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Abstract—Model transformations (MTs) are central to model-
driven engineering (MDE). They can be used for a range of
purposes, including to improve the quality of models, to refactor
models, to migrate or translate models from one representation
to another, and to generate code or other artifacts from models.
At present, the development of model transformation is mainly
focused on the specification and implementation phases, whereas
there is a lack of support in other phases including: requirements,
analysis, design and testing. Furthermore, there is a lack of co-
hesive support for transformations including: notations, methods
and tools within all phases during the development process,
which makes the maintenance and understandability of the
transformation code problematic. One of the main hindrances for
not using a systematic Requirements Engineering (RE) process,
the initial phase of the software development life-cycle where
software’s specifications are declared, before starting the develop-
ment, could be the false assumption that it is a waste of time/cost
and would delay implementation. The goal of this paper is to
evaluate model transformation technology from a requirements
engineering process point of view. Moreover, we identify criteria
for selecting appropriate requirements engineering techniques,
and we propose a framework for this selection process.

Index Terms—model transformations; requirements engineer-
ing; requirements engineering framework; model transformation
case study; RE technique framework

I. INTRODUCTION

Requirements engineering (RE) has been a relatively ne-
glected aspect of model transformation (MT) development
because the emphasis in transformation development has
been upon specifications and implementations. The failure
to explicitly identify requirements may result in developed
transformations, which do not satisfy the needs of the users
of the transformation. Problems may arise because implicitly-
assumed requirements have not been explicitly stated; for
instance, that a migration or refactoring transformation should
preserve the semantics of its source model in the target model,
or that a transformation is only required to operate on a
restricted range of input models. Without thorough require-
ments elicitation, important requirements may be omitted from
consideration, resulting in a developed transformation, which
fails to achieve its intended purpose.

In [1] we reviewed the current practice of RE for MT and
identified a framework for an improved RE process. In this
paper we extend [1] with more details of the framework,
and we give extracts from a large-scale application of the
framework to a C code generator.

We use the 4-phase RE process model proposed by Som-
merville [2] and adapt it according to our specific needs.

This process model is widely accepted by researchers and
professional experts. The model defines the following as
the most important phases of RE, which should be applied:
domain analysis and requirements elicitation, evaluation and
negotiation, specification and documentation, validation and
verification.

In Section II we describe related work. Section III gives a
background on requirements engineering for model transfor-
mations as well as transformation semantics and its nature. We
also identify how formalised requirements can be validated and
can be used to guide the selection of design patterns for the
development of the transformation. In Section IV we examine
RE techniques and identify how these can be applied to MT
development. In Section V we present a framework for an RE
process and RE technique selection for MT. In Section VI we
give a case study to evaluate the application of our framework.

II. RELATED WORK

The increasing complexity and size of today’s software
systems has resulted in raising the complexity and size of
model transformations. Although there have been different
transformation tools and languages, most of them are focused
on the specification and implementation phases. According
to [3], most of the transformation languages proposed by
Model Driven Engineering (MDE), a software development
methodology, are only focused towards the implementation
phase and are not integrated in a unified engineering process. It
could be said that at the moment, the transformation process is
performed in an ad-hoc manner; defining the problem and then
directly beginning the implementation process. At present, the
development of model transformation is mainly focused on
the specification and implementation phases, whereas there
is a lack of support in other phases including: requirements,
analysis, design and testing. Furthermore, there is a lack
of cohesive support for transformations including: notations,
methods and tools within all phases during the development
process, which makes the maintenance and understandability
of the transformation code problematic [3].

As Selic [4] argues, “we are far from making the writing of
model transformations an established and repeatable technical
task”. The software engineering of model transformations has
only recently been considered in a systematic way, and most
of this work [5][6] is focussed upon design and verification
rather than upon requirements engineering. The work on re-
quirements engineering in transML is focused upon functional
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requirements, and the use of abstract syntax rules to express
them. Here, we consider a full range of functional and non-
functional requirements and we use concrete syntax rules for
the initial expression of functional requirements.

In order to trace the requirements into subsequent steps,
transML defines a modelling language, which represents the
requirements in the form of Systems Modeling Language
(SysML) [7] diagrams. This allows the transformer(s) to link
requirements of a model transformation to its corresponding
analysis and design models, code and other artifacts. Having
a connection amongst different artifacts in the model trans-
formation development process enables the transformer(s) to
check the correctness and completeness of all requirements
[8].

We have carried out a survey and interview study of RE
for MT in industrial cases [9]. This study showed that RE
techniques are not used in a systematic way in current indus-
trial MT practice. In this paper, we describe a requirements
engineering process for transformations based on adaptions of
the standard RE process model, and upon adaptions of RE
techniques for transformations.

III. REQUIREMENTS FOR MODEL TRANSFORMATIONS

Requirements for a software product are generally divided
into two main categories: functional requirements, which iden-
tify what functional capabilities the system should provide,
and non-functional requirements, which identify quality char-
acteristics expected from the developed system and restrictions
upon the development process itself.

The functional requirements of a model transformation τ :S
→T, which maps models of a source language S to a target
language T are defined in terms of the effect of τ on model
m of S, and the relationship of the resulting model n of
T to m. It is a characteristic of model transformations that
such functional requirements are usually decomposed into a
set of mapping requirements for different cases of structures
and elements within S. In addition, assumptions about the
input model should be identified as part of the functional
requirements.

It can be observed in many published examples of model
transformations that the initial descriptions of their intended
functional behaviour is in terms of a concrete syntax for the
source and target languages, which they operate upon. For
instance in [10], the three key effects of the transformation
are expressed in terms of rewritings of Unified Modeling
Language (UML) class diagrams. In [11], the transformation
effects are expressed by parallel rewritings of Petri Nets and
statecharts. In general, specification of the intended func-
tionality of the transformation in terms of concrete syntax
rules is more natural and comprehensible for the stakeholders
than is specification in terms of abstract syntax. However,
this form of description has the disadvantage that it may be
imprecise; there may be significant details of models, which
have no representation in the concrete syntax, or there may be
ambiguities in the concrete syntax representation. Therefore,
conversion of the concrete syntax rules into precise abstract

syntax rules is a necessary step as part of the formalisation of
the requirements.

Requirements may be functional or non-functional (e.g.,
concerned with the size of generated models, transformation
efficiency or confluence). Another distinction, which is useful
for transformations is between local and global requirements:
• Local requirements are concerned with localised parts of

one or more models. Mapping requirements define when
and how a part of one model should be mapped onto a
part of another. Rewriting requirements dictate when and
how a part of a model should be refactored/transformed
in-place.

• Global requirements identify properties of an entire
model. For example that some global measure of com-
plexity or redundancy is decreased by a refactoring trans-
formation. Invariants, assumptions and postconditions of
a transformation usually apply at the entire model level.

Figure 1 shows a taxonomy of functional requirements for
model transformations based on our experience of transforma-
tion requirements.

Functional requirements

Local requirements Global requirements

Mapping Refactoring Assumptions Model
quality

improvement

Postconditions Invariants

Figure 1. A taxonomy of functional requirements

We have also created a taxonomy of the non-functional
requirements that one has to consider during the RE process.
Figure 2 shows a general decomposition of non-functional
requirements for model transformations. The quality of service
categories correspond closely to the software quality charac-
teristics identified by the IEC 25010 software quality standard
[12].

Non-functional requirements for model transformations
could be further detailed. For instance, regarding the perfor-
mance requirements, boundaries (upper/lower) could be set
on execution time, memory usage for models of a given size,
and the maximum capability of the transformation (the largest
model it can process within a given time). Restrictions can also
be placed upon the rate of growth of execution time with input
model size (for example, that this should be linear). Taxono-
mizing the requirements according to their type not only would
make it clearer to understand what the requirements refer to,
but also by having this type of distinction among them will
allow for a more semantic characterization of requirements.

Maturity and fault tolerance are a subset of reliability re-
quirements for a transformation. Depending on its history and
to the extent to which a transformation has been used, maturity
requirements could be measured. Fault tolerance requirements
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Non-functional requirements

Quality of servive Suitability Development
constraint

Architectural
constraint

Compliance

Performance Reliability Accuracy Interface

Time Space Maturity Fault
tolarance

Correctness Completeness User
interaction

Software
interoperability

Effectiveness,
Development

effort, etc.

Cost Deadline Variability Maintainability Installation Distribution Conformity
to standard

Figure 2. A taxonomy of non-functional requirements for MT

can be quantified in terms of the proportion of execution
errors, which are successfully caught by an exception handling
mechanism, and in terms of the ability of the transformation
to detect and reject invalid input models.

As depicted in the above figure, the accuracy characteristic
includes two sub-characteristics: correctness and complete-
ness. Correctness requirements can be further divided into the
following forms [13]:
• Syntactic correctness: a transformation τ is syntactically

correct when a valid input model m from source language
S is transformed to target language T, then (if τ termi-
nates) it produces a valid result, in terms of conformation
to the T’s language constraints.

• Termination: a transformation τ will always terminate if
applied to a valid S model.

• Confluence: all result models produced by transformation
τ from a single source model are isomorphic.

• Model-level semantic preservation: a transformation τ
is preserved model-level semantically, if m and n have
equivalent semantics under semantics-assigning maps
SemS on models of S and SemT on models of T.

• Invariance: some properties Inv should be preserved as
true during the entire execution of transformation τ [13].

An additional accuracy property that can be considered is
the existence of invertibility in a transformation σ : T → S,
which inverts the effect of τ . Given a model n derived from
m by τ , σ applied to n produces a model m′ of S isomorphic
to m. A related property is change propagation, which means
that small changes to a source model can be propagated to
the target model without re-executing the transformation on
the entire source model. A further property of verifiability is
important for transformations, which is part of a business-
critical or safety-critical process. This property identifies how
effectively a transformation can be verified. Size, complexity,
abstraction level and modularity are contributory factors to
this property. The traceability property is the requirement
that an explicit trace between mapped target model elements
and their corresponding source model elements should be
maintained by the transformation, and be available at its
termination. Under interface are requirements categories of
User interaction (subdivided into usability and convenience)
and software interoperability. Usability requirements can be
decomposed into aspects, such as understandability, learnabil-

ity and attractiveness [14]. Software interoperability can be
decomposed into interoperability capabilities of the system
with each intended environment and software system, with
which it is expected to operate.

Based on [14], we define suitability as the capability of
a transformation approach to provide an appropriate means
to express the functionality of a transformation problem at an
appropriate level of abstraction, and to solve the transformation
problem effectively and with acceptable use of resources
(developer time, computational resources, etc.). In [10] we
identified the following subcharacteristics for the suitability
quality characteristic of model transformation specifications:
abstraction level, size, complexity, effectiveness and develop-
ment effort.

Requirements of single transformations can be documented
using the SysML notation adopted in [3], but with a wider
range of requirement types represented. Use case diagrams
can be used to describe the requirements of a system of
transformations. Each use case represents an individual trans-
formation, which may be available as a service for external
users, or which may be used internally within the system as
a subtransformation of other transformations.

We have investigated a specific functional requirements
taxonomy according to the characteristic of model transforma-
tions (Table I). All types of functional requirements for model
transformations including: mapping, assumptions and post-
conditions requirements could be formalized as predicates or
diagrams at the concrete and abstract syntax levels. Concrete
syntax is often used at the early stages (RE stages) in the
development cycle in order to validate the requirements by
stakeholders since the concrete syntax level is more conve-
nient, whereas abstract syntax rule, is often used in the im-
plementation phase for developers. However, there should be
a direct correspondence between the concrete syntax elements
in the informal/semi-formal expression of the requirements,
and the abstract syntax elements in the formalised versions.

IV. APPLICATION OF RE IN MT

In model transformation, requirements and specifications
are very similar and sometimes are considered as the same
element. Requirements determine what is needed and what
needs to be achieved while taking into account the different
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TABLE I. TRANSFORMATION REQUIREMENTS CATALOGUE

Refactoring Refinement Migration
Local
Functional

Rewrites/
Refactorings

Mappings Mappings

Local Non-
functional

Completeness (all
cases considered)

Completeness (all
source entities,
features considered)

Completeness
(all source
entities,
features
considered)

Global
Functional

Improvement in
quality measure(s),
Invariance of
language
constraints,
Assumptions,
Postconditions

Invariance,
Assumptions,
Postconditions

Invariance,
Assump-
tions,
Postcondi-
tions

Global
Non-
functional

Termination,
Efficiency,
Modularity,
Model-level
semantic
preservation,
Confluence, Fault
tolerance, Security

Termination,
Efficiency,
Modularity,
Traceability,
Confluence, Fault
tolerance, Security

Termination,
Efficiency,
Modularity,
Traceability,
Confluence,
Fault
tolerance

stakeholders, whereas specifications define precisely what is
to be developed.

Requirements engineering for model transformations in-
volves specialised techniques and approaches because trans-
formations (i) have highly complex behaviour, involving non-
deterministic application of rules and inspection/ construction
of complex model data, (ii) are often high-integrity and
business-critical systems with strong requirements for relia-
bility and correctness.

Transformations do not usually involve much user inter-
action, but may have security requirements if they process
secure data. Correctness requirements, which are specific to
transformations, due to their characteristic execution as a series
of rewrite rule applications, with the order of these applications
not algorithmically determined, are: (i) confluence (that the
output models produced by the transformation are equivalent,
regardless of the rule application orders), (ii) termination
(regardless of the execution order), (iii) to achieve specified
properties of the target model, regardless of the execution
order, which is referred to as semantic correctness [9].

The source and target languages of a transformation may be
precisely specified by metamodels, whereas the requirements
for its processing may initially be quite unclear. For a migra-
tion transformation, analysis will be needed to identify how
elements of the source language should be mapped to elements
of the target. There may not be a clear relationship between
parts of these languages, there may be ambiguities and choices
in mapping, and there may be necessary assumptions on the
input models for a given mapping strategy to be well-defined.
The requirements engineer should identify how each entity
type and feature of the source language should be migrated.

For refactorings, the additional complications arising from
update-in-place processing need to be considered and the
application of one rule to a model may enable further rule
applications, which were not originally enabled. The require-

ments engineer should identify all the distinct situations,
which need to be processed by the transformation such as
arrangements of model elements and their inter-relationships
and significant feature values.

A. Application of RE Techniques for MT

A large number of requirements elicitation techniques have
been devised. Through the analysis of surveys and case studies,
we have identified the following adaption of RE techniques for
MT.

The following techniques are the most suitable RE tech-
niques to use during the requirements elicitation stage, which
have been adapted according to the nature of model transfor-
mation technology.

Structured interviews: in this technique the requirements
engineer asks stakeholders specific prepared questions about
the domain and the system. The requirements engineer needs
to define appropriate questions, which help to identify issues
of scope and product (output model) requirements, similar
to that of unstructured interviews. This technique is relevant
to all forms of transformation problems. We have defined a
catalogue of MT requirements for refactorings, refinements
and migrations, as an aid for structured interviews, and as a
checklist to ensure that all forms of requirements appropriate
for the transformation are considered.

Rapid prototyping: in this technique a stakeholder is asked
to comment on a prototype solution. This technique is relevant
for all forms of transformation, where the transformation can
be effectively prototyped. Rules could be expressed in a con-
crete grammar form and reviewed by stakeholders, along with
visualisations of input and output models. This approach fits
well with an Agile development process for transformations.

Scenario analysis: in this approach the requirements en-
gineer formulates detailed scenarios/use cases of the system
for discussion with the stakeholders. This is highly relevant
for MT requirements elicitation. Scenarios can be defined for
different required cases of transformation processing. The sce-
narios can be used as the basis of requirements formalisation.
This technique is proposed for transformations in [3]. A risk
with scenario analysis is that this may fail to be complete and
may not cover all cases of expected transformation processing.
It is more suited to the identification of local rather than global
requirements.

Regarding the requirements evaluation and negotiation
stage, prototyping techniques are useful for evaluating require-
ments, and for identifying deficiencies and areas where the
intended behaviour is not yet understood. A goal-oriented anal-
ysis technique such as Knowledge Acquisition in automated
specification (KAOS) or SysML can be used to decompose
requirements into sub-goals. A formal modelling notation such
as Object Constraint Language (OCL) or state machines/state
charts can be used to expose the implications of requirements.
For transformations, state machines may be useful to identify
implicit orderings or conflicts of rules, which arise because
the effect of one rule may enable or disable the occurrence
of another. Requirements have to be prioritized according to
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TABLE II. REQUIREMENTS PRIORITY FOR DIFFERENT
TRANSFORMATIONS

Category Primary requirement Secondary
requirement

Refactoring

Model quality improvement
Model-level semantic preservation Invariance
Syntactic correctness Confluence
Termination

Migration
Syntactic correctness Invertibility
Model-level semantic preservation Confluence
Termination Traceability

Refinement

Syntactic correctness

TraceabilityModel-level semantic preservation
Confluence
Termination

their importance and the type of transformation. For instance,
in a refinement transformation, the semantics of the source and
target model have to be equivalent as the primary requirement
and to have a traceability feature as a secondary requirement.
Also, there should be no conflict among the requirements. For
instance, there is often a conflict between the time, quality and
budget of a project. The quality of the target model should
be satisfactory with respect to the performance (time, cost
and space) of the transformation. Several RE techniques exist,
which could be applicable to MT during the requirements
specification phase in which business goals are represented in
terms of functional and non-functional requirements. In Table
II, requirements have been categorised according to the type
of the transformation.

Techniques for requirements specification and documenta-
tion stage include: UML and OCL, structured natural lan-
guage, and formal modelling languages. At the initial stages
of requirements elicitation and analysis, the intended effect of
a transformation is often expressed by sketches or diagrams
using the concrete grammar of the source and target languages
concerned (if such grammars exist), or by node and line
graphs if there is no concrete grammar. A benefit of concrete
grammar rules is that they are directly understandable by
stakeholders with knowledge of the source and target language
notations. They are also independent of specific MT languages
or technologies. Concrete grammar diagrams can be made
more precise during requirements formalisation, or refined
into abstract grammar rules. An informal mapping/refactoring
requirement of the form of

“For each instance e of entity type E, that satisfies
condition Cond, establish Pred ”

can be formalised as a use case postcondition such as:
E::
Cond′ ⇒ Pred′

where Cond′ formalises Cond, and Pred′ formalises Pred.
For requirements verification and validation stage, the for-

malised rules can be checked for internal correctness prop-
erties such as definedness and determinacy, which should
hold for meaningful rules. A prototype implementation can

be generated, and its behaviour on a range of input models
covering all of the scenarios considered during requirements
elicitation can be checked. When a precise expression of the
functional and non-functional requirements has been defined,
it can be validated with the stakeholders to confirm that it
does indeed accurately express the stakeholders intentions
and needs for the system. The formalised requirements of
a transformation τ : S → T can also be verified to check
that they are consistent; the functional requirements must be
mutually consistent. The assumptions and invariant of τ , and
the language constraints of S must be jointly consistent. The
invariant and postconditions of τ , and the language constraints
of T must be jointly consistent. Each mapping rule Left-Hand
Side (LHS) must be consistent with the invariant, as must each
mapping rule Right-Hand Side (RHS).

These consistency properties can be checked using tools
such as Z3 or Alloy, given suitable encodings [15], [16].
Model-level semantics preservation requirements can in some
cases be characterised by additional invariant properties, which
the transformation should maintain. For each functional and
non-functional requirement, justification should be given as to
why the formalised specification satisfies these requirements.
For example, to justify termination, some variant quantity Q:
Integer could be identified, which is always non-negative and
which is strictly decreased by each application of a mapping
rule [13]. Formalised requirements in temporal logic could
then be checked for particular implementations using model-
checking techniques, as in [17].

V. RE TECHNIQUE FRAMEWORK FOR MT

There are several methods and techniques proposed by the
requirements engineering community, however selecting an
appropriate set of requirements engineering techniques for a
project is a challenging issue. Most of these methods and
techniques were designed for a specific purpose and none
cover the entire RE process. Researchers have classified RE
techniques and categorised them according to their character-
istics. For instance, Hickey et al. [18] proposed a selection
model of elicitation techniques, Maiden et al. [19] came up
with a framework for requirements acquisition methods and
techniques. However, lack of support for selecting the most
appropriate set of techniques for a software project has made
requirements engineering one of the most complex parts of
software engineering process. At the moment, RE techniques
are selected mainly based on personal preference rather than
characteristics and specifications of a project. In the following
sections, we analyse the attributes of requirements engineering
techniques and organizations in which the project is delivered
and the actual type of project, in order to select a suitable set
of RE techniques for specific projects.

A. RE Attribute Analysis

In general, a project is assigned to an organization in order
to be developed. Usually the software developing organization
is selected according to the type of project. Classification of
RE techniques have a direct relation with the type of the
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proposed project, the organization and the internal attributes of
a specific technique. In this section, we analyse the attributes
of techniques, the project and the organization in order to
identify the most well-suited set of techniques for a particular
type of project.

1) Technique Attribute: As mentioned earlier, multiple
techniques exist in requirements engineering. Each technique
has some attributes that could be used in choosing RE
techniques. Identifying the technique attributes could be very
useful as they allow us to compare different techniques. We
have identified 33 attributes from which 23 were defined by
[20]. These attributes are categorized according to the RE
phase (Kotonya and Sommerville model) that they belong
to. These attributes are selected based on characteristics of
RE techniques as well as other researchers’ criteria and
frameworks [19], [21], [2]. For instance, some RE techniques
are well-suited for identifying non-functional requirements.
Therefore if non-functional requirements in a particular project
have high priority then the attribute of ability to help identify
non-functional requirements is important and applying the
appropriate RE technique to find non-functional requirements
would be necessary (such as the NFR framework). In Table III
we have adapted the attributes of [20] to make them specific
for MT.

2) Transformation Project Attribute: A transformation
project’s attribute is also an important factor in order to select
RE techniques. Each project has a set of attributes and the
priority of its attributes may vary based on the characteristics
of a project. For instance, the category of a project that
it belongs to is an attribute, therefore RE techniques for a
category of safety-critical system may vary from a non-critical
system. In this research, we have identified nine attributes,
which shall be analysed in more detail relevant to a project.
In Table IV, we have explained the selected transformation
attributes in more detail.

3) Organization Attribute: Every software developing or-
ganization applies the RE process in a different manner.
This difference is caused by the behaviour of developers
and stakeholders involved in the project. This behaviour is
influenced by different factors of the organization such as:
size, culture, policy and complexity. These factors have a direct
effect on the way the RE process is performed. For instance,
in a small organization, new technologies and expensive RE
techniques may not be the first choice due to the high cost of it,
whereas in a large and complex organization more flexible and
disciplined techniques are required to do RE tasks. Although
there is no limit to the attributes of an organization we have
identified the following:

• Ability to support customer/client involvement
• Ability to classify requirements based on different stake-

holders
• Ability to predict and manage sudden requirements mod-

ifications by stakeholders
• Ability to assure stakeholders about their confidentiality

and privacy.

B. Technique Framework

Our overall procedure for selecting RE techniques for a MT
project involves:
• The set all suitable RE techniques (e.g. interview, pro-

totype) in each category (i.e. elicitation, negotiation,
specification, verification) is identified.

• For each requirement identified within the project, each
RE technique t is assigned a value RA(t) (for Require-
ment Attribute) representing the suitability of applying
t to fulfil this requirement, based on the technique’s
attributes. Tables (III, V, VI, VII, VIII) give examples
of these adapted attribute measures.

• For each requirement identified within the project, each
RE technique t is assigned a value PD(t) (for Project
Description) representing the suitability of applying t to
fulfil this requirement, based on the project’s descriptions.

• Evaluating the degree E (for Experience) of experience/-
expertise regarding the RE technique t available in the
development team. E(t) represents the level of experience
and practical and theoretical knowledge of the developer
regarding t.

• Using S(t), the overall suitability score of a particular RE
technique (t ∈ T) can be calculated, and hence it would
be possible to define a ranking of techniques t based on
their suitability scores S(t) for use in the project. S(t)
is defined as:

S(t) = RA(t)× PD(t)× E(t)

See the Appendix for more details.
In the following sections, we will discuss the techniques

and their attributes in more detail, we will consider only
those types of RE techniques that are most relevant to MT
development (according to our survey of industrial cases, and
from expert experience).

VI. EVALUATION

In this section of the paper, we will evaluate the framework
by applying it to a real industrial case study. This case study
concerns the development of a code generator for the UML-
Rigorous Systems Design Support (UML-RSDS) [22] dialect
of UML. UML-RSDS is a model transformation tool, which
is able to manufacture software systems in an automated
manner which takes as input a text representation of a class
diagram and use cases conforming to the UML-RSDS design
metamodels, and produces as output text files in valid ANSI C,
as defined in the current ANSI standard. Given a valid UML-
RSDS model, the translator should produce a C application
with the same semantics. The target code should be structured
in the standard C style with header and code files and
standard C libraries may be used. The produced code should
be of comparable efficiency to hand-written code. The code
generation process should not take longer than 1 minute for
class diagrams with fewer than 100 classes.

The identified stakeholders included: (i) the UML-RSDS
development team; (ii) users of UML-RSDS who require C
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TABLE III. RE TECHNIQUE ATTRIBUTES AND CLASSIFICATIONS [20]

ID Categories Attributes of techniques
1 Ability to elicit MT requirements
2 Ability to facilitate communication
3 Ability to help understand social issues
4 Ability to help getting domain knowledge
5 Elicitation Ability to help getting implicit knowledge
6 Ability to help identifying MT stakeholders
7 Ability to help identifying non-functional requirements
8 Ability to help identifying viewpoints
9 Ability to help model and understand requirements
10 Ability to analyse and model requirements with

relevant MT notations
11 Ability to help analyse non-functional requirements
12 Evaluation & Negotiation Ability to facilitate negotiation with customers
13 Ability to help prioritizing requirements according to

stakeholders need
14 Ability to help prioritizing requirements according to the

transformation
15 Ability to help identify accessibility of the transformation
16 Ability to help model interface requirements
17 Ability to help re-usability of MT requirements
18 Ability to represent MT requirements
19 Ability to help requirements verification
20 Completeness of the semantics of the notation
21 Specification & Documentation Ability to help write precise requirements using

MT notation
22 Ability to help write complete requirements
23 Ability to help with requirements management
24 Ability to help design highly modular systems
25 Implementability of the notation used
26 Ability to help identify ambiguous requirements
27 Validation & Verification Ability to help identify inconsistency and conflict
28 Ability to help identify incomplete requirements
29 Ability to support MT language
30 Maturity of supporting tool
31 Other aspects Learning curve (Introduction cost)
32 Application cost
33 Complexity of technique

code for embedded or limited resource systems; (iii) end-
users of such systems. Direct access was only possible to
stakeholders (i). Access to other stakeholders was substituted
by research into the needs of such stakeholders. According to
our RE technique framework, an initial phase of requirements
elicitation for this system used document mining (research into
the ANSI C language and existing UML to C translators) and a
semi-structured interview with the principal stakeholder. This
produced an initial set of requirements, with priorities.

The translator has the high-level functional (F) requirement:
F1: Translate UML-RSDS designs (class diagrams,
OCL, activities and use cases) into ANSI C code.

The functional requirement was decomposed into five high-
priority subgoals, each of which is the responsibility of a
separate subtransformation including:
• F1.1: Translation of types
• F1.2: Translation of class diagrams
• F1.3: Translation of OCL expressions
• F1.4: Translation of activities
• F1.5: Translation of use cases
Each translation in this list is dependent upon all of the

preceding translations. In addition, the translation of opera-
tions of classes depends upon the translation of expressions

and activities. The development was therefore organised into
five iterations, one for each translator part, and each iteration
was given a maximum duration of one month. Other high-
priority requirements identified for the translator were the
following functional and non-functional (NF) system (product)
requirements:

• NF1: Termination: given correct input
• F2: Syntactic correctness: given correct input, a valid C

program will be produced
• F3: Model-level semantic preservation: the semantics of

the source and target models are equivalent
• F4: Traceability: a record should be maintained of the

correspondence between source and target elements

Medium-level priority requirements were:

• F5: Bidirectionality between source and target
• NF2: Efficiency: input models with 100 classes and 100

attributes should be processed within 30 seconds
• NF3: Modularity of the transformation

Low-priority requirements were:

• F6: Confluence
• NF4: Flexibility: ability to choose different C interpreta-

tions for UML elements
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TABLE IV. TRANSFORMATION PROJECT ATTRIBUTE MEASURES

Transformation
attributes

Value

Transformation
size

Very Big: when the number of transformation rules are more than 300
Big: when the number of transformation rules are between 150 and 300
Medium: when the number of transformation rules are between 100 and 150
Small: when the number of transformation rules are between 50 and 100
Very Small: when the number of transformation rules are less than 50

Transformation
complexity

Very High: transformation correctness, completeness and effectiveness are very complicated
High: transformation correctness, completeness and effectiveness are complicated
Medium: transformation correctness, completeness and effectiveness are medium level
Small: transformation correctness, completeness and effectiveness are clear
Very small: transformation correctness, completeness and effectiveness are easy to achieve

Transformation
requirements
volatility

Very High: transformation requirements keep changing throughout the entire development (more than 50%
change of requirements)
High: transformation requirements keep changing throughout the entire development (25%-50% change of
requirements)
Medium: Some of the requirements change during the development (10%-25% change of requirements)
Low: A few requirements might change during the development (5%-10% change of requirements)
Very Low: Change of requirements is unlikely to happen

Developer-
customer
relationship

Very High: there is a very good and constant interaction amongst the developers and the customer
High: there is a good and constant interaction amongst the developers and the customer
Medium: there are some contacts between the developers and customers when it is necessary
Low: there are few meetings between the two parties only when it is essential
Very Low: there is no contact between the customer and developers throughout the development

Transformation
safety

Very High: there is a very high likelihood that the transformation will have safety consequences
High: there is a high likelihood that the transformation will have safety consequences
Medium: there is moderate likelihood that the transformation will have safety consequences
Low: there is low possibility that the transformation could cause any danger
Very Low: the transformation has no possibility of causing any danger

Transformation
quality criteria

Very High: the transformation has a very high level of functionality, reliability and usability requirements
High: the transformation has a high of functionality, reliability and usability requirements
Medium: the transformation has a medium level of functionality, and usability requirements
Low: there are low reliability, etc requirements
Very Low: there are very low levels of reliability, etc requirements

Time
constraint

Very High: the transformation has a very high level of efficiency, timing requirements
High: the transformation has a high level of timing and efficiency requirements
Medium: the transformation has a medium level of timing and efficiency requirements
Low: there are low timing requirements
Very Low: the transformation has no timing requirements

Cost constraint

Very High: the budget is very tight
High: the budget is tight
Medium: the transformation has a limited budget
Low: the transformation has the budget to cover different aspects and unforeseen circumstances
Very Low: the budgets are flexible

Understanding
of domain

Very High: developers have a good background knowledge and previous experience regarding the domain
High: there is a good amount of knowledge and experience regarding the domain
Medium: there are some background knowledge and experience regarding the domain
Low: the amount of experience and knowledge regarding the domain is low
Very Low: there are no experience or knowledge about the domain
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TABLE V. REQUIREMENTS ELICITATION TECHNIQUES EVALUATION

Attribute Interview Question-
naire

Document
Mining

Brainstor-
ming

Proto-
types

Scenarios Ethno
Methodology

Eliciting
MT requirements

1 0.8 1 0.8 1 1 0.8

Facilitating
communication

1 1 0 0.8 0.8 1 0.6

Understanding
social issues

0.8 1 0.8 0.4 0.2 0.6 0.8

Getting domain
knowledge

0.6 0.6 1 1 0.4 0.4 1

Getting implicit
knowledge

0.2 0.2 0.2 0.2 0.2 0.2 1

identifying MT
stakeholders

1 0.8 0.2 1 0 0.4 0.6

Identifying
non-functional
requirements

1 0.6 0.8 1 0.2 0.2 0.4

Identifying
viewpoints

0.8 0.6 0.4 0.8 0 0.8 0.4

TABLE VI. REQUIREMENTS NEGOTIATION TECHNIQUES
EVALUATION

Attribute Proto-
types

Scen-
arios

UML
Goal-
oriented
Analysis

Functional
Decom-
position

Modelling MT
requirements

0.8 1 1 0.8 0.6

Analysing requirements
with relevant MT
notations

0.6 1 0.8 0.8 0.8

Analysing non-
functional requirements

0.2 0.2 0 0.6 0.2

Facilitate negotiation
with stakeholders

0.8 0.6 0.8 0.8 0.4

Prioritizing requirements
based on stakeholders

0.2 0.4 0 0.4 0.2

Identifying accessibility
of the transformation

0.8 0.8 0.6 0.6 0.2

Modeling interface
requirements

0.6 1 1 0.4 0.2

Re-usability of MT
requirements

0 0 1 0.2 0

It was identified that a suitable overall architecture for the
transformation was a sequential decomposition of a model-
to-model transformation design2C, and a model-to-text trans-
formation genCtext. Decomposing the code generator into two
sub-transformations improves its modularity, and simplifies the
constraints, which would otherwise need to combine language
translation and text production. Figure 3 shows the resulting
transformation architecture.

After a further interview, the application of model-based
testing and bx to achieve F3 was identified as an important
area of work. Tests for the synthesised C code should, ide-
ally, be automatically generated based on the source UML
model. The bx property can be utilised for testing semantic
equivalence by transforming UML to C, applying the reverse
transformation, and comparing to identify if the two UML
models are isomorphic.

Figure 3. C code generator architecture

Evaluating four RE techniques according to the technique
attribute measures RA(t) gives the following results for the
UML to C case study for the elicitation stage (Table IX).

The framework interestingly reveals that there is no partic-
ular technique that helps strongly in prioritising requirements.
A further technique appropriate for this project need should
be selected. Evaluating a further three elicitation techniques
gives Table X.

The overall ranking of techniques according to technique
attributes is therefore: (i) Questionnaire; (ii) Brainstorming;
(iii) Mining; (iv) Interviews.

Furthermore, we need to weight the techniques by a factor
PD(t) representing the suitability of the technique in the
context of the particular project environment. For example,
techniques that depend on close customer collaboration are
not favoured if the project customer relationship is low. In
addition, a factor E(t) representing the experience in the
technique in the development team or organisation is included.
If, instead of rejecting a technique such as brainstorming
because of lack of experience in it, in favour of introducing
the technique, then the learning curve and cost of introduction
need to be considered.. According to [23], this is relatively
small for brainstorming. Table XI shows the overall evaluation
for elicitation techniques for the case study.

Table XII shows the evaluation of techniques for the eval-
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TABLE VII. REQUIREMENTS SPECIFICATION TECHNIQUES EVALUATION

Attribute SysML KAOS
Structured
language
template

SADT Evolutionary
Prototypes

UML

Representing MT
requirements

0.8 0.8 0.8 0.6 0.8 1

Requirements verification 1 1 0 0.4 0.8 0.8
Semantics completeness 0.8 1 0.4 0.6 0.2 0.8
Representing requirements
using MT notations

0.6 0.4 0.4 0.4 0.2 1

Writing complete
requirements

0.8 0.8 0.6 0.6 0.4 0.8

Requirements management 0.8 0.4 0.6 1 0 0.8
Designing highly
modular systems

0.8 0.6 0 0 0 0.8

Implementability of
the notation(s)

1 1 0 0 0.8 0.8

TABLE VIII. REQUIREMENTS VALIDATION TECHNIQUES
EVALUATION

Attribute Inspection Desk-
Checks

Rapid
Prototyping

Checklist

Identifying ambiguous
requirements

0.4 0 0.4 0

Identifying inconsistency
and conflict

0.4 1 0.8 1

Identifying incomplete
requirements

0.8 0.8 0.8 0.8

TABLE IX. ELICITATION TECHNIQUE EVALUATION FOR UML TO C
CASE (1)

Attribute Brainstorming Interviews Mining Scenarios
Elicit domain knowledge 1 0.6 1 0.4
Identify non-functional
requirements

1 1 0.8 0.2

Requirements prioritisation 0 0 0 0.4
Totals RA(t): 2 1.6 1.8 1

uation and negotiation stage.
Specific to MT is the ability to represent local and global

functional requirements. The overall ranking of techniques
is then: (i) UML; (ii) Prototypes; (iii) Scenarios. As with
elicitation, factors PD(t) and E(t) need also to be considered
to give an overall selection.

The most appropriate specification and documentation tech-
niques are shown in Table XIII. The overall ranking for
techniques is: (i) SysML; (ii) UML; (iii) Natural language.
Figure 4 shows part of the requirements refinement and goal
decomposition using SysML.

Validation and verification techniques are shown in Table
XIV. The overall ranking for techniques is: (i) SysML; (ii)
UML; (iii) Prototypes.

In the following subsections we present the application of
the selected RE techniques on the case study.

A. F1.1: Type Translation

This iteration was divided into three phases: detailed re-
quirements analysis; specification; testing. Detailed require-
ments elicitation used structured interviews to identify (i) the

TABLE X. ELICITATION TECHNIQUE EVALUATION FOR UML TO C
CASE (2)

Attribute Questionnaire Prototypes Observation
Elicit domain knowledge 0.6 0.4 1
Identify non-functional
requirements

0.6 0.2 0.4

Requirements prioritisation 1 0.2 0
Totals RA(t): 2.2 0.8 1.4

TABLE XI. ELICITATION TECHNIQUE SELECTION FOR UML TO C
CASE

Measure Brainstorming Interviews Mining Scenarios
RA(t) 2 1.6 1.8 1
PD(t) X 0.66 0.68 0.66
E(t) 0 1 0.6 1
Totals S(t): 0 1.056 0.734 0.66

source language; (ii) the mapping requirements; (iii) the target
language; (iv) other functional and non-functional require-
ments for this sub-transformation. Scenarios and test cases
were prepared.

Using goal decomposition, the requirements were decom-
posed into specific mapping requirements, these are the local
functional requirements F1.1.1 to F1.1.4 in Figure 4. Table
XV shows the informal scenarios for these local mapping
requirements, based on the concrete metaclasses of Type and
the different cases of instances of these metaclasses. The
schematic concrete grammar is shown for the C elements
representing the UML concepts. As a result of requirements
evaluation and negotiation with the principal stakeholder, using
exploratory prototyping, it was determined that all these local
requirements are of high priority except for the mapping F1.1.2
of enumerations (medium priority). The justification for this is
that enumerations are not an essential UML language element.
Bidirectionality was considered a high priority for this sub-
transformation. It was identified that to meet this requirement,
all source model Property elements must have a defined
type, and specifically that elements representing many-valued
association ends must have some CollectionType representing
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<<requirement>>
F1

id = F1
text = map UML to C
kind = functional
scope = global

<<requirement>>
F1.1

id = F1.1
text = map Type to C
kind = functional
scope = global

<<requirement>>
F1.2

id = F1.2
text = map Class diagram to C
kind = functional
scope = global

<<requirement>>
F1.3

id = F1.3
text = map Expressions to C
kind = functional
scope = global

<<requirement>>
F1.4

id = F1.4
text = map Activities to C
kind = functional
scope = global

<<requirement>>
F1.5

id = F1.5
text = map Use Cases to C
kind = other
scope = global

<<requirement>>
F1.1.1

id = F1.1.1
text = map PrimitiveType to C
kind = functional
scope = local

<<requirement>>
F1.1.2

id = F1.1.2
text = map Enumeration to C
kind = functional
scope = local

<<requirement>>
F1.1.3

id = F1.1.3
text = map Entity to C
kind = functional
scope = local

<<requirement>>
F1.2.2

id = F1.2.2
text = map Class to C
kind = functional
scope = local

<<requirement>>
F1.2.1

id = F1.2.1
text = map Diagram to C
kind = functional
scope = local

<<requirement>>
F1.2.3

id = F1.2.3
text = map Property to C
kind = functional
scope = local

<<requirement>>
F1.2.4

id = F1.2.4
text = map Operation to C
kind = functional
scope = local

<<requirement>>
F1.2.5

id = F1.2.5
text = map Generalization to C
kind = functional
scope = local

Figure 4. Functional requirements decomposition in SysML

TABLE XII. EVALUATION/NEGOTIATION TECHNIQUE EVALUATION
FOR UML TO C CASE

Attribute Prototypes State machines UML Scenarios
Represent MT
requirements

0.8 0.4 1 1

Identify incomplete
requirements

0.8 0 0.4 0.2

Identify ambiguous
requirements

0.4 0.6 0.6 0.4

Facilitate negotiation 0.8 0.4 0.8 0.4
Totals RA(t): 2.8 1.4 2.8 2

TABLE XIII. SPECIFICATION/DOCUMENTATION TECHNIQUE
EVALUATION FOR UML TO C CASE

Attribute Natural
language

UML SysML

Write unambiguous
and precise specication

0.6 0.8 1

Write complete
requirements

0.6 0.8 0.8

Modularity 0 0.8 0.8
Totals RA(t): 1.2 2.4 2.6

their actual type. A limitation of the proposed mapping is
that mapping collections of primitive values (integers, doubles,
booleans) to C is not possible, because there is no means to
identify the end of the collection in C (NULL is used as the
terminator for collections of objects and collections of strings).

TABLE XIV. VALIDATION AND VERIFICATION TECHNIQUE
EVALUATION FOR UML TO C CASE

Attribute Prototypes Scenarios UML SysML
Implementability/
executability

0.8 0.4 0.8 1

Requirements
verification

0.8 0.6 0.8 1

Notation 0.2 0.6 1 0.6
Totals RA(t): 1.8 1.6 2.6 2.6

TABLE XV. INFORMAL SCENARIOS FOR TYPES2C

Scenario UML element C representation e’
F1.1.1.1
F1.1.1.2
F1.1.1.3

String type
int, long, double types,
boolean type

char*
same-named C types
unsigned char

F1.1.2 Enumeration type C enum
F1.1.3 Entity type E struct E* type

F1.1.4.1
F1.1.4.2

Set(E) type
Sequence(E) type

struct E** (array of E,
without duplicates)
struct E** (array of E,
possibly with duplicates)

B. F1.2: Translation of Class Diagram

This iteration also used a three-phase approach, to de-
fine a subtransformation classdiagram2C. The class diagram
elements Property, Operation, Entity, Generalization were
identified as the input language. Exploratory prototyping was
used for requirements elicitation and evaluation. During re-
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TABLE XVI. INFORMAL SCENARIOS FOR THE MAPPING OF UML
CLASS DIAGRAMS TO C

Scenario UML element e C representation e’
F1.2.1 Class diagram D C program with D’s name

F1.2.2 Class E

struct E {...};
Global variable struct E** e instances;
Global variable int e size;
struct E* createE() operation
struct E** newEList() operation

F1.2.3.1
Property p : T
(not principal identity
attribute)

Member T‘ p; of the struct for p‘s owner,
where T‘ represents T
Operations T‘ getE p(E‘ self )
and setE p(E‘ self, T‘ px)

F1.2.3.2
Principal identity
attribute p : String of
class E

Operation
struct E* getEByPK(char* v)
Key member char* p; of the struct for E

F1.2.4 Operation op(p : P) :
T of E

C operation
T’ op(E’ self, P’ p)
with scope = entity

F1.2.5 Inheritance of A by B Member struct A* super;
of struct B

quirements evaluation and negotiation it was agreed that the
metafeatures isStatic, isReadOnly, isDerived, isCached would
not be represented in C, nor would addOnly, aggregation,
constraint or linkedClass. This means that aggregations, asso-
ciation classes and static/constant features are not specifically
represented in C. Interfaces are not represented. Only single
inheritance is represented.

The scenarios of the local mapping requirements for class
diagram elements are shown in Table XVI.

C. F1.3: Translation of OCL Expressions

In this iteration, the detailed requirements for mapping OCL
expressions to C are identified, then this subtransformation,
expressions2C, is specified and tested. There are many cases to
consider in the mapping requirements, so we divided these into
four subgroups: (i) mapping of basic expressions; (ii) mapping
of logical expressions; (iii) mapping of comparitor, numeric
and string expressions; (iv) mapping of collection expressions.
These were considered the natural groupings of operations and
operators, and these follow in part the metaclass organisation
of UML expressions.

1) Basic Expressions: The basic expressions of OCL gen-
erally map directly to corresponding C basic expressions.
Table XVII shows the mapping for these. These mapping
requirements are grouped together as requirement F1.3.1.

2) Logical Expressions: Table XVIII shows the mapping
of logical expressions and operators to C. These mappings are
grouped together as requirement F1.3.2.

3) Comparitor, Numeric and String Expressions: Table
XIX lists the comparitor operators and their mappings to C.
These mappings are grouped as requirement 1.3.3. Numeric
operators for integers and real numbers are shown in Table
XX. The types int, double and long are not guaranteed to
have particular sizes in C. All operators take double values as
arguments except mod and Integer.subrange, which have int
parameters.

TABLE XVII. MAPPING SCENARIOS FOR BASIC EXPRESSIONS

OCL expression e C representation e’
self self as an operation parameter
Variable v
or v[ind]

v
v[ind - 1]

Data feature f
with no objectRef
Data feature f
of instance ex

self → f

ex’ → f

Operation call op(e1,...,en)
or obj.op(e1,...,en)

op(self, e1’, ..., en’)
op(obj’, e1’, ..., en’)

Attribute f
of collection exs

getAllE f (exs’)
(duplicate values preserved)

Single-valued role r : F
of collection exs

getAllE r(exs’) defined by
(struct F ∗∗) collectE(exs’, getE r)

col [ind]
ordered collection col

(col’)[ind-1]

E[v]
v single-valued
E[vs]
vs collection-valued

getEByPK(v’)

getEByPKs(vs’)

E.allInstances e instances
value of enumerated type,
numeric or string value

value

boolean true, false TRUE, FALSE

TABLE XVIII. MAPPING SCENARIOS FOR LOGICAL EXPRESSIONS

OCL expression e C representation e’
A =>B
A & B
A or B
not(A)

!A’ ‖ B’
A’ && B’
A’ ‖ B’
!A’

E->exists(P)
e->exists(P)

existsE(e instances,fP) fP evaluates P
existsE(e’,fP)

E->exists1(P)
e->exists1(P)

exists1E(e instances,fP) fP evaluates P
exists1E(e’,fP)

E->forAll(P)
e->forAll(P)

forAllE(e instances,fP) fP evaluates P
forAllE(e’,fP)

Other math operators directly available in C are: log10, tanh,
cosh, sinh, asin, acos, atan. These are double-valued functions
of double-valued arguments. cbrt is missing and needs to be
implemented as pow(x, 1.0/3).

4) Collection Expressions: Table XXII shows the values
and operators that apply to sets and sequences, and their C
translations. Some operators (unionAll, intersectAll, symmet-
ricDifference, subcollections) were considered a low priority,
because these are infrequently used, and were not translated.
The requirements are grouped as F1.3.6. After evaluation
and negotiation, it was decided that full implementation of
delete should be deferred, because of the complex seman-
tics of data deletion in C. In addition, prototyping revealed
that compiler differences made the use of qsort impractical,
and instead a custom sorting algorithm, treesort, was imple-
mented. This has the signature (void** treesort(void* col[],
int (*comp)(void*, void*)) and the translation of x→sort() is
then: (rt) treesort((void∗∗) x’, comp) for the appropriate result
type rt and comparitor function comp. Table XXI shows the
translation of select and collect operators. These mappings are
grouped as requirement F1.3.7.
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TABLE XIX. MAPPING SCENARIOS FOR COMPARITOR
EXPRESSIONS

OCL expression e C representation e’
x : E
E entity type
x : s
s collection

isIn((void∗ x’, (void ∗∗) e instances)

isIn((void∗) x’, (void ∗∗) s’)

s->includes(x)
s collection

Same as x : s

x / : E
E entity type
x / : s
s collection

!isIn((void∗) x’, (void ∗∗) e instances)

!isIn((void∗) x’, (void ∗∗) s’)

s->excludes(x)
s collection

Same as x / : s

x = y
Numerics, Booleans
Strings
Objects
Sets
Sequences

x’== y’

strcmp(x’, y’) == 0
x’== y’
equalsSet((void ∗∗) x’, (void ∗∗) y’)
equalsSequence((void ∗∗) x’, (void ∗∗) y’)

x <y
Numerics
Strings

x’<y’

strcmp(x’, y’) <0
Similarly for >, <=, >=,
/=

>, <=, >=,
! =

s <: t
s, t collections

containsAll ((void ∗∗) t’, (void ∗∗) s’)

t->includesAll(s) Same as s <: t
t->excludesAll(s) disjoint((void∗∗) t’, (void∗∗) s’)

TABLE XX. MAPPING SCENARIOS FOR NUMERIC EXPRESSIONS

OCL expression e Representation in C
-x -x’
x + y x’ + y’
numbers
x - y x’ - y’
x* y x’ * y’
x / y x’ / y’
x mod y x’ % y’
x.sqr (x’ * x’)
x.sqrt sqrt(x’)
x.floor oclFloor(x’) defined as: ((int) floor(x’))
x.round oclRound(x’)
x.ceil oclCeil(x’) defined as: ((int) ceil(x’))
x.abs fabs(x’)
x.exp exp(x’)
x.log log(x’)
x.pow(y) pow(x’,y’)
x.sin, x.cos, x.tan sin(x’), cos(x’), tan(x’)
Integer.subrange(st,en) intSubrange(st’,en’)

Unlike the types and class diagram mappings, a recursive
descent style of specification is needed for the expressions
mapping (and for activities). This is because the subordinate
parts of an expression are themselves expressions. Thus it is
not possible in general to map all the subordinate parts of
an expression by prior rules: even for basic expressions, the

TABLE XXI. SCENARIOS FOR THE MAPPING OF SELECTION AND
COLLECTION EXPRESSIONS

UML expression e C translation e’
s->select(P) selectE(s’, fP) fP evaluates P
s->select( x | P ) as above
s->reject(P) rejectE(s’, fP)
s->reject( x | P ) as above
s->collect(e) (et’∗) collectE(s’, fe)
e of type et fe evaluates e’
s->collect( x | e ) as above
s->selectMaximals(e) -
s->selectMinimals(e) -

parameters may be general expressions. In contrast, the ele-
ment types of collection types cannot themselves be collection
types or involve subparts that are collection types, so it is
possible to map all element types before considering collection
types. A recursive descent style of mapping specification uses
operations of each source entity type to map instances of that
type, invoking mapping operations recursively to map subparts
of the instances.

D. Activities Translation

In this iteration, UML-RSDS activities are mapped to C
statements by a subtransformation statements2C. UML-RSDS
statements correspond closely to those of C. Table XXIII
shows the main cases of the mapping of UML activities to
C statements.

E. Use case Translation

In this iteration, the mapping usecases2C of use cases
is specified and implemented. A large part of this iteration
was also taken up with integration testing of the complete
transformation.

F1.5.1: A use case uc is mapped to a C operation with
application scope, and with parameters corresponding to those
of uc. Its code is given by the C translation of the activity
classifierBehaviour of uc.

F1.5.2: Included use cases are also mapped to operations,
and invoked from the including use case.

F1.5.3: Operation activities are mapped to C code for the
corresponding COperation.

F1.5.1 is formalised as:

UseCase::
COperation->exists( cop | cop.name = name &
cop.scope = "application" &
cop.isQuery = false &
cop.code = classifierBehaviour.mapStatement() &
cop.parameters = parameters.mapExpression() &
cop.returnType = CType[returnType.typeId] )

Similarly for the activities of UML operations.
This case study is the largest transformation, which has

been developed using UML-RSDS, in terms of the number
of rules (over 150 rules/operations in 5 subtransformations).
By using a systematic requirements engineering and agile
development approach, we were able to effectively modularise
the transformation and to organise its structure and manage its
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TABLE XXII. SCENARIOS FOR THE TRANSLATION OF
COLLECTION OPERATORS

Expression e C translation e’
Set{} newEList()
Sequence{} newEList()
Set{x1, x2, ... , xn} insertE(... insertE(newEList(), x1’), ..., xn’)
Sequence{x1, x2, ..., xn} appendE(... appendE(newEList(), x1’), ..., xn’)
s->size() length((void∗∗) s’)
s->including(x) insertE(s’,x’) or appendE(s’,x’)
s->excluding(x) removeE(s’,x’)
s - t removeAllE(s’,t’)
s->prepend(x) -
s->append(x) appendE(s’,x’)
s->count(x) count((void∗) x’, (void∗∗) s’)
s->indexOf(x) indexOf((void*) x’, (void**) s’)
x∨y unionE(x’,y’)
x∧y intersectionE(x’,y’)
x_ y concatenateE(x’,y )
x->union(y) unionE(x’,y’)
x->intersection(y) intersectionE(x’, y’)
x->unionAll(e) -
x->intersectAll(e) -
x->symmetricDifference(y) -
x->any() x’[0]
x->subcollections() -
x->reverse() reverseE(x’)
x->front() subrangeE(x’,1,length((void**) x’)-1)
x->tail() subrangeE(x’,2,length((void**) x’))
x->first() x’[0]
x->last() x’[length((void∗∗) x’)-1]

x->sort() qsort((void∗∗) x’, length((void∗∗) x’),
sizeof(struct E∗), compareToE)

x->sortedBy(e)
qsort((void∗∗) x’, length((void∗∗) x’),
sizeof(struct E∗), compare)
compare defines e-order

x->sum() sumString(x’), sumint(x’), sumlong(x’),
sumdouble(x’)

x->prd() prdint(x’), prdlong(x’), prddouble(x’)

Integer.Sum(a,b,x,e) sumInt(a’,b’,fe), sumDouble(a’,b’,fe)
fe computes e’(x’)

Integer.Prd(a,b,x,e) prdInt(a’,b’,fe), prdDouble(a’,b’,fe)

x->max() maxInt(x’), maxLong(x’), maxDouble(x’),
maxString(x’)

x->min() minInt(x’), minLong(x’), minDouble(x’),
minString(x’)

x->asSet() asSetE(x’)
x->asSequence() x’
s->isUnique(e) isUniqueE(s’,fe)
x->isDeleted() killE(x’)

requirements. Despite the complexity of the transformation, it
was possible to use patterns to enforce bx and other properties,
and to effectively prove these properties.

VII. CONCLUSION AND FUTURE WORK

We have identified ways in which requirements engineer-
ing can be applied systematically to model transformations.
Comprehensive catalogues of functional and non-functional
requirements categories for model transformations have been

TABLE XXIII. SCENARIOS FOR MAPPING OF STATEMENTS TO C

Requirement UML activity st C statement st’

F1.4.1 Creation statement x : T
defaultT’ is default value of T’

T’ x = defaultT’;

F1.4.2 Assign statement v := e v’ = e’;
F1.4.3 Sequence statement st1 ; ... ; stn st1’ ... stn’

F1.4.4 Conditional statement if e
then st1 else st2

if e’ {st1’} else {st2’}

F1.4.5 Return statement return e return e’;
F1.4.6 Break statement break break;

F1.4.7
Bounded loop for (x : e) do st
on object collection e of entity
element type E

int i = 0;
for ( ; i <length((void**)
e’); i++)
{ struct E* x = e’[i]; st’ }
New index variable i

F1.4.8 Unbounded loop while e do st while (e’) { st’ }
F1.4.9 Operation call ex.op(pars) op(ex’,pars’)

defined. We have examined a case study, which is typical of
the current state of the art in transformation development,
and identified how formal treatment of functional and non-
functional requirements can benefit such developments. In this
paper we have identified the need for a systematic require-
ments engineering process for model transformations. We have
proposed such a process, and identified RE techniques that
can be used in this process. Moreover, we have identified a
requirements engineering process for model transformations,
and requirements engineering techniques that can be used in
this process. The process can be used to develop specifications
in a range of declarative and hybrid MT languages. We have
evaluated the process and techniques on a real industrial case
study, UML to C translation, with positive results.

In future work, we will construct tool support for recording
and tracing transformation requirements, which will help to
ensure that developers systematically consider all necessary
requirements and that these are all formalised, validated and
verified correctly. We are currently carrying out research into
improving the requirements engineering process in model
transformation. We will investigate formal languages to ex-
press the requirements, as formalised rules can be checked for
internal correctness properties, such as definedness and de-
terminacy, which should hold for meaningful rules. Temporal
logic can be used to define the specialised characteristics of
particular transformation and to define transformation require-
ments in a formal but language-independent manner languages
as model transformation systems necessarily involve a notion
of time. Finally, we will be evaluating large case studies in
order to compare results with and without RE process.

APPENDIX

The procedure for selecting RE techniques for a MT project
in more detail involves:

1) The set T of all suitable RE techniques (e.g. interview,
prototype) in each category (i.e. elicitation, negotiation,
specification, verification) is identified.

2) For each requirement identified within the project, each
RE technique t ∈ T is assigned a value RA(t) (for
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Requirement Attribute) representing the suitability of
applying t to fulfil this requirement, based on the
requirement’s attributes. The function RA : T 7−→ [0, 1]
is defined as:

RA(t) =

∑
ax∈A

I(ax)× V(ax, t)

|A|
where:
• The set of all technique attributes (e.g. facilitating

communication, identifying MT stakeholders) is A

(Table III). For instance, A = {Eliciting MT require-
ments, facilitating communication, . . . , identifying
incomplete requirements}.

• I(ax) which is in [0, 1], represents the importance of
an attribute ax ∈ A for a specific requirement of the
project. A low I(ax) value for an attribute ax ∈ A

means ax is not important for the requirement of
the MT project and a high value represents high
importance. The assignment of I(ax) to each ax ∈ A

is done by MT developers.
• V(ax, t) is a function V : T×A 7−→ [0, 1] which given

a technique attribute and an RE technique, assigns a
[0, 1] value. These values are based on the technique
attribute measures of [23] as well as others that are
identified in this research. Tables (V, VI, VII, VIII)
give examples of these adapted attribute measures.

3) For each requirement identified within the project, each
RE technique t ∈ T is assigned a value PD(t) (for
Project Description) representing the suitability of ap-
plying t to fulfil this requirement, based on the project’s
descriptions. The function PD : T 7−→ [0, 1] is defined
as:

PD(t) = Π
dx∈D

{
1− W(dx) if dx ∈ IDt

W(dx) otherwise

where:
• The set of all project descriptors (e.g. size, complex-

ity) is D. For instance, in this thesis, we are consid-
ering D = {size, complexity, volatility, relationship,
safety, quality, time, cost, domain understanding}.

• W(dx) is a function W : D 7−→ [0, 1] which represents
the magnitude of a specific descriptor in the project.
For example, for d = cost, a high value represents
that the budget of the project is tight, while a low
value indicates that the budget is flexible. Then
for d = size, a high value means that the project
involves a large number of transformation rules
while a low value indicates a small number of rules
involved.

• IDt ⊆ D is a set containing all descriptors with
inverse impact for a specific RE technique t. More
specifically, for each d ∈ IDt, the higher the value
of W(dx) the more negative the impact of applying

t in that project. An example of such a descriptor
for technique “interview” is time, where the higher
the value of W(time) in a specific project, the more
negative the effectiveness of interviewing as a tech-
nique to fulfil a requirement in this project.

4) Evaluating the degree E (for Experience) of experience/-
expertise regarding the RE technique t available in the
development team. E : T 7−→ [0, 1] is a function where
E(t) represents the level of experience and practical and
theoretical knowledge of the developer regarding t.

5) Using S(t), the overall suitability score of a particular
RE technique (t ∈ T) can be calculated, and hence it
would be possible to define a ranking of techniques
t based on their suitability scores S(t) for use in the
project. S(t) is defined in terms of the requirement at-
tribute score RA(t), the project description score PD(t),
and the experience score E(t) of RE technique t as
follows:

S(t) = RA(t)× PD(t)× E(t)
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