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Abstract—Product development environments need to shift 

from the current document-based, towards an information-

based focus, in which the information from the various 

engineering software tools is well integrated and made digitally 

accessible throughout the development lifecycle. To meet this 

need, a Linked Data approach to software tool interoperability 

is being adopted, specifically through the Open Services for 

Lifecycle Collaboration (OSLC) interoperability standard. In 

this paper, we present a model-driven engineering approach to 

toolchain development that targets the specific challenges faced 

when adopting the technologies, standards and paradigm 

expected of Linked Data and the OSLC standard. We propose 

an integrated set of modelling views that supports the early 

specification phases of toolchain development, as well as its 

detailed design and implementation phases. An open-source 

modelling tool was developed to realize the proposed modelling 

views. The tool includes a code generator that synthesizes a 

toolchain model into almost-complete OSLC-compliant code. 

The study is based on a case study of developing a federated 

OSLC-based toolchain for the development environment at the 

truck manufacturer Scania AB. 

Keywords-Linked data modelling; OSLC; resource shapes; 

tool integration; tool interoperability, information modelling. 

I. INTRODUCTION 

This article is an extended version of [1], in which we 
expand the earlier focus on the specification phase, to present 
a more complete development approach to software tool 
interoperability. The new approach includes a tighter 
incorporation of the later phases of design and 
implementation of tool interfaces. Based on additional work 
on the case study, further refinements of the proposed 
models and supporting tools are also reflected in this article.  

The heterogeneity and complexity of modern industrial 
products requires the use of many engineering software 
tools, needed by the different engineering disciplines (such 
as mechanical, electrical, embedded systems and software 
engineering), and throughout the entire development life 
cycle (requirements analysis, design, verification and 
validation, etc.). Each engineering tool handles product 
information that focuses on specific aspects of the product, 
yet such information may well be related or dependent on 
information handled by other tools in the development 
environment [2]. It is also the case that a tool normally 
manages its product information internally as artefacts stored 

on a file system or a database using a tool-specific format or 
schema. Therefore, unless interoperability mechanisms are 
developed to connect information across the engineering 
tools, isolated “islands of information” may result within the 
overall development environment. This in turn leads to an 
increased risk of inconsistencies, given the natural 
distribution of information across the many tools and data 
sources involved. 

As an example from the automotive industry, the 
functional safety standard ISO 26262:2011 [3] mandates that 
requirements and design components are to be developed at 
several levels of abstraction; and that clear trace links exist 
between requirements from the different levels, as well as 
between requirements and system components. Such a 
demand on traceability implies that these development 
artifacts are readily and consistently accessible, even if they 
reside across different development tools. Naturally, the 
current industry practice, in which development artefacts are 
handled as text-based documentation, renders such 
traceability ineffective – if not impossible. The ongoing 
trend of adopting the Model-Driven Engineering (MDE) 
approach to product development is a step in the right 
direction, by moving away from text-based artefacts, towards 
models that are digitally accessible. This leads to an 
improvement in the quality and efficient access to product 
and process information. However, while MDE is more 
accepted in the academic research community, its complete 
adoption in an industrial context remains somewhat limited, 
where MDE is typically constrained to a subset of the 
development lifecycle [22]. Moreover, even where MDE is 
adopted, mechanisms are still needed to connect the artefacts 
being created by the various engineering tools, in order to 
comply with the standard. 

In summary, current development practices need a faster 
shift from the localized document-based handling of 
artefacts, towards an Information-based Development 
Environment (IDE), where the information from all 
development artefacts is made accessible, consistent and 
correct throughout the development phases, disciplines and 
tools. 

One can avoid the need to integrate the information 
islands, by adopting a single platform (such as PTC Integrity 
[4] or MSR-Backbone [5]) through which product data is 
centrally managed. However, large organizations have 
specific development needs and approaches (processes, 
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tools, workflow, in-house tools, etc.), which lead to a wide 
landscape of organization-specific and customized 
development environments. Moreover, this landscape needs 
to evolve organically over time, in order to adjust to future 
unpredictable needs of the industry. Contemporary 
platforms, however, offer limited customization capabilities 
to tailor for the organization-specific needs, requiring instead 
the organization to adjust itself to suite the platform. So, 
while they might be suitable at a smaller scale, such 
centralized platforms cannot scale to handle the complete 
heterogeneous set of data sources normally found in a large 
organization.  

A more promising integration approach is to 
acknowledge the existence of distributed and independent 
data sources within the environment. To this end, OASIS 
OSLC [6] is an emerging interoperability open standard (see 
Section II for further details) that adopts the architecture of 
the Internet and its standard web technologies to integrate 
information from the different engineering tools - without 
relying on a centralized integration platform. This leads to 
low coupling between tools, by reducing the need for one 
tool to understand the deep data of another. Moreover – like 
the web – the approach is technology-agnostic, where tools 
can differ in the technologies they use to internally handle 
their data. That is, both the data as well as the technology is 
decentralized. Such an approach lends itself well to the 
distributed and organic nature of the IDE being desired - a 
Federated IDE (F-IDE), where the information from all 
development artefacts – across the different engineering 
tools – is made accessible, consistent and correct throughout 
the development phases, disciplines and tools.  

In this paper, we advocate the use of OSLC and the 
Linked Data principles as a basis for such an F-IDE. Yet, 
when developing such a federated OSLC-based F-IDE for 
parts of the development environment at the truck 
manufacturer Scania AB, certain challenges were 
encountered that needed to be addressed. Put generally, there 
is an increased risk that one loses control over the overall 
product data structure that is now distributed and interrelated 
across the many tools. This risk is particularly aggravated if 
one needs to maintain changes in the F-IDE over time.  

We here propose a model-driven engineering approach to 
F-IDE development that tries to deal with this risk. That is, 
how can a distributed architecture – as promoted by the 
Linked Data approach – be realized, while maintaining a 
somewhat centralized understanding and management of the 
overall information model handled within the F-IDE? 

In the next section, we will first give some background 
information on Linked Data and the OASIS OSLC standard. 
We then present the case study that has driven and validated 
this work in Section III. Section IV then elaborates on the 
challenges experienced during our case study, before 
detailing the modelling approach taken to solve these 
challenges in Section V. Details on the modelling views, as 
well as their realisation in an open-source tool, are presented. 
Reflections on applying the modelling approach on the case 
study are then discussed in Section VI, followed by a 
discussion of related work. The article is then concluded in 
Section VIII. 

II. LINKED DATA AND THE OASIS OSLC STANDARD 

Linked Data is an approach for publishing structured data 
on the web, such that data from different sources can be 
connected, resulting in more meaningful and useful 
information. Linked Data builds upon standard web 
technologies such as HTTP, URI and the RDF family of 
standards. The reader is referred to [7] for Tim Berners-Lee's 
four principles of Linked Data. 

OASIS OSLC is a standard that targets the integration of 
heterogeneous software tools, with a focus on the linking of 
data from independent sources. It builds upon the Linked 
Data principles, and its accompanying standards, by defining 
common mechanisms and patterns to access, manipulate and 
query resources managed by the different tools in the 
toolchain. In particular, OASIS OSLC is based on the W3C 
Linked Data Platform (LDP) [8], and it follows the 
Representational State Transfer (REST) architectural pattern. 

This Linked Data approach to tool interoperability 
promotes a distributed architecture, in which each tool 
autonomously manages its own product data, while 
providing – at its interface - RESTful services through which 
other tools can interconnect. Figure 1 illustrates a typical 
architecture of an OSLC tool interface, and its relation to the 
tool it is interfacing. With data exposed as RESTful services, 
such an interface is necessarily an “OSLC Server”, with the 
connecting tool defined as an “OSLC Client”. Following the 
REST architectural pattern, an OSLC server allows for the 
manipulation of artefacts – once accessed through the 
services - using the standard HTTP methods C.R.U.D. to 
Create, Read, Update and Delete. In OSLC, tool artefacts are 
represented as RDF resources, which can be represented 
using RDF/XML, JSON, or Turtle. A tool interface can be 
provided natively by the tool vendor, or through a third-party 
as an additional adaptor. In either case, a mapping between 
the internal data and the exposed RDF resources needs to be 
done. Such mapping needs to deal with the differences in the 
technologies used. In addition, a mapping between the 
internal and external vocabulary is needed, since the 
vocabulary of the resources being exposed is not necessarily 
the same as the internal schema used to manage the data. 
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Figure 1.  Typical tool architecture, with an OSLC Server 
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III. CASE STUDY DESCRIPTION 

Typical of many industrial organizations, the 
development environment at the truck manufacturer Scania 
consists of standard engineering tools, such as issue-tracking 
and computer-aided design (CAD) tools; as well as a range 
of proprietary tools that cater for specific needs in the 
organization. Moreover, much product information is 
managed as generic content in office productivity tools, such 
as Microsoft Word and Excel. 

To comply with the ISO 26262 standard, the current 
development environment needs to improve in its 
management of vehicle architectures and requirement 
specifications, in order to provide the expected traceability 
between them. This in turn necessitates a better integration of 
the tools handling the architecture and requirements artefacts 
to allow for such traceability. To this end, five proprietary 
tools and data sources were to be integrated using OSLC: 

1. Code Repository – A tool that defines the vehicle 
software architecture through parsers that analyze all 
software code to reconstruct the architecture, defining 
entities such as software components and their 
communication channels [9]. The analyzed software code 
resides in a typical version-control system. When defining 
the architecture, the tool references artefacts – defined in 
other external tools - dealing with communication and the 
hardware architecture.  

2. Communication Specifier – A tool that centrally 
defines the communication network and the messages sent 
between components of all vehicle architectures. 

3. ModArc – A CAD tool that defines the electrical 
components, including all hardware entities and their 
interfaces such as communication ports. 

4. Diagnostics Tool - A tool that specifies the 
diagnostics functionality of all vehicle architectures, 
including communication messages of relevance to the 
diagnostics functionality. 

5. Requirements Specifier - A proprietary tool that 
allows for the semi-formal specification of system 
requirements [10]. Requirements are specified at different 
levels of abstraction. By anchoring the specifications on 
different parts of the system architecture, the tool helps the 
developer define correct requirements that can only reference 
appropriate product artefacts within the system architecture.  

As a first step, it was necessary to analyze the data that 
needed to be communicated between the tools. This was 
captured using a Class Diagram (Figure 2), as is the current 
state-of-practice at Scania for specifying a data model. For 
the purpose of this paper, it is not necessary to have full 
understanding of the data artefacts. It is worth highlighting 
that color-codes were initially used to define which tool 
managed which data artefact. Yet, this appeared to be a non-
trivial task since an artefact might be used in multiple tools, 
with no clear agreement on the originating source tool. For 
example, a Signal can be found in both the Code Repository 
as well as the Communication Specifier tool. Given that there 
exists no data integration between the two tools to keep the 
artefact synchronized, different developers may have a 
different perspective over which of the two tools holds the 

source and correct Signal information, from which the other 
tool needs to be – manually – updated. 

In addition, it is important to note that the model focuses 
on the data to be communicated between the tools, and not 
necessarily all data available internally within each tool. 

IV. IDENTIFIED NEEDS AND SHORTCOMINGS 

In this paper, we focus on the initial development stages 
of specifying and architecting the desired OSLC-based F-
IDE, as well as its design and implementation. The latter 
verification and validation phases are not yet covered in the 
case study, yet there is naturally recognition of the need to 
support them in the near future. Based on the case study, we 
here elaborate on the needs and shortcomings experienced by 
the toolchain architects and developers during these stages:  

Information specification – There is a need to specify 
an information model that defines the types of artefacts or 
resources to be communicated between the tools across the 
toolchain. For pragmatic reasons, a UML class diagram was 
initially adopted by the Scania toolchain architects to define 
the entities being communicated and their relationships. 
Clearly, the created model does not comply with the 
semantics of the class diagram, since the entities being 
modelled are not objects in the object-oriented paradigm, but 
resources according to the Resource Description Framework 
(RDF) graph data model. Since the information model is to 
be maintained over time, and is intended for communication 
among developers, using a class diagram - while implying 
another set of semantics – may lead to misunderstandings. A 
specification that is semantically compatible with the 
intended implementation technology (of Linked Data, and 
specifically the OSLC standard) is necessary. However, the 
initial experience from using the class diagram helped 
identify the necessary requirements on any appropriate 
solution. First, graphical models are essential to facilitate the 
communication of the models among the different 
stakeholders. It is also beneficial to – wherever possible - 
borrow or reuse graphical representations from common 
modelling frameworks (such as UML) in order to reduce the 
threshold of learning a new specification language. For 
example, adopting a hollow triangle shape to represent class 
inheritance (as defined in UML) would be recommended in 
RDF modelling as well.  

Domain ownership – It is necessary to structure the 
information model specification into domains (such as 
requirements engineering, software, testing, etc.). Domains 
can be generic in nature. Alternatively, such domain 
grouping can reflect the organization units that are 
responsible to manage specific parts of the information 
model. For example, the testing department may be 
responsible to define and maintain the testing-related 
resources, while the requirements department manages the 
definition of the requirements resources. This is particularly 
relevant in an organization where different departments are 
responsible for their own tools and processes, and where it 
no longer becomes feasible to expect the information model 
to be centrally defined. Dependencies between the 
responsible departments can then be easily identified through 
the dependencies in the information models. 
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period : String
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message_type : String
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offset : String

factor: String
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segment: String
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family : String

generation  : String

version : String ? Nullable

releaseDate: String

changeRequests: ChangeRequest[]
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name: String
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hierarchy: String
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name: String
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dataType: String

unit: String

io_port

         name : String

 type : String 

    pin_type : String

      direction : String 
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name: String

dataType: String

diagnostic communication interface

type : String
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ID: String

session: String

isOperationalData: Bool

isFreezeFrame: Bool
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KeyValuePair

name: String

description: String

value: Number

has_signal 0...*

is_gatewayed 0...*

has_message 0...*

has_interface 1...*

hasSubcomponent

hasSoftwareComponent 1...*

owns

owns 0...*

associates_with 0...*
has_io_port 1...*

associates_with 0...1

uses_port

Reads/Owns 0..*

Reads/Owns 0..*

has_interface 1...*

has_CID 0...*

associates_with 0...*

allowedRange 0...*

allowedValues 0...*

allowedValues 0...*

 
Figure 2.  A UML class diagram of the resources shared in the desired F-IDE. 

Tool ownership – Orthogonal to domain ownership, it is 
also necessary to clearly identify the data source (or 
authoring tool) that is expected to manage each defined 
resource being shared in the F-IDE. That is, while 
representations of a resource may be freely shared between 
the tools, changes or creations of such a resource can only 
occur via its owning tool. Assuming a Linked Data approach 
also implies that a resource is owned by a single source, to 
which other resources link. In practice, it is not uncommon 
for data to be duplicated in multiple sources, and hence 
mechanisms to synchronize data between tools are needed. 
For example, resources of type Communication Interface 
may be used in both Communication Specifier and ModArc, 
with no explicit decision on which of the tools defines it. To 
simplify the case study, we chose to ignore the ModArc 
source, but in reality, one needs to synchronize between the 
two sources, as long as it is not possible to make one of them 
redundant.  

That is, in architecting an F-IDE, there is a need to 
support the data specification using Linked Data semantics, 
while covering the two ownership aspects of tools 
(ownership from the tool deployment perspective) and 
domains (ownership from the organizational perspective). 

Avoid mega-meta-modelling – Information 
specifications originate from various development phases 
and/or development units in the organization. The resulting 
information models may well overlap, and would hence need 
to be harmonized. Hence, there is a need to harmonize the 
information models – while avoiding a central information 
model. Earlier attempts at information modeling normally 
resulted in large models that can easily become harder to 
maintain over time. The research project CESAR presents in 
[11] a typical interoperability approach in which such a large 
common meta-model is proposed. It is anticipated that the 
Linked Data approach would reduce the need to have such a 
single centralized mega information model. The correct 
handling of information through Domain and Tool 
Ownership (see above) ought to also help in that direction. 

Development support – Similar to the challenge faced 
in general software development, there is a need to maintain 
the information specification and desired architecture 
harmonious with the eventual design and implementation of 
the F-IDE and its components.  The current use of a class 
diagram works well as an initial specification, and for 
documentation purposes. However, there is no mechanism in 
place to ensure the model is updated relative to changes later 
performed during the development. Especially when 
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adopting an agile development approach, the specification 
and architecture are expected to change over time, and hence 
the implementations of individual adaptors need to capture 
such eventual changes. Likewise, feedback from the design 
and implementation phases may lead to necessary changes in 
the specification and architecture.  

Appropriate tool support is needed to make the 
specification models an integral part of development. This 
can take the form of a Software Development Kit (SDK), 
code generators, graphical models, analysis tools, etc. Such 
tool support should also help lower the threshold of learning 
as well as adopting OSLC, since implementing OSLC-
compliant tools entails competence in a number of additional 
technologies such as RESTful web services and the family of 
RDF standards. 

V. MODELLING SUPPORT 

We take an MDE approach to F-IDE development, in 
which we define a graphical modelling language that 
supports the toolchain architects and developers with the 
needs identified in the previous section.  

The language is designed to act as a digital representation 
of the OASIS OSLC standard. This ensures that any defined 
toolchain complies with the standard. Such a graphical 
representation also helps lower the threshold of learning as 
well as implementing OSLC-compliant toolchains. 

The language is structured into a set of views, in which 
each view focuses on a specific need, stakeholder and or 
aspect of development. The analysis of the needs from 
Section IV leads to the following three views: 

• Domain Specification View – for the specification of 
the information to be shared across the F-IDE, with support 
for the organizational needs.  

• Resource Allocation View – for the specification of 
information distribution and ownership across the F-IDE 
architecture. 

• Adaptor Design View – for the detailed design and 
implementation of the tool interfaces of the F-IDE. 

The next subsection presents further details of the OSLC 
standard, which then leads to its reflection by the proposed 
meta-model. Based on this OSLC meta-model, three views 
are then derived in Section V.B. The proposed graphical 
notation of each view is presented through examples from 
the use case of Section III. Finally, Section V.C details the 
open-source modelling tool developed to realize the 
proposed approach. 

A. The Meta-model 

The OASIS OSLC standard consists of a Core 
Specification and a set of Domain Specifications. The OSLC 
Core Specification [12] defines the set of resource services 
that can be offered by a tool. Figure 3 illustrates the structure 
of an OSLC interface and its services. A Service Provider is 
the central organizing entity of a tool, under which artefacts 
are managed. Typical examples of a Service Provider are 
project, module, product, etc. It is within the context of such 
an organizing concept that artefacts are managed (created, 
navigated, changed, etc.). For a given Service Provider, 
OSLC allows for the definition of two Services (Creation 

Factory & Query Capability) that provide other tools with 
the possibility to create and query artefacts respectively. In 
addition, OSLC defines Delegated UI (Selection and 
Creation) services that allow other tools to delegate the user 
interaction with an external artefact to the Service Provider 
under which the artefact is managed. The structure of Figure 
3 allows for the discoverability of the services provided by 
each Service Provider, starting with a Service Provider 
Catalog, which acts as a catalog listing all available Service 
Providers exposed by a tool. 

OASIS OSLC also defines Domain Specifications, which 
include domain vocabularies (or information models) for 
specific lifecycle domains. For example, the Quality 
Management Specification [13] defines resources and 
properties related to the verification phase of development 
such as test plans, test cases, and test results. The 
standardized Domain Specifications are minimalistic, 
focusing on the most common concepts within a particular 
domain, while allowing different implementations to extend 
this common basis. 

 
Figure 3.  OSLC Core Specification concepts and relationships [12] 

Using EMF [18], we define the meta-model that reflects 
the structure and concepts of the OASIS OSLC standard, as 
illustrated in Figure 4. A Toolchain consists of (1) a set of 
AdaptorInterfaces and (2) a set of DomainSpecifications (for 
legacy reasons grouped under a Specification element):  

• An AdaptorInterface represents a tool’s OSLC 
interface, and reflects the Core standard structure as 
illustrated in Figure 3.  

• A DomainSpecification reflects how an OSLC Domain 
Specification defines vocabularies. It models the resources 
types, their properties and relationships, based on the Linked 
Data constraint language of Resource Shapes [14]. Resource 
Shapes is a mechanism to define the constraints on RDF 
resources, whereby a Resource Shape defines the properties 
that are allowed and/or required of a type of resource; as well 
as each property’s cardinality, range, etc.  

B. The Modelling Views 

Based on the OSLC meta-model, we define the following 
three views: 
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Figure 4.  The underlying meta-model of the OASIS OSLC standard, reflecting the Core and Domain Specifications. 

Domain Specification View From this perspective, the 
toolchain architect defines an information model that details 
the types of resources, their properties and relationships, 
using mechanisms compliant with the OSLC Core 
Specification [12] and the Resource Shape constraint 
language [14]. Figure 5 exemplifies the proposed graphical 
notation of the Domain Specification view for the resources 
needed in our case study. 

The top-level container, DomainSpecification, groups 
related Resources and Resource Properties. Such grouping 
can be associated with a common topic (such as 
requirements or test management), or reflects the structure of 
the organization managing the F-IDE. This view ought to 
support standard specifications, such as Friend of a Friend 
(FOAF) [15] and RDF Schema (RDFS) [16], as well as 
proprietary ones. In Figure 5, three Domain Specifications 
are defined: Software, Communication and Variability, 
together with a subset of the standard domains of Dublin 
Core and RDF. 

As required by the OSLC Core, a specification of a 
Resource type must provide a name and a Type URI. The 
Resource type can then also be associated with its allowed 
and/or required properties. These properties could belong to 
the same or any other DomainSpecification. A Resource 
Property is in turn defined by specifying its cardinality, 
optionality, value-type, allowed-values, etc. Figure 6 

illustrates an example property specification highlighting the 
available constraints that can be defined. A Literal Property 
is one whose value-type is set to one of the predefined literal 
types (such as string or integer); while a Reference Property 
is one whose value-type is set to either “resource” or “local 
resource”. In the latter case, the range property can then be 
used to suggest the set of resource types the Property can 
refer to. 

In RDF, Resource Properties are defined independently, 
and may well be associated with multiple Resource types 
(Unlike, for example UML Classes, where a class attribute is 
defined within the context of a single class). For this reason, 
Resource Properties are graphically represented as first-class 
elements in the diagram. So, borrowing from the typical 
notation used to represent RDF graphs, Resource types are 
represented as ellipses, while Properties are represented as 
rectangles (A Reference Property is represented with an 
ellipse within the rectangle.). 

The association between a Resource type and its 
corresponding Properties is represented by arrows for 
Reference Properties, while Literal Properties are listed 
graphically within the Resource ellipse. Such a 
representation renders the diagram almost similar – visually - 
to the UML class diagram of Figure 2. This makes the 
diagram intuitive and familiar for the modeler, yet with the 
more appropriate Linked Data semantics behind the view. 
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Figure 5.  Domain Specification View 

While the possibility to represent Properties as first-class 
elements was appreciated, it was experienced that they (The 
squares in Figure 5) cluttered the overall model, and did not 
make efficient usage of the available modeling space. An 
alternative representation is available, in which Property 
definitions are collected within a single sub-container, 
confined within its containing DomainSpecification. Figure 7 
presents this alternative diagram for a subset of the domain 
specification of Figure 5, focusing on the Communication 
Domain Specification. Such a notation still ensures that 
Properties are defined independently of Resources, while 
making the graphical entities more manageable for the 
modeler. 

Moreover, typical RDF graphs notations represent all 
associations between resources and properties by arrows, 
irrespective of whether they are Literal or Reference 
Properties. If desired, such a representation can be chosen as 
well. Figure 8 presents this alternative for a subset of the 
domain specification of Figure 5, focusing on the Software 
Domain Specification. Such a representation is intuitive for a 
small specification. However, it is experienced that for large 
specifications, the many associations between Resources and 

their associated Literal Properties cluttered the diagram. 
Furthermore, common Literal Properties, such as 
dcterms:subject, can be associated to many resources across 
many domains, leading to many cross-domain arrows that 
further clutter the diagram. 

 
Figure 6.  The specification of the rdf:type predicate, in the Domain 

Specification View [1] 
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Figure 7.  An alternative Domain Specification View, with Property definitions collected within a single sub-container. 

The three alternative representations of Resource 
Properties and their associations with Resources are made 
available through filtering mechanisms to suite the 
preferences of the modeler. It is important to recall that these 
alternatives are semantically similar, and are based on the 
same meta-model of Figure 4. 

Resource Allocation View provides the overall 
architecture of the F-IDE, where the toolchain architect 
allocates resources to data sources. It gives the architect an 
overview of where the resources are available in the F-IDE, 
and where they are consumed. For each data source, the 
architect defines the set of Resources it exposes; as well as 
those it consumes. These Resources are graphically 
represented as “provided” and “required” ports on the edge 
of the AdaptorInterface element, as illustrated in Figure 9 for 
our case study. For example, the Communication Specifier 
interface exposes the Message resource, which is then 
consumed by the Requirements Specifier. 

 
Figure 8.  An alternative Domain Specification View, representing all 

associations between resources and properties by arrows. 

In the Resource Allocation view, the interaction between 
a provider and consumer of a given resource is presented as a 
solid edge between the corresponding ports. In addition, any 
dependencies between resources that are managed by two 
different data sources are also represented in this model – as 
a dotted edge. For example, the resource ECUSoftware, 
managed by the Code Repository, has a property has_io_port 
that is a reference to resource IO_port (which is in turn 
managed through the data source Modarc). Hence, for a 
consumer of ECUSoftware, it is beneficial to identify the 
indirect dependency on the Modarc tool, since any 
consumption of an ECUSoftware resource, is likely to lead to 
the need to communicate with Modarc in order to obtain 
further information about the property has_io_port. 

 
Figure 9.  Resource Allocation View 
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Adaptor Design View is where the toolchain architect 
(or the tool interface developer) designs the internal details 
of the tool interface – according to the OSLC standard. This 
can be performed for any of the Tool entities in the Resource 
Allocation view. The Adaptor Design view is a realization of 
the OSLC interface structure of Figure 3. Sufficient 
information is captured in this view, so that an almost 
complete interface code, which is compliant with the 
OSLC4J software development kit (SDK) can be generated, 
based on the Lyo code generator [17] (See next subsection 
for further details.). 

An example of the proposed notation from our case study 
is presented in Figure 10, in which the Core Repository 
provides query capabilities and creation factories on all three 
resources. The Adaptor Design view also models its 
consumed resources (In Figure 10, no consumed resources 
are defined.). Note that the provided and required resources - 
as defined in this view - remain synchronized with those at 
the interface of the Tool entity in the Resource Allocation 
view. 

 
Figure 10.  Adaptor Design View [1] 

There is no particular ordering of the above views, and in 
practice, the three views can be developed in parallel. 
Consistency between the views is maintained since they all 
refer to the same model. For example, if the toolchain 
architect removes a resource from the Adaptor Design view, 
the same resource is also removed from the Resource 
Allocation view.  

C. Architecture of Modelling Tool 

An open-source Eclipse-based modelling tool was 
developed to realize the proposed approach, whose main 
components are presented in Figure 11. Central in the 
architecture is the Toolchain Meta-model component that 
realizes the meta-model of Figure 4, based on the Eclipse 
Modeling Framework (EMF) [18]. The Graphical Modelling 
Editor then allows the end-user to graphically design a 
toolchain based on the three views presented in Section V.B. 
(The figures presented in that section are snapshots of the 
graphical editor.) A toolchain design model is ultimately an 
instance of the toolchain meta-model. This model can then 
be inputted into the Lyo Code Generator [17] to generate 
almost-complete code for each of the tool interfaces in the 
toolchain. 

 

Lyo OSLC4J SDK 

Technology-specific Generators 

SQL 

4OSLC 

Toolchain Meta-model 

 

… EMF 

4OSLC 
Graphical 

Modelling 

Editor 

 

           Lyo Code Generator 

 
Figure 11.  The layered architecture of the modelling tool, building upon 

the Lyo OSLC4J SDK, to provide a model-based development approach. 

The Lyo code generator runs as a separate Eclipse 
project, and assumes a minimal set of plug-in dependencies. 
It is based on Acceleo [19], which implements the OMG 
MOF Model-to-Text Language (MTL) standard [20]. The 
code generator is designed to be independent of the 
Graphical Modelling Editor, and hence its input tool meta-
model instance can be potentially created by any other EMF 
mechanism. This facilitates the extension of the generator 
with additional components as later described in this section. 

The code generator builds upon the OSLC4J Software 
Development Kit (SDK) from the Lyo [21] project. While 
the OSLC4J SDK targets the implementation phase of 
adaptor implementation, our tool complements it with a 
model-based development approach, which allows one to 
work at a higher level of abstraction, with models used to 
specify the adaptor design, without needing to deal with all 
the technical details of the OSLC standard (such as Linked 
Data, RDF, etc.). 

The generator produces OSLC4J-compliant Java code. 
Once generated, the java code has no dependencies to either 
the code generator, or the input toolchain model. The 
generated code can be further developed – as any OSLC4J 
adaptor – with no further connections to the generator.  

Moreover, it is possible to modify the toolchain model 
and re-generate its code, without the loss of any code 
manually introduced between generations. For example, a 
JAX-RS class method may need to perform some additional 
business logic before - or after - the default handling of the 
designated web service. The generator ensures that such 
manual code remains intact after subsequent changes in the 
model and code generations. This promotes the incremental 
development of the toolchain, where the specification model 
and implementation can be gradually developed. 

Upon generation, an adaptor is – almost – complete and 
ready-to-run, and needs not be modified nor complemented 
with additional manual code. Only a set of methods that 
communicate with the source tool to access its internal data 
need to be implemented (the dotted arrows in Figure 1). This 
communication is reduced to a simple set of methods to (a) 
get (b) create (c) search and (d) query each serviced 
resource. This manual code is packaged into a single class, 
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with skeletons of the required methods generated. It remains 
the task of the developer to manual code these methods. 

However, for specific tool technologies, a full adaptor 
implementation can be generated. For example, targeting 
EMF-based modelling tools in general, an additional 
EMF4OSLC component was developed [22] to complement 
the code generator with the automatic generation of the 
necessary code to access and manipulate the data in the 
backend tool. This leads to the complete generation of the 
adaptor. EMF4OSLC moreover generates the actual interface 
specification model based on a predefined mapping between 
EMF and OSLC. Similarly, an additional component – 
EMF4SQL – is being developed to handle SQL-based tools. 
It is anticipated that much code reuse can be gained between 
EMF4OSLC and EMF4SQL, while ensuring that both 
components build on top of the Lyo code generator. 

The modelling tool and supporting documentation are 
available as open-source under the Eclipse Lyo [21] project. 

VI. DISCUSSION 

Compared to the original approach practiced by Scania 
engineers of using a UML class diagram (see Figure 2) to 
represent the F-IDE resources, the proposed model may 
seem to add a level of complexity by distributing the model 
information into three views. However, upon further 
investigation, it becomes clear that the class diagram was 
actually used to superimpose information for both the 
Domain Specification and Resource Allocation views into 
the same diagram. For example, classes were initially color-
coded to classify them according to their owning tool. 
However, the semantics and intentions behind this 
classification soon become ambiguous, since the distinction 
between tool and domain ownership is not identified 
explicitly. In the original approach, different viewers of the 
same model could hence draw different conclusions when 
analyzing the model, depending on their implicit 
understanding of the color codes. 

Through a multi-view modelling approach, and by 
describing the information  model from the two orthogonal 
views of managing domains and managing tools, the 
information  model is no longer expected to be developed in 
a top-down and centralized manner. Instead, a more 
distributed process is envisaged, in which resources are 
defined within a specific domain and/or tool. Only when 
necessary, such sub-models can then be integrated, avoiding 
the need to manage a single centralized information model. 
Moreover, these two orthogonal views of the F-IDE allow 
the toolchain architect to identify dependencies within the F-
IDE, from both the organizational as well as the deployment 
perspective:  

• In the Resource Allocation View of the model, the 
toolchain architect can obtain an overview of the 
coupling/cohesion of the tools of the F-IDE. One could 
directly identify the direct producer/consumer relations, as 
well as the indirect dependencies, as detailed in Section V.B. 

• In the Domain Specification view, the toolchain 
architect views the dependencies between the different 
domains (irrespective of how the resources are deployed 
across tools). Such dependencies reveal the relationship 

between the organizational entities involved in maintaining 
the overall information model. This explicit modelling of 
domain ownership helps lift important organizational 
decisions, which otherwise remain implicit.  

Semantically, the usage of a class diagram is not 
compatible with the open-world view of Linked Data. 
Instead, a dedicated domain-specific language (DSL) that 
follows the expected semantics can be better used uniformly 
across the whole organization.  We here illustrate two 
examples where our DSL helped communicate the correct 
semantics, which were previously misinterpreted or not used: 

• A Resource Property is a first-class element that ought 
to be defined independently of Resource definitions within a 
Domain Specification. A Property can then be associated 
with multiple Resource types, which in turn can belong to 
the same or any other Domain Specification. For example, 
the allowedValues property (with range KeyValuePair) is 
defined within the Variability domain, and its definition 
ought not to be dependent on any particular usage within any 
Resource. This same Property is then being associated to the 
CalibrationParameter & RtdbVariable resources. 
Previously, two separate Properties were unnecessarily 
defined within the context of each Resource, which is not 
appropriate when adopting Linked Data and its RDF data 
model.  

• Certain Resources can only exist within the context of 
another parent Resource, and hence ought not to have their 
own URI. For example, Range is defined as a simple 
structure of three properties (min, max and step). The 
CalibrationParameter resource contains the allowedRange 
property whose value-types is set to Local Resource, 
indicating that property value is a resource that is only 
available inside the CalibrationParameter instance. Our 
DSL helped communicate the capability of defining Local 
Resources. A class diagram does not provide a 
corresponding concept that can be correctly used to convey 
the same semantics.  

Adopting a class diagram may have been satisfactory at 
the early stages of development, where focus was on the 
information specification. However, it became apparent that 
the diagram is not sufficient in supporting the later phases of 
development, when the tool interfaces need to be designed 
and implemented. Furthermore, no complements to the UML 
class diagram can provide all necessary information 
according to the OSLC standard. Instead, the third Adaptor 
Design View serves this need satisfactorily. In addition, by 
sharing a common meta-model with the other two views, it is 
ensured that the detailed designs remain consistent with the 
specification and architecture of the F-IDE. Furthermore, 
given that the complete model (with its three views) can lead 
to the generation of working code, the model’s completeness 
and correctness is confirmed. 

While the need for a dedicated DSL is convincing, the 
proposed notations are not necessarily final, and there 
remains room for improvements. The alternative 
representations of the Domain Specification View (discussed 
in Section V.B) highlight some of the refinements that need 
to be dealt with. 
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VII. RELATED WORK 

There exists a large body of research that in various ways 
touches upon information modeling and tool integration. 
(See for example [2] and [23]). Our work - and the related 
work of this section - is delimited to the Linked Data 
paradigm, and its graphical modelling. 

The most relevant work found in this area is the 
Ontology Definition Metamodel (ODM) [24]. ODM is an 
OMG specification that defines a family of Meta-Object 
Facility (MOF) metamodels for the modelling of ontologies. 
ODM also specifies a UML Profile for RDFS [16] and the 
Web Ontology Language (OWL) [25], which can be realized 
by UML-based tools, such as Enterprise Architect's ODM 
diagrams [26]. However, as argued in [14], OWL and RDFS 
are not suitable candidates to specify and validate 
constraints, given that they are designed for another purpose 
- namely for reasoning engines that can infer new 
knowledge. The work in this paper builds upon the Resource 
Shape constraint language suggested in [14], by providing a 
graphical model to specify such constraints on RDF 
resources. The constraint language is part of the OSLC 
standard, making for its easy adoption within our work. On 
the other hand, SHACL [27] is an evolving W3C working 
draft for a very similar constraint language, which can also 
be supported in the future. 

Earlier work by the authors has also resulted in a 
modelling approach to toolchain development [28]. In this 
earlier work, even though the information was modelled 
targeting an OSLC implementation, the models were directly 
embedded in the specific tool adaptors, and no overall 
information model is readily available. The models did not 
support the tool and domain ownership perspectives 
identified in this paper. 

In general, there are inspiring works done for defining a 
visual language for the representation of ontologies. Even if 
ontologies are not directly suitable for the specification of 
constraints, such languages can be used as inspiration for the 
graphical notation presented in this paper. One example is 
the Visual Notation for OWL Ontologies (VOWL) [29] that 
is based on only a handful of graphical primitives forming 
the alphabet of the visual language. In this visual notation, 
classes are represented as circles that are connected by lines 
and arrowheads representing the property relations. Property 
labels and datatypes are shown as rectangles. Information on 
individuals and data values is displayed either in the 
visualization itself or in another part of the user interface. 
VOWL also uses a color scheme complementing the 
graphical primitives. It defines colors for the visual elements 
to allow for an easy distinction of different types of classes 
and properties. In addition to the shapes and colors, VOWL 
also introduces dashed lines, dashed borders and double 
borders for visualizing class, relation or data properties. 

OWLGrEd [30] is another graphical OWL editor that 
extends the UML class diagram to allow for OWL 
visualization. The work argues that the most important 
feature for achieving readable graphical OWL notation is the 
maximum compactness. The UML class diagram is used to 
present the core features of OWL ontologies. To overcome 

the difference between UML’s closed-world assumption and 
OWL’s open-world assumption, the authors changed the 
semantics of the UML notation and added new symbols. 
OWLGrEd introduces a colored background frame for the 
relatively autonomous sub-parts of the ontology. 
Furthermore, the editor contains a number of additional 
services to ease ontology development and exploration, such 
as different layout algorithms for automatic ontology 
visualization, search facilities, zooming, and graphical 
refactoring. Finally, GrOWL [31] is a visual language that 
attempts to accurately visualize the underlying description 
logic semantics of OWL ontologies, without exposing the 
complex OWL syntax. 

Lanzenberger et al. [32] summarize the results of their 
literature study on tools for visualizing ontologies as: “A 
huge amount of tools exist for visualizing ontologies, 
however, there are just a few for assisting with viewing 
multiple ontologies as needed for ontology alignment. … 
Finally, in order to support an overview and detail approach 
appropriately, multiple views or distortion techniques are 
needed.” We identified the need to support multiple views in 
this study, in order to support the different stakeholders of 
the same language. 

VIII. CONCLUSION 

In this paper, an MDE approach to F-IDE development 
based on Linked Data and the OSLC standard is presented. 
The proposed set of modelling views supports the toolchain 
architect with the early phases of toolchain development, 
with a particular focus on the specification of the information 
model and its distribution across the tools of the toolchain. 
Additionally, such views are tightly integrated with a design 
view supporting the detailed design of the tool interfaces. 
The modelling views are designed to be a digital 
representation of the OASIS OSLC standard. This ensures 
that any defined toolchain complies with the standard. It also 
helps lower the threshold of learning as well as 
implementing OSLC-compliant toolchains.  

An open-source modelling tool was developed to realize 
the proposed modelling views. The tool includes an 
integrated code generator that can synthesis the specification 
and design models into a running implementation. This 
allows one to work at a higher level of abstraction, without 
needing to deal with all the technical details of the OSLC 
standard (such as Linked Data, RDF, etc.). The Eclipse-
based modelling tool and supporting documentation are 
available as open-source under the Eclipse Lyo project. 

It is envisaged that the modelling support will be 
extended to cover the complete development lifecycle, 
specifically supporting the requirements analysis phase, as 
well as automated testing. The current focus on data 
integration needs to be also extended to cover other aspects 
of integration, in particular control integration [33]. 
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