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Abstract—Nowaydays, safety-critical systems in high-assurance
domains such as aviation or transportation need to consider
secure operation and demonstrate its reliable operation by
presenting domain-specific level of evidences. Many tools for
automated code analyses and automated testing exist to ensure
safe and secure operation; however, ensuring secure information
flows is new in the high-assurance domains. The Decentralized
Label Model (DLM) allows to partially automate, model and
prove correct information flows in applications’ source code.
Unfortunately, the DLM targets Java applications; hence, it is
not applicable for many high-assurance domains with strong real-
time guarantees. Reasons are issues with the dynamic character
of object-oriented programming or the in general uncertain
behaviors of features like garbage collectors of the commonly
necessary runtime environments. Hence, many high-assurance
systems are still implemented in C. In this article, we discuss
DLM in the context of such high-assurance systems. For this, we
adjust the DLM to the programming language C and developed
a suitable tool checker, called Cif. Apart from proving the
correctness of information flows statically, Cif is able to illustrate
the implemented information flows graphically in a dependency
graph. We present this power on generic use cases appearing
in almost each program. We further investigate use cases from
the high-assurance domains of avionics and railway to identify
commonalities regarding security. A common challenge is the
development of secure gateways mediating the data transfer
between security domains. To demonstrate the benefits of Cif, we
applied our method to such a gateway implementation. During
the DLM annotation of the use case’s C source code, we identified
issues in the current DLM policies, in particular, on annotating
special data-dependencies. To solve these issues, we extend the
data agnostic character of the traditional DLM and present our
new concept on the gateway use case. Even though this paper uses
examples from aviation and railway, our approach can be applied
equally well to any other safety-critical or security-critical system.
This paper demonstrates the power of Cif and its capability to
graphically illustrate information flows, and discusses its utility
on selected C code examples. It also presents extension to the
DLM theory to overcome identified shortcomings.

Index Terms—Security; High-Assurance; Information Flow;
Decentralized Label Model

I. INTRODUCTION

Safety-critical systems in the domains of aviation, trans-
portation systems, automotive, medical applications or indus-
trial control have to show their correct implementation with a
domain-dependent level of assurance. Due to the changing IT
environments and the increased connectivity demands in the
recent years, these system do not operate isolated anymore.

Moreover, they are subject of attacks that require additional
means to protect the security of the systems. The use cases
discussed by this article are derived by the safety and security
demands of the avionic and railway domains, both highly
restricted and controlled domains for high-assurance systems.
This article extends our previous contribution [1] on presenting
how security-typed languages can improve the code quality
and the automated assurance of correct implementation of
C programs, with use cases from both mentioned domains.
Furthermore, the paper will provide improvements to the
theory of the Decentralized Label Model (DLM); being anon
an example for security-typed technologies.

Aviation software [2] and hardware [3] have to follow strict
development processes and require certification by national
authorities. Recently, developers of avionics, the electronics
on-board of aircrafts, have implemented systems following
the concepts of Integrated Modular Avionics (IMA) [4] to
reduce costs and increase functionality. IMA achieves a system
design of safe integration and consolidation of applications
with various criticality on one hardware platform. The archi-
tecture depends on the provision of separated runtime envi-
ronments, so called partitions. Targeting security aspects of
systems, a similar architectural approach has been developed
with the concept of Multiple Independent Levels of Security
(MILS) [5]. This architectural approach depends on strict sepa-
ration of processing resources and information flow control. A
Separation Kernel [6] is a special certifiable operating system
that can provide both mentioned properties.

Apart from having such architectural approaches to han-
dle the emerging safety and security requirements for high
assurance systems, the developers also have to prove the
correct implementation of their software applications. For
safety, the aviation industry applies various forms of code
analysis [7][8][9] in order to evidently ensure correct imple-
mentation of requirements. For security, in particular on secure
information flows, the aviation industry only has limited means
available, which are not mandatory yet.

The base for secure or correct information flows in this
paper are security policies for systems that contain rules on
flow restrictions from input to outputs of the system, or fine-
grained, between variables in a program code. On secure
information flow, the DLM [10] is a promising approach.
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DLM introduces annotations into the source code. These
annotations allow to model an information flow policy directly
on source code level, mainly by extending the declaration of
variables. This avoids additional translations between model
and implementation. Tool support allows to prove the im-
plemented information flows and the defined flow policy
regarding consistency. In short, DLM extends the type system
of a programming language to assure that a security policy
modeled by label annotations of variables is not violated in
the program flow.

Our research challenge here is to apply this model to a
recurring generic use case of a gateway application. After
analyzing use cases of two high assurance industries, we
identified this use case as a common assurance challenge
in both, the avionic and railway industry. DLM is currently
available for the Java programming language [11]. Java is a
relatively strongly typed language and, hence, appears at first
sight as a very good choice. However, among other aspects the
dynamic character of object-oriented languages such as Java
introduces additional issues for the certification process [12].
Furthermore, common features such as the Java Runtime
Environment introduces potentially unpredictable and harmful
delays during execution. For high-criticality applications this
is not acceptable as they require high availability and real-
time properties like low response times. Hence, as most high-
assurance systems remain to be implemented in C, our first
task is the adaption of DLM to the C language. Then, we
leverage the compositional nature of the MILS architecture to
deliver overall security guarantees by combining the evidences
of correct information flow provided by the DLM-certified
application and by the underlying Separation Kernel. This
combination of evidences will also help to obtain security
certifications for such complex systems in the future.

In this article we will discuss the following contributions:

DLM for C language: We propose an extension of the C
language in order to express and check information flow
policies by code annotations; we discuss in Section IV
the challenges in adapting to C rather than Java.

Real Use-Case Annotations: While DLM has been success-
fully developed to deal with typical applications written
in Java, we investigate the extent to which embedded
applications written in C present other challenges. To
be concrete we study in Sections V-VI the application
of the DLM to a real-world use case from the avionic
and railway domains, namely a demultiplexer that is
present in many high security-demanding applications, in
particular in the high assurance gateway being developed
as a research demonstrator.

Graphical Representation of Information Flows: To make
information flow policies useful for engineers working
in avionics and automotive, we consider it important to
develop a useful graphical representation. To this end we
develop a graphical format for presenting the informa-
tion flows. This helps engineers to identify unspecified

flows and to avoid information leakage due to negligent
programming.

Improvements to DLM Theory: It turns out that the straight
adaptation of DLM to real source code for embedded sys-
tems written in C gives rise to some overhead regarding
code size increase. In order to reduce this overhead, we
suggest in Section IX improvements to the DLM so as to
better deal with the content-dependent nature of policies
as is typical of systems making use of demultiplexers.

This article is structured as follows: Section II discusses
recent research papers fitting to the topic of this paper. In
Section III, we introduce the DLM as described by Myers
initially. Our adaptation of DLM to the C language and the
resulting tool checker Cif are described in Section IV. In Sec-
tion V, we discuss common code snippets and their verification
using Cif. This also includes the demonstration of the graphical
information flow output of our tool. Section VI and Section VII
present the security domains inside the aviation and railway
industry to motivate our use case. Section VIII discusses this
high assurance use case identified as challenging question
of both domains. The section further connects security-typed
languages with security design principles, such as MILS.
In this chapter, we also assess our approach and identify
shortcomings in the current DLM theory. Section IX uses the
previous assessment and suggests improvements to the DLM
theory. Finally, we conclude our work in Section X.

II. RELATED WORK

Sabelfeld and Myers present in [13] an extensive survey on
research of security typed languages within the last decades.
The content of the entire paper provides a good overview to
position the research contribution of our paper.

The DLM on which this paper is based was proposed by
Myers and Liskov [10] for secure information flow in the
Java language. This model features decentralized trust relation
between security principals. Known applications (appearing to
be of mostly academic nature) are:

• Civitas: a secure voting system
• JPmail: an email client with information-flow control
• Fabric, SIF and Swift: being web applications.

In this paper, we adapt DLM to the C programming language,
extending its usage scope to high-assurance embedded systems
adopted in real-world industry.

An alternative approach closely related to ours is the Data
Flow Logic (DFL) proposed by Greve in [14]. This features
a C language extension that augments source code and adds
security domains to variables. Furthermore, his approach al-
lows to formulate flow contracts between domains. These
annotations describe an information flow policy, which can be
analyzed by a DFL prover. DFL has been used to annotate the
source code of a Xen-based Separation Kernel [15]. Whereas
Greve builds largely on Mandatory Access Control, we base
our approach on Decentralized Information Flow Control. The
decentralized approach introduces a mutual distrust among
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data owners, all having an equal security level. Hence, DLM
avoids the automatically given hierarchy of the approaches of
mandatory access control usually relying on at least one super
user.

III. DECENTRALIZED LABEL MODEL (DLM)

The DLM [10] is a language-based technology allowing to
prove correct information flows within a program’s source
code. Section III-A introduces the fundamentals of the model.
The following Section III-B focusses on the information flow
control.

A. General Model

The model uses principals to express flow policies. By de-
fault a mutual distrust is present between all defined principals.
Principals can delegate their authority to other principals and,
hence, can issue a trust relation. In DLM, principals own
data and can define read (confidentiality) and write (integrity)
policies for other principals in order to allow access to the
data. Consequently, the union of owners and readers or writers
respectively defines the effective set of readers or writers of a
data item. DLM offers two special principals:

1) Top Principal *: As owner representing the set of all
principals; as reader or writer representing the empty set
of principals, i.e., effectively no other principal except the
involved owners of this policy

2) Bottom Principal _: As owner representing the empty set
of principals; as reader or writer representing the set of
all principals.

Additional information on this are described in [16]. In
practice labels, which annotate the source code, express the
DLM policies. An example is:

i n t {Al ice−>Bob ; Al ice<− } x ;
i n t {∗−> ; ∗<−∗} y ;

Listing 1. Declaration of a DLM-annotated Variable

This presents a label definition using curly brackets as
token1. In this example the principal Alice owns the data
stored in the integer variable x for both the confidentiality
and integrity policy. The first part of the label Alice->Bob
expresses a confidentiality policy, also called reader policy. In
this example the owner Alice allows Bob to read the data. The
second part of the label expresses an integrity policy, or writer
policy. In this example it defines that Alice allows all other
principals write access to the variable x. For the declaration
of y the reader policy expresses that all principals believe that
all principals can read the data and the writer policy expresses
that all principals believe that no principal has modified the
data. Overall, this variable has low flow restrictions.

In DLM one may also form a conjunction of principals, like
Alice&Bob->Chuck. This confidentiality policy is equiva-
lent to Alice->Chuck;Bob->Chuck and means that the
beliefs of Alice and Bob have to be fulfilled [17].

1In the following we will use the compiler technology-based term token
and the DLM-based term annotation as synonyms.

B. Information Flow Control

Using these augmentations on a piece of source code, a
static checking tool is able to prove whether all beliefs ex-
pressed by labels are fulfilled. A data flow from a source to an
at least equally restricted destination is a correct information
flow. In contrast an invalid flow is detected if data flows from
a source to a destination that is less restricted than the source.
A destination is at least as restricted as the source if:

• the confidentiality policy keeps or increases the set of
owners and/or keeps or decreases the set of readers, and

• the integrity policy keeps or decreases the set of owners
and/or keeps or increases the set of writers

i n t {Al ice−>Bob ; Al ice<− }
x = 1 ;

i n t {A l i c e&Bob−>∗; A l i ce<− }
y = 0 ;

y = x ;

Listing 2. Valid Direct Information Flow

i n t {Al ice−>Bob ; Al ice<− }
x = 1 ;

i n t {A l i c e&Bob−>∗; A l i ce<− }
y = 0 ;

i f ( y == 0)
x = 0 ;

Listing 3. Invalid Implicit Information Flow

Listing 2 shows an example of a valid direct information
flow from the source variable x to the destination y. Apart
from these direct assignments, DLM is also able to detect
invalid implicit flows. The example in Listing 3 causes an
influence on variable x if the condition y == 0 is true.
Hence, depending on the value of y the data in variable x gets
modified, i.e., allowing x to observe the status of y. However,
y is more restrictive than x, i.e., x is not allowed to observe
the value of y. Thus, the flow in Listing 3 is invalid.

To analyse those implicit flows, DLM also examines each
instruction against the current label of the Program Counter
(PC). As in Java Information Flow (Jif) [18], the PC represents
the current context in the program and not the actual program
counter register. A statement is only valid if the PC is no more
restrictive than the involved variables of the statement. The PC
label is calculated for each program block and is re-calculated
at its entrance depending on the condition the block has been
entered.

IV. DECENTRALIZED LABEL MODEL (DLM) FOR C
LANGUAGE (CIF)

During our application of the DLM to the C language we run
into several challenges. The following sections provides design
choices and implementation details on our implementation.
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A. Type Checking Tool

The first step of our work was to define C annotations in
order to apply DLM to this language. An annotated C program
shall act as input for the DLM checker, in the following
called C Information Flow (Cif). Cif analyzes the program
according to the defined information flow policy. Depending
on the syntax of the annotations, the resulting C code can
no longer be used as input for usual C compilers, such as
the gcc. To still be able to compile the program, three major
possibilities for implementing the Cif are available:

1) a Cif checking tool that translates the annotated input
source code into valid C code by removing all labels

2) a DLM extension to available compilers, such as gcc
3) embedding labels into compiler-transparent comments

using /* label */

We decided for Option 1. We did not consider Option 2 to
avoid necessary coding efforts for modifying and maintaining
a specialized C compiler. We also did not take Option 3,
due to the higher error-proneness resulting from the fact that
our checker, additionally, had to decide whether a comment’s
content is a label or a comment. If a developer does not comply
with the recognition syntax for labels, the checker could
interpret actual labels as comments and omit their analysis.
In the worst case the checker could vacuously report correct
information flow for a program without carrying out any label
comparison.

For being able to analyze the C source code statically, the
first step in the tool chain is to resolve all macro definitions and
to include the header files into one file. Fortunately, this step
can be performed by using the gcc, since the compiler does not
perform a syntax verification during the macro replacement.
The resulting file then is used as input for our Cif checking
tool. If Cif does not report any information flow violation,
the tool will create a C-compliant source code by removing
all annotations. Additional source code verifications, e.g., by
Astrée [8], or the compilation for the final binary process on
this plain C source file.

B. Syntax Extension of C Language

For the format and semantics of annotations, we decided to
adapt the concepts of Jif [18], the DLM implementation for
Java. So, we use curly brackets as token for the labels. For
variable declarations, these labels have to be placed in between
the type indicator and the name of the variable (cf. Listing 1).
Compared to the reference implementation of Jif, in Cif we
additionally had to deal with pointers of the C language. We
annotate and handle pointers the same way as usual variables,
i.e., when using a pointer to reference to an array element
or other values, the labels of pointer and target variable
have to match accordingly to DLM. However, Cif does not
monitor overflows or invalid references whose detection calls
for pointer calculations. We expect that additional tools (e.g.,
Astrée [8]) detect such coding errors. This tool is already used
successfully for checking code of avionic equipment.

In addition to the new label tokens, we extended the syntax
of the C language with five further tokens:

principal p1, ..., pn: This token announces all used princi-
pals to the Cif.

actsFor(p, q): This token statically creates a trust relation that
principal p is allowed to act for principal q in the entire
source code.

declassify(variable, {label}): This token allows to loosen a
confidentiality policy in order to relabel variables if re-
quired. Cif checks whether the new confidentiality policy
is less restrictive than the present one.

endorse(variable, {label}): This token allows to loosen an
integrity policy in order to relabel variables if required.
Cif checks whether the new integrity policy is less
restrictive than the present one.

PC bypass({label}): This token allows to relabel the PC
label without further checks of correct usage.

C. Function Declaration

In the C language functions can have a separate declaration
called prototype. For the declaration of functions and proto-
types, we also adapted the already developed concepts from
Jif. In Jif a method (the representation for a function in object-
oriented languages) has four labels:

1) Begin Label defines the side effects of the function
like accesses to global variables. The begin label is the
initial PC label for the function’s body. From a function
caller’s perspective the current caller’s PC label needs to
be no more restrictive than the begin label of the called
function.

2) Parameter Labels define for each parameter the corre-
sponding label. From a caller’s perspective these param-
eter labels have to match with the assigned values.

3) Return Label defines the label of the return value of the
function. In Cif, a function returning void cannot have a
return label. From a caller’s perspective the variable that
receives the returned value needs to be at least equally
restrictive as the return label.

4) End Label defines a label for the caller’s observation how
the function terminates. Since C does not throw excep-
tions and functions return equally every time, we omitted
verifications of end labels in our Cif implementation.

Listing 4 shows the syntax for defining a function prototype
with label annotations in Cif.

The definition of function labels regarding their optional
prototype labels needs to be at least as restrictive, i.e., Cif
allows functions to be more restrictive than their prototypes.
All labels are optional augmentation to the C syntax. If the
developer does not insert a label, Cif will use meaningful
default labels that basically define the missing label most
restrictively. Additionally, we implemented a label inheritance,
which allows to inherit the real label of a caller’s parameter
value to the begin label, return label or other parameter labels
of the function. This feature is useful for the annotation of



195

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 1. Legend for Flow Graphs

return label︷ ︸︸ ︷ inherited begin label︷ ︸︸ ︷ parameter label︷ ︸︸ ︷ end label︷ ︸︸ ︷
i n t {Al ice−>Bob} f unc {param} ( i n t {Al ice−>∗} param ) : {Al ice −>∗};

Listing 4. Definition of a function with DLM annotations in Cif.

system library functions, such as memcpy(...) that are used
by callers with divergent parameter labels and can have side
effects on global variables. At this stage Cif does not support
the full inheritance of parameter labels to variable declarations
inside the function’s body.

D. Using System Libraries

Developers use systems libraries in their applications not
only for convenience (e.g., to avoid reimplementation of com-
mon functionality) but also to perform necessary interaction
with the runtime environment and the underlying operating
system.

Hence, the system library provides an interface to the
environment of the application, which mostly is not under the
assurance control of the application’s programmer. However,
the code executed by library functions can heavily affect
and also violate an application’s information flow policy.
Consequently, a system library needs to provide means for
its functions to express the applied information flow policy
and evidences to fully acknowledge this policy internally. In
the best case, these evidences are also available by using our
DLM approach. For Jif, the developers have annotated parts of
the Java system library with DLM annotations that provide the
major data structures and core I/O operations. Unfortunately,
these annotations and its checks applied to all library functions
demand many working hours and would exceed the available
resource of many C development projects and, in particular,
this research study. Luckily, other methods are conceivable,
e.g., to gain evidences by security certification efforts of the
environment. For our use case, the system software (a special
Separation Kernel) was under security certification at the time
of this study. Assuming the certification will be successful,
we can assume its internals behave as specified. Furthermore,
the research community worked on the formal specification
and verification of Separation Kernels intensively, allowing us
to trust the kernel if such methods have been applied [19],
[20], [21]. However, we still had to create a special version
of the system library’s header file. This header file contains
DLM-annotated prototype definitions of all functions of the
Separation Kernel’s system library. The Cif checker takes this
file as optional input.

V. USE CASES

This section demonstrates the power of Cif by explaining
usually appearing code snippets. For all examples Cif verifies
the information flow modeled with the code annotations. If the
information flow is valid according to the defined policy, Cif
will output an unlabeled version of the C source code and a
graphical representation of the flows in the source code. The
format of this graphical representation is “graphml”, hence,
capable of further parsing and easy to import into other tools as
well as documentation. Figure 1 shows the used symbols and
their interpretations in these graphs. In general, the # symbol
and its following number indicates the line of the command’s
or flow’s implementation in the source code.

A. Direct Assignment

Listing 5 presents the first use case with a sequence of
normal assignments.

1 p r i n c i p a l Al i ce , Bob , Chuck ;
2
3 void main { −> ;∗<−∗} ( )
4 {
5 i n t {Al ice−>Bob , Chuck} x = 0 ;
6 i n t {Al ice−>Bob} y ;
7 i n t {Al ice−>∗} z ;
8
9 y = x ;

10 z = y ;
11 z = x ;
12 }

Listing 5. Sequence of Valid Direct Flows

In this example x is the least restrictive variable, y the second
most restrictive variable and z the most restrictive variable.
Thus, flows from x → y, y → z and x → z are valid. Cif
verifies this source code successfully and create the graphical
flow representation depicted in Figure 2.

B. Indirect Assignment

Listing 6 shows an example of invalid indirect information
flow. Cif reports an information flow violation, since all flows
in the compound environment of the true if statement need to
be at least as restrictive as the label of the decision variable
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Fig. 2. Flow Graph for Listing 5

z. However, x and y are less restrictive and, hence, a flow
to x is not allow. Additionally, this example shows how Cif
can detect coding mistakes. It is obvious that the programmer
wants to prove that y is not equal to 0 to avoid the Divide-by-
Zero fault. However, the programmer puts the wrong variable
in the if statement. Listing 7 corrects this coding mistake.
For this source code, Cif verifies that the information flow is
correct. Additionally, it generates the graphical output shown
in Figure 3.

1 p r i n c i p a l Al i ce , Bob ;
2
3 void main { −> ;∗<−∗} ( )
4 {
5 i n t {Al ice−>Bob} x , y ;
6 i n t {Al ice−>∗} z = 0 ;
7
8 i f ( z != 0) {
9 x = x / y ;

10 }
11 z = x ;
12 }

Listing 6. Invalid Indirect Flow

1 p r i n c i p a l Al i ce , Bob ;
2
3 void main { −> ;∗<−∗} ( )
4 {
5 i n t {Al ice−>Bob} x , y ;
6 i n t {Al ice−>∗} z = 0 ;
7
8 i f ( y != 0) {
9 x = x / y ;

10 }
11 z = x ;
12 }

Listing 7. Valid Indirect Flow

Remarkable in Figure 3 is the assignment operation in line 9,
represented inside the block environment of the if statement
but depending on variables located outside of the block. Hence,
Cif parses the code correctly. Also note, in the graphical
representation z depends on input of x and y, even if the
source code only assigns x to z in line 11. This relation is also

Fig. 3. Flow Graph for Listing 7

depicted correctly, due to the operation in line 9 on which y
influences x and, thus, also z indirectly.

Another valid indirect flow is shown in Listing 8. Interesting
on this example is the proper representation of the graphical
output in Figure 4. This output visualizes the influence of z
on the operation in the positive if environment, even if z is
not directly involved in the operation.

1 p r i n c i p a l Al i ce , Bob ;
2
3 void main { −> ;∗<−∗} ( )
4 {
5 i n t {Al ice−>Bob} x , y , z ;
6
7 i f ( z != 0) {
8 x = x + y ;
9 }

10 }
Listing 8. Valid Indirect Flow

Fig. 4. Flow Graph for Listing 8

C. Function Calls

A more sophisticated example is the execution of functions.
Listing 9 shows a common function call using the inheritance
of DLM annotations. Line 3 declares the function. The label
{a} signals the DLM interpreter to inherit the label of the
declared parameter when calling the function; i.e., the label of
parameter a for both, the label of parameter b and the return
label. Essentially, this annotation of the function means that
the data labels keep their restrictveness during the execution
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of the function. Line 14 and line 15 call the function twice
with different parameters. The graphical representation of this
flow in Figure 5 identifies the two independent function calls
by the different lines of the code in which the function and
operation is placed.

1 p r i n c i p a l Al i ce , Bob ;
2
3 f l o a t {a} f unc ( i n t {Al ice−>Bob} a ,

f l o a t {a} b )
4 {
5 re turn a + b ;
6 }
7
8 i n t {∗−>∗} main { −> } ( )
9 {

10 i n t {Al ice−>Bob} y ;
11 f l o a t {Al ice−>Bob} x ;
12 f l o a t {Al ice−>∗} z ;
13
14 x = func ( y , x ) ;
15 z = func ( y , 0 ) ;
16
17 re turn 0 ;
18 }

Listing 9. Valid Function Calls

Fig. 5. Flow Graph for Listing 9

D. Declassify, Endorse and Bypassing the PC

1) Using Declassify and Endorse: Strictly adhering to the
basic rules of DLM incurs the label-creeping problem [13];
the developer has to make information flow to more and
more restrictive destinations. This unavoidably leads to the
situation that information will be stored in the most restrictive
variable and is not allowed to flow to some lower restricted
destinations. Hence, sometimes developers need to manually
declassify (for confidentiality) or endorse (for integrity) vari-
ables in order to make them usable for some other parts
of the program. These intended breaches in the information

flow policy need special care in code reviews and, hence,
it is desirable that our Cif allows the identification of such
sections in an analyzable way. Listing 10 provides an example
using both, the endorse and declassify statement. To allow
an assignment of a to b in line 9 an endorsement of the
information stored in a is necessary. The destination b of
this flow is less restrictive in its integrity policy than a, since
Alice restricts Bob to not modify b anymore. In line 10, we
perform a similar operation with the confidentiality policy. The
destination c is less restrictive than b, since Alice believes
for b that Bob cannot read the information, while Bob can
read c.

The graphical output in Figure 6 depicts both statements
correctly, and marks them with a special shape and color
in order to attract attention to these downgrading-related
elements.

1 p r i n c i p a l Al i ce , Bob ;
2
3 void main { −> ;∗<−∗} ( )
4 {
5 i n t {Al ice−>∗; A l i ce<−Bob} a ;
6 i n t {Al ice−>∗; A l i ce <−∗} b ;
7 i n t {Al ice−>Bob ; Al ice <−∗} c ;
8
9 b = e n d o r s e ( a , {Al ice−>∗;

A l i ce <−∗}) ;
10 c = d e c l a s s i f y ( b , {Al ice−>Bob ;

Al ice <−∗}) ;
11 }

Listing 10. Endorse and Declassify

Fig. 6. Flow Graph for Listing 10

2) Bypassing the PC label: In the example of Listing 11
we use a simple login function to prove a user-provided uID
and pass against the stored login credentials. If the userID
and the password match, a global variable loggedIn is set
to 1 to signal other parts of the application that the user is
logged-in. The principal System owns this status variable
and represents the only reader of the variable. The principal
User owns both input variables uID and pass. The interesting
lines of this example are lines 16–18, i.e., the conditional block
that checks whether the provided credentials are correct and
change the status variable loggedIn. Note, that this examples
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also presents Cif’s treatment of pointers on the strcmp
function. Due to the variables in the boolean condition of
the if statement, the PC label inside the following block
is System-> & User->. However, this PC is not more
restrictive than the label of loggedIn labeled with System->.
Hence, Cif would report an invalid indirect information flow
on this line. To finally allow this light and useful violation
of the information flow requirement, the programmer needs
to manually downgrade or bypass the PC label as shown
in line 17. In order to identify such manual modifications of
the information flow policy, Cif also adds this information in
the generated graphical representation by using a red triangle
indicating the warning (see Figure 7). This shall enable code
reviewers to identify the critical sections of the code to perform
their (manual) review on these sections intensively.

1 p r i n c i p a l User , System ;
2
3 i n t {System−>∗} l o g g e d I n = 0 ;
4
5 i n t {∗−>∗} s t r c mp {∗−>∗}

( c o n s t char {∗−>∗} ∗ s t r 1 ,
c o n s t char {∗−>∗} ∗ s t r 2 )

6 {
7 f o r ( ; ∗ s t r 1 ==∗ s t r 2 && ∗ s t r 1 ; s t r 1 ++ ,

s t r 2 ++) ;
8 re turn ∗ s t r 1 − ∗ s t r 2 ;
9 }

10
11 void checkUser {System−>∗}

( c o n s t i n t {User−>∗} uID ,
c o n s t char {User−>∗} ∗ c o n s t p a s s )

12 {
13 c o n s t i n t {System−>∗} regUID = 1 ;
14 c o n s t char {System−>∗} c o n s t

r e g P a s s [ ] = ” ” ;
15
16 i f ( regUID == uID &&

! s t r c mp ( r e g P a s s , p a s s ) ) {
17 PC bypass ({ System−>∗}) ;
18 l o g g e d I n = 1 ;
19 }
20 }

Listing 11. Login Function

VI. USE-CASE: THE AVIONICS SECURITY DOMAINS

Due to their diversity in functions and criticality on the
aircraft’s safety, on-board networks are divided into security
domains. The ARINC standards (ARINC 664 [22] and AR-
INC 811[23]) define four domains also depicted in Figure 8:

1. Aircraft Control: The most critical domain hosting sys-
tems that support the safe operation of the aircraft, such
as cockpit displays and system for environmental or
propulsion control. This domain provides information to
other (lower) domains but does not depend on them.

2. Airline Information Services: This domain acts as secu-
rity perimeter between the Aircraft Control Domain and

Fig. 7. Flow Graph for Listing 11

lower domains. Among others it hosts systems for crew
information or maintenance.

3. Passenger Information and Entertainment Services:
While being the most dynamic on-board domain
regarding software updates, this domain hosts systems
related to the passenger’s entertainment and other
services such as Internet access.

4. Passenger-owned Devices: This domain hosts mobile sys-
tems brought on-board by the passengers. They may con-
nect to aircraft services via an interface of the Passenger
Information and Entertainment Services Domain.

To allow information exchange between those domains,
additional security perimeters have to be in place to control
the data exchange. Usually, information can freely flow from
higher critical domains to lower critical domains. However,
information sent by lower domains and processed by higher
domains need to be controlled. This channel is more and more
demanded, e.g., by the use case of the maintenance interface
that is usually hosted within the Airline Information Service
Domain but also should be used for updating the Aircraft
Control Domain. For protecting higher domains from the threat
of vulnerable data a security gateway can be put in service
in order to assure integrity of the higher criticality domains.
This security gateway examines any data exchange and assures
integrity of the communication data and consequently of the
high integrity domain. Since this gateway is also a highly
critical system, it requires similar design and implementation
assurances regarding safety and security as the systems it
protects.

VII. USE-CASE: THE RAILWAY SECURITY DOMAINS

The railway industry needs to protect the integrity and avail-
ability of their control network, managing signals, positions
of trains and driving parameters of trains. Hence, also the
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AIRCRAFT SECURITY DOMAINS
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Flight Support

Cabin Support
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Air-Ground
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(PDAs, Mobile Phones)

Gaming Devices
(PSP, ...)

...

Computing Devices
(Notebooks, PC, ...)

Fig. 8. Avonic Security Domains as defined by ARINC 664 [22] and ARINC 811 [23].

railway industry has categorized their systems and interfaces
into security domains.

Railway control consists of several domains from control
centers over interlocking systems to field elements all inter-
acting in one way or the other with onboard systems. For
interlocking, DIN VDE V 0831-104 [24] defines a typical ar-
chitecture from a security zone perspective, which is depicted
in Figure 9.

For interlocking, Figure 9 shows that different levels of
maintenance and diagnosis are needed. Local maintenance
interacts via a gateway (demilitarized zone) with control
elements interlocking logic, operator computers and field ele-
ments Considering in this example the diagnosis information,
the diagnosis database needs a method for data acquisition
without adding risks of propagating data into the interlocking
zone. To implement this, a simple diode-based approach is
deemed sufficient. Remote diagnosis is more complicated with
access to diagnosis as well as the interlocking zone, but
again using gateways to access control elements (interlocking,
operator, and field element computers).

This example of accessing interlocking for diagnosis and
maintenance purposes reflects the potential need for security
gateways. In case of operation centers where many interlock-
ings are controlled and monitored remotely, similar security
measure are to be taken if connected via open networks.
Similarly if within different interlockings communication runs
over open networks, encryption and potentially also gateway
approaches may be needed.

In current and future signalling, control and train protection
systems such as European Train Control System (ETCS)
level 2 or higher security aspects need to consider aspects
of wireless communication and – similarly to approaches
described above – need to protect different system components
and systems.

Fig. 9. Railway Security Zones [24]

VIII. THE MILS GATEWAY

The avionic and railway use case share one major common-
ality regarding security. Both industries elaborated security
classifications for their systems; depending on the criticality
and users systems are categorized into security domains.
However, systems of these security domains mostly cannot
operate independent but often demand data from systems of
other domains. For example, services of the avionic Passenger
Information and Entertainment Services domain need data
from systems of the Aircraft Control domain, such as the
altitude and position of the aircraft for enabling or disabling
the on-board WiFi network due to regulations by governmental
authorities. In railway an example for data exchange is the
external adjustment of the maximum allowed train speed,
triggered by the train network operator. To still protect a
domain against invalid accesses or malicious data, control
instances such as Secure Network Gateways are deployed.
These gateways mediate and control the data exchange on
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the domain borders and filter the data according to a defined
information flow policy.

In previous work we have introduced a Secure Network
Gateway [25] based on the MILS approach.

The MILS architecture, originally introduced in [26] and
further refined in [5], is based on the concept of spatial
and temporal separation connected with controlled information
flow. These properties are provided by a special operating
system called a Separation Kernel. MILS systems enable one
to run applications of different criticality integrated together
on one hardware platform.

Leveraging these properties the gateway is decomposed into
several subfunctions that operate together in order to achieve
the gateway functionality. Figure 10a shows the partitioned
system architecture. The benefit of the decomposition is the
ability to define local security policies for the different gateway
components. The system components themselves run isolated
among each other within the provided environments of a
Separation Kernel. Using a Separation Kernel as a founda-
tional operating system guarantees non-interference between
the identified gateway subfunctions except when an interaction
is granted. Hence, the Separation Kernel provides a coarse
information flow control in order to prove which component
is allowed to communicate to which other component. How-
ever, within the partition’s boundaries the Separation Kernel
cannot control the correct implementation of the defined local
information flow policy. This paper presents a new concept of
connecting MILS with the DLM in order to fill this gap and
to provide system-wide evidence of correct information flows.

In comparison to our unidirectional gateway of [25] com-
prising just two partitions to perform information flow control
on very basic protocols only, our improved gateway is com-
posed of four major logical components (cf. also Figure 10a):

1) The Receiver Compo-
nents

2) Filter Component(s)*
3) The Transmitter Compo-

nents
4) Health Monitoring and

Audit Component*
* (not depicted in Figure 10a)

Figure 10b extracts the internal architecture of the Receiver
Component being a part of our gateway system. The task of
this component is to receive network packets from a physical
network adapter, to decide whether the packet contains TCP or
UDP data, and to parse and process the protocols accordingly.
Hence, this component is composed of three subfunctions
hosted in three partitions2 of the Separation Kernel:

1) DeMux: Receiving network packets from the physical
network adapter, and analyzing and processing the data
traffic on lower network protocol levels (i.e., Ethernet/-
MAC and IPv43)

2A partition is a runtime container in a Separation Kernel that guarantees
non-interfered execution. A communication channel is an a priori defined
means of interaction between a source partition and one or more destination
partitions.

3For the following we assume our network implements Ethernet and IPv4,
only.

2) TCP Decoder: Analysing and processing of identified
TCP packets

3) UDP Decoder: Analysing and processing of identified
UDP packets

The advantage of this encapsulation of subfunctionality into
three partitions is the limitation of possible attack impacts and
fault propagation. Generally, implementations of TCP stacks
are considered more vulnerable to attacks than UDP stacks,
due to the increased functionality of the TCP protocol com-
pared to the UDP protocol. Hence, the TCP stack implemented
in the TCP Decoder can be assumed as more vulnerable. A
possible attack vector to a gateway application is to attack
the TCP stack in order to circumvent or to perform denial-of-
service on the gateway. If all three subfunctions run inside one
partition, the entire Receiver Component would be affected
by a successful attack on the TCP stack. However, in this
distributed implementation using the separation property of the
Separation Kernel only the TCP Decoder would be affected
by a successful attack. A propagation of the attack impact (or
fault) to the UDP Decoder or DeMux is limited due to the
security properties of the Separation Kernel.

Further developing the gateway example, the strength of
using DLM is to assure a correct implementation of the
demultiplexer running in the DeMux partition. Considering the
C code in Listing 12 the essential part of the demultiplexer
requires the following actions:

• Line 2 and line 3 define the prototypes of the functions
that send the data to the subsequent partitions using either
channel TCP data or channel UDP data of Figure 10b.

• Line 5 defines the structure of the configuration array
containing an integer value and a function-pointer to one
of the previously defined functions.

• The code snippet following line 11 configures the demul-
tiplexer by adding tuples for the TCP and UDP handlers
to the array. The integer complies with the RFC of the
IPv4 identifying the protocol on the transport layer.

• Line 29 implements the selection of the correct handler
by iterating to the correct element of the configuration
array and comparing the type field of the input packet
with the protocol value of the configuration tuples. Note
that the loop does not contain any further instructions due
to the final ‘;’.

• The appropriate function is finally called by line 32.

A. DLM Applied to the Gateway Use Case

We consider again the use case presented in Figure 10b. In
order to use DLM for the DeMux of the Receiver Component
an annotation of Listing 12 is needed. Listing 13 shows this
annotated version. The graphical representation is depicted in
Figure 11.

• Line 1 announces all used principals of this code segment
to the Cif checker.

• In line 3 and line 4 we label the begin label and the data
parameter of the two prototype declarations with labels
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(a) Global system architecture (b) The Receiver Component is a function composed of three
partitions.

Fig. 10. MILS Gateway Architecture. Blue boxes indicate partitions.
The Separation Kernel assures partition boundaries and communication channels (arrowed lines).

that either principal TCP or principal UDP owns the data
starting with the time the function is called.

• The definition of the input buffer in line 13 receives also
a label. For the confidentiality policy the data is owned
by the Ethernet, since data will be received from the
network and we assume it is an Ethernet packet. This
owner Ethernet allows both TCP and UDP to read its
data. The integrity policy of line 13 is a bit different. The
top principal can act for all principals and, hence, the data
is owned by all principals. However, all principals assume
that only Ethernet has modified the data. This assumption
is correct, since data is received from the network.

• The main function of our program (line 15) now contains
a begin label. This label grants the function to have a
side effect on the global INPUT variable (i.e., the input
buffer).

• Due to our language extension we had to replace the more
elegant for loop (cf. line 29 in Listing 12) by a switch-case
block (cf. line 17)). Within each case branch, we have
to relabel the data stored in INPUT in order to match
the prototype labels of line 3 or line 4 accordingly. The
first step of this relabeling is a normal information flow
by adding TCP (or UDP) as owner to the confidentiality
policy and integrity policy (cf. line 20 and line 28). This
step is performed compliantly to the DLM defined in
Section III-B. Then, we bypass the PC label in order to
change to the new environment and to match the begin

label of the associated decoder function (cf. line 21 and
line 29). As a second relabeling step, we still need to
remove the principal Ethernet from the confidentiality
and integrity policies. Removing this principal does not
comply with the allowed information flow of DLM, since
both resulting policies are less restrictive than the source
policies. Hence, we have to declassify (for the confiden-
tiality policy) and endorse (for the integrity policy) by
using the statements of line 22 and line 30.

• Finally we can call the sending functions in line 23 and
line 31 accordingly.

1 p r i n c i p a l E t h e r n e t , UDP, TCP ;
2
3 TCP SendDecode {TCP−>∗; TCP<−∗} ( void {TCP

−>∗; TCP<−∗} ∗ d a t a ) ;
4 UDP SendDecode {UDP−>∗; UDP<−∗} ( void {UDP

−>∗; UDP<−∗} ∗ d a t a ) ;
5
6 s t a t i c union {
7 s t r u c t {
8 /∗ [ . . . ] f u r t h e r f i e l d s o f p r o t o c o l s

∗ /
9 char p r o t o c o l ;

10 /∗ [ . . . ] f u r t h e r f i e l d s o f p r o t o c o l s
∗ /

11 } u ;
12 char buf [0 x f f f f ] ;
13 } { E t h e r n e t−>TCP , UDP; ∗<−E t h e r n e t } INPUT ;
14
15 i n t main { E t h e r n e t−>TCP , UDP; ∗<−E t h e r n e t }
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1 /∗ DECLARATION ∗ /
2 TCP SendDecode ( void ∗ d a t a ) ;
3 UDP SendDecode ( void ∗ d a t a ) ;
4
5 t y p e d e f s t r u c t {
6 char p r o t o c o l ;
7 void (∗ f unc ) ( void ∗ d a t a ) ;
8 } DeMux ;
9

10 /∗ CONFIGURATION ∗ /
11 s t a t i c DeMux h a n d l e r [ ] = {
12 { 0x06 , &TCP SendDecode } , / / 0 x06

i n d i c a t e s TCP i n IPv4
13 { 0x11 , &UDP SendDecode } , / / 0 x11

i n d i c a t e s UDP i n IPv4
14 { 0x00 , 0 } / / f i n a l e n t r y
15 } ;
16
17 union { s t r u c t {
18 /∗ [ . . . ] f u r t h e r f i e l d s o f p r o t o c o l s

∗ /
19 char p r o t o c o l ;
20 /∗ [ . . . ] f u r t h e r f i e l d s o f p r o t o c o l s

∗ /
21 } u ;
22 char buf [0 x f f f f ] ;
23 } INPUT ;
24
25 i n t main ( ) {
26 /∗ [ . . . ] l oad da ta from ne twork i n t o

INPUT ∗ /
27 /∗ PROCESSING ∗ /
28 DeMux∗ i t r = 0 ;
29 f o r ( i t r = h a n d l e r ; i t r −>p r o t o c o l != 0 &&
30 i t r −>p r o t o c o l != INPUT . u . p r o t o c o l ; i t r

++) ;
31 i f ( i t r −>f unc != 0)
32 (∗ i t r −>f unc ) ( INPUT ) ;
33 e l s e
34 E r r o r ( ) ;
35 }

Listing 12. Demultiplexer of the Receiver Component

( ) {
16 /∗ [ . . . ] l oad da ta from ne twork i n t o

INPUT ∗ /
17 sw i t ch ( INPUT . u . p r o t o c o l ) {
18 case 0x06 : /∗ 0 x06 i n IPv4 i n d i c a t e s

TCP ∗ /
19 {
20 void { E t h e r n e t & TCP−>∗; TCP<−

E t h e r n e t } ∗ p t r = INPUT . buf ;
21 PC bypass ({TCP−>∗; TCP<−∗}) ;
22 void {TCP−>∗; TCP<−∗} ∗ t c p = e n d o r s e

( d e c l a s s i f y ( p t r , {TCP−>∗; TCP<−
E t h e r n e t } ) , {TCP−>∗; TCP<−∗}) ;

23 TCP SendDecode ( t c p ) ;
24 break ;
25 }
26 case 0x11 : /∗ 0 x11 i n IPv4 i n d i c a t e s

UDP ∗ /
27 {
28 void { E t h e r n e t & UDP−>∗; UDP<−

E t h e r n e t } ∗ p t r = INPUT . buf ;

29 PC bypass ({UDP−>∗; UDP<−∗}) ;
30 void {UDP−>∗; UDP<−∗} ∗udp = e n d o r s e

( d e c l a s s i f y ( p t r , {UDP−>∗; UDP<−
E t h e r n e t } ) , {UDP−>∗; UDP<−∗}) ;

31 UDP SendDecode ( udp ) ;
32 break ;
33 }
34 d e f a u l t :
35 {
36 E r r o r ( ) ;
37 }
38 }
39 }

Listing 13. Annotated Receiver Component

Clearly, Figure 11 indicated six warnings inside the source
code by the red triangle. The bypass of the PC label in
line line:cif-tcp-bypass and line line:cif-udp-bypass reason two
of these warnings. The remaining four warnings are due
to the endorse and declassification (two each) of the DLM
information flow policy in order to allow the assignments
in line 22 and line 30. As DLM provides information flow
assurance, code reviewers just need to concentrate on these
indicated sections of the code to perform manual validation.
The remaining source code is validated thanks to the DLM

Using the presented technology we also annotate other criti-
cal gateway components hosted in other partitions of the MILS
system. The Cif tool is able to process all needed C language
features of our implementation, e.g., loops, decision branches,
switch-case blocks, function calls, pointer arithmetics, and also
function pointers as long as their DLM policy is homogeneous
(cf. Section IX). Since the tool does not report information
flow violations of the local defined policies, we gain addi-
tional evidence of the correct implementation of the gateway’s
components. Together with the defined MILS information flow
policy ensured by the Separation Kernel we can assure a
correct implementation of the system-wide information flow.
Currently, we have still had to map both evidences manually
for developing the prove of concept. Future planning of our
implementation involves to automatically combine both steps.

IX. ENHANCING THE DECENTRALIZED LABEL MODEL

A. Assessment of DLM applied to the Gateway Use Case

The application of DLM to the gateway use case identified
some advantages and disadvantages. The advantages are on
easing the assurance process and on the improved identifica-
tion of code flaws, being more detailed:

Automatic Proof of Correct Information Flows: The pre-
sented source code in Listing 13 complies with a formally
proven information flow model, the DLM. The proof of
this properties of complient information flows could be
achieved automatically with tool support. Hence, it can be
considered as highly assured that the present information
flows are correct. The graphical representatio clearly
identifies code sections that endorsing or declassifying the
modeled information flow policy. This allows to reduce
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Fig. 11. DLM Information Flows in the Demultiplexer of the MILS Gateway implemented by Listing 13.

efforts for code reviews, as the reviewers can focus on
these parts of the code. In contrast, all the code in
Listing 12 requires detailed and manual code review in
order to provide the same level of assurances.

Increased Robustness against Coding Flaws: Compared to
Listing 12, the DLM-inducted code snippet of Listing 13
is more robust against coding flaws. Imagine a distracted
programmer swaps the two function pointers in the con-
figuration array of Listing 12. This modification will
result in a probably hardly debugable runtime error, since
UDP traffic will now be sent to the TCP Decoder and the
other way around. In contrast, if swapping the function
calls of line 23 and line 31 of Listing 13 the Cif checker
will raise an information flow breach due to the invalid
labels of the function call and the labels of the parameter.
Hence, this DLM allows detection of possible runtime
errors before compilation.

Contrary, the following disadvantages have been identified:

Larger Code Size: Comparing both demultiplexer imple-
mentations of Listing 12 and Listing 13 it is obvious
that the DLM-inducted version increases the code size
due to the different employed programming styles. In
the former, we use a table-based programming tech-
nique (see the for loop) whereas in the latter we use
a code-based programming technique (see the switch
statement). Another reasons for the bigger foot print is
the relabeling directives within the case blocks. This
relabeling introduces new variables and statements that
are only required for inducting DLM. From a program
control flow perspective, those statements are useless and
(hopefully) detected and removed by the compiler during
optimization.

Reduced Readability: The label annotations of DLM itself
form another disadvantage. Their introduction may re-
duce readability of the code due to the unusuality of
their use. However, using DLM increases the level of

automation in providing assurance, and thus, the need of
manual code review. The best case avoids manual code
reading entirely.

Considering the identified disadvantages, we elaborate on a
solution to reduce the code size by extending DLM to allow
expressing DLM policies on the table-based programming
technique of Listing 12.

B. Extensions to the DLM

Based on [27], [28] we will now describe a possible exten-
sion of Cif intended to overcome the shortcoming. Listing 14
displays the resulting code. It should be clear that it is rather
close to that of Listing 12; a similar version could be developed
for Listing 13.

1 /∗ DECLARATION ∗ /
2 p r i n c i p a l E t h e r n e t , UDP, TCP ;
3
4 p o l i c y GatewayHandler
5 = ( s e l f . p r o t o c o l ==0x06 =>
6 s e l f . f unc =={TCP−>∗; TCP<−∗} ( void {TCP−>∗;

TCP<−∗} ∗ ) )
7 && ( s e l f . p r o t o c o l ==0x11 =>
8 s e l f . f unc =={UDP−>∗; UDP<−∗} ( void {UDP−>∗;

UDP<−∗} ∗ ) ) ;
9

10 p o l i c y Gateway
11 = ( s e l f . p r o t o c o l ==0x06 => s e l f =={TCP−>∗;

TCP<−∗})
12 && ( s e l f . p r o t o c o l ==0x11 => s e l f =={UDP−>∗;

UDP<−∗}) ;
13
14 TCP SendDecode {TCP−>∗; TCP<−∗} ( void {TCP

−>∗; TCP<−∗} ∗ d a t a ) ;
15 UDP SendDecode {UDP−>∗; UDP<−∗} ( void {UDP

−>∗; UDP<−∗} ∗ d a t a ) ;
16
17 t y p e d e f s t r u c t {
18 char p r o t o c o l ;
19 void (∗ f unc ) ( void ∗ d a t a ) ;
20 } {GatewayHandler} DeMux ;
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21
22 /∗ CONFIGURATION ∗ /
23 s t a t i c DeMux {GatewayHandler} h a n d l e r [ ] =

{
24 { 0x06 , &TCP SendDecode } ,
25 { 0x11 , &UDP SendDecode } ,
26 { 0x00 , 0}
27 } ;
28
29 union {
30 s t r u c t {
31 /∗ [ . . . ] f u r t h e r p r o t o c o l f i e l d s ∗ /
32 char p r o t o c o l ;
33 /∗ [ . . . ] f u r t h e r p r o t o c o l f i e l d s ∗ /
34 } u ;
35 char buf [0 x f f f f ] ;
36 } {Gateway} INPUT ;
37
38 i n t main ( ) {
39 /∗ [ . . . ] l oad da ta from ne twork i n t o

INPUT ∗ /
40 /∗ and i f n e c e s s a r y d e c l a s s i f y t o g i v e

i t t h e r i g h t t y p e ∗ /
41
42 /∗ PROCESSING ∗ /
43 DeMux∗ i t r = 0 ;
44 f o r ( i t r = h a n d l e r ; i t r −>p r o t o c o l != 0x00

&& i t r −>p r o t o c o l != INPUT . u .
p r o t o c o l ; i t r ++) ;

45 i f ( i t r −>p r o t o c o l != 0 )
46 (∗ i t r −>f unc ) ( INPUT ) ;
47 e l s e
48 /∗ N e i t h e r a TCP nor UDP p a c k e t −−>

ERROR ∗ /
49 }

Listing 14. Annotated Receiver Component in Enhanced DLM

The basic idea is to extend DLM with policies that depend
on the actual values of data. Consider the Gateway policy
defined in line 10 onwards. The intention is that the entire field
should obey the policy {TCP->*; TCP<-*} in case the
protocol component (INPUT.u.protocol) equals 0x06; it should
obey the policy {UDP->*; UDP<-*} in case the protocol
component equals 0x11; and if the protocol component has
a value different from 0x06 and 0x11 no requirements are
imposed on the entire field.

The general form of the syntax used is to let policies be
constructed according to the following grammar:

policy ::= field==DLMpolicy
| policy && policy
| policy || policy
| condition => policy
| condition && policy | · · ·

condition ::= field==value
| condition && condition | · · ·

field := self | field.component
DLMpolicy := as previously used but extended to

function types

Here => denotes implication, && denotes conjunction, and
|| denotes disjunction. The identifier self is a reserved
token for the data structure in question and component lists
possible components.

To make use of such extended policies one needs to track
not only the DLM policies and the types pertaining the data
but also to track the information about the values of data that
can be learnt from the various tests, branches and switches
being performed in the program. The development in [27][28]
achieves this by combining a Hoare logic for tracking the
information about the values of data with the DLM policies
and allows us to validate the code snippet in Listing 14.

This suffices for solving two shortcomings discussed above.
First, it reduces the need to use declassification and PC bypass
for adhering to the policy thereby reducing the need for
detailed code inspection. Second, it permits a more permissive
programming style that facilitates the adoption of our method
by programmers.

From an engineering point of view, the ease of use of
conditional policies are likely to depend on the style in which
the conditional policies are expressed. The development in
[27] considers policies that in our notation would be written
in the form of policies in Disjuntive Normal Form (using
|| at top-level and && at lower levels), whereas the

development in [28] considers policies that in our notation
would be written in the form of policies in Implication Normal
Form (using && at top-level and => at lower levels).
The pilot implementation in [29], [30] seems to suggest that
forcing policies to be in Implication Normal Form might be
more intuitive and this is likely the way we will be extending
Cif.

From an expressiveness point of view, it does not matter
whether one uses Disjunctive Normal Form or Implication
Normal Form. For example, we might consider to change the
Gateway policy to the more demanding policy

p o l i c y Gateway
= ( s e l f . u . p r o t o c o l ==0x06 && s e l f =={TCP−>∗;

TCP<−∗})
| | ( s e l f . u . p r o t o c o l ==0x11 && s e l f =={UDP−>∗;

UDP<−∗})

expressing that there are no other permitted possibilities for
the protocol component than to be either 0x06 or 0x11. This
is desirable for the code snippet illustrated because line 48
would then not be reachable; however, it may be harder to
ensure that the INPUT received from the network adheres to
this policy. While the Disjunctive Normal Form expresses this,
we could obtain the same result in Implication Normal Form
by writing

p o l i c y Gateway
= ( s e l f . u . p r o t o c o l ==0x06 => s e l f =={TCP−>∗;

TCP<−∗})
&& ( s e l f . u . p r o t o c o l ==0x11 => s e l f =={UDP−>∗;

UDP<−∗})
&& ( s e l f . u . p r o t o c o l !=0 x06 && s e l f . u . p r o t o c o l

!=0 x11 => s e l f =={Z−>Z ; Z<−Z} )
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where Z is an otherwise unused principal and hence the policy
= Z → Z;Z ← Z is unattainable.

A final problem that would need to be overcome is how to
interface the checking of conditions to the programmer. In the
pilot implementation reported in [29][30] it is demanded that
the programmer provides invariants for all while loops (since
in general this is undecidable).

We are therefore experimenting with ways of using the
results of the powerful static analyser Astree to provide the
required invariants and possibly to use the abstract properties
of Astree in expressing the policies. Current results [31]
suggest that this approach to be very promising, which would
make it a strong candidate for inclusion into Cif.

X. CONCLUSION

In this article, we presented C Information Flow (Cif), a
static verification tool to check information flows modeled
directly in C source code. Cif is an implementation of the
Decentralized Label Model (DLM) [10] for the programming
language C. To the best of our knowledge, we applied DLM
to the C language for the first time. During the application of
DLM to C, we tried to stick to the reference implementation
of Java/Jif. However, we had to solve some language-specific
issues, such as pointer arithmetic or the absence of exceptions.
Additionally, we added the possibility of defining annotations
to function prototypes only, in case a library’s source code is
not available for public access. Then, we also introduced rules
for differing annotations of function prototypes compared to
function implementations.

In various code snippets, we discussed information flows
as they appear commonly in C implementations. Cif is able
to verify all of these examples successfully. In case of valid
information flows through the entire source code, Cif generates
a graphical representation of the occurring flows and depen-
dencies — a distinguishing feature not possessed by Jif. This
graphical representation covers direct assignments of variables,
logical and arithmetic operations, indirect dependencies due
to decision branches and function calls. Cif allows the pro-
grammer to make declassifications and endorsements as in
DLM, and additionally marks the places where flow policies
are loosened with declassifications and endorsements in the
graphical representation. Since DLM-annotated source code
shall reduce the efforts of manual code reviews, these graphical
indications allow to identify critical parts of the source code.
Such parts usually require then special investigation during
code reviews.

Further on, we presented how the security-typed language
system [13] of the DLM can be connected to Multiple Inde-
pendent Levels of Security (MILS) systems. MILS [26] is a
system architecture to build high-assurance systems [5]. Var-
ious industrial domains require such high-assurance systems
to fulfill special safety and security demands. MILS bases on
the properties of separation and controlled information flow,
both provided by a special kind of operating system, called

a Separation Kernel. Such kernels provide separated runtime
environments to host applications and to assure a configurable
information flow policy among those environments. However,
the Separation Kernel is not able to control the internals of
these runtime environments. Security-typed languages such as
the DLM can fill this gap.

In our use case, we target the example of a gateway
application. In our study, we have identified this use case
as a common implementation challenge for high assurance
systems from the avionics and railway industry; however,
our approach is not limited to those two industries but is
also conceivable for other industries such as smart meters or
automotive. This gateway supervises the information exchange
between security domains, either on-board aircraft or between
a train and its railway operational control network. Architec-
turally, the gateway follows the design principles of MILS. To
control the system’s information flows we connected the coarse
information flows assured by the Separation Kernel with the
application-dependent information flows, expressed by DLM-
annotated C source code of the gateway’s implementation.
Compared to other security-typed languages for C, e.g., as
proposed by Greve [14] using a mandatory access control-
based approach, we used a decentralized approach for assuring
correct information flow. This has the advantage of revealing
subtler unwwanted dependencies in code, and explicating the
mutual distrust between different software components. The
latter also provides more flexibility in modeling the informa-
tion flow policy.

We applied DLM annotations to a typical security function
for high assurance systems: a demultiplexer which is part of
the MILS-based gateway application. Using our developed Cif,
we are able to ensure secure information flows within the
gateway’s components according to the defined information
flow policy. Particularly, the visualization of indirect flows,
e.g., Listing 7 or Listing 8, and function calls, e.g., Listing 9,
were very useful during the evaluation of the use case. Addi-
tionally, this activity showed that Cif is able to cover larger
projects, too. Connecting DLM proofs with the information
flow assurance of the Separation Kernel provides system-
wide evidences of correct implementation, e.g., as required
by high Evaluation Assurance Levels of Common Criteria
certifications. However, to annotate source code using the
current model of DLM implemented by our Cif required
to change parts of the source code. Using the presented
technology we annotated further critical parts of our gateway
to prove their correct implementation.

Additionally, we evaluated the benefits and drawbacks of
applying DLM to C. While the benefits are clearly in the
automation of gaining assurances of correct code and the re-
duction of manual code review, the drawbacks are the usability
and increased code’s footprint. Both disadvantages are critical
for the future developer’s acceptance of our approach and will
finally decide on whether this DLM assurance can be success-
ful in a wider field of application. To improve usability, we
proposed an enhancement to the DLM, theoretically rooted in
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[27], that removes the need of the presented code modification.
We implemented a proof-of-concept checker [29] in parallel
to Cif, to assure correct information flows within this new
DLM-aware theory. Compared with Cif, this prototype checker
does not support rich language features or the generation of
graphical representations at the current stage.

As future work, we will evaluate on merging the features
of Cif with the extended assurance of this prototyped imple-
mentation.
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