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Abstract—The paper introduces a novel ensemble method for
semi-supervised learning. The method integrates the regularized
classifier based on data 1-D representation and label boosting in
a serial ensemble. In each stage, the data set is first smoothly
sorted and represented as a 1-D stack, which preserves the data
local similarity. Then, based on these stacks, an ensemble labeler
is constructed by several 1-D regularized weak classifiers. The
1-D ensemble labeler extracts a newborn labeled subset from the
unlabeled set. United with this subset, the original labeled set is
boosted and the enlarged labeled set is utilized into the next semi-
supervised learning stage. The boosting process is not stopped
until the enlarged labeled set reaches a certain size. Finally, a 1-D
ensemble labeler is applied again to construct the final classifier,
which labels all unlabeled samples in the data set. Taking the
advantage of ensemble, the method avoids the kernel trick that is
the core in many current popular semi-supervised learning meth-
ods such as Transductive Supported Vector Machine and Semi-
Supervised Manifold Learning. Because the proposed algorithm
only employs relatively simple semi-supervised 1-D classifiers, it
is stable, effective, and applicable to data sets of various types.
The validity and effectiveness of the method are confirmed by the
experiments on data sets of different types, such as handwritten
digits and hyperspectral images. Comparing to several other
popular semi-supervised learning methods, the results of the
proposed one are very promising and superior to others.

Keywords–Data smooth sorting; one-dimensional embedding;
regularization; label boosting; ensemble classification; semi-
supervised learning.

I. INTRODUCTION

In this paper, we introduce a novel ensemble method for
semi-supervised learning (SSL) based on data 1-D represen-
tation and label boosting, which is abbreviated to ESSL1dLB.
A preliminary discussion of the topic has been present in the
conference presentation [1]. The purpose of this paper is to
provide an extension with some new developments.

A standard SSL problem can be briefly described as fol-
lows: Assume that the samples (or members, points) of a given
data set X = {~xi}ni=1 ⊂ Rm belong to c classes and B =
{b1, · · · , bc} is the class-label set. Let the labels of the samples
in X be y1, y2, · · · , yn, respectively. When X is observed, only
the samples of a subset, say, X` = {~x1, ~x2, · · · , ~xn0

} ⊂ X
have the known labels Y` = {y1, y2, · · · , yn0

} ⊂ B, while
the labels of the samples in its complementary set Xu =
{~xn0+1, ~xn0+2, · · · , ~xn} = X \X` are unknown. A function

f : X → B is called a classifier (or labeler) if it predicts the
labels for all samples in Xu. The classification error usually
is measured by the number of the misclassified samples:

E(f) = |{~xi ∈ X| f(~xi) 6= yi, 1 ≤ i ≤ n}| ,

where |S| denotes the cardinality of a set S. Then, the quality
of a classifier is measured by the classification error rate
(CErrRate) E(f)/|X|. The task of SSL is to find a classifier
f with the CErrRate as small as possible.

In a SSL problem, if the samples of X only belong to
two classes, say, Class A and Class B, it is called a binary
classification problem. In this case, we may assign the sign-
labels 1 and −1 to Classes A and B, respectively. In a
binary classification problem, the error of a classifier f can
be estimated by the `0 error:

E(f) =

n∑
k=1

sign(|f(~xi)− yi|).

It is worth to point out that the binary classification is
essential in SSL. When the samples of X belong to more
than two classes, we can recursively apply binary classification
technique to achieve multi-classification [2], [3]. In a binary
classification model, the classifier f on X usually is designed
to a continuous real-valued function. The sign f(~x) then gives
the class label of ~x so that the decision boundary is determined
by the level-curve f(~x) = 0

SSL models make use some assumptions. The main one
is the smoothness assumption, which asserts that the samples
in the same class are similar while those in different classes
are dissimilar. It enables us to design classifiers in a smooth
function space, say, Soblev space. Its special case is the
cluster assumption, which asserts that the data tend to form
discrete clusters, and points in the same cluster are most
likely in the same class. Clustering models are based on this
assumption. When the dimension of data is high, due to the
curse of dimensionality [4], [5], most computations on the data
become inaccurate and unstable. According to the manifold
assumption, the high-dimensional data lie approximately on a
manifold of much lower dimension. Therefore, the dimension-
ality reduction technique should be utilized in SSL models.

Many statistical and machine learning methods for SSL
were proposed in the last two decades. The monograph [6]
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and the survey paper [7] gave a comprehensive review of
various SSL methods. Geometrically, the main difficult in
SSL is the nonlinearity of the decision boundary. In gen-
eral, it is a combination of several disjoint surfaces in Rm.
To overcome the difficult, many popular methods, such as
transductive support vector machines, manifold regularization,
and various graph-based methods, utilize so-called kernel trick
to linearize the decision boundary [8], [9]. That is, in such
a model, with the help of a kernel function, one constructs
a reproducing kernel Hilbert space (RKHS) [10], where the
classifier is a linear function so that it can be constructed
by a regularization method. The success of a kernel-based
method strongly depends on the exploration of data structure
by the kernel. However, it is often difficult to design suitable
kernels, which precisely explore the data features. Therefore,
recently researchers try to establish new SSL models, in which
classifiers are constructed without kernel technique. These
models include the data-tree based method [11], [12], SSL
using Gaussian fields [13], and others.

In most of the models above, a single classifier is con-
structed for a given SSL task. However, when a data set
has a complicate intrinsic structure, a single classifier usually
cannot complete the task satisfactorily. The multiple classifier
systems (MCSs) offer alternatives. The ensemble methodology
in MCSs builds a single strong classifier by integrating several
weak classifiers. Although each weak classifier is slightly
correlated with the true classification, the strong classifier is
well-correlated with the true one. MCSs perform informa-
tion fusion at different levels to overcome the limitations of
the traditional methods [14]–[16]. In MCSs two canonical
topologies, parallel and serial ones, are employed in the
ensemble (see Fig. 4 in [15]). In the parallel topology, all
weak classifiers are built on the same data set and the strong
classifier is made by a combination of their outputs. On the
other hand, in the serial topology, the weak classifiers are
applied in sequence, such that the output of the predecessor
turns to be the input of the successor, and the final label
prediction comes from the last weak classifier. Originally,
ensemble algorithms are developed for supervised learning. A
well-known parallel ensemble algorithm is bagging (bootstrap
aggregating) [14], [17]. Boosting algorithms, such as AdaBoost
[18], LPBoost, LSBoost, RobustBoost, and GentleBoost, apply
serial ensemble. Due to the flexibility, MCSs open a wide door
for developing various ensemble SSL algorithms.

The novelty of the introduced ensemble SSL method is the
following: It adopts the framework of data 1-D representation,
in which the data set is represented by several different 1-
D sequences, then a labeler is constructed as an ensemble
of several weak classifiers, which are built on these 1-D
sequences. Here, we are partial to data 1-D models because 1-
D decision boundary reduces to a set of points on a line, which
has the simplest topological structure. As a result, the weak
classifiers can be easily constructed by standard 1-D regular-
ization methods without using kernel trick. Furthermore, the
simplicity of 1-D models makes the algorithm more reliable
and stable. Hence, the core of our method is an ensemble
binary classification algorithm for SSL, whose architecture and
technological process are described in the following.

1) Making data 1-D (shortest path) representation.
The data set X first is smoothly sorted and mapped to
several 1-D sets {T i}ki=1, of which each preserves the

local similarity of members in X . Correspondingly,
the couple {X`, Xu} is mapped to {T i` , T iu} such
that T i` ∪ T iu = T i. The 1-D sets {T i}ki=1 provide
a framework of our method.

2) Constructing ensemble labeler in the 1-D frame-
work. Based on T i, a weak classifier gi on X is
constructed by a 1-D regularization method. Then an
ensemble labeler is built from these weak classifiers.
From the unlabeled set Xu, the labeler extracts a
feasibly confident subset L, which contains the sam-
ples, whose predicted labels are accurate with high
confidence.

3) Developing label boosting algorithm. A label se-
lection function is constructed to select the newborn
labeled subset S from the feasibly confident subset
L to reduce the misclassification error. It computes
class weights of the members of L for selection
decision. Then, the initial labeled set X` is boosted
to Xnew

` = X` ∪ S. The process is repeated and not
terminated until the boosted labeled set Xnew

` reaches
a certain size.

4) Building the final (strong) classifier. Finally, several
weak classifiers gi are constructed based on the final
updated labeled set Xnew

` . The final classifier f is
defined as the mean of these weak classifiers.

Our strategy in the binary classification algorithm above adopts
Model-guided Instance Selection approach to boosting [14].
But it is slightly different from the standard boosting algo-
rithms [19] in the sense that they boost the misclassified
weights on Xu, while our method boosts the labeled subset X`.
The preliminary work of the proposed method can be found
in [20]–[23].

In this paper, we employ the well-known One-Against-All
strategy [2] to deal with multi-classification using a combina-
tion of binary classifications.

The paper is organized as follows: In Section II, we
introduce our ensemble SSL method in details and present
the corresponding ESSL1DLB algorithm. In Section III, we
demonstrate the validity of our method in examples and give
the comparison of our results with those obtained by several
popular methods. The conclusion is given in Section IV.

II. ENSEMBLE SSL METHOD IN FRAMEWORK OF DATA
1-D REPRESENTATION WITH LABEL BOOSTING

In this section, we introduce the novel ensemble SSL
method based on data 1-D representation and label boosting.
The main steps of the method has been introduced in the previ-
ous section. We now introduce the method and corresponding
algorithm in details.

A. Data 1-D representations by shortest path sorting
Assume that the data set X is initially arranged in a stack

x = [~x1, · · · , ~xn]. Let w(~x, ~y) be a distance-type weight
function on X × X that measures the dissimilarity between
the samples ~x and ~y. Let π be an index permutation of the
index sequence [1, 2, · · · , n], which induces a permutation Pπ
on the initial stack x, yielding a stack of X headed by ~xπ(1):
xπ = Pπx = [~xπ(1), · · · , ~xπ(n)]. We denote the set of all
permutations of X with the head ~x` by

P` = {Pπ; π(1) = `}.
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According to [24], the shortest-path sorting of X headed
by ~x` is the stack xπ that minimizes the path starting
from ~x` and though all points in X , i.e., xπ = Pπx =
[~xπ(1), ~xπ(2), · · · , ~xπ(n)], where

Pπ = arg min
P∈P`

n−1∑
j=1

w((Px)j , (Px)j+1). (1)

Define the 1-D sequence t = [t1, · · · , tn] by

t1 = 0, tj+1 − tj =
w(~xπ(j), ~xπ(j+1))∑n−1
k=1 w(~xπ(k), ~xπ(k+1))

. (2)

Then, the 1-D stack t provides the 1-D (shortest-path) rep-
resentation of X headed by ~x`. We call the function h` :
X → [0, 1], h`(~xπ(j)) = tj the (isometric) 1-D embedding of
X headed by ~x`. When the index ` is not stressed, we will
simplify h` to h.

The sorting problem (1) essentially is a traveling salesman
problem, which has NP computational complexity. To reduce
the complexity, approximations of Pπ in (1) are adopted.
For instance, a greedy algorithm for the approximation was
developed in [24] for sorting all patches in an image. In this
paper, we slightly modify the algorithm in [24] so that it works
for data sets that are represented by weighted data graphs. We
first see how to construct weighted graphs for two popular
types of data sets:

1) The data set forms a point cloud X ⊂ Rm

equipped with a metric. To construct a weighted
graph [X,E,W ] on X , we identify a point ~x with
a node in the graph so that X can be considered as
a set of nodes in the graph. By the metric on X ,
we derive a distance-type weight function d(~x, ~y) on
X×X , which measures the dissimilarity between the
samples in X . For any ~x ∈ X , the k nearest neighbors
(kNN) of the node ~x is denoted by N~x ⊂ X . Assume
that |X| = n, and set I = {1, 2, · · ·n}. Then the edge
set in the graph is E = {(i, j) ∈ I × I; ~xj ∈ N~xi}.
Finally, we define the weight matrix W = [wij ]

n
i,j=1,

where wi,j = d(~xi, ~xj).
2) The data set is a hyperspectral image (HSI) rep-

resented as an imaginary cube X ∈ Rm×n×s. In
the cube, the (i, j)-pixel, X(i, j, :), is a spectral
vector; and the spatial neighbors of X(i, j, :) usually
is defined as the pixel-square centered by X(i, j, :):
N(i,j) = {X(k, l, :); |k − i| ≤ q, |l − j| ≤ q},
where q is a preset positive integer. For a given HSI
cube X , we construct the weighted graph [X,E,W ]
as follows: We first map the double index (i, j) to
the single one k = i + (j − 1)m. Then we write
~xk = X(i, j, :) and convert the 2-D neighborhood
to the 1-D one: N~xk = N(i,j), which defines the
edge set E. For a HSI data set, there are various
ways to define the distance-type weights on edges.
We propose the spectral-spatial weights introduced
in the paper [22]. Similar to the first case, the node
set X = {~xk; 1 ≤ k ≤ nm}, the edge set E and the
weight set W form a weight graph [X,E,W ] on the
HSI cube X .enumerate

Note that the edge set E in the graph [X,E,W ] induces an
index neighbor set from a node neighbor. For instance, the

index set Nk = {j; (k, j) ∈ E} is corresponding to the
neighbor set N~xk . Using index neighbors to replace the node
neighbors can simplify code writing. If the graph [X,E,W ]
is complete, then the neighbor set of each node ~x is the set
X\{~x}, which leads to the global search scheme in the greedy
algorithm.

Adopting weighted data graph [X,E,W ] as the input of
the greedy sorting algorithm enables us to apply the algorithm
to various data sets. For instance, it can be applied to the
data set X , whose samples cannot be digitally represented by
vectors, but the similarity between them can be measured. For
this type of data, although X is not digitized, the algorithm
works. Many data sets obtained by social survey are in this
category.

The pseudocode of our data 1-D (shortest-path) representa-
tion (1dSPR) algorithm is presented at Algorithm 1, in which
ε is called the path selection parameter. Since the algorithm
is a slight modification of that one in [24], we omit the details
of the explanation of the parameter settings here.

Algorithm 1 1dSPR Algorithm

Require: Data graph [X,E,W ]; probability vector p̃ =
[p̃1, p̃2, · · · , p̃n], where p̃i ∈ (0, 1), and n = |X|.

1: Initialization of Output: π: empty index stack; t: n-
dimensional zero vector.

2: Set π(1)← j, j: random index; and set t1 = 0.
3: Define I = {1, 2, · · · , n}.
4: for k = 1, 2, · · · , n− 2 do
5: • set N c

π(k) = Nπ(k)\π; Ic = I\π
6: • if |N c

π(k)| = 1
7: — π(k + 1)← j ∈ N c

π(k)
8: • else
9: — if |N c

π(k)| ≥ 2
10: * Find j1 ∈ N c

π(k) such that ~xj1 is the nearest
neighbor to ~xπ(k) in N c

~xπ(k)

11: * Find j2 ∈ N c
π(k) such that ~xj2 is the second nearest

neighbor to ~xπ(k) in N c
~xπ(k)

12: — elseif |N c
k | = 0

13: * Find j1 ∈ I\π such that, in all nodes with indices
in I\π, ~xj1 is the nearest node to ~xπ(k)

14: * Find j2 ∈ I\π such that, in all nodes with indices
in I\π, ~xj2 is the second nearest node to ~xπ(k)

15: — endif
16: • endif
17: Compute qk:

qk =
1

1 + exp
(
w(~xπ(k),~xj1 )−w(~xπ(k),~xj2 )

ε

) (3)

18: Set π(k + 1) =

{
j2 if qk < p̃π(k)

j1 otherwise.
19: Set tk+1 = tk + w(~xπ(k), ~xπ(k+1)).
20: end for
21: Set π(n)← j ∈ I\π, tn = tn−1 + w(~xπ(n−1), ~xπ(n)).
22: Normalize vector t: tj ← tj/tn
Ensure: t; π.

Because sorting scheme is a serial process, it is a bias in the
sense of smoothness. That is, in general the difference ∆tj =
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tj+1 − tj is increasing with respect to j, i.e., earlier selected
adjacent pairs are more similar than the later selected ones.
This bias impacts cluster preserving when X is represented
by T .

Enlightened by the spinning technique [25], we introduce
multiple 1-D embedding of X to reduce the sorting dias. Let
{~xj1 , ~xj2 , · · · , ~xjk} be a subset of X selected at random, and
hi be the 1-D embedding headed by ~xji . We call k the spinning
number and the vector-valued function ~h = [h1, h2, · · · , hk]
a k-ple 1-D embedding of X . Then ~h(X) gives a k-ple 1-D
representation of X .

B. Construction of ensemble labeler from weak classifiers on
data multiple 1-D representation

Let h be a (single) 1-D embedding of X (with |X| = n).
We write T` = h(X`) and Tu = h(Xu). Then, T` is a labeled
set and Tu is an unlabeled set, and a labeler on T induces a
labeler on X . Since T is a 1-D set, its class decision boundary
is reduced to a point set in the line segment [0, 1]. Therefore, no
kernel trick is needed for constructing a labeler on T . Instead,
a simple regularization scheme works.

As we mentioned above, a single 1-D representation may
not truly preserve the data similarity because the sorting bias.
In the proposed method, we create a multiple 1-D represen-
tation of X , and construct a weak labeler based on each of
them. Then, from these weak labelers, we build an ensemble
labeler (1dEL), which better predicts the labels of the samples
in the unlabeled set Xu. The following is the details of 1dEL
Algorithm.

Let ~h = [h1, · · · , hk] be a k-ple 1-D embedding of X with
the head stack [~xj1 , ~xj2 , · · · , ~xjk ]. Let Pi be the permutation
operator corresponding to hi and xπi = Pix. The embedding
hi produces a 1-D representation of X: ti = hi(xπi), and any
function f on X through hi derives a function si = f ◦ h−1i
on ti. Equivalently, f = si ◦ hi, which given the relation of
a labeler on ti and a labeler on X . Since ti is a discrete
set, we can represent the function si on ti in the vector form
si = [si1, · · · , sin], where sij = s(tij).

To construct the labelers on ti, we define the first-order
difference of si (at tij) by ∆sij = s(tij+1)−s(tij), and the first-
order difference quotient by Dsj = (s(tij+1)− s(tij))/(tij+1−
tij). Inductively, we define the kth-order difference of si (at tij)
by ∆ksij = ∆k−1sij+1−∆k−1sij and the kth-order difference
quotient by Dksij = (Dk−1sij+1−Dk−1sij)/(t

i
j+k− tij). They

describe various smoothness of sj . Let T i` = hi(X`) and T iu =
hi(Xu). As we have mentioned, a weak labeler gi on X can
be constructed as the composition gi = qi ◦ hi, where qi is a
labeler on ti. We construct qi using one of the following 1-D
regularization models:

1. Least-square regularization. Let qi be the solution of
the following unconstrained minimization problem:

qi = arg min
1

n0

n0∑
j=1

(
si(hi(~xj))− yj

)2
+
λ

2

n−1∑
j=1

(Dsij)
2, (4)

where λ is the standard regularization parameter. We denote
by In0

the n×n diagonal matrix, in which only (πi(j), πi(j))-
entries are 1, 1 ≤ j ≤ n0, but others are 0. Set w0 = wn =

0, wj = 1/(tij+1 − tij)2, and denote by D = [Di,j ] the n× n
three-diagonal matrix, in which{

Dj,j = wj−1 + wj 1 ≤ j ≤ n,
Dj,j+1 = Dj+1,j = −wj 1 ≤ j ≤ n− 1,

Then, the vector representation of qi on the stack ti is

qi = (In0
+ n0λD)

−1
~y. (5)

Assume that the class distribution on Xu is the same as on
X`. Let M = 1

n0

∑n0

j=1 yj . Then we may add the constraint

1

n

n∑
j=1

si(tij) = M

to the minimization problem (4). Correspondingly, the solution
(5) is modified to

qi = (In0 + n0λD)
−1

(~y + µ~1) (6)

with

µ =
M − E

(
(In0 + n0λD)−1~y

)
E
(

(In0
+ n0λD)−1~1

) ,

where ~1 denotes the vector whose all entries are 1 and E(~v)
the mean value of the vector ~v.

Remark: In the Least-square regularization model (4), the
difference quotient term (Dsij)

2 may also be replaced by the
difference term (∆sij)

2. This replacement is equivalent to using
the equal-distance sequence ti in (4).

2. Regularization by interpolation. Let qi be the solution
of the following constrained minimization problem:

qi = arg min

n−2∑
j=1

(D2sij)
2 (7)

subject to
si(hi(~xj)) = yj , 1 ≤ j ≤ n0. (8)

Write t̂j = hi(~xj). Then qi is the cubic spline that has the
nodes at {t̂j}n0

j=1 and takes the values as in (8).
Let i run through 1 to k. Then we obtained k 1-D labelers

q1, · · · , qk. They further derive k weak labelers gi = qi ◦
h−1i , 1 ≤ i ≤ k, on X . We will use [g1, · · · , gk] in two cases.
Firstly, in the label boosting precess, they are used to construct
the feasibly confident subset. Recall that each gi predicts the
label sign(gi(~x)) for ~x ∈ Xu. Let

g(~x) =
1

k

k∑
i=1

sign(gi(~x)), ~x ∈ Xu, (9)

and define

L+ = {~x ∈ Xu; g(~x) = 1}, L− = {~x ∈ Xu; g(~x) = −1}.

Then we call L+ the feasibly confident subset of Class A, L−
the feasibly confident subset of Class B, and L = L+∪L− the
feasibly confident subset. In a great chance, a sample in L+ is
in Class A, while a sample in L− in Class B. For convenience,
we denote the set operator that create the feasibly confident
subset L from Xu by G : G(Xu) = L.
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Secondly, we use [g1, · · · , gk] to construct the final classi-
fier f in the last step of our algorithm as follows:

f(~x) =
1

k

k∑
i=1

gi(~x), ~x ∈ Xu. (10)

C. Label boosting

To further eliminate the misclassification in L+ and L−,
we will construct a subset S+ ⊂ L+ and a subset S− ⊂ L− as
follows: Let X+

` ⊂ X` be the subset that contains all Class-A
members and X−` ⊂ X` the subset that contains all Class-B
members. For each ~x ∈ L, define

w+(~x) =

∑
~y∈X+

`
w(~x, ~y)

|X+
` |

and

w−(~x) =

∑
~y∈X−

`
w(~x, ~y)

|X−` |
.

We now create the class weight function by

w(~x) =
w+(~x)

w+(~x) + w−(~x)
.

It is obvious that a greater value of w(~x) indicates that ~x is
nearer the points in X−` . Therefore, it is more likely in Class
B. Let the set S+ contain the half of members of L+ with the
smallest class weights and S− contain the half of members
in L− with the greatest class weights. We call S = S+ ∪ S−
the newborn labeled subset, call the operator S : S(L) = S
a newborn labeled subset selector, and call the composition
M= S ◦G a newborn labeled subset generater. Therefore,
we have the newborn labeled set S = S(L) = S(G(Xu)) =
M(Xu).

The Label Boosting Algorithm iteratively adds the newborn
labeled subset to the original labeled set so that the labeled set
is cumulatively boosted. In detail, let the initial labeled set x`
and the unlabeled set X − u be re-written as X0

` and X0
u, re-

spectively. We apply the newborn labeled subset generater M1

on X0
u to create a newborn labeled set S1 = M1(X0

u), which
is united with X0

` to produce X1
` = X0

` ∪ S1. Meanwhile, we
set X1

u = X0
u \ S1. Repeating the procedure for N times, the

labeled set will be cumulatively boosted to a enlarged labeled
set

XN
` = X0

`

N⋃
j=1

Sj , Sj = Mj(X
j−1
u ). (11)

We set a boosting-stop parameter p, 0 < p < 1. The process
will not be terminated until the labeled set XN

` reaches the
size |XN

` | ≥ p|X|. We call N the label boosting times.

D. Construction of the final classifier

Finally, we apply 1dEL algorithm on the couple
{XN

` , X
N
u } to construct the final classifier f by (10). Then

each ~x ∈ X is labeled by sign f(~x).

The whole algorithm that creates the final classifier f is
called ESSL1dLB.

E. One-Against-All strategy for multi-classification
Many strategies are proposed in literature for handling

multi-classification using binary ones [26]–[29]. We apply the
well-known One-Against-All strategy for multi-classification
tasks [2], [30], [31]. In the paper, we choose the simplest one,
which is briefly described in the following:

Assume that X consists of c-classes (c > 2): Class 1
to Class c. Using ESSL1dLB, we create c binary classifier
{f1, f2, · · · , fc} , where fi classifies two classes: Class A is
identical with Class i, and Class B contains all of other classes,
as we described above. A simple one-vs-all classification
strategy is the following: Let f be the multi-classifier. Then

f(~x) = arg max
1≤i≤c

fi(~x).

III. EXPERIMENTS ON HYPERSPECTRAL IMAGES

In this section, we evaluate our ensemble SSL method in
the experiments on hyperspectral images. An earlier method in
the ensemble SSL framework for the classification of hyper-
spectral images has been reported in [22], where we used the
interpolation splines as 1-D weak labelers (see (7)) and adopted
the following simpler label boosting method: Choosing the
newborn labeled subset at random. The obtained results are
still very promising and superior over many other popular
methods. In this section, we apply ESSL1dLB algorithm for
the multi-classification of hyperspectral images. There are two
main differences between ESSL1dLB and the algorithm used
in [22]: Firstly, the ESSL1dLB algorithm uses Least-square
regularization for the construction of weak labelers (see (4)).
Secondly, it uses the class-weight method for label boosting.

In this section, we first introduce the data formats and the
metrics of the data sets used in our experiments. Then we tune
the parameters in the ESSL1dLB algorithm. Finally, we report
the results of the experiments and comparisons.

(a) (b)

1−Alfalfa

2−Corn−notill

3−Corn−mintill

4−Corn

5−Grass−pasture

6−Grass−trees

7−Grass−pasture−mowed

8−Hay−windrowed

9−Oats

10−Soybean−notill

11−Soybean−mintill

12−Soybean−clean

13−Wheat

14−Woods

15−Buildings−Grass−Trees−Drives

16−Stone−Steel−Towers

(c)

Figure 1. RGB composition and classification map for AVIRIS Indian Pines
1992 scenario. (a) Pseudocolor image. (b) Ground truth map. (c) Class

labels.

A. Data Collection and Experiment Design
All of the data sets used in the experiments are published

for research usage only. Three hyperspectral images are chosen
for our experiments, which are particularly designed.

1) Data sets: The first data set used in our experiments
is the AVIRIS Indian Pines 1992, which was gathered by the
National Aeronautics and Space Administration’s (NASA) Air-
borne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor
over the northwestern Indian Pines test site in 1992. The raw
calibrated data are available on-line from [32] with the ground-
truth class map. This data set consists of 145 × 145 pixels
and 224 spectral reflectance bands in the wavelength range



364

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) (b)

1−Brocoli8green8weeds81

2−Brocoli8green8weeds82

3−Fallow

4−Fallow8rough8plow

5−Fallow8smooth

6−Stubble

7−Celery

8−Grapes8untrained

9−Soil8vinyard8develop

10−Corn8senesced8green8weeds

11−Lettuce8romaine84wk

12−Lettuce8romaine85wk

13−Lettuce8romaine86wk

14−Lettuce8romaine87wk

15−Vinyard8untrained

16−Vinyard8vertical8trellis

(c)

Figure 2. RGB composition and classification map for Salinas scenario. (a)
Pseudocolor image. (b) Ground truth map. (c) Class labels.

(a) (b)

1−Asphalt

2−Meadows

3−Gravel

4−Trees

5−Painted8metal8sheets

6−Bare8Soil

7−Bitumen

8−Self−Blocking8Bricks

9−Shadows

(c)

Figure 3. RGB composition and classification map for Pavia University scene
scenario. (a) Pseudocolor image. (b) Ground truth map. (c) Class labels.

0.4 × 10−6 ∼ 0.6 × 10−6 meters, representing a vegetation-
classification scenario. Among all pixels, two thirds are agri-
culture and one third is forest and other natural perennial
vegetation. The image also contains two major dual lane
highways, a rail line, some houses and other buildings with
low density, and a few local roads. These objects are treated
as background so that they will not be classified. When the
image was captured, the main crops of soybean and corn
are in their early stage of growing. We use the no-till, min-
till, and clean-till denote the different growing status of the
crops. The water absorption bands (104-108, 150-163, 220) are
removed before experiment since they are useless bands for the
classification. Hence, the exact 204 spectral bands are used. In
the experiments, totally 10,249 (labeled) pixels are employed
to form the data set X , in which about 10% are selected in
the labeled set X` and the remains form the unlabeled set
Xu in the test. The ground truth image contains 16 classes.
Fig. 1 consists of three sub-images: (a) the pseudocolor image
of Indian Pines; (b) the ground true map of the classifications;
and (c) the color bar of 16 classes.

The second data set used in our experiments is the AVIRIS
Salinas scenario, which was captured by the AVIRIS sensor
over Salinas Valley, California, USA, with a spatial resolution
of 3.7 meter per pixels. This data set has totally 224 bands
of size 512 × 217. The 20 watered absorption bands (108-
112, 154-167, 224) are excluded in experiment. Moreover,
this scene was available only as at-sensor radiance data. It
includes vegetables, bare soils, and vineyard fields. Totally 16

classes are included in this data set. Fig. 2 shows (a) the color
composite of the Salinas image, (b) the ground truth map, and
(c) the color bar of 16 classes.

The third data set Pavia University scene was captured by
the Reflective Optics System Imaging Spectrometer (ROSIS-
03) optical satellite sensor, which provides 115 bands HSI data
during a flight campaign over the Pavia of the northern Italy.
The size of Pavia University scene is 610×340 with 115 bands.
In the experiment, 12 polluted bands are removed since they
have no contribution for the classification. Likewise, some of
the samples are treated as background since they are not in
the classes we need to determine. The geometric resolution of
the scenes is 1.3 meters per pixel, covering the wave ranges
from 0.43 µm to 0.86 µm. The pixels of the HSI image cover 9
classes excluding the background. Fig. 3 shows the pixels used
in the experiment in (a) pseudo-color image, (b) the ground
truth map, and (c) the class bar of all classes, respectively.

2) Metrics on the data sets: It is a common sense that
the performance of a classification scheme for HSI images is
heavily relied on the quality of metric on HSI data [33]. Many
experiences show that the standard Euclidean distance between
the spectral vectors (pixels) of a HSI image may not represent
the exact similarity. The main reason is that the spectral vectors
in the HSI image are departed from their truthes by the noise.
Note that a pixel in the spatial neighborhood of a pixel ~x is
most likely in the same class as ~x. Since the spatial positions of
pixels are not impacted by noise, merging the spatial distance
into the spectral one can correct the derivation caused by noise.
In this paper, we adopt the following spectral-spatial affinity
metric:

wij(~xi, ~xj) = wrij(~xi, ~xj) + µwsij(~xi, ~xj), (12)

where wrij and wsij are radian weight (or spectral distance)
and spatial weight (a distance-type weight), respectively, and
0 ≤ µ ≤ 1/2 is the weight balance parameter that measures
the strength of the spatial prior.(in the paper, we set µ = 1/2).

The radian weight wrij is defined by the following:

wrij(~xi, ~xj) = 1− exp

(
−‖~xi − ~xj‖

2

ρiρj

)
(13)

where ρi denotes the local scaling parameter with respect to
~xi defined by

ρi = ‖~xi − ~xsi‖, (14)

where ‖∗‖ denotes the l2 norm, ~xsi is the s-th nearest neighbor
of ~xi, and s is a preset positive odd integer (in our experiment,
s = 5), called spectral-weight parameter. The distance in (13)
is call a diffusion distance. It is more consistent of the manifold
structure of data. More details on the spectral distance design
are refer to [34].

The spatial weight in the paper is defined as follows: We
first construct a spatial neighborhood system on HSI. Let ~xi
and ~xj have the 2D index i = (i1, i2) and j = (j1, j2) in the
HSI image X , respectively. Let r > 0 be the size of a spatial
neighborhood system on X . (In this paper, we fix r = 2.) We
define the spatial neighborhood of ~xi by

Ni = {j; max(|i1 − j1|, |i2 − j2|) ≤ r, j 6= i}

Aid with the neighborhood system, we formulate the spatial
(distance-type) weight between two pixels ~xi and ~xj as the
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following:

wsij =

{
−1, if j ∈ Ni
0. otherwise

(15)

Note that we use spatial weight −1 for the pixel in the
neighborhood to shorten the spectral-spatial distance between
neighbored pixels.

3) Optimization of parameters in the algorithm: The pro-
cess for optimizing the free parameters in ESSL1dLB algo-
rithm is very similar to that for the SS1DME one in [22].
For shortening the length of the paper, we only give a brief
description of the process. The following parameters are tested
and optimized: (a) regularization parameter λ in (4), (b) weight
balance parameter µ in (12), (c) path selection parameter ε
in (3), (d) the spinning number K in (9), and (e) the label
boosting times N in (11).

The regularization parameter λ balances the fidelity term
and smoothness one in the regularization algorithm. It can be
learned in a standard way. The tuning process shows that it
is insensitive in the range [0.3, 5]. We fix it to 0.5 in all
experiments. The weight balance parameter µ impacts the
definition of similarity between pixels. Its selection should not
be dependent on an individual SSL method. The experiments
show that it can be chosen in the range [0.3, 0.7]. The quanti-
tative analysis for µ can bo found in Fig. 12-13 in [22].

The path selection parameter ε impacts the approximation
quality of the greedy method presented in Algorithm 1. It is
uniform for all SLL methods based on data 1-D representation,
but possibly dependent on the data set. Fortunately, although
differen data sets have different optimal ε, it is an insensitive
parameter. The parameter tuning experiment results almost
are similar when ε is selected in a very wide range, say in
[50, 500] (see Fig. 14 in [22]). Hence, the values used in [22]
can also be applied to the proposed method in the paper. In
our experiments, we choose ε = 100.

To investigate how the spinning number K impacts the
classification output. We use the HSI image “AVIRIS Indian
Pines”in the parameter tuning experiments, where other pa-
rameters are fixed as following: λ = 0.5, µ = 0.5, ε = 100,
and the boosting number N = 5; but the values of K are
chosen in the integer range [3, 10]. The experiment is repeated
5 times for each value of K, and the average scores of OA,
AA, and κ are reported. Their meanings are explained in the
next subsection. The results are shown in Fig. 4 and Tab. I.
We observe that the spinning parameter K in (9) is relatively
insensitive too. In our experiments, we will set K = 7.

Finally, we test the effectiveness of the number of label
boosting times N , which determines the enlargement of the
labeled set. A greater number of the boosting times usually
yields a larger size of the boosted set XN

` at the last step in the
construction of the final classifier. Again, we use the HSI image
“AVIRIS Indian Pines”as the train set, where other parameters
are fixed as following: λ = 0.5, µ = 0.5, ε = 100,K = 7,
but the number of label boosting times N is chosen in the
integer range [4, 10]. The experiment is repeated 5 times for
each value of N , and the average scores of OA, AA, and κ are
reported in Fig. 5 and Tab. II. The experiment results indicate
that the number of label boosting times can be chosen from
the integer range N ≥ 4.

All of the tests above indicate the stability and reliability of
the ESSL1dLB algorithm: Although the algorithm is a multi-
parametric one, all of parameters are relatively insensitive so
that each of them can be chosen in a wide range without great
deviation.

B. Measurements of performances of experiments
The maps of the thematic land covering, which are gen-

erated by different classification methods, are used in a va-
riety of applications for data analysis. In this paper, each
experiment contains five repeated tests at random using the
same parameter settings. The quality of the output of the
experiment is evaluated in the standard way commonly used in
the classification of HSI images [35]. That is, the performance
will be measured by overall accuracy (OA), average accuracy
(AA), and Kappa coefficient (κ) of the five tests. As their
names indicate, OA, one of the simplest and most popular
accuracy, measures the accuracy of the classification weighted
by the proportion of testing samples of each class in the total
training set, AA measures the average accuracy of all classes,
and Kappa measures the agreement of the tests, of which each
classifies n samples into C mutually exclusive classes.

C. Experiment comparison settings
Similar to [22], three widely used hyperspectral data sets,

the Indian Pines 1992 scene, the Salinas scene, and the
University of Pavia scene are used in experiments to evaluate
the classification performance. The pseudocolor images, the
ground truth maps, and the class label bar of these HSI images
are shown in Fig. 1–3, respectively. For comparison, we assess
our proposed ESSL1dLB algorithm with several spectral-
based and spectral-spatial extended methods, LDA [36], LDA
with multi-logistic prior (LDA-MLL) [37], SVM [38], [39],
Laplacian SVM (LapSVM) [40], SVM with component kernel
(SVMCK) [41], orthogonal matching pursuit (OMP) [42], si-
multaneous OMP (SOMP) [43], MLRsub [37], MLRsub-MLL
[37], semiMLR-MLL [44], WT-EMP [45] for hyperspectral
image classification. These methods are well established in the
hypersepctral remotely sensing community. In the comparison,
we also add SS1DME [22], which was an earlier work in the
ensemble SSL framework developed by the author and his
colleagues.

In all of the mentioned methods, the LapSVM and the
semiMLR-MLL approaches are usually considered to be the
reference benchmarks for semi-supervised learning in hyper-
spectral image classification, as summarized in [44], [46], [47].

For fair comparison, five experiments with different ran-
domly sampled data are carried out for each data set to enhance
the statistical significance. In the comparison, the experiment
results of other methods are either directly obtained from the
authors’ papers, or obtained by running the code provided
by the authors with the optimal parameters. In all of the
following experiments, we use the unconstraint 1-D least-
square regularization model, set λ = µ = 0.5, ε = 100, N = 5,
and choose the spinning number K = 7 in the label boosting
process and set K = 10 in the last spinning for producing the
final classifier.

D. Experiment 1– AVIRIS Indian Pines Data Set
The first experiment is conducted on the AVIRIS Indian

Pines data set, whose format and data structure information
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TABLE I. THE RESULTS OF VARIOUS SPINNING NUMBERS USED IN THE EXPERIMENT FOR CLASSIFICATION OF AVIRIS INDIAN PINES. IN THE
EXPERIMENT λ = 0.5, µ = 0.5, ε = 100 AND N = 5 ARE FIXED, BUT K ARE SELECTED IN THE INTEGER RANGE [3, 10].

K 3 4 5 6 7 8 9 10
OA mean(%) 99.10 99.11 98.83 99.08 99.22 99.14 98.89 99.08

OA std 0.32 0.21 0.29 0.18 0.17 0.21 0.23 0.25
AA mean(%) 99.33 99.40 99.17 99.32 99.46 99.34 99.13 99.36

AA std 0.24 0.11 0.14 0.11 0.09 0.14 0.13 0.12
κ(%) 98.97 98.98 99.17 98.95 99.11 99.02 98.73 98.95
κ std 0.36 0.24 0.33 0.20 0.20 0.24 0.27 0.29

TABLE II. THE RESULTS OF VARIOUS SPINNING NUMBERS USED IN THE EXPERIMENT FOR CLASSIFICATION OF AVIRIS INDIAN PINES. IN THE
EXPERIMENT, λ = 0.5, µ = 0.5, ε = 100, AND K = 7 ARE FIXED, BUT N ARE CHOSEN FROM THE INTEGER RANGE [4, 10].

N 4 5 6 7 8 9 10
OA mean(%) 99.04 99.20 99.14 99.02 99.23 98.94 99.05

OA std 0.35 0.20 0.24 0.25 0.21 0.23 0.30
AA mean(%) 99.14 99.43 99.36 99.26 99.46 99.27 99.35

AA std 0.38 0.11 0.12 0.11 0.12 0.22 0.21
κ(%) 98.89 99.10 98.95 98.89 99.11 98.93 98.89
κ std 0.51 0.20 0.33 0.30 0.20 0.22 0.31

TABLE III. NUMBER OF TRAINING AND TEST SAMPLES FOR THREE HSIS.

ID Indian Pines Salinas University of Pavia
Class Name Train Test Class Name Train Test Class Name Train Test

1 Alfalfa 20 26 Brocoli Green Weeds 1 144 1865 Asphalt 553 6078
2 Corn-notill 134 1294 Brocoli Green Weeds 2 200 3526 Meadows 1161 17488

3 Corn-mintill 75 755 Fallow 151 1825 Gravel 304 1795
4 Corn 44 193 Fallow Rough Plow 135 1259 Trees 328 2736
5 Grass-pasture 49 434 Fallow Smooth 159 2519 Painted metal sheets 261 1084
6 Grass-trees 56 674 Stubble 209 3750 Bare Soil 440 4589
7 Grass-pasture-mowed 17 11 Celery 192 3387 Bitumen 263 1067
8 Hay-windrowed 59 419 Grapes Untrained 404 10867 Self-Blocking Bricks 379 3303

9 Oats 11 9 Soil Vinyard Develop 282 5921 Shadows 232 715
10 Soybean-notill 95 877 Corn Senesced Green Weeds 179 3099
11 Soybean-mintill 209 2246 Lettuce-Romaine-4wk 121 947
12 Soybean-clean 65 528 Lettuce-Romaine-5wk 150 1777
13 Wheat 29 176 Lettuce-Romaine-6wk 118 798
14 Woods 104 1161 Lettuce-Romaine-7wk 129 941
15 Buildings-Grass-Trees-Drives 37 349 Vinyard Untrained 289 6979
16 Stone-Steel-Towers 20 73 Vinyard Vertical Trellis 138 1669

Total 1024 9225 Total 3000 51129 Total 3921 38855

TABLE IV. CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT METHODS FOR AVIRIS INDIAN PINE SCENE (%).

Class Name LDA
LDA-
MLL SVM LapSVM SVMCK OMP SOMP MLRsub

MLRsub-
MLL

semiMLR-
MLL WT-EMP SS1DME ESSL1dLB

Alfalfa 100.00 96.43 89.29 82.62 100.00 45.95 81.25 85.19 81.48 100.00 92.52 100.00 100.00
Corn-notill 61.21 92.61 69.92 78.70 92.07 56.13 92.09 65.09 89.15 86.20 90.30 99.30 99.34

Corn-mintill 56.80 77.97 57.78 66.69 97.30 56.33 89.20 47.56 99.87 76.05 93.15 98.68 99.12
Corn 71.72 100.00 71.43 76.91 100.00 44.74 96.65 72.78 99.40 82.13 79.76 99.48 98.92

Grass-pasture 91.76 94.85 90.39 91.54 97.88 84.46 92.65 87.85 93.69 91.41 94.79 96.31 98.22
Grass-trees 94.95 98.33 94.52 97.49 98.80 89.73 98.67 94.81 97.47 98.35 98.04 100.00 100.00

Grass-pasture-mowed 92.31 100.00 85.71 95.83 100.00 63.64 75.00 61.54 100.00 100.00 94.46 90.91 100.00
Hay-windrowed 96.80 100.00 96.98 98.56 98.33 95.81 100.00 99.29 100.00 99.53 96.83 100.00 100.00

Oats 100.00 100.00 88.89 98.89 100.00 50.00 44.44 77.78 100.00 100.00 97.78 100.00 100.00
Soybean-notill 59.07 82.08 75.17 77.61 91.72 69.15 87.53 65.32 95.96 83.72 87.68 99.54 98.16

Soybean-mintill 65.21 98.63 84.57 83.79 95.67 75.15 97.16 69.04 96.87 92.24 92.58 99.33 99.46
Soybean-clean 68.30 74.63 74.95 82.18 87.29 50.00 87.09 73.85 97.23 91.89 88.73 98.30 98.08

Wheat 98.87 99.44 97.16 99.45 99.44 95.12 100.00 99.31 100.00 99.42 98.25 100.00 100.00
Woods 91.47 92.47 96.62 94.70 99.22 91.50 99.74 93.05 98.03 96.43 98.01 99.91 99.72

Buildings-Grass-Trees-Drives 62.28 100.00 54.94 68.75 95.93 41.42 99.71 52.08 97.42 89.41 89.92 99.43 99.70
Stone-Steel-Towers 95.77 85.33 93.65 89.33 100.00 90.54 98.61 83.87 100.00 84.29 98.61 100.00 100

OA (mean) 71.54 91.98 80.74 84.11 94.94 71.38 94.42 73.64 94.95 89.32 92.80 99.05 99.13
OA (std) 0.25 0.15 0.62 0.37 0.66 0.32 0.18 0.37 0.50 0.95 0.19 0.13 0.24

AA (mean) 79.53 87.63 83.83 86.44 96.21 67.13 91.65 75.42 95.09 86.48 93.21 98.72 99.36
AA (std) 1.10 0.33 0.38 0.65 0.53 1.29 2.09 2.02 1.97 3.22 0.78 0.95 0.17
κ (mean) 67.62 90.76 78.03 81.81 94.22 67.32 93.62 69.78 94.18 93.77 91.78 98.92 99.00
κ (std) 0.38 0.17 0.70 0.43 0.75 0.38 0.20 0.42 0.58 2.76 0.21 0.15 0.28
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Figure 4. Sensitivity analysis of the spinning number K.

Figure 5. Sensitivity analysis of the label boosting times N .

are given in Subsection III-A. The number of training samples
and test samples are given in Tab. III. Figure 6 shows the
classification pseudo-color maps that are obtained by different
methods along with the corresponding OA score. Among all
of the methods, LDA-MLL, SVMCK, SOMP, MLRsubMLL,
semiMLR-MLL, WT-EMP, SS1DME, and ESSL1dLB yield
high accuracy. Comparing with the all other methods method,
the proposed ESSL1dLB method wins the best performance
in all of OA, AA, and Kappa coefficient. We note that the
classification accuracies of ESSL1dLB exceeds 98% for all
of 16 classes.

Remark. In the Fig. 6, the OA score is slightly different
from that in Tab. III. Because the OA score in Tab. III is
the average of 5 experiments, while Fig. 6 is for one of the
experiments selected at random. The same remark is also valid
for the following two experiments.

E. Experiment 2—AVIRIS Salinas Data Set

The second experiment was performed on the AVIRIS
Salinas hyperspectral image. The number of training and
testing samples for the image are given in Tab. III, where the
training set contains about 5.25% of all the labeled samples,
chosen at random. Because the image size is too large to be
treated on a Laptop, we divide the data set into 8 blocks
in the experiment. A visual perspective of these methods are
presented in Fig. 7. The quantitative results are presented in
Tab. V. Similar to the AVIRIS Indian Pines image, it can
be seen that the proposed ESSL1dLB beats the classification
performances of other methods in terms of OA, AA and Kappa
coefficient.

F. Experiment 3—ROSIS University of Pavia Data Set
The third experiment is conducted on the data set of ROSIS

University of Pavia scene. In this experiment, we use the ran-
domly chosen 3,921 labeled samples for training, which count
about 8.4% of all labeled pixels, while the remains are used
for testing. Detailed numbers for training and testing can be
found in Tab. III. Because the data set has 512×217 = 111104
pixels, this size is too large to be treated on a Laptop too.
Hence, we divide it into 8 disjoint blocks, then apply the
proposed algorithm on each block. The classification maps
obtained by different methods and the associated OA scores are
presented in Fig. 8. Meanwhile, the quantitative results (means
and standard deviations over the experiments on randomly
selected five different training sets) are listed in Tab. VI.
It can be observed that the proposed ESS1DLB algorithm
again performs better than other methods significantly in both
of quantitative results and visual qualities. For example, our
algorithm obtains more than 99% accuracy for all classes.
Particularly, for the Gravel, Trees, Self-Blocking
Bricks classes, the classification accuracies obtained by most
methods are not very satisfactory, but our method still produces
a super result.

IV. EXPERIMENTS ON HANDWRITTEN DIGITS

In this section, we evaluate our ensemble SSL method in
the experiments on handwritten digits. We use two benchmark
databases of handwritten digits, MNIST [48] and USPS [49]
in the experiments to present the validity and effectiveness
of the proposed method. In the literature of machine learning,
MNIST is often used to test the error rate of classifiers obtained
by supervised learning. The best result for the error rate up to
2012 was 0.23%, reported in [50] by using the convolutional
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(a) LDA, OA=72.78 (b) LDA-MLL, OA=92.24 (c) SVM, OA=80.82 (d) LapSVM, OA=84.82 (e) SVMCK , OA=95.56 (f) OMP, OA=71.76

(g) SOMP, OA=94.65 (h) MLRsub, OA=73.90 (i) MLRsubMLL,OA=96.20 (j) semiMLR-MLL,OA=90.27 (k) WT-EMP, OA=92.99 (l) ESSL1dLB, OA=99.13

Figure 6. Classification pseudocolor map obtained by different methods for the AVIRIS Indian Pines data set, where the value of OA is given in percent.

(a) LDA, OA=89.66 (b) LDA-MLL, OA=98.91 (c) SVM, OA=92.76 (d) LapSVM, OA=92.60 (e) SVMCK, OA=97.96 (f) OMP, OA=91.22

(g) SOMP, OA=98.44 (h) MLRsub, OA=76.54 (i) MLRsubMLL, OA=92.98 (j) semiMLR-MLL, OA=97.13 (k) WT-EMP, OA=97.31 (l) ESSL1dLB, OA=99.56

Figure 7. Classification pseudocolor map obtained by different methods for the AVIRIS Salinas hyperspectral image, where the value of OA is given in percent.
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TABLE V. CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT METHODS FOR AVIRIS SALINAS SCENE (%).

Class Name LDA
LDA-
MLL SVM LapSVM SVMCK OMP SOMP MLRsub

MLRsub-
MLL

semiMLR-
MLL WT-EMP SS1DME ESSL1dLB

Brocoli Green Weeds 1 99.78 100.00 99.57 99.84 99.84 99.13 100.00 99.78 100.00 100.00 99.59 99.95 100.00
Brocoli Green Weeds 2 99.94 100.00 99.83 99.76 100.00 99.43 100.00 88.44 100.00 100.00 99.79 99.89 99.98

Fallow 99.56 100.00 99.73 99.62 98.42 99.87 100.00 61.77 90.27 100.00 99.80 99.67 100.00
Fallow Rough Plow 99.60 99.44 99.44 99.41 99.92 99.64 97.94 10.85 100.00 99.20 99.43 99.60 99.60

Fallow Smooth 98.44 99.12 99.52 99.09 99.09 97.62 95.49 99.88 100.00 99.17 98.70 99.40 99.38
Stubble 99.89 99.89 99.89 99.89 99.97 99.94 99.89 99.66 99.97 100.00 99.85 99.97 99.92
Celery 99.62 99.91 99.74 99.58 99.82 99.76 98.91 99.85 99.94 99.97 99.57 99.88 99.91

Grapes Untrained 75.11 97.50 86.67 85.24 97.68 80.83 98.52 59.04 95.75 99.00 94.29 99.05 98.97
Soil Vinyard Develop 99.92 100.00 99.43 99.91 99.81 99.76 100.00 99.35 100.00 99.98 99.57 99.58 99.66

Corn Senesced Green Weeds 96.00 95.23 96.76 96.64 97.09 96.38 97.35 48.53 68.91 95.61 97.89 98.84 99.07
Lettuce-Romaine-4wk 99.26 94.60 99.25 99.00 99.89 99.77 99.37 93.87 99.43 99.68 98.89 100.00 99.82
Lettuce-Romaine-5wk 99.38 100.00 99.83 100.00 100.00 100.00 96.68 88.39 99.77 100.00 100.00 100.00 100.00
Lettuce-Romaine-6wk 99.24 99.37 98.73 98.94 99.87 98.23 95.11 99.04 39.64 99.49 99.72 100.00 99.81
Lettuce-Romaine-7wk 96.60 98.94 98.93 97.73 99.79 95.68 94.80 73.73 71.46 97.89 98.24 98.72 99.39

Vinyard Untrained 66.85 99.56 71.05 73.27 54.30 69.50 96.88 56.05 99.35 83.33 93.21 99.47 99.54
Vinyard Vertical Trellis 99.28 99.58 98.92 99.15 99.04 98.41 99.64 98.52 98.27 100.00 99.10 99.94 100.00

OA (mean) 89.59 97.48 92.67 92.78 97.24 90.96 97.93 76.37 91.79 96.55 97.44 99.45 99.55
OA (std) 0.26 0.88 0.09 0.06 0.61 0.18 0.47 0.09 1.27 0.38 0.26 0.04 0.05

AA (mean) 95.57 98.46 96.60 96.71 98.75 95.68 97.69 82.33 86.85 91.83 98.60 99.64 99.69
AA (std) 0.16 0.35 0.10 0.12 0.24 0.10 0.74 2.06 1.09 0.17 0.13 0.02 0.05
κ (mean) 87.95 97.18 91.81 91.93 96.92 89.93 97.68 73.75 90.83 96.36 97.15 99.39 99.50
κ (std) 0.30 0.99 0.10 0.06 0.68 0.20 0.53 0.09 1.40 0.47 0.29 0.04 0.05

(a) LDA, OA=82.73 (b) LDA-MLL, OA=91.29 (c) SVM, OA=94.52 (d) LapSVM, OA=93.57 (e) SVMCK, OA=99.05 (f) OMP, OA=84.75

(g) SOMP, OA=96.11 (h) MLRsub, OA=62.60 (i) MLRsubMLL, OA=89.31 (j) semiMLR-MLL, OA=96.49 (k) WT-EMPs, OA=98.72 (l) ESSL1dLB, OA=99.82

Figure 8. Classification pseudocolor map obtained by different methods for University of Pavia scene data set, where the value of OA is given in percent.
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TABLE VI. CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT METHODS FOR ROSIS UNIVERSITY OF PAVIA SCENE(%).

Class Name LDA
LDA-
MLL SVM LapSVM SVMCK OMP SOMP MLRsub

MLRsub-
MLL

semiMLR-
MLL WT-EMP SS1DME ESSL1dLB

Asphalt 79.91 87.58 92.40 89.14 98.51 79.74 86.12 98.43 99.87 96.04 98.39 99.57 99.84
Meadows 90.48 92.53 97.83 97.44 99.99 95.64 99.44 98.78 98.96 98.65 99.49 99.98 99.99

Gravel 69.54 65.67 87.44 79.28 95.24 59.14 98.16 63.46 64.60 85.32 96.71 99.94 99.94
Trees 86.95 77.62 96.03 95.79 98.24 86.17 94.96 69.99 76.99 96.58 98.02 99.12 99.48

Painted metal
sheets 99.91 99.82 99.72 99.30 100.00 99.54 100.00 99.89 100.00 99.53 99.86 100.00 100.00

Bare Soil 64.03 100.00 91.00 91.09 99.50 59.43 95.32 100.00 99.96 95.89 97.78 99.76 100.00
Bitumen 81.54 99.35 90.20 90.49 99.63 78.20 99.72 36.65 59.89 95.78 97.45 100.00 99.90

Self-Blocking
Bricks 67.97 98.73 86.94 87.69 96.49 80.62 96.11 2.46 26.01 91.47 96.57 99.18 99.81

Shadows 99.29 93.90 99.86 99.63 100.00 96.17 92.72 98.05 99.80 99.30 99.95 99.86 99.69

OA (mean) 81.30 90.79 94.32 93.51 97.96 84.60 95.97 62.39 88.90 95.98 98.60 99.74 99.91
OA (std) 0.11 0.30 0.13 0.04 1.44 0.16 0.11 0.16 0.38 0.57 0.18 0.02 0.03

AA (mean) 83.02 90.15 93.59 92.21 96.98 81.80 95.89 75.48 82.84 83.90 98.25 99.70 99.85
AA (std) 0.22 0.49 0.11 0.21 2.53 0.20 0.11 0.87 3.45 0.41 0.30 0.02 0.04
κ (mean) 74.51 87.73 92.37 91.26 97.26 79.31 94.57 52.66 84.60 94.57 98.11 99.65 99.87
κ (std) 0.13 0.39 0.17 0.06 1.92 0.21 0.14 0.24 0.55 0.77 0.24 0.03 0.04

TABLE VII. ERROR RATE OF THE PROPOSED ESSL1DLB FOR 50 RANDOMLY SELECTED SUBSETS FROM MNIST WITH |X| = 1000.

|X0| 10 20 30 40 50 60 70 80 90 100
Mean% 7.84 7.80 4.58 3.06 2.91 1.91 1.93 1.97 1.23 1.27
Min% 7.60 3.10 3.80 1.90 2.90 1.90 1.90 1.90 1.20 1.20
Max% 19.4 7.90 4.60 3.10 3.50 2.50 2.60 3.90 2.80 3.30
STD 1.65 0.67 0.11 0.19 0.08 0.08 0.14 0.35 0.22 0.37

TABLE VIII. ERROR RATE OF THE PROPOSED ESSL1DLB FOR 50 RANDOMLY SELECTED SUBSETS FROM USPS WITH |X| = 1500.

|X0| 10 20 30 40 50 60 70 80 90 100
Mean% 3.07 1.933 1.55 1.49 1.28 1.38 1.37 1.39 1.34 1.20
Min% 3.00 1.27 1.53 1.07 1.27 1.20 1.07 1.33 0.80 1.20
Max% 3.73 2.87 1.67 1.53 1.40 1.40 1.40 1.40 1.40 1.20
STD 0.22 0.76 0.04 0.14 0.04 0.06 0.10 0.02 0.18 0.00

Figure 9. Result comparison with different SSL models.

neural network technique. In 2013, the authors of [51] claimed
to achieve 0.21% error rate using DropConnect method, which
is based on regularization of neural networks. Because in SSL
no large training set is available for producing classifiers, the
error rates obtained by SSL methods usually are much higher
than the claimed error rates obtained by supervised learning.
Besides, the error rates of SSL are strongly dependent the size
of the initial label set X`. In general, the smaller the size of

X`, the higher the error rate. Hence, it is unfair to compare
the error rates obtained by SSL methods to the above recorded
ones.

The parameters are tuned in the similar way as we have
done above. Once again, the tuning experiments show the
insensitivity of the parameters. Since the tuning process is
very similar to that in Subsection III-A3, we omit the details
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here. In all of our experiments, the balance parameter in the
least-square regularization is set to λ = 0.5. The spin number
K = 3 is used for constructing 1DEL algorithm, while K = 20
is chosen for building the final classifier. The boosting-stop
parameter p is set to 0.7, which yields 6 times of label boosting
in most cases.

For comparison, we choose the same data setting as in [12]:
In MINST, for each of the digits {3, 4, 5, 7, 8}, 200 samples
are selected at random so that the cardinality of the data set
is |X| = 1000, where the digit 8 is assigned to Class A, and
others belong to Class B. In USPS, for each of the digits 0−9,
150 samples are selected at random so that |X| = 1500, where
the digits 2 and 5 are assigned to Class A, and others belong
to Class B. In all experiments, the initial labeled set X0 is
preset to 10 various sizes of 10, 20, · · · , 100, respectively, and
the labeled digits are distributed evenly on each chosen digit.

Note that a vector ~x ∈ X is originally represented by a
c× c matrix [xi,j ]

c
i,j=1, where c = 20 for MNIST and c = 16

for USPS. To reduce the shift-variance, we define the 1-shift
distance between two digit images [1]:

d(~x, ~y) = min
|i′−i|≤1
|j′−j|≤1

√√√√c−1∑
i=2

c−1∑
j=2

(xi,j − yi′,j′)2.

In the first experiment, we run our ESSL1dLB algorithm on
50 subsets, of which each has with 1000 members, randomly
chosen from the MNIST database, where the regularization
parameter λ in (4) is chosen to be 0.5. The experiment results
are shown in Table VII, where the first row is the number of
samples in X`, and the 2nd−5th rows are the mean, minimum,
maximum, and standard deviation of the classification error
rates of the 50 tests, respectively.

In the second experiment, we run our ESSL1dLB algo-
rithm for USPS in a similar way: 50 subsets, of which each
has 1500 members, are randomly chosen from USPS database.
The test results are shown in Tab. VIII.

Tab. VII and Tab. VIII show that the standard deviations of
the error rates are quite small. This indicates the high stability
of the proposed algorithm.

In Fig. 9, we give the comparison of the average error rates
(of 50 tests) of our 1-D based ensemble method ESSL1dLB to
Laplacian Eigenmaps (Belkin & Niyogi, 2003 [8]), Laplacian
Regularization (Zhu et al., 2003 [13]), Laplacian Regulariza-
tion with Adaptive Threshold (Zhou and Belkin, 2011 [52]),
and Haar-Like Multiscale Wavelets on Data Trees (Gavish et
al., 2011 [12]) on the subsets randomly chosen from MNIST
and USPS databases, respectively.

The results show that our method achieves competitive
results comparing to others.

V. CONCLUSION

We propose a new ensemble SSL method (ESSL1dLB)
based on data 1-D representations and label boosting, which
enables us to construct ensemble classifiers assembled from
several weak-classifiers for the same data set using classical
1-D regularization technique. Furthermore, a label boosting
technique is applied for robustly enlarging the labeled set
to a certain size so that the final classifier is built based
on the boosted labeled set. The experiments show that the

performance of the proposed method is superior to many
popular SSL methods. The method also exhibits a clear ad-
vantage for learning the classifier when only a small labeled
set is given. Because the method is independent of the data
dimensionality, it can be applied to various types of data.
Since the algorithm in the proposed method only employs
1-D regularization technique, avoiding the complicate kernel
trick, they are simple and stable. The experiments also indicate
that the parameters in the algorithm is relatively insensitive
that makes the algorithm more controllable and reliable. The
algorithm has been tested on various types of data sets, such as
handwritten digits and hyperspectral images. The experimental
results are very promising, showing that our method is superior
to other existent methods. It can be expected that the created 1-
D framework in this paper will be applied to the development
of more machine learning methods for different purposes. In
the algorithm, the most time-consuming step is data (shortest
path) sorting. In the future work, we will study how to accel-
erate the sorting algorithm in 1-D embedding and consider to
integrate the data-driven wavelets with the proposed method.
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