
179

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Business Process Model Customisation using
Domain-driven Controlled Variability

Management and Rule Generation

Neel Mani, Markus Helfert

ADAPT Centre for Digital Content Technology
Dublin City University, School of Computing

Dublin, Ireland
Email: [nmani|mhelfert]@computing.dcu.ie

Claus Pahl

Free University of Bozen-Bolzano
Faculty of Computer Science

Bolzano, Italy
Email: claus.pahl@unibz.it

Abstract—Business process models are abstract descriptions and
as such should be applicable in different situations. In order
for a single process model to be reused, we need support
for configuration and customisation. Often, process objects and
activities are domain-specific. We use this observation and allow
domain models to drive the customisation. Process variability
models, known from product line modelling and manufacturing,
can control this customisation by taking into account the domain
models. While activities and objects have already been studied, we
investigate here the constraints that govern a process execution.
In order to integrate these constraints into a process model,
we use a rule-based constraints language for a workflow and
process model. A modelling framework will be presented as a
development approach for customised rules through a feature
model. Our use case is content processing, represented by an
abstract ontology-based domain model in the framework and
implemented by a customisation engine. The key contribution
is a conceptual definition of a domain-specific rule variability
language.

Keywords–Business Process Modelling; Process Customisation;
Process Constraints; Domain Model; Variability Model; Constraints
Rule Language; Rule Generation.

I. INTRODUCTION

Business process models are abstract descriptions that
can be applied in different situations and environments. To
allow a single process model to be reused, configuration and
customisation features help. Variability models, known from
product line engineering, can control this customisation. While
activities and objects have already been subject of customisa-
tion research, we focus on the customisation of constraints that
govern a process execution here. Specifically, the emergence of
business processes as a services in the cloud context (BPaaS)
highlights the need to implement a reusable process resource
together with a mechanism to adapt this to consumers [1].

We are primarily concerned with the utilisation of a
conceptual domain model for business process management,
specifically to define a domain-specific rule language for
process constraints management. We present a conceptual
approach in order to define a Domain Specification Rule Lan-
guage (DSRL) for process constraints [2] based on a Variability
Model (VM). To address the problem, we follow a feature-
based approach to develop a domain-specific rule language,

borrowed from product line engineering. It is beneficial to
capture domain knowledge and define a solution for possibly
too generic models through using a domain-specific language
(DSL). A systematic DSL development approach provides the
domain expert or analyst with a problem domain at a higher
level of abstraction. DSLs are a favourable solution to directly
represent, analyse, develop and implement domain concepts.
DSLs are visual or textual languages targeted to specific
problem domains, rather than general-purpose languages that
aim at general software problems. With these languages or
models, some behaviour inconsistencies of semantic properties
can be checked by formal detection methods and tools.

Our contribution is a model development approach using
of a feature model to bridge between a domain model (here
in ontology form) and the domain-specific rule extension of a
business process to define and implement process constraints.
The feature model streamlines the constraints customisation of
business processes for specific applications, bridging between
domain model and rule language. The novelty lies in the use
of software product line technology to customise processes.

We use digital content processing here as a domain context
to illustrate the application of the proposed domain-specific
technique (but we will also look at the transferability to
other domains in the evaluation). We use a text-based content
process involving text extraction, translation and post-editing
as a sample business process. We also discuss a prototype
implementation. However, note that a full integration of all
model aspects is not aimed at as the focus here is on models.
The objective is to outline principles of a systematic approach
towards a domain-specific rule language for content processes.

The paper is organised as follows. We discuss the State-
of-the-Art and Related Work in Section II. Here, we review
process modelling and constraints to position the paper. In
Section III, we introduce content processing from a feature-
oriented DSL perspective. Section IV introduces rule language
background and ideas for a domain-based rule language. We
then discuss formal process models into which the rule lan-
guage can be integrated. Then, we describe the implementation
in Section V and evaluate the solution in Section VI.

180

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Sample content lifecycle process.

II. STATE-OF-THE-ART AND RELATED WORK

Current open research concerns for process management
include customisation of governance and quality policies and
the non-intrusive adaptation of processes to policies. Today,
one-size-fits-all service process modelling and deployment
techniques exist. However, their inherent structural inflexibility
makes constraints difficult to manage, resulting in significant
efforts and costs to adapt to individual domains needs.

A. SPL and Variability Modeling
Recently, many researchers have started applying software

product line (SPL) concepts in service-oriented computing
[3], [4], [5], [6]. We focus on approaches that used the SPL
technique for process model configuration. For instance, [7]
proposes a BPEL customization process, using a notion of
a variability descriptor for modeling variability points in the
process layer of service-oriented application.

There are many different approaches of process based
variability in service compositions, which enable reuse and
management of variability and also support Business Processes
[8], [9]. Sun [9] proposes an extended version of COVAMOF;
the proposed framework is based on a UML profile for
variability modeling and management in web service based
systems of software product families. PESOA [10] is vari-
ability mechanism represented in UML (activity diagram and
state machines) and BPMN for a basic process model, which
has non-functional characteristics, like maintenance of the
correctness of a syntactical process. Mietzner et al. [7] propose
variability descriptors that can be used to mark variability in
the process layer and related artifacts of a SaaS application.
The SaaS application template allows to customise processes.

B. Dynamic BPEL/BPMN Adaptation
There is related work in the field of constraints and policy

definition and adaptive BPEL processes. While here a notation
such as BPMN is aimed at, there is more work on WS-BPEL
in our context. Work can be distinguished into two categories.

• BPEL process extensions designed to realize platform-
independence: Work in [11] and [12] allows BPEL
specifications to be extended with fault policies, i.e.,
rules that deal with erroneous situations. SRRF [13]

generates BPEL processes based on defined handling
policies. We do not bind domain-specific policies into
business processes directly, as this would not allow to
support user/domain-specific adaptation adequately.

• Platform-dependent BPEL engines: Dynamo [40] is
limited in that BPEL event handlers must be statically
embedded into the process prior to deployment (recov-
ery logic is fixed and can only be customised through
the event handler). It does not support customisation
and adaptation. PAWS [2] extends the ActiveBPEL
engine to enact a flexible process that can change
behaviour dynamically, according to constraints.

Furthermore, process-centricity is a concern. Recently,
business-processes-as-a-service (BPaaS) is discussed. While
not addressed here as a cloud technology specifically, this per-
spective needs to be further complemented by an architectural
style for its implementation [14]. We propose a classification
of several quality and governance constraints elsewhere [15]:
authorisation, accountability, workflow governance and quality.
This takes the BPMN constraints extensions [16], [11] into
account that suggest containment, authorisation and resource
assignment as categories into account, but realises these in a
less intrusive process adaptation solution.

The DSRL is a combination of rules and BPMN. Moreover,
DSLR process based on BPMN and ECA rules is the main
focus on the operational part of the DSRL system (i.e., to check
conditions and perform actions based on an event of a BPMN
process). There is no need for a general purpose language in
a DSLR, though aspects are present in the process language.
[17], [18], [19] discuss business process variability, though pri-
marily from a structural customisation perspective. However,
[17] also uses an ontology-based support infrastructure [20].

Several research works related to dynamic adaptation of
service compositions have tended to implement variability
constructs at the language level [21]. For example, VxBPEL
[22] is an extension of the BPEL language allowing to capture
variation points and configurations to be defined for a process
in a service-centric system. SCENE [23] is also a language for
composition design which, extends WS-BPEL by defining the
main business logic and Event Condition Action (ECA) rules
that define consequences to guide the execution of binding

181

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and rebinding self-configuration operations. Rules are used to
associate a WS-BPEL workflow with the declaration of the
policy to be used during (re)configuration.

C. Configuration Process Models and Templates
Recent years have resulted in a rising interest in supporting

flexibility for process model activities. Most process design
techniques lead to rigid processes where business policies are
hard-coded into the process schema, hence reducing flexibility.
Flexible process variants can be configured by using rules to
a generic process template. This leads to a split the business
policy and control flow. This structure can facilitate process
variant configuration and retrieval [24], [25].

A multi-layered method for configuring process variants
from the base layer is presented in [26]. The Provop approach
[27] allows a user to manage and design to create process
variants from a base process (i.e., a process template) with
various options. Mohan et al. [28] discuss the automatic
identification of inconsistencies resulting in the customisation
of business process model and configuration procedure. The
MoRE-WS tool [4] activates and deactivates features in a
variability model. The changed variability model updates the
composite models and its services that add and remove a
fragment of WS-BPEL code at runtime. However, the tool
uses services instead of direct code, but the dependency on
programming and code is always associated with it. Lazovik
et al. [29] developed a service-based process-independent
language to express different customization options for the
reference business processes.

Only a few rule language solutions consider the customiza-
tion and configuration of a process model in a domain-specific
environment. An exception is the work of Akhil and Wen
[24] where the authors propose an template and rule for
design and management of flexible process variant. Therefore,
the rule template based configuration can adopt the most
frequently used process. Since enterprise business processes
change rapidly, the rule-based template cannot be adapted in
changing situations. We need a solution that can be operated by
non-technical domain experts without a semantic gap between
domain expert design and development. The solution should
be flexible, easy to adapt and easy to configure in terms of
usability. Therefore, we have propose a domain-specific rule
language, which resolves the domain constraints during the
customisation process and a framework through which non-
technical domain users can customise BPM with the generated
set of domain-specific rules (DSRs).

D. Positioning the Approach
At the core of our solution is a process model that defines

possible behaviour. This is made up of some frame of reference
for the system and the corresponding attributes used to describe
the possible behaviour of the process [30], [31]. The set of
behaviours constitutes a process referred to as the extension
of the process and individual behaviours in the extension are
referred as instances. Constraints can be applied at states of
the process to determine its continuing behaviour depending
on the current situation. We use rules to combine a condition
(constraint) with a resulting action [32], [33]. The target of our
rule language (DSRL) is a standard business process notation
(as in Figure 1). Rules shall thus be applied at the processing
states of the process.

Our application case study is intelligent content processing.
Intelligent content is digital content that allows users to create,
curate and consume content in a way that satisfies dynamic
and individual requirements relating to task design, context,
language, and information discovery. The content is stored,
exchanged and processed by a Web architecture and data will
be exchanged, annotated with meta-data via web resources.
Content is delivered from creators to consumers. Content fol-
lows a particular path, which contains different stages such as
extraction and segmentation, name entity recognition, machine
translation, quality estimation and post-editing. Each stage in
the process has its own complexities governed by constraints.

We assume the content processing workflow as in Figure
1 as a sample process for the rule-based instrumentation of
processes. Constraints govern this process. For instance, the
quality of a machine-based text translation decides whether
further post-editing is required. Generally, these constraints
are domain-specific, e.g., referring to domain objects, their
properties and respective activities on them.

III. DOMAIN AND FEATURE MODEL

Conceptual models (CM) are part of the analysis phase of
system development, helping to understand and communicate
particular domains [2]. They help to capture the requirements
of the problem domain and, in ontology engineering, a CM is
the basis for a formalized ontology. We utilise a conceptual
domain model (in ontology form) to derive a domain-specific
process rule language [34]. A domain specific language (DSL)
is a programming or specification language that supports a
particular application domain through appropriate notation,
grammar and abstractions [35]. DSL development requires
both domain knowledge and language development expertise.
A prerequisite for designing DSLs is an analysis that provides
structural knowledge of the application domain.

A. Feature Model
The most important result of a domain analysis is a feature

model [36], [37], [38], [39]. A feature model covers both the
aspects of software family members, like commonalities and
variabilities, and also reflects dependencies between variable
features. A feature diagram is a graphical representation of
dependences between a variable feature and its components.
Mandatory features are present in a concept instance if their
parent is present. Optional features may be present. Alternative
features are a set of features from which one is present.
Groups of features are a set of features from which a subset is
present if their parent is present. ‘Mutex’ and ‘Requires’ are
relationships that can only exist between features. ‘Requires’
means that when we select a feature, the required featured
must be selected too. ‘Mutex’ means that once we choose a
feature the other feature must be excluded (mutual exclusion).

A domain-specific feature model can cover languages,
transformation, tooling, and process aspects of DSLs. For
feature model specification, we propose the FODA (Feature
Oriented Domain Analysis) [40] method. It represents all the
configurations (called instances) of a system, focusing on the
features that may differ in each of the configurations [41]. We
apply this concept to constraints customisation for processes.
The Feature Description Language (FDL) [42] is a language
to define features of a particular domain. It supports an
automated normalization of feature descriptions, expansion to

182

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Feature model for intelligent content (note that the darker grey boxes will be detailed further in Figure 3).

disjunctive normal form, variability computation and constraint
satisfaction. It shall be applied to the content processing use
case here. The basis here is a domain ontology called GLOBIC
(global intelligent content), which has been developed as part
of our research centre. GLOBIC elements are prefixed by ‘gic’.

Feature diagrams are a FODA graphical notation. They can
be used for structuring the features of processes in specific
domains. Figure 2 shows a feature diagram for the GLOBIC
content extraction path, i.e., extraction as an activity that
operates on content in specified formats. This is the first step in
a systematic development of a domain-specific rule language
(DSRL) for GLOBIC content processing use case. Here all
elements are mandatory. The basic component gic:Content
consists of a gic:Extraction element, a mandatory feature.
A file is a mandatory component of gic:Extraction and it
may either be used for Document or Multimedia elements
or both. The closed triangle joining the lines for document
and multimedia indicates a non-exclusive (more-of) choice
between the elements. The gic:Text has two mandatory states
Source and Target. Source contains ExtractedText and Target
can be TranslationText. Furthermore, expanding the feature
Sentence is also a mandatory component of ExtractedText.
The four features Corpora, Phrase, Word and Grammar are
mandatory. On the other side of gic:Text, a TranslationText is
a mandatory component of Target, also containing a mandatory
component Translation. A Translation has three components:
TranslationMemory and Model are mandatory features, Qual-
ity could also be made an optional feature. A Model may

be used as a TranslationModel or a LanguageModel or both
models at same time. An instance of a feature model consists of
an actual choice of atomic features matching the requirements
imposed by the model. An instance corresponds to a text
configuration of a gic:Text superclass.

The feature model might include for instance duplicate ele-
ments, inconsistencies or other anomalies. We can address this
situation by applying consistency rules on feature diagrams.
Each anomaly may indicate a different type of problem. The
feature diagram algebra consists of four set of rules [41]:

• Normalization Rules – rules to simplify the feature
expression by redundant feature elimination and nor-
malize grammatical and syntactical anomalies.

• Expansion Rules – a normalized feature expression
can be converted into a disjunctive normal form.

• Satisfaction Rules – the outermost operator of a dis-
junctive normal form is one-of. Its arguments are
‘All’ expressions with atomic features as arguments,
resulting in a list of all possible configurations.

• Variability Rules – feature diagrams describe system
variability, which can be quantified (e.g., number of
possible configurations).

The feature model is important for the construction of the
rule language (and thus the process customisation) here. Thus,
checking internal coherence and providing a normalised format
is important for its accessibility for non-technical domain

183

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

experts. In our setting, the domain model provides the semantic
definition for the feature-driven variability modelling.

B. Domain Model
Semantic models have been widely used in process man-

agement [43], [44]. This ranges from normal class models to
capture structural properties of a domain to full ontologies
to represent and reason about knowledge regarding the ap-
plication domain or also the technical process domain [45],
[46]. Domain-specific class diagrams are the next step from
a feature model towards a DSL definition. A class is defined
as a descriptor of a set of objects with common properties
in terms of structure, behaviour, and relationships. A class
diagram is based on a feature diagram model and helps to
stabilise relationship and behaviour definitions by adding more
details to the feature model. Note that there is an underlying
domain ontology here, but we use the class aspects only (i.e.,
subsumption hierarchy only).

In the content use case, class diagrams of gic:Content
and its components based on common properties are shown
in Figure 3. The class diagram focuses on gic:Text, which
records at top level only the presence of source and target.
The respective Source and Target text strings are included in
the respective classes. The two major classes are Text (Doc-
ument) and Movie files (Multimedia), consisting of different
type of attributes like content:string, format:string, or frame-
rate:int. Figure 3 is the presentation of an extended part of the
gic:Content model. For instance, gic:Text is classified into the
two subclasses Source and Target. One file can map multiple
translated texts or none. gic:Text is multi-language content
(source and target content). Extracted Text is text from source
content for the purposes target translation. Translated Text is a
text after translation. Corpora is a set of structured texts. It may
be single or multi language. gic:Sentence is a linguistic unit
or combination of words with linked grammar. gic:Translation
is content generated by a machine from a source language
into a target language. A Grammar is set of structural rules.
gic:QualityAssessment is linguistic assessment of translation
in term of types of errors/defects. A Translation Memory
is a linguistic database that continually captures previous
translations for reuse.

Both domain and feature model feed into the process
customisation activity, see Figure 4.

IV. CONSTRAINTS RULE LANGUAGE

Rule languages typically borrow their semantics from logic
programming [47]. A rule is defined in the form of if-then
clauses containing logical functions and operations. A rule
language can enhance ontology languages, e.g., by allowing
one to describe relations that cannot be described using for
instance description logic (DL) underlying the definition of
OWL (Ontology Web Language). We adopt Event-Condition-
action (ECA) rules to express rules on content processing
activities. The rules take the constituent elements of the
GLOBIC model into account: content objects (e.g., text) that
are processed and content processing activities (e.g., extraction
or translation) that process content objects. ECA rules are then
defined as follows:

• Event: on the occurrence of an event ...
• Condition: if a certain condition applies ...

• Action: then an action will be taken.

Three sample ECA rule definitions are:

• On uploading a file from user and if the filetype is
valid, then progress to Extraction.

• On a specific key event and Text is inputted by the
user and if text is valid, then progress Process to
Segmentation.

• On a specific key event and a Web URL input is
provided by user and if URL is valid, then progress
to Extraction and Segmentation.

The rule model is designed for a generic process. An example
shall illustrate ECA rules for ‘extraction’ as the activity.
Different cases for extraction can be defined using feature
models to derive customised versions:

• We can customise rules for specific content types (text
files or multimedia content).

• We can also vary according to processing activities
(extraction-only or extraction&translation).

The example below illustrates rule definitions in more concrete
XML syntax. Here the rule is that a document must be post-
edited before sent for QA-Rating:

<p1:Policy policyId="QA-Rate-policy1" priority="0">
<p1:Objects>
<p1:ObjectsAnyOf>
<p1:ObjectsAllOf>
<p1:Activity>
<Name>QA-Rate crowd-sourced</Name>

</p1:Activity>
</p1:ObjectsAllOf>

</p1:ObjectsAnyOf>
</p1:Objects>

<p1:ActivityStates>
<p1:ActivityState>Validating-Pre
</p1:ActivityState>

</p1:ActivityStates>

<p1:Rule priority="0"
ruleId="constraintRule-QA-Rate">

<p1:Conditions>
<p1:ConditionExpression

type="Provenance-Context">
<p1:Para>//Document/ID</p1:Para>
<p1:Expr>constraintRule-QA-Rate-Query
</p1:Expr>

</p1:ConditionExpression>
</p1:Conditions>

<p1:Actions>
<p1:Pa-Violate>
<p1:Violation>
<Type>Functional:Protocol</Type>

</p1:Violation>
</p1:Pa-Violate>

</p1:Actions>

<p1:FaultHandler>
<p1:Ca-Log level="5"> </p1:Ca-Log>

</p1:FaultHandler>
</p1:Rule>

In the example of a rule above, there is one constraint rule
and a fault rule (the fault rule details themselves are skipped
in the code). The policy (combination of rules) targets the
”QA-Rate crowd-sourced” activity before it is executed. The

184

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Domain model for intelligent content.

constraint rule has a condition on the provenance context or the
document history. A parameterized query (e.g., in SPARQL –
Semantic Protocol and RDF Query Language) could check if
the current document (using the document ID as parameter)
has NOT been post-edited. If the condition is true, then the
rule results in a functional:Protocol violation. A fault rule can
be defined for handling the violation. The policy will cancel
the current process, if no remedy action was found in the fault
rule for violation handling.

A. Rule Language Basics

We define the rule language as follows using GLOBIC con-
cepts in the ECA-format with events, conditions and actions (to
begin with, we use some sample definitions here to illustrate
key concepts before providing a more complete definition later
on). The core format of the rule is based on events, conditions
and actions. Events are here specific to the application context,
e.g., (file) upload, (text) translation or (information) extraction.

gic:Rule ::= [gic:Event] ‖ [gic:Cond] ‖ [gic:Action]
gic:Event::= {Upload} ‖ {Translate} ‖ {Extract}

While the rule syntax is simple, the important aspect is that
that the syntactic elements refer to the domain model, giving
it semantics and indicating variability points. Variability points
are, as explained, defined in the feature model. The above three
examples from the beginning of the section can be formalised
using this notation. Important here is the guidance in defining
rules that a domain expert gets through the domain model as a
general reference framework and the feature model definition
to understand and apply the variability points.

B. Rule Categories for Process Customization
To further understand the rule language, looking at prag-

matics such as rule categories is useful. The rules formalised in
the rule language introduced above are a syntactical construct.
Semantically, we can distinguish a number of rule categories:

• Control flow rules are used for amending the control
flow of a process model based on validation or case
data. There are several customisation operations, like
deleting, inserting, moving or replacing a task. In
addition, they are moving or swapping and changing
the relationship between two or more tasks.

• Resource rules depend on resource-based actions or
validation of processes. They are based on conditional
data or case data.

• Data rules are associated with properties or attributes
of a resource related to a case.

• Authorisation rules and access control rules, i.e., the
rights and roles defined for users, which is a key com-
ponent in secure business processes that encourages
trust for its contributing stakeholders [43].

• An authentication rule expresses the need to verify a
claimed identity in an authentication process.

• Hybrid rules concern the modification of several as-
pects of process design. For example, they might alter
the flow of control of a process as well as change the
properties of a resource.

C. Control Flow Rule Examples
As an example for the rule language, a few control flow

rules (first category above) shall be given for illustration.

185

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Content process customisation.

R1: T0.SourceLang==empty && T0.TargetLang=empty
-> Insert [T1]

R2: T2.FileType == .txt||html||.xml||.doc||.pdf
-> Delete [T3]/Deactivate [T5, T3, T6, T7]

R3: T3.TextLength < X
-> Delete [T2, T4, T5, T6]
-> Insert [Ttemp.LanguageDetection]

Rule R1, R2 and R3 are concerned with a control flow
perspective. R1 inserts task T1 in a process model, when
source and target language are missing at input (T0). The
language selection is a mandatory input task for the Globic
process chain and every sub-process has to use it in different
aspects. R2 checks the validation of file, e.g., if a user or
customer wants to upload a multimedia file, rather than plain
text inputs. Therefore, it suggests to Delete T3 or Deactivate
T5, T3, T6, T7 from the process model. Similarly, R3 deletes
T2, T4, T5 and T6 from the process model, if users want to use
input text instead of files, so there is no need for the file upload
process. R4, R5, R6 and R7 below are resource flow-related
rules and the tasks are based on data cases or validations:

R4: T2.FileSize < 5MB
-> Validation [T2, NextValidation]

R5: T1.SourceLanguage==FR && T1.TargetLanguage=EN
-> Corpora_Support(T1.SourceLanguage,

T1.TargetLanguage,Service)
R6: Ttemp.LanguageDetection != T1.SourceLanguage

-> Notification (Source language and
file text language mismatched)

-> BackTo([T2],R2)
R7: T6.WebURL != Valid(RegExpr)

-> Alert(Web URL is invalid !)
-> BackTo([T3],R4)

When the above set of rules is run with use case data, the
corresponding rules are fired if their conditions are satisfied.
Then, the actions are applied in form of configurations of
variants and the process models are customised. Let us assume
the sample use case data as follows:

fileSize<5 MB; fileType= .txt

Then, the rules triggered are R1, R2, R3, R4 and R5. The
actions that become valid as a result of these rules are:

186

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Action 1: Insert [T1]
Action 2: Delete [T3]/Deactivate [T5, T3, T6, T7]
Action 3: Insert [Ttemp.LanguageDetection]
Action 4: Validation [T2, NextValidation]
Action 5: Corpora_Support(T1.Source,T1.Target,Service)
Action 6: Notification (Exception/Validation message)

D. Rule Language Definition
Now we go back to the full rule definition. The Domain

Specific Rule Language (DSRL) grammar is defined as fol-
lows. We start with a generic skeleton that will then be mapped
to the Globic domain model.

<DSRL Rules> ::= <EventsList>
<RulesList>
<ProcessModelList>

<EventLists> ::= <Event> | <Event> <EventLists>
<Event> ::= EVENT <EventName> IF <Expression> |

EVENT <EventName> is INTERN or EXTERN
<RulesList> ::= <Rule> | <Rule> <RuleList>
<Rule> ::= ON<EventName>

IF<Condition>DO<ActionList>
<ActionList> ::= <ActionName> |

<ActionName>,<ActionList>
<ProcessModelList> ::= <ProcessModel> |

<ProcessModel>,<ProcessModelList>
<ProcessModel> ::= PROCESSMODEL <ProcessModelName>

where a named process model PROCESSMODEL is defined by:

[TRANSITION_SEQUENCIAL (DISCARD|DELAY)],
[TRANSITION_PARALLEL (DISCARD|DELAY)]
[INPUTS(<InputList>)] [OUTPUTS(<OutputList>)]

TRANSITION_SEQUENCIAL and TRANSITION_PARAL-
LEL are transitions of a workflow.

The description of the DSRL contains lists of events, rules
and workflow states. An event can be internal or external
(for rules generated as an action, it may be INTERNAL or
EXTERNAL) or be generated when the expression becomes
true. An event name is activated with the ON expression, which
is a Boolean expression to determine the particular conditions
that apply and the list of actions that have to be performed
when event and condition are matched or true (preceded by DO
expression). The workflow contains the state name, a certain
policy to be activated in the workflow when sequential and
parallel actions to perform. DISCARD allows discarding all the
instructions, but the current one and DELAY allows delaying
all instructions, but the current one.

EVENT gic:FileUpload::BOOL && gic:FileSelect::BOOL
IF FileUpload_ON
ON exists

IF (gic:FileType ==True)
DO

ON exists
IF (gic:FileSize <5MB)
DO gic:Translate(File)
ELSE Notification(File size < 5 MB)

ELSE Notification(File format is invalid)

The grammar of the DSRL (in its form specific to the
GLOBIC mapping, with events, conditions and actions that
are domain-specific) is defined as follows:

List of Events:

Event_List ::=
{gic:File->FileUpload, gic:Text->TextEnd,

gic:Text->Parsing, gic:Text->MTStart,
gic:Text->MTEnd, gic:Text-> QARating, ... }

Expr ::= gic:Content.Attributes

List of Conditions:

<Condition_List>::=<gic:Extraction.Condition>
| <gic:Segmentation.Condition>
| <gic:MachineTranslation.Condition>
| <gic:QualityAssesment>
| <gic:PostEdit>

<gic:Extraction.Condition> ::= // EXTRACTION
IF (<gic:File.FileType(X)::=FileList>)
| IF (<gic:File.FileSize::=<Y>)
| IF (<gic:Text.Length::=<L>)
| IF (<Source.Language::=Language_List>)
| IF (<Target.Language::=Language_List>)
| IF (<MultiLanguageText(gic:Text)::=T|F>)
| IF (<SingleLanguageDetect(gic:Text)::=T|F>)

where X is the file type, Y is the size of file (in MB) and L
is the length of the text.

<gic:Segmentation.Condition)>::= // SEGMENTATION
IF (<IsDictionaries(Source.Lang)::=T|F>)
| IF (<IsDictionaries(Target.Lang)::=T|F>)
| IF (<IsParCorpus(Source.Lang,Target.Lang)::=T|F>)
| IF (<IsParLexicon(Source.Lang,Target.Lang)::=T|F>)
| IF (<nic:Sentence.WordCount::=<WInteger>)
| IF (<IsTreeParsing(nic:Sentence)::=T|F)>)

where WInteger is the word count of the source sentence or
target sentence.

<gic:Translation.Condition)> ::= // TRANSLATION
IF (<gic:Translation(Source.Lang, Target.Lang,

gic:Text) ::= T|F>)
| IF (<gic:Translation.Memory ::= <TM)(Mem Underfl)
| IF (<gic:Translation.Memory ::= >TM)(Mem Overfl)
| IF (<gic:Translation(gic:TxtSource,Source.Lang)>

gic:Translation(gic:TxtTarget,Target.Lang)>)

<gic:Quality.Condition> ::=
IF (<gic:Quality.TER(gic:TextTarget)::=<TERNo>)
| IF (<gic:Quality.WER(gic:TextTarget)::=<WERNo>)

where TM is the specific memory size, TERNo is the Trans-
lation Error Rate number and WERNo is the Word Error Rate
number.

Source language and target language are elements
of a language list. We assume a Language_List(L)
= {L1,L2,L3,,Ln} with Source.Language(Ls)
∈ Language_List and Target.Language(Lt) ∈
Language_List.

Actions can be state-specific constraint validations. The
process can move to the next state. Acknowledgements
are notifications messages to the user. The GIC process is
embedded in the Provenance context that records Agent,
Association and Activity.

List of Actions in the GIC domain:

ActionList ::= <Validation->Validation.Next>
<Process->Next> ,
<Acknowledgement>
<Process->Provenance>

<Acknowledgement>::= <Ack_Msg>|<Ack_Msg_List>

187

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

< Ack_Msg_List> ::= <Validation.Msg_Display>
|<System.Error>
|<System.Delay>
|<Process.Active>
|<Process.Stop>
|<Process.Abort>
|<Process.End> (Finished)

<Process->Next> ::= <Process->gic:Text.Extraction>
|<Process->gic:Text.GrammarCheck>
|<Process->gic.Text.Name_Entity_Find>
|<Process->gic:Text.Parsing>
|<Process-> gic:Text.Segmentation>
|<Process->gic:Translation>
|<Process->gic:Quality Assessment>
|<Process->PostEdit>

<Process->Provenance> ::= <prov:Agent> // PROVENANCE
<prov:Association>
<prov:Activity>

<prov:Agent> ::= <prov:InstantaneousEvent>
|<prov:AgentInfluence>
|<prov:Influence>
|<prov:EntityInfluence>
|<prov:Delegation>
|<prov:Start>
|<prov:End>
|<prov:Derivation>
|<prov:ActivityInfluence>
|<prov:Quotation>
|<prov:Generation>
|<prov:Revision>

<prov:Association> ::= <prov:Role>
| <prov:Invalidation>
|<prov:Attribution>

<prov:Activity> ::= <prov:Entity>
|<prov:Communication>
|<prov:Plan>
|<prov:Usage>
|<prov:PrimarySource>

The Global Intelligent Content (GIC) semantic model is
based on a abstract model and a content model. The abstract
model captures the different resource types that are processed.
The content model details the possible formats.

Abstract Model:

gic:Domain -> gic:Resource
gic:Resource -> gic:Services |

gic:Information Resource |
gic:IdentifiedBy |
gic:RefersTo |
gic:AnnotatedBy

gic:InformationResource -> gic:Content | gic:Data

Content Model:

gic:Content -> gic:Content | cnt:Content
cnt:Content -> cnt:ContentAsBase64 |

cnt:ContentAsText|
cnt:ContentAsXML

cnt:ContentAsBase64-> cnt:Bytes
cnt:ContentAsText -> cnt:Chars
cnt:ContentAsXML -> cnt:Rest | cnt:Version |

cnt:LeadingMisc |
cnt:Standalone |
cnt:DeclaredEncoding |
cnt:dtDecl

cnt:dtDecl -> cnt:dtDecl | cnt:DocTypeDecl

cnt:DocTypeDecl -> cnt:DocTypeName |
cnt:InternetSubset |
cnt:PublicId | cnt:SystemId

V. IMPLEMENTATION

While this paper focuses on the conceptual aspects such
as models and languages, a prototype has been implemented.
Our implementation (Figure 5) provides a platform that enables
building configurable processes for content management prob-
lems and constraints running in the Activiti (http://activiti.org/)
workflow engine. In this architecture, a cloud service layer per-
forms data processing using the Content Service Bus (based on
the Alfresco (https://www.alfresco.com/) content management
system).

This implementation is the basis of the evaluation that looks
at feasibility and transferability – see Evaluation Section VI.
We introduce the business models and their implementation
architecture first, before detailing the evaluation results in the
next section.

A. Business Process Models
A business process model (BPM) is executed as a process

in a sequential manner to validate functional and operational
behaviour during the execution. Here, multiple participants
work in a collaborative environment based on Activiti, Alfresco
and the support services. Policy rule services define a process
map of the entire application and its components (e.g., file
type is valid for extraction, quality rating of translation). This
process model consists of a number of content processing
activities such as Extraction & Segmentation, NER, Machine
Translation (MT), Quality estimation and Post-Edit.

One specific constraint, access control, shall be discussed
separately. An access control policy defines the high-level
set of rules according to the access control requirements. An
access control model provides the access control/authorization
security policy for accessing the content activities as well
as security rights implemented in BPM services according
to the user role. Access control mechanism enable low-level
functions, which implement the access controls imposed by
policies and are normally initiated by the model architecture.

Every activity has its own constraints. The flow of entire
activities is performed in a sequential manner so that each
activity’s output becomes input to the next. The input data is
processed through the content service bus (Alfresco) and the
rule policy is applied to deal with constraints. The processed
data is validated by the validation & verification service layer.
After validation, processing progresses to the next stage of the
Activiti process.

B. Architecture
The architecture of the system is based on services and

standard browser thin clients. The application can be hosted
on a Tomcat web server and all services could potentially be
hosted on a cloud-based server. Architecturally, we separate
out a service layer, see Figure 5. Reasons to architecturally
separate a Service Layer from the execution engine include
the introduction of loose coupling and interoperability.

The system has been developed on a 3-tier standard archi-
tecture: browser-based front-end thin clients, Tomcat Appli-
cation server-based middleware, distributed database service
as data service platforms. We follow the MVC (Model View

188

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Prototype implementation architecture.

Controller) architecture. Multiple technologies are used to
integrate each component of the content management solution:

• Common Bus/Hub: Alfresco is providing a common
bus platform for all the activities.

• Application connectivity: Activiti and a cloud service
layer play an important role to solve connectivity
issues in the architecture.

• Data format and transformation: By using web ser-
vices and other APIs, we maintain a common format
for the entire application.

• Integration module: This module connects different
sections of the application: Activiti, data and service
bus, cloud service layer, Alfresco, and databases.

VI. EVALUATION

Explicit variability representation has benefits for the mod-
elling stage. The feature and domain models control the
variability, i.e., add dependability to the process design stage.
It also allows formal reasoning about families of processes.

In this evaluation, we look at utility, transferability and
feasibility. We balance this discussion by a consideration of
restrictions and limitations.

A. Utility
The general utility is demonstrated empirically. The domain

and feature models here specifically support domain experts.
Process and Cohort. We have worked with seven experts

in the digital media and language technology space as part of

our research centre. While these were largely researchers, their
background was language technology and content management
and all had development experience in that space, some also
industrial experience. These experts were also from different
universities. Despite being researchers, they act as application
domain specialists in our case, being essentially language
technology experts, but not business process experts. In total,
seven expert have contributed to this process. However, we
counted them as multipliiers as each of them had worked with
other researchers, developers and users in industry.

Mechanism. The qualitative feedback, based on the expert
interviews as the mechanism, confirms the need to provide
a mechanism to customise business processes in a domain-
specific way. We asked the participants about their opinion on
the expected benefit of the approach, specifically whether this
would lead to improved efficicency in the process modelling
activities and whether the approach would be suitable for a
non-expert in business modellling, with background in the
application domain.

Results. The results of the expert interview can be sum-
marised as follows:

• The experts confirm with majority (71%) that using
the feature model, rule templates can be filled using
the different feature aspects guided by the domain
model without in-depth modelling expertise.

• The majority of experts (86%) in the evaluation have
confirmed simplification or significant simplification
in process modelling.

This confirms our hypothesis in this research laid out at the
beginning.

B. Transferability
In addition, we looked at another process domain to assess

the transferability of the solution [48]. Learning technology as
another human-centred, domain-specific field was chosen.

Application Domain. In the learning domain, we exam-
ined learner interaction with content in a learning technology
system [49], [50]. Again, the need to provide domain expert
support to define constraints and rules for these processes
became evident.

Observations. Here, educators act as process modellers and
managers [15], specifically managing the educational content
processing as an interactive process between learners, educa-
tors and content. Having been involved in the development
of learning technology systems for years, tailoring these to
specific courses and classes is required.

C. Feasibility Analysis
From a more technical perspective, we looked at the

feasibility of implementing a production system from the
existing prototype. The feasibility study (analysis of alterna-
tives) is used to justify a project. It compares the various
implementation alternatives based on their economic, technical
and operational feasibility. The steps of creating a feasibility
study are as follows [41]:

Determine implementation alternatives. We have discussed
architectural choices in the Implementation.

Assess the economic feasibility for each alternative. The
basic question is how well will the software product pay for

189

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

itself? This has been looked at by performing a cost/benefit
analysis. In this case, using open-source components has
helped to reduce and justify the expenses for a research
prototype.

Assess the technical feasibility for each alternative. The
basic question is the possibility to build the software system.
The set of feasible technologies is usually the intersection of
the aspects implementation and integration. This has been
demonstrated through the implementation with Activiti and
Alfresco as core platforms that are widely used in practice.

D. Restrictions, Limitations and Constraints
The concerns below explain aspects, which impact on the

specification, design, or implementation of the software sys-
tem. These items may also contribute to restrict the scalability
and performance of the system as well. Because of either the
complexity or the cost of the implementation, the quality or
delivery of the system may suffer.

Constraints that have impacted on the design of our solu-
tion are the following:

• The information and data exchanging between two
activities during workflow processing.

• User management and security of overall system in-
cluding alfresco CMS, workflow engine, rule engine
and CNGL2 challenges.

• Validation of different systems at runtime.
• Interoperability between features and functions.
• Major constraint utilisation of translation memory and

language model through services.
• Process acknowledgement or transaction information

sharing between different activities of workflow.
• Error tracking and tracing during transaction.

VII. CONCLUSIONS

In presenting a variability and feature-oriented develop-
ment approach for a domain-specific rule language for busi-
ness process constraints, we have added adaptivity to process
modelling. This benefits as follows:

• Often, business processes take domain-specific objects
and activities into account in the process specifica-
tion. Our aim is to make the process specification
accessible to domain experts. We can provide domain
experts with a set of structured variation mechanisms
for the specification, processing and management of
process rules as well as managing frequency changes
of business processes along the variability scheme at
for notations like BPMN.

• The technical contribution core is a rule generation
technique for process variability and customisation.
The novelty of our approach is a focus on process
constraints and their rule-based management, advanc-
ing on structural variability. The result is flexible cus-
tomisation of processes through constraints adaptation,
rather than more intrusive process restructuring.

Cloud-based business processes-as-a-service (BPaaS) as an
emerging trend signifies the need to adapt resources such as
processes to different consumer needs (called customisation of

multi-tenant resources in the cloud) [51]. Furthermore, self-
service provisioning of resources also requires non-expert to
manage this configuration. BPaaS relies on providing processes
as customisable entities. Targeting constraints as the customi-
sation point is clearly advantageous compared to customisa-
tion through restructuring. For BPaaS, if a generic service
is provided to external users, the dynamic customisation of
individual process instances would require the utilisation of a
coordinated approach, e.g., through using a coordination model
[52], [53]. Other architecture techniques can also be used to
facilitate flexible and lightweight cloud-based provisioning of
process instances, e.g., through containerisation [54].

We also see the need for further research that focuses on
how to adapt the DSRL across different domains and how to
convert conceptual models into generic domain-specific rule
language, which are applicable to other domains. So far, this
translation is semi-automatic, but shall be improved with a
system that learns from existing rules and domain models,
driven by the feature approach, to result in an automated DSRL
generation.

ACKNOWLEDGMENT

This material is based upon works supported by the Science
Foundation Ireland under Grant No. 07/CE/I1142 as part of the
Centre for Global Intelligent Content (www.cngl.ie) at DCU.

REFERENCES

[1] N. Mani and C. Pahl, ”Controlled Variability Management for Business
Process Model Constraints,” International Conference on Software En-
gineering Advances ICSEA’2015, pp. 445-450. 2015.

[2] Ö. Tanrver and S. Bilgen, ”A framework for reviewing domain specific
conceptual models,” CompStand & Interf, vol. 33, pp. 448-464, 2011.

[3] M. Asadi, B. Mohabbati, G. Groner, and D. Gasevic, ”Development
and validation of customized process models,” Journal of Systems and
Software, vol. 96, pp. 73-92, 2014.

[4] G. H. Alferez, V. Pelechano, R. Mazo, C. Salinesi, and D. Diaz,
”Dynamic adaptation of service compositions with variability models,”
Journal of Systems and Software, vol. 91, pp. 24-47, 2014.

[5] J. Park, M. Moon, and K. Yeom, ”Variability modeling to develop flexible
service-oriented applications,” Journal of Systems Science and Systems
Engineering, vol. 20, pp. 193-216, 2011.

[6] M. Galster and A. Eberlein, ”Identifying potential core assets in service-
based systems to support the transition to service-oriented product lines,”
in 18th IEEE International Conference and Workshops on Engineering
of Computer Based Systems (ECBS), pp. 179-186. 2011.

[7] R. Mietzner and F. Leymann, ”Generation of BPEL customization
processes for SaaS applications from variability descriptors,” in IEEE
International Conference on Services Computing, pp. 359-366. 2008.

[8] T. Nguyen, A. Colman, and J. Han, ”Modeling and managing variability
in process-based service compositions,” in Service-Oriented Computing,
Springer, pp. 404-420, 2011.

[9] C.-A. Sun, R. Rossing, M. Sinnema, P. Bulanov, and M. Aiello, ”Model-
ing and managing the variability of Web service-based systems,” Journal
of Systems and Software, vol. 83, pp. 502-516, 2010.

[10] F. Puhlmann, A. Schnieders, J. Weiland, and M. Weske, ”Variability
mechanisms for process models,” PESOA-Report TR17, pp. 10-61, 2005.

[11] M. L. Griss, J. Favaro, and M. d’Alessandro, ”Integrating feature
modeling with the RSEB,” in International Conference on Software
Reuse, 1998, pp. 76-85.

[12] D. Beuche, ”Modeling and building software product lines with pure
variants,” in International Software Product Line Conference, Volume 2,
2012, pp. 255-255.

[13] T. Soininen and I. Niemel, ”Developing a declarative rule language for
applications in product configuration,” in practical aspects of declarative
languages, ed: Springer, 1998, pp. 305-319.

190

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[14] S. Van Langenhove, ”Towards the correctness of software behavior in
uml: A model checking approach based on slicing,” Ghent Univ, 2006.

[15] C. Pahl and N. Mani. ”Managing Quality Constraints in Technology-
managed Learning Content Processes,” In: EdMedia’2014 Conference on
Educational Media and Technology. 2014.

[16] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, ”FORM: A
feature-oriented reuse method with domain-specific reference architec-
tures,” Annals of Software Engineering, vol. 5, pp. 143-168, 1998.

[17] M.X. Wang, K.Y. Bandara, and C. Pahl, ”Process as a service dis-
tributed multi-tenant policy-based process runtime governance,” IEEE
International Conference on Services Computing, IEEE, 2010.

[18] Y. Huang, Z. Feng, K. He, and Y. Huang, ”Ontology-based configura-
tion for service-based business process model,” In: IEEE International
Conference on Services Computing, pp. 296303. 2013.

[19] N. Assy, W. Gaaloul, and B. Defude, ”Mining configurable process
fragments for business process design,” In: Advancing the Impact of
Design Science: Moving from Theory to Practice, DESRIST’2014.
LNCS 8463, pp. 209224. 2014.

[20] M. Javed, Y. Abgaz and C. Pahl, ”A Pattern-based Framework of
Change Operators for Ontology Evolution,” 4th International Workshop
on Ontology Content OnToContent’09. 2009.

[21] C. Pahl, ”A Pi-Calculus based framework for the composition and
replacement of components,” Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications OOPSLA’2001 Workshop
on Specification and Verification of Component-Based Systems, 2001.

[22] M. Koning, C.-A. Sun, M. Sinnema, and P. Avgeriou, ”VxBPEL:
Supporting variability for Web services in BPEL,” Information and
Software Technology, vol. 51, pp. 258-269, 2009.

[23] M. Colombo, E. Di Nitto, and M. Mauri, ”Scene: A service composition
execution environment supporting dynamic changes disciplined through
rules,” in Service-Oriented Computing, pp. 191-202. 2006.

[24] A. Kumar and W. Yao, ”Design and management of flexible process
variants using templates and rules,” Computers in Industry, vol. 63, pp.
112-130, 2012.

[25] D. Fang, X. Liu, I. Romdhani, P. Jamshidi, and C. Pahl, ”An agility-
oriented and fuzziness-embedded semantic model for collaborative cloud
service search, retrieval and recommendation,” Future Generation Com-
puter Systems, Volume 56, pp. 11-26. 2016.

[26] M. Nakamura, T. Kushida, A. Bhamidipaty, and M. Chetlur, ”A
multi-layered architecture for process variation management,” in World
Conference on Services-II, SERVICES’09, pp. 71-78, 2009.

[27] A. Hallerbach, T. Bauer, and M. Reichert, ”Capturing variability in
business process models: the Provop approach,” Jrnl of Software Main-
tenance and Evolution: Research and Practice 22, pp. 519-546, 2010.

[28] R. Mohan, M. A. Cohen, and J. Schiefer, ”A state machine based
approach for a process driven development of web-applications,” in
Advanced Information Systems Engineering, 2002, pp. 52-66.

[29] A. Lazovik and H. Ludwig, ”Managing process customizability and cus-
tomization: Model, language and process,” in Web Information Systems
Engineering, 2007, pp. 373-384.

[30] M. Helfert, ”Business informatics: An engineering perspective on infor-
mation systems.” Journal of Information Technology Education 7:223-
245. 2008.

[31] P. Jamshidi, M. Ghafari, A. Ahmad, and C. Pahl, ”A framework
for classifying and comparing architecture-centric software evolution
research,” European Conference on Software Maintenance and Reengi-
neering, 2013.

[32] Y.-J. Hu, C.-L. Yeh, and W. Laun, ”Challenges for rule systems on the
web,” Rule Interchange and Applications, 2009, pp. 4-16.

[33] A. Paschke, H. Boley, Z. Zhao, K. Teymourian, and T. Athan, ”Reaction
RuleML 1.0” in Rules on the Web: Research and Applications, 2012, pp.
100-119.

[34] A. van Deursen, P. Klint, and J. Visser, ”Domain-specific languages: an
annotated bibliography,” SIGPLAN Not., vol. 35, pp. 26-36, 2000

[35] M. Mernik, J. Heering, and A. M. Sloane, ”When and how to develop
domain-specific languages,” ACM computing surveys, 37:316-344, 2005.

[36] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bontemps, ”Generic
semantics of feature diagrams,” Computer Networks, vol. 51, pp. 456-
479, 2/7/ 2007.

[37] D. Benavides, S. Segura, P. Trinidad, and A. R. Corts, ”FAMA: Tooling
a framework for the automated analysis of feature models,” VaMoS,
2007.

[38] M. Antkiewicz and K. Czarnecki, ”FeaturePlugin: feature modeling
plug-in for Eclipse,” Workshop on Eclipse Techn, 2004, pp. 67-72.

[39] A. Classen, Q. Boucher, and P. Heymans, ”A text-based approach to
feature modelling: Syntax and semantics of TVL,” Science of Computer
Programming, vol. 76, pp. 1130-1143, 2011.

[40] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, ”Feature-oriented domain analysis (FODA) feasibility study,”
DTIC. 1990.

[41] A. van Deursen and P. Klint, ”Domain-specific language design requires
feature descriptions,” Jrnl of Comp and Inf Technology, vol. 10, pp. 1-17,
2002.

[42] M. Acher, P. Collet, P. Lahire, and R. B. France, ”A domain-specific
language for managing feature models,” in ACM Symp on Applied
Computing, 2011, pp. 1333-1340.

[43] C. Pahl, ”A Formal Composition and Interaction Model for a Web
Component Platform,” Electronic Notes in Theoretical Computer Sci-
ence, Volume 66, Issue 4, Pages 67-81, Formal Methods and Component
Interaction (ICALP 2002 Satellite Workshop), 2002.

[44] C. Pahl, S. Giesecke, and W. Hasselbring, ”Ontology-based Modelling
of Architectural Styles,” Information and Software Technology, vol.
51(12), pp. 1739-1749, 2009.

[45] C. Pahl, ”An ontology for software component matching,” International
Journal on Software Tools for Technology Transfer, vol 9(2), pp. 169-
178, 2007.

[46] M.X. Wang, K.Y. Bandara, and C. Pahl, ”Integrated constraint violation
handling for dynamic service composition,” IEEE International Confer-
ence on Services Computing, 2009, pp. 168-175.

[47] H. Boley, A. Paschke, and O. Shafiq, ”RuleML 1.0: the overarching
specification of web rules,” Lecture Notes in Computer Science. 6403,
162-178, 2010.

[48] M. Helfert, ”Challenges of business processes management in health-
care: Experience in the Irish healthcare sector.” Business Process Man-
agement Journal 15, no. 6, 937-952. 2009.

[49] S. Murray, J. Ryan, and C. Pahl. ”A tool-mediated cognitive apprentice-
ship approach for a computer engineering course,” 3rd IEEE Conference
on Advanced Learning Technologies, 2003.

[50] X. Lei, C. Pahl, and D. Donnellan, ”An evaluation technique for content
interaction in web-based teaching and learning environments,” The 3rd
IEEE International Conference on Advanced Learning Technologies
2003, IEEE, 2003.

[51] C. Pahl and H. Xiong, ”Migration to PaaS Clouds - Migration Process
and Architectural Concerns,” IEEE 7th International Symposium on
the Maintenance and Evolution of Service-Oriented and Cloud-Based
Systems MESOCA’13. IEEE. 2013.

[52] E.-E. Doberkat, W. Franke, U. Gutenbeil, W. Hasselbring, U. Lammers,
and C. Pahl, ”PROSET - a Language for Prototyping with Sets,”
International Workshop on Rapid System Prototyping, pp. 235-248. 1992.

[53] F. Fowley, C. Pahl, and L. Zhang, ”A comparison framework and review
of service brokerage solutions for cloud architectures,” 1st International
Workshop on Cloud Service Brokerage (CSB’2013). 2013.

[54] C. Pahl, ”Containerisation and the PaaS Cloud,” IEEE Cloud Comput-
ing, 2(3). pp. 24-31, 2015.

