemantics aims at generating code for both mechanisms.

Scoping is the mechanism for binding the symbols (i.e.,
references). Xtext supports the customization of binding with
the abstract concept of scope, i.e., all declarations that are
available (visible) in the current context of a reference. The
programmer provides a ScopeProvider to customize the
scoping. In Java-like languages the scoping will have to
deal with types and inheritance relations, thus, it is strictly
connected with the type system. For example, the scope for
methods in the context of a method invocation expression
consists of all the members, including the inherited ones, of
the class of the receiver expression. Thus, in order to compute
the scope, we need the type of the receiver expression.

Using the scope, Xtext will automatically resolve cross
references or issue an error in case a reference cannot be
resolved. If Xtext succeeds in resolving a cross reference,
it also takes care of implementing IDE mechanisms like
navigating to the declaration of a symbol and content assist.

All the other checks that do not deal with symbol res-
olutions, have to be implemented through a validator. In a
Java-like language most validation checks typically consist in
checking that the program is correct with respect to types. The
validation takes place in background while the user is writing
in the editor, so that an immediate feedback is available.

Scoping and validation together implement the mechanism
for checking the correctness of a program. This separation into
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two distinct mechanisms is typical of other approaches, such
as [38], [47], [16], [30], [29], [55].

A. Xbase

Xbase [56] is a reusable expression language that integrates
completely with Java and its type system. Xbase also imple-
ments UI mechanisms that mimic the ones of the Eclipse Java
Development Tools (JDT).

The syntax of Xbase is similar to Java with less “syntactic
noise” (e.g., the terminating semicolon “;” is optional) and
some advanced linguistic constructs. Although its syntax is
not the same as Java, Xbase should be easily understood by
Java programmers.

In this section we briefly describe the main features of
Xbase, in order to make Xsemantics rules shown in the paper
easily understandable for the Java programmers.

Variable declarations in Xbase are defined using val or
var, for final and non-final variables, respectively. The type
is not mandatory if it can be inferred from the initialization
expression.

A cast expression in Xbase is written using the infix
keyword as, thus, instead of writing “(C) e” we write
“e as C”.

Xbase provides extension methods, a syntactic sugar mech-
anism: instead of passing the first argument inside the paren-
theses of a method invocation, the method can be called with
the first argument as its receiver. It is as if the method was
one of the argument type’s members. For example, if m(E)
is an extension method, and e is of type E, we can write
e.m() instead of m(e). With extension methods, calls can
be chained instead of nested: e.g., o.foo().bar() rather
than bar(foo(o)).

Xbase also provides lambda expressions, which have the
shape [param1, param2, ... | body]. The types of
the parameters can be omitted if they can be inferred from the
context. Xbase automatically compiles lambda expressions into
Java anonymous classes; if the runtime Java library is version
8, then Xbase automatically compiles its lambda expressions
into Java 8 lambda expressions.

All these features of Xbase allow the developer to easily
write statements and expressions that are much more readable
than in Java, and that are also very close to formal specifica-
tions. For example, a formal statement of the shape

“∃x ∈ L . x 6= 0”

can be written in Xbase like

“L.exists[ x | x != 0 ]”.

This helped us a lot in making Xsemantics close to formal
systems.

IV. XSEMANTICS

Xsemantics is a DSL (written in Xtext) for writing type
systems, reduction rules and in general relation rules for
languages implemented in Xtext. Xsemantics is intended for
developers who are familiar with formal type systems and

judgments {
type |− Expression expression : output Type

error "cannot type " + expression
subtype |− Type left <: Type right

error left + " is not a subtype of " + right
}

Figure 1. An example of judgment definitions in Xsemantics.

operational semantics since it uses a syntax that resembles
rules in a formal setting (e.g., [7], [57], [8]).

A system definition in Xsemantics is a set of judgments,
that is, assertions about the properties of programs, and a set
of rules. Rules can be seen as implications between judgments,
i.e., they assert the validity of certain judgments, possibly on
the basis of other judgments [7]. Rules have a conclusion and
a set of premises. Typically, rules act on the EMF objects
representing the AST, but in general they can refer to any
Java class. Starting from the definitions of judgments and rules,
Xsemantics generates Java code that can be used in a language
implemented in Xtext for scoping and validation.

A. Judgments

An Xsemantics judgment consists of a name, a judgment
symbol (which can be chosen from some predefined symbols)
and the parameters of the judgment. Parameters are separated
by relation symbols (which can be chosen from some prede-
fined symbols).

Currently, Xsemantics only supports a predefined set of
symbols, in order to avoid possible ambiguities with expression
operators in the premises of rules.

Judgment symbols are

||- |- ||∼ |∼ ||= |= ||> |>

Relation symbols are

<! !> <<! !>> <∼! !∼>
: <: :> << >> ∼∼
<| |> <∼ ∼> \/ /\

All these symbols aim at mimicking the symbols that are
typically used in formal systems.

Two judgments must differ for the judgment symbol or for
at least one relation symbol. The parameters can be either input
parameters (using the same syntax for parameter declarations
as in Java) or output parameters (using the keyword output
followed by the Java type). For example, the judgment def-
initions for an hypothetical Java-like language are shown in
Figure 1: the judgment type takes an Expression as input
parameter and provides a Type as output parameter. The
judgment subtype does not have output parameters, thus
its output result is implicitly boolean. Judgment definitions
can include error specifications (described in Section IV-F),
which are useful for generating informative error information.

B. Rules

Rules implement judgments. Each rule consists of a name,
a rule conclusion and the premises of the rule. The conclusion
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consists of the name of the environment of the rule, a judgment
symbol and the parameters of the rules, which are separated
by relation symbols. To enable better IDE tooling and a
more “programming”-like style, Xsemantics rules are written
in the opposite direction of standard deduction rules, i.e.,
the conclusion comes before the premises (similar to other
frameworks, like [29], [31]).

The elements that make a rule belong to a specific judgment
are the judgment symbol and the relation symbols that separate
the parameters. Moreover, the types of the parameters of a
rule must be Java subtypes of the corresponding types of
the judgment. Two rules belonging to the same judgment
must differ for at least one input parameter’s type. This is a
sketched example of a rule, for a Java-like method invocation
expression, of the judgment type shown in Figure 1:

rule MyRule
G |− MethodSelection exp : Type type

from {
// premises
type = ... // assignment to output parameter
}

The rule environment (in formal systems it is usually
denoted by Γ and, in the example it is named G) is useful
for passing additional arguments to rules (e.g., contextual
information, bindings for specific keywords, like this in a
Java-like language). An empty environment can be passed
using the keyword empty. The environment can be accessed
with the predefined function env.

Xsemantics uses Xbase to provide a rich Java-like syntax
for defining rules. The premises of a rule, which are specified
in a from block, can be any Xbase expression (described in
Section III-A), or a rule invocation. If one thinks of a rule
declaration as a function declaration, then a rule invocation
corresponds to a function invocation, thus one must specify
the environment to pass to the rule, as well as the input and
output arguments.

In a rule invocation, one can specify additional envi-
ronment mappings, using the syntax key <- value (e.g.,
’this’ <- C). When an environment is passed to a rule
with additional mappings, actually a brand new environment
is passed, thus the current rule environment will not be
modified. If a mapping with the same key exists in the current
environment, then in the brand new environment (and only
there) the existing mapping will be overwritten. Thus, the rule
environment passed to a rule acts in a stack manner.

The premises of an Xsemantics rule are considered to be
in logical and relation and are verified in the same order they
are specified in the block. If one needs premises in logical or
relation, the operator or must be used to separate blocks of
premises.

If a rule does not require any premise, we can use a special
kind of rule, called axiom, which only has the conclusion.

In the premises, one can assign values to the output
parameters, as shown in the previous rule example. When
another rule is invoked, upon return, the output arguments will
have the values assigned in the invoked rule. Alternatively,

an expression can be directly specified instead of the output
parameter in the rule conclusion.

If one of the premises fails, then the whole rule will fail,
and in turn the stack of rule invocations will fail. In particular,
if the premise is a boolean expression, it will fail if the
expression evaluates to false. If the premise is a rule invocation,
it will fail if the invoked rule fails. An explicit failure can be
triggered using the keyword fail.

At runtime, upon rule invocation, the generated Java system
will select the most appropriate rule according to the runtime
types of the passed arguments (using the polymorphic dis-
patch mechanism provided by Xtext, which performs method
dispatching according to the runtime type of arguments).
Note that, besides this strategy for selecting a specific rule,
Xsemantics itself does not implement, neither it defines, any
other strategy. It is Xtext that decides when a part of a program
has to be validated or a symbol has to be bound. This is
consistent with the nature of frameworks, which dictate the
overall program’s flow of control.

C. Auxiliary Functions

Besides judgments and rules, one can write auxiliary
functions. In type systems, such functions are typically used as
a support for writing rules in a more compact form, delegating
some tasks to such functions (for example, see [8]). Predicates
can be seen as a special form of auxiliary functions.

D. Checkrules

In an Xsemantics system, we can specify some special
rules, checkrules, which do not belong to any judgment. They
are used by Xsemantics to generate a Java validator for the
Xtext language. A checkrule has a name, a single parameter
(which is the AST object to be validated) and the premises
(but no rule environment). The syntax of the premises of a
checkrule is the same as in the standard rules.

The Java validator generated by Xsemantics will automati-
cally generate error markers for failed rules. Error markers will
be automatically generated according to the error information
found in the trace of a failure, which is computed and handled
automatically by Xsemantics. When generating error markers
the validator will use only the error information related to
elements in the AST. The error marker will be generated
in correspondence to the innermost failure, because this is
usually the most informative error message. A custom error
specification can be attached to a judgment or to a single rule,
as described in Section IV-F.

E. Fields and Imports

Fields can be defined in an Xsemantics system. Such fields
will be available to all the rules, checkrules and auxiliary
functions, just like Java fields in a class are available to all
methods of the class. This way, it is straightforward to reuse
external Java utility classes from an Xsemantics system. This
is useful when some mechanisms are easier to implement in
Java than in Xsemantics.

Xsemantics also supports Java-like import statements, in-
cluding Java static imports. This way, external Java classes’
static methods can be used from within Xsemantics premises
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without the fully qualified name. In particular, the Xsemantics
Eclipse editor supports automatic insertion of imports during
code completion. This mimics what the Eclipse Java editor
does. Both fields and static imports can be further decorated
with the extension specification. This will enable the exten-
sion methods mechanism of Xbase (described in Section III-A)
making Xsemantics code less verbose and more compact.

F. Error Information

Custom error information can be specified on judgments,
rules and auxiliary functions. This can be used for providing
error information that is useful in specific scenarios.

When specifying a custom error information, using the
keyword error followed by a string describing the error,
the developer can also specify the source element in the
program that will be marked with error. Additional data can
be attached to the error information that can be later reused in
case of custom error handling.

Moreover, when using the explicit failure keyword fail,
a custom error information can be specified as well. This use
of fail is useful together with or blocks to provide more
information about the error.

For example, consider the boolean premise

args.size() == params.size()

that checks that the number of arguments is equal to the
number of parameters in a Java-like method invocation. If that
premise fails, the default error message will show the original
expression text, specifying that it failed. This would not be
useful for the user (it would show an error with implementation
details). To generate a better error message we can write

args.size() == params.size()
or
fail error "expected " + params.size() +
" arguments, but was " + args.size()

There might be cases when we want to show errors
containing more information about the cause that made a rule
invocation fail, especially when the failure took place because
of a rule invocation that is deep in the rule invocation stack.
For such cases, the implicit variable previousFailure is
available. This is automatically handled by Xsemantics at run-
time: in case of a rule failure, it provides the developer with
all the problems that took place when applying the rule. This
allows us to build informative error messages as shown in
Section VI-A.

G. Caching

In a language implemented with Xtext, types are used in
many places by the framework, e.g., in the scope provider,
in the validator and in the content assist. Besides that, some
type computation rules, some subtyping checks and some
auxiliary functions are also used more than once from the
type system implementation itself. For example, the subtyping
relation between the same two classes can be checked by many
checkrules for the same sources.

For the above reasons, the results of type computations
should be cached to improve the performance of the compiler
and, most of all, the responsiveness of the Eclipse editor.
However, caching usually introduces a few levels of complex-
ity in implementations, and, in the context of an IDE that
performs background parsing and checking, we also need to
keep track of changes that should invalidate the cached values.
Xsemantics provides automatic caching mechanisms that can
be enabled in a system specification. These mechanisms inter-
nally use at run-time a cache that stores its values in the scope
of a resource (a resource is an abstraction of a source file).
The cached values will be automatically discarded as soon as
the contents of the program changes. When caching is enabled
in an Xsemantics system specification, then Xsemantics will
generate Java code that automatically uses the cache, hiding
the details from the programmer.

The programmer can enable caching, using the keyword
cached on a per-judgment basis. The rationale behind this
granularity is that caching should be enabled with care, other-
wise it could decrease the performance. In fact, the caching is
based on the Java hashing features, thus it makes sense only
when used with actual object instances, not with references. In
fact, in the AST of a program there might be many different
references to the same object, and using such references as
cache keys will only lead to many cache misses. Thus, it
is responsibility of the programmer to be aware of which
judgments and auxiliary functions to cache, depending on the
nature of the involved input parameters.

The use of caching for the implementation of the N4JS’
type system is described in Section VI-B.

H. Extensions

When defining a system in Xsemantics it is also possible
to extend another Xsemantics system, using extends. Just
like in Java class inheritance, an extended system implicitly
inherits from the “super system” all judgments, rules, check
rules and auxiliary functions. In the extended system one
can override any such element; the overriding follows the
same Java overriding rules (e.g., the types of input parameters
must be the same and the types of output parameters can
be subtypes). For example, an axiom in a super system can
be turned into a rule in the extended system and vice versa.
Similarly, we can override a judgment of the super system
changing the names of parameters and error specifications.
Since an Xtext grammar can inherit from another grammar,
Xsemantics system extensions can be used when the language
we inherit from already implements a type system using
Xsemantics. Moreover, we used system extension to quickly
test possible modifications/improvements to an existing type
system, e.g., for testing that caching features do not break the
type system implementation.

V. N4JS—A TYPED JAVASCRIPT

We have used Xsemantics to implement the type system
of a real-world programming language called N4JS. In this
section, we give an overview of the syntax and semantics of
N4JS, before presenting the Xsemantics-based implementation
of the N4JS type system in Section VI.
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Figure 2. The N4JS IDE, showing the editor with syntax highlighting, the outline with type information, and the integrated test support.

A. Overview and Background

Before going into technical details of the language itself,
let us provide some context. NumberFour AG is developing
a platform for applications specifically tailored towards small
businesses that will, on the client side, target JavaScript and the
browser (among other targets such as iOS). Due to a large over-
all code base, high reliability requirements, interoperability
with statically typed languages and their ecosystems, such as
Scala or ObjectiveC, and for maintenance reasons, an explicit
declaration of types together with static type checking was
deemed a necessity across all targets, in particular JavaScript.
This set of requirements led us to the development of the N4JS
language.

N4JS is an extension of JavaScript, also referred to as
ECMAScript, with modules and classes as specified in the
ECMAScript 2015 standard [58]. Most importantly, N4JS
adds a full-featured static type system on top of JavaScript,
similar to TypeScript [59] or Dart [60]. N4JS compiles to
plain JavaScript and provides seamless interoperability with
JavaScript. In fact, most valid ECMAScript 2015 code is
valid N4JS code (not considering type errors), but some
recent features of ECMAScript 2015 are not supported
yet. N4JS is still under development, but has been used
internally at NumberFour AG for more than two years
now, and was released as open source in March 2016,
https://numberfour.github.io/n4js/.

Roughly speaking, N4JS’ type system could be described
as a combination of the type systems provided by Java,
TypeScript and Dart. Besides primitive types, already present
in ECMAScript, it provides declared types such as classes
and interfaces, also supporting default methods (i.e., mixins),
and combined types such as union types [61]. N4JS supports
generics similar to Java, that is, it supports generic types and
generic methods (which are supported by TypeScript but not
by Dart) including wildcards, requiring the notion of existential
types (see [62]).

Beyond its type-system-related features, the implementa-
tion of N4JS provides a transpiler that transforms N4JS code
into ECMAScript 2015 code and a full featured IDE, shown
in Figure 2. This IDE provides some advanced editing features
such as

• live code validation, i.e., type errors and other code
issues are shown and updated in the editor while the
programmer is typing,

• a project explorer for managing large, multi-project
code bases (left-hand side of the screenshot),

• convenience UI features such as an outline view
showing the classes, interfaces, their fields and meth-
ods together with their signature and other elements
defined in the currently active editor (right-hand side
of the screenshot).
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Since this IDE is based on the Eclipse framework, it
inherits many features from Eclipse and readily available
Eclipse plugins, without the need of any N4JS-specific im-
plementation, for example, a seamless integration of the git
version management system.

At NumberFour AG, N4JS and its IDE are being devel-
oped using agile development methodologies, in particular
the Scrum process and test-driven development, aiming for a
high test coverage with around 110.000 tests, at the moment,
including a comprehensive test suite to ensure compatibility
with ECMAScript 2015 syntax. Apache Maven is used as build
tool and Jenkins for continuous integration.

The main frameworks being used are Xtext and Xse-
mantics, as introduced above. Most tests, especially those
related to the type system, are written using the Xpect frame-
work, http://www.xpect-tests.org/, which allows
the developer to formulate test cases in the language being
developed, i.e., N4JS in this case. For example, a test case for
asserting that a number cannot be assigned to a variable of
type string could be written as follows:

/* XPECT_SETUP N4JSSpecTest END_SETUP */

let x: string;
/* XPECT errors ---

"int is not a subtype of string." at "123"
--- */
x = 123;

All information for testing is provided in ordinary N4JS
comments, enclosed in /* */. The second to last line in the
above code example shows an Xpect test expectation using
a so-called Xpect test method called errors that asserts a
particular error message at a particular location in the source
(the integer literal 123 in this example) and fails if no error
or a different error occurs. There are other test methods for
checking for warnings or asserting the correct type of an
element or expression.

In addition to N4JS, there exist other JavaScript dialects
augmenting the language by static types with compile-time
type checking, most notably TypeScript [59]. All these lan-
guages are facing the same, fundamental challenge: dynamic,
untyped languages and statically typed languages follow two
clearly distinct programming paradigms, leading in practice
to different programming styles, idioms, and ecosystems of
frameworks and libraries. Thus, when adding a static type
system on top of an existing dynamic language there is a risk
of breaking established programming idioms and conventions
of the dynamic language. This is where an important differ-
ence between N4JS and, for example, TypeScript lies. While
TypeScript aims for as much type safety as possible without
sacrificing typical JavaScript idioms and convenience, N4JS
would rather risk getting in the way of the typical JavaScript
programmer from time to time than sacrificing type safety.
N4JS aims at providing type soundness as its sole primary
priority without compromises for the sake of programmer
familiarity or convenience. In other words, TypeScript is
designed primarily with existing JavaScript programmers in
mind, whereas N4JS is more tailored to developers accustomed
to statically typed languages, mainly Java and C# (though the
needs of pure JavaScript developers and support for legacy
JavaScript code bases have been considered as far as possible).

interface NamedEntity {
get name(): string;

}
class Person implements NamedEntity { // class

implementing an interface
// three field declarations:
public firstName: string;
public lastName: string;
protected age: number;
// a method
public marry(spouse: Person) {

let familyName = this.lastName + ’-’ +
spouse.lastName;

this.lastName = familyName;
spouse.lastName = familyName;

}
// a getter (required by interface)
@Override get name(): string {

return this.firstName + ’ ’ + this.lastName;
}

}
class Employee extends Person { // a class extending

another class
private _salary: number;
// a getter/setter pair:
get salary(): number {

return this._salary;
}
set salary(amount: number) {

if(amount>=0) {
this.salary = amount;

}
}

}

Figure 3. Defining classes, interfaces and their members in N4JS.

Language features where this difference in priorities can
be observed include TypeScript’s flexible yet unsafe default
handling of built-in type any as well as TypeScript’s use of bi-
variant function subtyping and method overriding, which has
been identified by recent studies [63] as a form of unsoundness
in the name of convenience and flexibility without clear
usability benefits in practice (the latest TypeScript version has
an optional compiler flag for activating a more rigid handling
of any). In comparison, any, function subtyping and method
overriding are handled in N4JS in a strictly type-safe manner
according to how these concepts are commonly defined in
the literature on object-oriented programming and type theory
in general (e.g., strict observance of the Liskov substitution
principle [64]). A more detailed comparison of N4JS with
other typed JavaScript dialects is, however, beyond the scope
of this article.

After this brief overview of why and how N4JS is being
developed, we will now, for the remainder of Section V, focus
on the syntax and semantics of the language itself.

B. Basic Language Features

N4JS provides the typical language features expected from
an object-oriented language, such as declaration of classifiers
(i.e., classes and interfaces), inheritance, polymorphism, etc.
We do not aim for a full description of the language here, but
Figure 3 is provided to give an impression of the syntax of the
most common constructs.
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In addition to fields and methods, classifiers may have
so-called getters and setters members, which are similar to
methods but are invoked as if the containing classifier had a
field of that name. For example, the getter/setter pair salary
of class Employee in Figure 3 would be invoked as follows:

let e = new Employee();
e.salary = 42;
console.log(e.salary);

Line 2 invokes setter salary with a value of 42 as
argument and line 3 invokes the getter. Providing only either a
getter or setter amounts to a read-only / write-only field from
outside the type.

For the remainder of this section we focus on language
features of N4JS that are less common and are most relevant
from a type system perspective.

C. Union and Intersection Types

As a first advanced feature, N4JS allows the programmer
to combine two or more existing types to form a new type
that represents the union or intersection of the combined types.
Given types T1, ...,Tn, the union U of these types is a supertype
of another type T ′ if and only if T ′ is a subtype of at least
one of the combined types and is a subtype of T ′ if and only
if T ′ is a subtype of all the combined types.

More formally, given types T1, ...,Tn and the union U of
these types, for all types T ′ we have

T ′ <: U ⇐⇒ T ′ <: T1∨ ...∨T ′ <: Tn (1)
U <: T ′⇐⇒ T1 <: T ′∧ ...∧Tn <: T ′ (2)

In N4JS source code, the union of two types A and B is
written as A|B. The following N4JS code snippet provides an
example:

function foo(param: string | number) {
let str: string;
str = param; // ERROR

}
foo(’hello’); // ok
foo(42); // ok

Function foo can be invoked with strings and with num-
bers as argument, because string is a subtype of the union
string|number and also number is a subtype of this
union. However, the assignment inside function foo fails,
because union string|number is not a subtype of string
(and also not a subtype of number).

Intersection types are defined accordingly: the intersection
is a subtype of all its combined types. The notation for the
intersection of two types A and B in N4JS source code is
A&B.

Intersection types are actually more common in mainstream
languages than union types. Java has support for intersection
types, but they can only be used in very few places, for
example, when declaring the upper bound of a type parameter:

public interface I {}
public interface J {}
public class G<T extends I & J> {

/* ... */
}

Here, type parameter T has the intersection type I & J as its
upper bound; Java developers often view this as parameter T
having two upper bounds I and J.

From a practical point of view, union types are particu-
larly important in N4JS, because N4JS—just as ECMAScript
2015—does not allow method overloading. So, union types are
a means to provide methods than can handle different types
of arguments in much the same way as done in Java using
method overloading.

D. Nominal and Structural Typing

The fundamental notion for reasoning about types is the
subtype relation. According to the Liskov substitution princi-
ple [64], given two types S,T we call S a subtype of T if and
only if every property that can be observed from the outside
for T , does also apply to S, and we can thus use instances of
S wherever instances of T are expected.

One of the primary responsibilities of a type system is to
decide whether a given type is, in the above sense, a subtype
of another type. N4JS provides support for different strategies
of checking whether two types are subtypes of one another,
namely nominal and structural typing [8]. Additionally, it
provides certain variations of structural typing to support
typical use cases of ECMAScript.

In the context of a programming language, a type S is a
subtype of type T if, roughly speaking, a value of type S may
be used as if it were a value of type T . Therefore, if type S
is a subtype of T , denoted as S <: T , a value that is known
to be of type S may, for example, be assigned to a variable
of type T or may be passed as an argument to a function
expecting an argument of type T . There are two major classes
of type systems that differ in how they decide on such type
compatibility:

• Nominal type systems, as known from most object-
oriented programming languages, e.g., Java, C#.

• Structural type systems, as more common in type
theory and functional programming languages.

Since N4JS provides both forms of typing, we briefly
introduce each approach in the following sections before we
show how they are combined in N4JS.

1) Nominal Typing: In a nominal, or nominative, type
system, two types are deemded to be the same if they have
the same name and a type S is deemed to be an (immediate)
subtype of a type T if and only if S is explicitly declared to
be a subtype of T .

In the following example, Employee is a subtype of
Person because it is declared as such using keyword
extends within its class declaration. Conversely, Product
is not a subtype of Person because it lacks such an “extends”
declaration.

class Person {
public name: string;

}

class Employee extends Person {
public salary: number;

}
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class Manager extends Employee { }

class Product {
public name: string;
public price: number;

}

The subtype relation is transitive and thus Manager is not
only a subtype of Employee but also of Person. Product
is not a subtype of Person, although it provides the same
members.

Most mainstream object-oriented languages use nominal
subtyping, for example, C++, C#, Java, Objective-C.

2) Structural Typing: In a structural type system, two types
are deemed the same if they are of the same structure. In
other words, if they have the same public fields and methods
of compatible type/signature. Similarly, a type S is deemed a
subtype of a type T if and only if S has all public members (of
compatible type/signature) that T has (but may have more).

In the example from the previous section, we said
Product is not a (nominal) subtype of Person. In a
structural type system, however, Product would indeed be
deemed a (structural) subtype of Person because it has all
of Person’s public members of compatible type (the field
name in this case). The opposite is, in fact, not true: Person
is not a subtype of Product because it lacks Product’s
field price.

3) Comparison: Both classes of type systems have their
own advantages and proponents [65]. Nominal type systems
are usually said to provide more type safety and better main-
tainability whereas structural typing is mostly believed to be
more flexible. As a matter of fact, nominal typing is structural
typing extended with an extra relation explicitly declaring one
type a subtype of another, e.g., the extends clause in case
of N4JS. So the real question is: What are the advantages and
disadvantages of such an explicit relation?

Let us assume we want to provide a framework or library
with a notion of indentifiable elements, i.e., elements that can
be identified by name. We would define an interface as follows:

export public interface Identifiable {
public get name(): string

static checkNom(identifiable: Identifiable):
boolean {
return identifiable.name !== ’anonymous’;

}
static checkStruct(identifiable: ∼Identifiable):

boolean {
return identifiable.name !== ’anonymous’;

}
}

A nominal implementation of this interface could be de-
fined as

import { Identifiable } from ’Identifiable’;

class AN implements Identifiable {
@Override
public get name(): string { return ’John’; }

}

whereas here is a structural implementation of above inter-
face:

class AS {
public get name(): string { return ’John’; }

}

A client may use these classes as follows:

Identifiable.checkNom(new AN());
Identifiable.checkNom(new AS()); // ERROR "AS is not

a (nominal) subtype of Identifiable"
Identifiable.checkStruct(new AN());
Identifiable.checkStruct(new AS());

Let us now investigate advantages and disadvantages of the
two styles of subtyping based on this code; we will mainly
focus on maintainability and flexibility.

Maintainability. As a refactoring, consider renaming name
to id in order to highlight that the name is expected to be
unique. Assume you have thousands of classes and interfaces.
You start by renaming the getter in the interface:

export public interface Identifiable {
public get id(): string
// ...

}

With structural typing, you will not get any errors in your
framework. You are satisfied with your code and ship the new
version. However, client code outside your framework will no
longer work as you have forgotten to accordingly rename the
getter in class AS and so AS is no longer a (structural) subtype
of Identifiable.

With nominal typing, you would have gotten errors in your
framework code already at compile time: “Class AN must
implement getter id.” and “The getter name must implement a
getter from an interface.” Instead of breaking the code on the
client side only, you find the problem in the framework code.
In a large code base, this is a huge advantage. Without such
a strict validation, you probably would not dare to refactor
your framework. Of course, you may still break client code,
but even then it is much easier to pinpoint the problem.

Flexibility. Given the same code as in the previous example,
assume that some client code also uses another framework pro-
viding a class Person with the same public members as AN,
AS in the above example. With structural typing, it is no prob-
lem to use Person with static method checkStruct()
since Person provides a public data field name and is thus a
structural subtype of Identifiable. So, the code inside the
method would work as intended when called with an instance
of Person.

This will not be possible with nominal typing though. Since
Person does not explicitly implement Identifiable,
there is no chance to call method checkNom(). This can be
quite cumbersome, particularly if the client can change neither
your framework nor the framework providing class Person.

4) Combination of Nominal and Structural Typing: Be-
cause both classes of type systems have their advantages and
because structural typing is particularly useful in the context of
a dynamic language ecosystem such as the one of JavaScript,
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N4JS provides both kinds of typing and aims to combine them
in a seamless way.

N4JS uses nominal typing by default, but allows the
programmer to switch to structural typing by means of special
type constructors using the tilde symbol. The switch can be
done with either of the following:

• Globally when defining a type. This then applies to
all uses of the type throughout the code, referred to
as definition-site structural typing

• Locally when referring to an existing nominal type,
referred to as use-site structural typing.

For the latter we have already seen an example in the signature
of static method checkStruct(). For its parameter elem
we used a (use-site) structural type by prefixing the type
reference with a ∼ (tilde), which means we are allowed, when
invoking checkStruct(), to pass in an instance of AS
or Person even though they are not nominal subtypes of
Identifiable.

This way, N4JS provides the advantages of nominal typing
(which is the default form of typing) while granting many of
the advantages of structural typing, if the programmer decides
to use it. Additionally, if you rename name to id, the tilde
will tell you that there may be client code calling the method
with a structural type.

The full flexibility of a purely structurally typed language,
however, cannot be achieved with this combination. For exam-
ple, the client of an existing function or method that is declared
to expect an argument of a nominal type N is confined to
nominal typing. They cannot choose to invoke this function
with an argument that is only a structural subtype of N (it
would be a compile time error). This could possibly be exactly
the intention of the framework’s author in order to enable
easier refactoring later.

5) Field Structural Typing: N4JS provides some variants of
structural types. Usually two structural types are compatible, if
they provide the same properties, or in case of classes, public
members. In ECMAScript we often only need to access the
fields. In N4JS, we can use ∼∼ to refer to the so-called field
structural type. Two field structural types are compatible, if
they provide the same public fields. Methods are ignored in
these cases. Actually, N4JS provides even more options. There
are several modifiers to further filter the properties or members
to be considered:

• ∼r∼ only considers getters and data fields,

• ∼w∼ only considers setters and data fields,

• ∼i∼ is used for initializer parameters: for every setter
or (non-optional) data field in the type, the ∼i∼-type
needs to provide a getter or (readable) data field.

E. Parameterized Types

Generics in N4JS are a language feature that allows for
generic programming. They enable a function, class, interface,
or method to operate on the values of various (possibly
unknown) types while preserving compile-time type safety.
There are some differences with respect to Java generics, which
we shall describe below.

1) Motivation: Several language elements may be declared
in a generic form; we will start with focusing on classes,
generic methods will be discussed after that.

The standard case, of course, is a non-generic class. Take
the following class, for example, that aggregates a pair of two
strings:

export public class PairOfString {
first: string;
second: string;

}

This implementation is fine as long as all we ever want
to store are strings. If we wanted to store numbers, we would
have to add another class:

export public class PairOfNumber {
first: number;
second: number;

}

Following this pattern of adding more classes for new types
to be stored obviously has its limitations. We would soon end
up with a multitude of classes that are basically serving the
same purpose, leading to code duplication, bad maintainability
and many other problems.

One solution could be having a class that stores two values
of type any (in N4JS, any is the so-called top type, the
common supertype of all other types).

export public class PairOfWhatEver {
first: any;
second: any;

}

Now the situation is worse off than before. We have lost
the certainty that within a single pair, both values will always
be of the same type. When reading a value from a pair, we
have no clue what its type might be.

2) Generic Classes and Interfaces: The way to solve our
previous conundrum using generics is to introduce a type
variable for the class. We will then call such a class a generic
class. A type variable can then be used within the class
declaration just as any other ordinary type.

export public class Pair<T> {
first: T;
second: T;

}

The type variable T, declared after the class name in angle
brackets, now represents the type of the values stored in the
Pair and can be used as the type of the two fields.

Now, whenever we refer to the class Pair, we will provide
a type argument, in other words a type that will be used
wherever the type variable T is being used inside the class
declaration.

import { Pair } from ’Pair’;

let myPair = new Pair<string>();
myPair.first = ’1st value’;
myPair.second = ’2nd value’;
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By using a type variable, we have not just allowed any
given type to be used as value type, we have also stated that
both values, first and second, must always be of the same type.
We have also given the type system a chance to track the types
of values stored in a Pair:

import { Pair } from ’Pair’;

let myPair2 = new Pair<string>();
myPair2.first = ’1st value’;
myPair2.second = 42; // error: ’int is not a subtype

of string.’

console.log(myPair2.first.charAt(2));
// type system will know myPair2.first is of type

string

The error in line 3 shows that the type checker will make
sure we will not put any value of incorrect type into the pair.
The fact that we can access method charAt() (available on
strings) in the last line indicates that when we read a value
from the pair, the type system knows its type and we can use
it accordingly.

Generic interfaces can be declared in exactly the same way.

3) Generic Functions and Methods: With the above, we
can now avoid introducing a multitude of classes that are
basically serving the same purpose. It is still not possible,
however, to write code that manipulates such pairs regardless
of the type of its values may have. For example, a function
for swapping the two values of a pair and then return the new
first value would look like this:

import { PairOfString } from ’PairOfString’;

function swapStrings1(pair: PairOfString): string {
let backup = pair.first; // inferred type of ’

backup’ will be string
pair.first = pair.second;
pair.second = backup;
return pair.first;

}

The above function would have to be copied for every value
type to be supported. Using the generic class Pair<T> does
not help much:

import { Pair } from ’Pair’;

function swapStrings2(pair: Pair<string>): string {
let backup = pair.first; // inferred type of ’

backup’ will be string
pair.first = pair.second;
pair.second = backup;
return pair.first;

}

The solution is not only to make the type being manipulated
generic (as we have done with class Pair<T> above) but to
make the code performing the manipulation generic:

import { Pair } from ’Pair’;

function <T> swap(pair: Pair<T>): T {
let backup = pair.first; // inferred type of ’

backup’ will be T
pair.first = pair.second;
pair.second = backup;

return pair.first;
}

We have introduced a type variable for function swap()
in much the same way as we have done for class Pair in
the previous section (we then call such a function a generic
function). Similarly, we can use the type variable in this
function’s signature and body.

It is possible to state in the declaration of the function
swap() above that it will return something of type T when
having obtained a Pair<T> without even knowing what type
that might be. This allows the type system to track the type of
values passed between functions and methods or put into and
taken out of containers, and so on.

Generic methods can be declared just as generic functions.
There is one caveat, however: Only if a method introduces
its own new type variables it is called a generic method. If
it is merely using the type variables of its containing class
or interface, it is an ordinary method. The following example
illustrates the difference:

export public class Pair<T> {

public foo(): T { }
public <S> bar(pair: Pair2<S>): void { /*...*/ }

}

The first method foo is a non generic method, while the
second one bar is.

A very interesting application of generic methods is when
using them in combination with function type arguments:

class Pair<T> {

<R> merge(merger: {function(T,T): R}): R {
return merger(this.first, this.second);

}
}

var p = new Pair<string>();
/* ... */
var i = p.merge( (f,s)=> f.length+s.length )

You will notice that N4JS can infer the correct types for the
arguments and the return type of the arrow expression. Also,
the type for i will be automatically computed.

4) Differences to Java: Important differences between
generics in Java and N4JS include:

• Primitive types can be used as type arguments in
N4JS.

• There are no raw types in N4JS. Whenever a generic
class or interface is referenced, a type argument has to
be provided - possibly in the form of a wildcard. For
generic functions and methods, an explicit definition
of type arguments is optional if the type system can
infer the type arguments from the context.

F. Use-site and Definition-Site Variance

In the context of generic types, the “variance of a generic
type G〈T1, ...,Tn〉 in Ti, i∈ {1, ...,n},” tells how G behaves with
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respect to subtyping when changing the type argument for type
parameter Ti. In other words, knowing X <: Y , does this tell us
anything about whether either G〈X〉<: G〈Y 〉 or G〈Y 〉<: G〈X〉
holds?

More formally, given a type G〈T1, ...,Tn〉 and i ∈ {1, ...,n},
we say

• G is covariant in Ti if and only if

∀X ,Y : X <: Y ⇒ G〈X〉<: G〈Y 〉 (3)

• G is contravariant in Ti if and only if

∀X ,Y : X <: Y ⇒ G〈Y 〉<: G〈X〉 (4)

If neither applies, we call G invariant in Ti. For the sake of
conciseness, the case that both applies is not discussed, here.

In N4JS, the variance of a generic type G can be declared
both on use-site, e.g., when referring to G as the type of a
formal parameter in a function declaration, or on definition-
site, i.e., in the class or interface declaration of G, and these
two styles of declaring variance can be combined seamlessly.

For further investigating these two styles and for showing
how they are integrated in N4JS, we first introduce an exem-
plary, single-element container class G as follows:

class G<T> {
private elem: T;

put(elem: T) { this.elem = elem; }
take(): T { return this.elem; }

}

In addition, for illustration purposes, we need three helper
classes C <: B <: A:

class A {}
class B extends A {}
class C extends B {}

1) Use-site Variance: N4JS provides support for wildcards,
as known from Java [66]. In the source code, a wildcard is
represented as ? and can be used wherever type arguments are
provided for the type parameters of a generic type. Further-
more, wildcards can be supplied with upper or lower bounds,
written as ? extends U and ? super L, with U,L being
two types, here used as upper and lower bound, respectively.

Figure 4 shows three functions that all take an argument
of type G, but using a different type argument for G’s type
parameter T .

The effect of the different type arguments becomes ap-
parent when examining invocations of these functions. Using
helper variables

let ga: G<A> = /* ... */ ;
let gb: G<B> = /* ... */ ;
let gc: G<C> = /* ... */ ;

we start with fun1 by invoking it with each helper
variable. We get:

fun1(ga); // ERROR: "G<A> is not a subtype of G<B>."
fun1(gb); // ok
fun1(gc); // ERROR: "G<C> is not a subtype of G<B>."

function fun1(p: G<B>) {
let b: B = p.take(); // we know we get a B
p.put(new B()); // we’re allowed to put in a B

}
function fun2(p: G<? extends B>) {

let b: B = p.take(); // we know we get a B
p.put(new B()); // ERROR: "B is not a subtype of

? extends B."
}
function fun3(p: G<? super B>) {

let b: B = p.take(); // ERROR: "? super B is not
a subtype of B."

p.put(new B()); // we’re allowed to put in a B
}

Figure 4. Three functions illustrating the use of different wildcards.

In the first case, we get an error because the G〈A〉 we pass
in might contain an instance of A. The second invocation is
accepted, of course. The third case, however, often leads to
confusion: why are we not allowed to pass in a G〈C〉, since
all it may contain is an instance of C which is a subclass of
B, so fun1 would be ok with that argument? A glance at the
body of fun1 shows that this would be invalid, because fun1
is, of course, allowed to invoke method put() of G to store
an instance of B in G. If passing in an instance gc of G〈C〉
were allowed, we would end up with a B being stored in gc
after invoking fun1(gc), breaking the contract of G.

Similarly, when invoking fun2 and fun3, we notice that
in each case one of the two errors we got in the previous listing
will disappear:

fun2(ga); // ERROR: "G<A> is not a subtype of G<?
extends B>."

fun2(gb); // ok
fun2(gc); // ok, G<C> is a subtype of G<? extends B>

fun3(ga); // ok, G<A> is a subtype of G<? super B>
fun3(gb); // ok
fun3(gc); // ERROR: "G<C> is not a subtype of G<?

super B>."

By using a wildcard with an upper bound of B in the
signature of fun2, we have effectively made G covariant in
T , meaning

C <: B⇒ G〈C〉<: G〈? extends B〉 (5)

Checking the body of fun2, we see that due to the wild-
card in its signature, fun2 is no longer able to invoke method
put() of G on its argument p and put in a B. Precisely
speaking, fun2 would be allowed to call this method, but
only with a value that is a subtype of the unknown type ?
extends B, which is never the case except for values that
are a subtype of all types. In N4JS this is only the case for
the special values undefined and null (similar to Java’s
null); hence, fun2 would be allowed to clear the element
stored in p by calling p.put(undefined).

Accordingly, the above three invocations of fun3 show
that by using a wildcard with a lower bound of B in the
signature of fun3, we can effectively make G contravariant in
T and can thus invoke fun3 with an instance of G〈A〉 (but no
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longer with an instance of G〈C〉, as was the case with fun2).
Consequently, while fun3 is now allowed to put an instance
of B into p, it can no longer assume getting back a B when
calling method take() on p.

Using an unbounded wildcard in the signature of fun1
would leave us, in its body, with a combination of both
restrictions we faced in fun2 and fun3, but would make
all of the three invocations valid, i.e., both of the errors shown
for the invocations of fun1 would disappear.

2) Definition-Site Variance: Many more recent program-
ming languages did not take up the concept of wildcards
as introduced by Java, but instead opted for a technique of
declaring variance on the definition-site, e.g., C#, Scala.

In N4JS this is also possible, using the keywords out and
in when declaring the type parameter of a generic class or
interface. As an example, let us create two variations of type
G introduced above (beginning of Section V-F), first starting
with a covariant type GR:

class GR<out T> {
private elem: T;

// ERROR "Cannot use covariant (out) type variable
at contravariant position."

// put(elem: T) { this.elem = elem; }
take(): T { return this.elem; }

}

We have prefixed the declaration of type parameter T with
keyword out, thus declaring GR to be covariant in T . Trying
to define the exact same members as in G, we get an error
for method put(), disallowing the use of covariant T as the
type of a method parameter. Without going into full detail, we
can see that just those cases that had been disallowed in the
body of function fun2 (i.e., when using use-site covariance)
are now disallowed already within the declaration of GR.

Given a modified version of fun1, using the above GR〈T 〉
as the type of its parameter, defined as

function funR(p: GR<B>) {
let b: B = p.take(); // we know we get a B

// p.put(new B()); // ERROR "No such member: put."
}

and helper variables

let gra: GR<A>;
let grb: GR<B>;
let grc: GR<C>;

we can invoke funR as follows:

funR(gra); // ERROR "GR<A> is not a subtype of GR<B
>."

funR(grb);
funR(grc);

Note how having an error in the first and none in the last
case corresponds exactly to what we saw above for use-site
covariance through wildcards with upper bounds.

For completeness, let us see what a contravariant version
of G would look like:

class GW<in T> {
private elem: T;
put(elem: T) { this.elem = elem; }

// ERROR "Cannot use contravariant (in) type
variable at covariant position."

// take(): T { return this.elem; }
}

Now, using T as the return type of a method is disallowed,
meaning we cannot include method take().

A comparison of GR and GW shows that in the first case
methods with an information flow leading into the class are
disallowed while methods reading information from the type
are allowed, and vice versa in the second case. Therefore,
read-only classes and interfaces are usually covariant, whereas
write-only classes and interfaces are usually contravariant
(hence the “R” and “W” in the names of types GR, GW ).

3) Comparison: Use-site variance is more flexible, because
with the concept of wildcards any type can be used in a
covariant or contravariant way if some functionality (e.g.,
our example functions above) is using instances purely for
purposes that do not conflict with the assumptions of co-
/contravariance, for example, only reading from a mutable
collection (covariance), or only computing its size or only
reordering its elements (co- and contravariance). And this is
possible even if the implementor of the type in question did
not prepare this before-hand.

On the other hand, if a particular type can only ever be used
in, for example, a covariant way, e.g., a read-only collection
type, declaring this variance on definition-site has the benefit
that implementors of functions and methods using this type do
not have to take care of the extra declaration of wildcards.

G. Conclusion

We would like to conclude this section by highlighting
that we here do not aim to make claims as to whether
structural or nominal typing or their combination is ultimately
preferable, nor as to whether use- or definition-site variance
or its combination is preferable on a general level. This would
require an extensive analysis and empirical study, which is
outside the scope of this article. We provided the above brief
discussions of advantages and disadvantages merely for the
sake of understandability of the respective language features.
Also, full introduction to N4JS, its syntax and semantics, is
not intended.

Our main goal for this brief overview of N4JS and its main
typing-related features is to illustrate that we have used Xse-
mantics to implement a fearure-rich, real-world programming
language that requires a comprehensive, complex type system.

VI. CASE STUDY

In this section we will describe our real-world case study:
the Xsemantics implementation of the type system of N4JS,
a JavaScript dialect with a full-featured static type system
(described in Section V). We will also describe some perfor-
mance benchmarks related to the type system and draw some
evaluations.
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Figure 5. Interactions among the modules of the N4JS implementation.

A. Type System

The Xsemantics-based type system is not only used for
validating the source code and detecting compile-time errors,
but also for implementing scoping (see Section III), e.g., in
order to find the actually referenced member in case of member
access expressions:

class A {
public method() {}

}
class B {

public method() {}
}

let x: B;
x.method();

To know which method we are referring to in the last line,
the one in class A or the one in class B, we need to first infer
the type of x, which is a simple variable in this case, but, in
general, it could be an arbitrary expression according to N4JS’
syntax.

The relationship and interactions of the different modules
of the N4JS implementation can be depicted as in Figure 5.
Note that the interaction between scoping and the type system
is bidirectional since, during the type inference some symbols
may have to be resolved, and for symbol resolution, type
inference is needed. Of course, the implementation of the type
system takes care of avoiding possible cycles and loops.

The core parts of the N4JS type system are modeled by
means of nine Xsemantics judgments, which are declared in
Xsemantics as shown in Figure 6. The judgments have the
following purpose:

• “type” is used to infer the type of any typable AST
node.

• “subtype” tells if one given type is a subtype of
another.

• “supertype” and “equaltype” are mostly delegating to
“subtype” and are only required for convenience and
improved error reporting.

• “expectedTypeIn” is used to infer a type expectation
for an expression in a given context (the container).

• “upperBound” and “lowerBound” compute the lower
and upper type bound, respectively. For example,

given a wildcard ? extends C (with C being a
class) the “upperBound” judgment will return C and
for wildcard ? super C it will return the top type,
i.e., any.

• “substTypeVariables” will replace all type variables
referred to in a given type reference by a replacement
type. The mapping from type variables to replace-
ments (or bindings, substitutions) is defined in the rule
environment.

• “thisTypeRef” is a special judgment for the so-called
this-type of N4JS, which is not covered in detail,
here.

This set of judgments does not only reflect the specific
requirements of N4JS but arguably provides a good overview
of what an Xsemantics-based type system implementation of
any comprehensive Object-Oriented programming language
would need.

These judgments are implemented by approximately 30 ax-
ioms and 80 rules. Since, with Xsemantics, type inference rules
can often be implemented as a 1:1 correspondence to inference
rules from a given formal specification, many rules are simple
adaptations of rules given in the papers cited in Section V.
For example, the subtype relation for union and intersection
types is implemented with the rules shown in Figure 7. Note
that we use many Xbase features, e.g., lambda expressions and
extension methods (described in Section III-A).

In the implementation of the N4JS type system in Xseman-
tics we made heavy use of the rule environment. We are using
it not only to pass contextual information and configuration to
the rules, but also to store basic types that have to be globally
available to all the rules of the type system (e.g., boolean,
integer, etc.). This way, we can safely make the assumption that
such type instances are singletons in our type system, and can
be compared using the Java object identity. Another important
use of the rule environment, as briefly mentioned above when
introducing judgment “substTypeVariables”, is to store type
variable mappings and to pass this information from one rule
to another. Finally, the rule environment is the key mechanism
for guarding against infinite recursion in case of invalid source
code such as cyclicly defined inheritance hierarchies.

To make the type system more readable, we
implemented some static methods in a separate Java
class RuleEnvironmentExtensions, and imported such
methods as extension methods in the Xsemantics system:

import static extension RuleEnvironmentExtensions.∗

These methods are used to easily access global type instances
from the rule environment, as it is shown, for example, in the
rule of Figure 8.

Other examples are shown in Figures 9 and 10. In particu-
lar, these examples also show how Xsemantics rules are close
to the formal specifications. We believe they are also easy to
read and thus to maintain.

Since the type system of N4JS is quite involved, creating
useful and informative error messages is crucial to make the
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judgments {

type |− TypableElement element : output TypeRef
error "cannot type " + element?.eClass?.name + " " + stringRep(element)
source element

subtype |− TypeArgument left <: TypeArgument right
error stringRep(left) + " is not a subtype of " + stringRep(right)

supertype |− TypeArgument left :> TypeArgument right
error stringRep(left) + " is not a super type of " + stringRep(right)

equaltype |− TypeArgument left ∼∼ TypeArgument right
error stringRep(left) + " is not equal to " + stringRep(right)

expectedTypeIn |− EObject container |> Expression expression : output TypeRef

upperBound |∼ TypeArgument typeArgument /\ output TypeRef

lowerBound |∼ TypeArgument typeArgument \/ output TypeRef

substTypeVariables |− TypeArgument typeArg ∼> output TypeArgument

thisTypeRef |∼ EObject location ∼> output TypeRef
}

Figure 6. Declarations of Xsemantics judgments from the N4JS type system.

rule subtypeUnion Left
G |− UnionTypeExpression U <: TypeRef S

from {
U.typeRefs.forall[T|

G |− T <: S
]
}

rule subtypeUnion Right
G |− TypeRef S <: UnionTypeExpression U

from {
U.typeRefs.exists[T|

G |− S <: T
]
}

rule subtypeIntersection Left
G |− IntersectionTypeExpression I <: TypeRef S

from {
I.typeRefs.exists[T|

G |− T <: S
]
}

rule subtypeIntersection Right
G |− TypeRef S <: IntersectionTypeExpression I

from {
I.typeRefs.forall[T|

G |− S <: T
]
}

Figure 7. N4JS union and intersection types implemented with Xsemantics.

rule typeUnaryExpression
G |− UnaryExpression e: TypeRef T

from {
switch (e.op) {

case UnaryOperator.DELETE: T= G.booleanTypeRef()
case UnaryOperator.VOID: T= G.undefinedTypeRef()
case UnaryOperator.TYPEOF: T= G.stringTypeRef()
case UnaryOperator.NOT: T= G.booleanTypeRef()
default: // INC, DEC, POS, NEG, INV

T = G.numberTypeRef()
}
}

Figure 8. Typing of unary expression.

rule typeConditionalExpression
G |− ConditionalExpression expr : TypeRef T

from {
G |− expr.trueExpression : var TypeRef left
G |− expr.falseExpression : var TypeRef right
T = G.createUnionType(left, right)
}

Figure 9. Typing of conditional expression.

language usable, especially in the IDE. We have 3 main levels
of error messages in the implementation:

1) default error messages defined on judgment declara-
tion,
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rule typeArrayLiteral
G |− ArrayLiteral al : TypeRef T

from {
val elementTypes = al.elements.map[

elem |
G |− elem : var TypeRef elementType;
elementType;

]

T = G.arrayType.createTypeRef(
G.createUnionType(elementTypes))

}

Figure 10. Typing of array literal expression.

Figure 11. The N4JS IDE and error reporting.

2) custom error messages using fail,
3) customized error messages due to failed nested judg-

ments using previousFailure (described in Sec-
tion IV-F).

Custom error messages are important especially when
checking subtyping relations. For example, consider checking
something like A<string> <: A<number>. The declared
types are identical (i.e., A), so the type arguments have to be
checked. If we did not catch and change the error message pro-
duced by the nested subtype checks string <: number
and number <: string, then the error message would be
very confusing for the user, because it only refers to the type
arguments. In cases where the type arguments are explicitly
given, this might be rather obvious, but that is not the case
when the type arguments are only defined through type variable
bindings or can change due to considering the upper/lower
bound. Some examples of error messages due to subtyping
are shown in Figure 11.

Figure 12 shows an excerpt of the subtype rule for pa-
rameterized type references, in order to illustrate how such
composed error messages can be implemented. The excerpt
shows the part of the rule that checks the type arguments
given on left and right side for compatibility. If one of these
subtype checks fails, it creates an error message composed
from the original error message of the failed nested subtype
check (obtained via special property “previousFailure”) and an

additional explanation including the index of the incompatible
type argument. Note that such a composed error message is
only created in certain cases, in this example only if there are at
least two type arguments. Otherwise the default error message
of judgment “subtype” (Figure 6) is being issued automatically
by using the keyword fail.

The Xsemantics code in Figure 12 also shows that when-
ever some more involved special handling is required and
the special, declarative-style syntax provided by Xsemantics
is not suitable, all ordinary, imperative programming language
constructs provided by Xbase can be integrated seamlessly into
an Xsemantics rule.

B. Performance

N4JS is used to develop large scale ECMAScript ap-
plications. For this purpose, N4JS comes with a compiler,
performing all validations and eventually transpiling the code
to plain ECMAScript. We have implemented a test suite in
order to measure the performance of the type system. Since
we want to be able to measure the effect on performance
of specific constructs, we use synthetic tests with configured
scenarios. In spite of being artifical, these scenarios mimic
typical situations in Javascript programming. There are several
constructs and features that are performance critical, as they
require a lot of type inference (which means a lot of rules are
to be called). We want to discuss three scenarios in detail,
Figure 13 summarizes the important code snippets used in
these scenarios.

Function Expression: Although it is possible to specify the
types of the formal parameters and the return type of functions,
this is very inconvenient for function expressions. The function
definition f (Figure 13) is called in the lines below the
definition. Function f takes a function as argument, which
itself requires a parameter of type C and returns an A element.
Both calls (below the definition) use function expressions. The
first call uses a fully typed function expression, while the
second one relies on type inference. Generic Method Calls:
As in Java, it is possible to explicitly specify type arguments
in a call of a generic function. Similar to type expressions,
it is more convenient to let the type system infer the type
arguments, which actually is a typical constraint resolution
problem. The generic function g (Figure 13) is called one time
with explicitly specified type argument, and one time without
type arguments. Variable Declarations: The type of a variable
can either be explicitly declared, or it is inferred from the
type of the expression used in an assignment. This scenario
demonstrates why caching is so important: without caching,
the type of x1 would be inferred three times. Of course, this
is not the case if the type of the variable is declared explicitly.

Table I shows some performance measurements, using the
described scenarios to set up larger tests. That is, test files are
generated with 250 or more usages of function expressions,
or with up to 200 variables initialized following the pattern
described above. In all cases, we run the tests with and without
caching enabled. Also, for all scenarios we used two variants:
with and without declared types. We measure the time required
to execute the JUnit tests.

There are several conclusions, which could be drawn from
the measurement results. First of all, caching is only worth in
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rule subtypeParameterizedTypeRef
G |− ParameterizedTypeRef left <: ParameterizedTypeRef right

from {
// ...
or
{

left.declaredType == right.declaredType
// so, we have a situation like A<X> <: B<Y> with A==B,
// continue checking X, Y for compatibility ...

val len = Math.min(Math.min(left.typeArgs.size, right.typeArgs.size), right.declaredType.typeVars.size);
for(var i=0;i<len;i++) {

val leftArg = left.typeArgs.get(i)
val rightArg = right.typeArgs.get(i)
val variance = right.declaredType.getVarianceOfTypeVar(i)

G |∼ leftArg /\ var TypeRef leftArgUpper
G |∼ leftArg \/ var TypeRef leftArgLower
G |∼ rightArg /\ var TypeRef rightArgUpper
G |∼ rightArg \/ var TypeRef rightArgLower

{
// require leftArg <: rightArg, except we have contravariance
if(variance!==Variance.CONTRA) {

G2 |− leftArgUpper <: rightArgUpper
}
// require rightArg <: leftArg, except we have covariance
if(variance!==Variance.CO) {

G2 |− rightArgLower <: leftArgLower
}
}
or
{

if(len>1 && previousFailure.isOrCausedByPriorityError) {
fail error stringRep(left) + " is not a subtype of " + stringRep(right)

+ " due to incompatibility in type argument #" + (i+1) + ": "
+ previousFailure.compileMessage

data PRIORITY ERROR
} else {

fail // with default message
}
}
}
}
or
// ...
}

Figure 12. Implementing advanced, composed error messages in Xsemantics.

some cases, but these cases can make all the difference. The
first two scenarios do not gain much from caching, actually
the overhead for managing the cache even slightly decreases
performance in case of generic methods calls. In many cases,
types are to be computed only once. In our example, the types
of the type arguments in the method call are only used for
that particular call. Thus, caching the arguments there does not
make any sense. Things are different for variable declarations.
As described above, caching the type of a variable, which
is used many times, makes a lot of sense. Increasing the
performance by the factor of more than 100 is not only about
speeding up the system a little bit—it is about making it work

at all for larger programs. Even if all types are declared, type
inference is still required in order to ensure that the inferred
type is compatible with the declared type. This is why in
some cases the fully typed scenario is even slower than the
scenario which uses only inferred types. While in some cases
(scenario 1 and 3) the performance increases linearly with
the size, this is not true for scenario 2, the generic method
call. This demonstrates a general problem with interpreting
absolute performance measurements: it is very hard to pinpoint
the exact location in case of performance problems, as many
parts, such as the parser, the scoping system and the type
system are involved. Therefore, we concentrate on relative
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// Scenario 1: function expression
function f ({function (C): A} func) { ... };
// typed
f( function (C p): A { return p.getA() || new A(); }

)
// inferred
f( function (p) { return p.getA() || new A(); } )

// Scenario 2: generic method call
function <T> g (T p): T { ... }
// typed
var s1 = <string>g("");
// inferred
var s2 = g("");

// Scenario 3: variable declarations and references
// typed
var number y1 = 1;
var number y2 = y1; ...
// inferred
var x1 = 1;
var x2 = x1; var x3 = x2; ...

Figure 13. Scenario snippets used in performance tests

TABLE I. PERFORMANCE MEASUREMENTS (RUNTIME IN MS)

Scenario without caching with caching
size typed inferred typed inferred

Function Expressions
250 875 865 772 804
500 1,860 1,797 1,608 1,676

1000 4,046 3,993 3,106 3,222
2000 9,252 9,544 8,143 8,204

Generic Method Calls
250 219 273 223 280
500 566 644 548 654

1000 1,570 1,751 1,935 1,703
2000 6,143 6,436 6,146 6,427

Variable Declarations
50 19 580 18 39

100 27 3,848 26 102
200 44 31,143 36 252

performance between slightly modified versions of the type
system implementation (while leaving all other subsystems
unchanged).

We observe that it is not feasible to compare, on a more
global level, the overall performance of N4JS to other lan-
guages implemented with more traditional approaches (without
the use of Xsemantics), because there are too many factors
that should be taken into consideration, starting from the
complexity of the type system and its type inference up to
the specific programming language and frameworks used for
their compiler’s implementation.

Summarizing, we learned that different scenarios must be
taken into account when working on performance optimization,
in order to make the right decision about whether using caching
or not. Surely, when type information is reused in other parts of
the program over and over again, like in the variable scenario,
caching optimization is crucial. Combining the type system
with control flow analysis, leading to effect systems, may make

caching dispensable in many cases. Further investigation in this
direction is ongoing work.

VII. CONCLUSION

In this paper, we presented the implementation in Xseman-
tics of the type system of N4JS, a statically typed JavaScript,
with powerful type inference mechanisms, focusing both on
the performance of the type system and on its integration in
the Eclipse IDE. The N4JS case study proved that Xsemantics
is mature and powerful enough to implement a complex type
system of a real-world language, where types do not need to be
declared, thus requiring involved type inference mechanisms.

Thanks to Xtext, Xsemantics offers a rich Eclipse tooling;
in particular, thanks to Xbase, Xsemantics is also completely
integrated with Java. For example, from the Xsemantics editor
we can navigate to Java types and Java method definitions,
see Java type hierarchies, and other features that are present
in the Eclipse Java editor (see, e.g., Figure 14). This also holds
the other way round: from Java code that uses code generated
from a Xsemantics definition we can navigate directly to the
original Xsemantics method definition.

Most importantly, the Xsemantics IDE allows the developer
to debug the original Xsemantics system source code, besides
the generated Java code. Figure 15 shows a debug session
of the N4JS type system: we have set a break point in
the Xsemantics file, and when the program hits Xsemantics
generated Java code the debugger automatically switches to
the original Xsemantics code (note the file names in the thread
stack, the “Breakpoint” view and the “Variables” view).

With respect to manual implementations of type systems in
Java, Xsemantics specifications are more compact and closer to
formal systems. We also refer to [67] for a wider discussion
about the importance of having a DSL for type systems in
language frameworks. In particular, Xsemantics integration
with Java allows the developers to incrementally migrate
existing type systems implemented in Java to Xsemantics [68].

Xsemantics has been developed with Test Driven
Development technologies, with almost 100% code
coverage, using Continuous Integration systems and
code quality tools, such as SonarQube (a report can
be found at http://www.lorenzobettini.it-
/2014/09/dealing-with-technical-debt-with-
-sonarqube-a-case-study-with-xsemantics).
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Figure 14. Accessing Java types from Xsemantics source code.

Figure 15. Debugging Xsemantics source code: a breakpoint was set in rule subtypeUnion_Left inside the Xsemantics editor (bottom right), stack trace
and local variables are shown on the top left and right, respectively.
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