
248

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Model-Driven Engineering Approach to Software Tool Interoperability based on

Linked Data

Jad El-khoury, Didem Gurdur

Department of Machine Design

KTH Royal Institute of Technology

Stockholm, Sweden

email:{jad, dgurdur}@kth.se

Mattias Nyberg

Scania CV AB

Södertälje, Sweden

email: mattias.nyberg@scania.com

Abstract—Product development environments need to shift

from the current document-based, towards an information-

based focus, in which the information from the various

engineering software tools is well integrated and made digitally

accessible throughout the development lifecycle. To meet this

need, a Linked Data approach to software tool interoperability

is being adopted, specifically through the Open Services for

Lifecycle Collaboration (OSLC) interoperability standard. In

this paper, we present a model-driven engineering approach to

toolchain development that targets the specific challenges faced

when adopting the technologies, standards and paradigm

expected of Linked Data and the OSLC standard. We propose

an integrated set of modelling views that supports the early

specification phases of toolchain development, as well as its

detailed design and implementation phases. An open-source

modelling tool was developed to realize the proposed modelling

views. The tool includes a code generator that synthesizes a

toolchain model into almost-complete OSLC-compliant code.

The study is based on a case study of developing a federated

OSLC-based toolchain for the development environment at the

truck manufacturer Scania AB.

Keywords-Linked data modelling; OSLC; resource shapes;

tool integration; tool interoperability, information modelling.

I. INTRODUCTION

This article is an extended version of [1], in which we
expand the earlier focus on the specification phase, to present
a more complete development approach to software tool
interoperability. The new approach includes a tighter
incorporation of the later phases of design and
implementation of tool interfaces. Based on additional work
on the case study, further refinements of the proposed
models and supporting tools are also reflected in this article.

The heterogeneity and complexity of modern industrial
products requires the use of many engineering software
tools, needed by the different engineering disciplines (such
as mechanical, electrical, embedded systems and software
engineering), and throughout the entire development life
cycle (requirements analysis, design, verification and
validation, etc.). Each engineering tool handles product
information that focuses on specific aspects of the product,
yet such information may well be related or dependent on
information handled by other tools in the development
environment [2]. It is also the case that a tool normally
manages its product information internally as artefacts stored

on a file system or a database using a tool-specific format or
schema. Therefore, unless interoperability mechanisms are
developed to connect information across the engineering
tools, isolated “islands of information” may result within the
overall development environment. This in turn leads to an
increased risk of inconsistencies, given the natural
distribution of information across the many tools and data
sources involved.

As an example from the automotive industry, the
functional safety standard ISO 26262:2011 [3] mandates that
requirements and design components are to be developed at
several levels of abstraction; and that clear trace links exist
between requirements from the different levels, as well as
between requirements and system components. Such a
demand on traceability implies that these development
artifacts are readily and consistently accessible, even if they
reside across different development tools. Naturally, the
current industry practice, in which development artefacts are
handled as text-based documentation, renders such
traceability ineffective – if not impossible. The ongoing
trend of adopting the Model-Driven Engineering (MDE)
approach to product development is a step in the right
direction, by moving away from text-based artefacts, towards
models that are digitally accessible. This leads to an
improvement in the quality and efficient access to product
and process information. However, while MDE is more
accepted in the academic research community, its complete
adoption in an industrial context remains somewhat limited,
where MDE is typically constrained to a subset of the
development lifecycle [22]. Moreover, even where MDE is
adopted, mechanisms are still needed to connect the artefacts
being created by the various engineering tools, in order to
comply with the standard.

In summary, current development practices need a faster
shift from the localized document-based handling of
artefacts, towards an Information-based Development
Environment (IDE), where the information from all
development artefacts is made accessible, consistent and
correct throughout the development phases, disciplines and
tools.

One can avoid the need to integrate the information
islands, by adopting a single platform (such as PTC Integrity
[4] or MSR-Backbone [5]) through which product data is
centrally managed. However, large organizations have
specific development needs and approaches (processes,

249

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tools, workflow, in-house tools, etc.), which lead to a wide
landscape of organization-specific and customized
development environments. Moreover, this landscape needs
to evolve organically over time, in order to adjust to future
unpredictable needs of the industry. Contemporary
platforms, however, offer limited customization capabilities
to tailor for the organization-specific needs, requiring instead
the organization to adjust itself to suite the platform. So,
while they might be suitable at a smaller scale, such
centralized platforms cannot scale to handle the complete
heterogeneous set of data sources normally found in a large
organization.

A more promising integration approach is to
acknowledge the existence of distributed and independent
data sources within the environment. To this end, OASIS
OSLC [6] is an emerging interoperability open standard (see
Section II for further details) that adopts the architecture of
the Internet and its standard web technologies to integrate
information from the different engineering tools - without
relying on a centralized integration platform. This leads to
low coupling between tools, by reducing the need for one
tool to understand the deep data of another. Moreover – like
the web – the approach is technology-agnostic, where tools
can differ in the technologies they use to internally handle
their data. That is, both the data as well as the technology is
decentralized. Such an approach lends itself well to the
distributed and organic nature of the IDE being desired - a
Federated IDE (F-IDE), where the information from all
development artefacts – across the different engineering
tools – is made accessible, consistent and correct throughout
the development phases, disciplines and tools.

In this paper, we advocate the use of OSLC and the
Linked Data principles as a basis for such an F-IDE. Yet,
when developing such a federated OSLC-based F-IDE for
parts of the development environment at the truck
manufacturer Scania AB, certain challenges were
encountered that needed to be addressed. Put generally, there
is an increased risk that one loses control over the overall
product data structure that is now distributed and interrelated
across the many tools. This risk is particularly aggravated if
one needs to maintain changes in the F-IDE over time.

We here propose a model-driven engineering approach to
F-IDE development that tries to deal with this risk. That is,
how can a distributed architecture – as promoted by the
Linked Data approach – be realized, while maintaining a
somewhat centralized understanding and management of the
overall information model handled within the F-IDE?

In the next section, we will first give some background
information on Linked Data and the OASIS OSLC standard.
We then present the case study that has driven and validated
this work in Section III. Section IV then elaborates on the
challenges experienced during our case study, before
detailing the modelling approach taken to solve these
challenges in Section V. Details on the modelling views, as
well as their realisation in an open-source tool, are presented.
Reflections on applying the modelling approach on the case
study are then discussed in Section VI, followed by a
discussion of related work. The article is then concluded in
Section VIII.

II. LINKED DATA AND THE OASIS OSLC STANDARD

Linked Data is an approach for publishing structured data
on the web, such that data from different sources can be
connected, resulting in more meaningful and useful
information. Linked Data builds upon standard web
technologies such as HTTP, URI and the RDF family of
standards. The reader is referred to [7] for Tim Berners-Lee's
four principles of Linked Data.

OASIS OSLC is a standard that targets the integration of
heterogeneous software tools, with a focus on the linking of
data from independent sources. It builds upon the Linked
Data principles, and its accompanying standards, by defining
common mechanisms and patterns to access, manipulate and
query resources managed by the different tools in the
toolchain. In particular, OASIS OSLC is based on the W3C
Linked Data Platform (LDP) [8], and it follows the
Representational State Transfer (REST) architectural pattern.

This Linked Data approach to tool interoperability
promotes a distributed architecture, in which each tool
autonomously manages its own product data, while
providing – at its interface - RESTful services through which
other tools can interconnect. Figure 1 illustrates a typical
architecture of an OSLC tool interface, and its relation to the
tool it is interfacing. With data exposed as RESTful services,
such an interface is necessarily an “OSLC Server”, with the
connecting tool defined as an “OSLC Client”. Following the
REST architectural pattern, an OSLC server allows for the
manipulation of artefacts – once accessed through the
services - using the standard HTTP methods C.R.U.D. to
Create, Read, Update and Delete. In OSLC, tool artefacts are
represented as RDF resources, which can be represented
using RDF/XML, JSON, or Turtle. A tool interface can be
provided natively by the tool vendor, or through a third-party
as an additional adaptor. In either case, a mapping between
the internal data and the exposed RDF resources needs to be
done. Such mapping needs to deal with the differences in the
technologies used. In addition, a mapping between the
internal and external vocabulary is needed, since the
vocabulary of the resources being exposed is not necessarily
the same as the internal schema used to manage the data.

OSLC

Server

Mapping Tool

Instance

Resources & services

OSLC

Technological

Space

Tool

Technological

Space

Change Request Foaf:Person

bug1

Bug2

AssignedTo

Figure 1. Typical tool architecture, with an OSLC Server

250

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

III. CASE STUDY DESCRIPTION

Typical of many industrial organizations, the
development environment at the truck manufacturer Scania
consists of standard engineering tools, such as issue-tracking
and computer-aided design (CAD) tools; as well as a range
of proprietary tools that cater for specific needs in the
organization. Moreover, much product information is
managed as generic content in office productivity tools, such
as Microsoft Word and Excel.

To comply with the ISO 26262 standard, the current
development environment needs to improve in its
management of vehicle architectures and requirement
specifications, in order to provide the expected traceability
between them. This in turn necessitates a better integration of
the tools handling the architecture and requirements artefacts
to allow for such traceability. To this end, five proprietary
tools and data sources were to be integrated using OSLC:

1. Code Repository – A tool that defines the vehicle
software architecture through parsers that analyze all
software code to reconstruct the architecture, defining
entities such as software components and their
communication channels [9]. The analyzed software code
resides in a typical version-control system. When defining
the architecture, the tool references artefacts – defined in
other external tools - dealing with communication and the
hardware architecture.

2. Communication Specifier – A tool that centrally
defines the communication network and the messages sent
between components of all vehicle architectures.

3. ModArc – A CAD tool that defines the electrical
components, including all hardware entities and their
interfaces such as communication ports.

4. Diagnostics Tool - A tool that specifies the
diagnostics functionality of all vehicle architectures,
including communication messages of relevance to the
diagnostics functionality.

5. Requirements Specifier - A proprietary tool that
allows for the semi-formal specification of system
requirements [10]. Requirements are specified at different
levels of abstraction. By anchoring the specifications on
different parts of the system architecture, the tool helps the
developer define correct requirements that can only reference
appropriate product artefacts within the system architecture.

As a first step, it was necessary to analyze the data that
needed to be communicated between the tools. This was
captured using a Class Diagram (Figure 2), as is the current
state-of-practice at Scania for specifying a data model. For
the purpose of this paper, it is not necessary to have full
understanding of the data artefacts. It is worth highlighting
that color-codes were initially used to define which tool
managed which data artefact. Yet, this appeared to be a non-
trivial task since an artefact might be used in multiple tools,
with no clear agreement on the originating source tool. For
example, a Signal can be found in both the Code Repository
as well as the Communication Specifier tool. Given that there
exists no data integration between the two tools to keep the
artefact synchronized, different developers may have a
different perspective over which of the two tools holds the

source and correct Signal information, from which the other
tool needs to be – manually – updated.

In addition, it is important to note that the model focuses
on the data to be communicated between the tools, and not
necessarily all data available internally within each tool.

IV. IDENTIFIED NEEDS AND SHORTCOMINGS

In this paper, we focus on the initial development stages
of specifying and architecting the desired OSLC-based F-
IDE, as well as its design and implementation. The latter
verification and validation phases are not yet covered in the
case study, yet there is naturally recognition of the need to
support them in the near future. Based on the case study, we
here elaborate on the needs and shortcomings experienced by
the toolchain architects and developers during these stages:

Information specification – There is a need to specify
an information model that defines the types of artefacts or
resources to be communicated between the tools across the
toolchain. For pragmatic reasons, a UML class diagram was
initially adopted by the Scania toolchain architects to define
the entities being communicated and their relationships.
Clearly, the created model does not comply with the
semantics of the class diagram, since the entities being
modelled are not objects in the object-oriented paradigm, but
resources according to the Resource Description Framework
(RDF) graph data model. Since the information model is to
be maintained over time, and is intended for communication
among developers, using a class diagram - while implying
another set of semantics – may lead to misunderstandings. A
specification that is semantically compatible with the
intended implementation technology (of Linked Data, and
specifically the OSLC standard) is necessary. However, the
initial experience from using the class diagram helped
identify the necessary requirements on any appropriate
solution. First, graphical models are essential to facilitate the
communication of the models among the different
stakeholders. It is also beneficial to – wherever possible -
borrow or reuse graphical representations from common
modelling frameworks (such as UML) in order to reduce the
threshold of learning a new specification language. For
example, adopting a hollow triangle shape to represent class
inheritance (as defined in UML) would be recommended in
RDF modelling as well.

Domain ownership – It is necessary to structure the
information model specification into domains (such as
requirements engineering, software, testing, etc.). Domains
can be generic in nature. Alternatively, such domain
grouping can reflect the organization units that are
responsible to manage specific parts of the information
model. For example, the testing department may be
responsible to define and maintain the testing-related
resources, while the requirements department manages the
definition of the requirements resources. This is particularly
relevant in an organization where different departments are
responsible for their own tools and processes, and where it
no longer becomes feasible to expect the information model
to be centrally defined. Dependencies between the
responsible departments can then be easily identified through
the dependencies in the information models.

251

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

message

name: String

priority: String

sourceAddress : String

destinationAddress : String

period : String

timeout : String

message_type : String

signal

name: String

bit_start : int

bit_length : int

offset : String

factor: String

communication interface

id : int

segment: String

ECUSoftware

family : String

generation : String

version : String ? Nullable

releaseDate: String

changeRequests: ChangeRequest[]

SoftwareComponent

name: String

description: String

hierarchy: String

RtdbVariable

name: String

description: String

dataType: String

unit: String

io_port

 name : String

 type : String

 pin_type : String

 direction : String

CalibrationParameter

name: String

dataType: String

diagnostic communication interface

type : String

Common ID

ID: String

session: String

isOperationalData: Bool

isFreezeFrame: Bool

range

min

max

step

KeyValuePair

name: String

description: String

value: Number

has_signal 0...*

is_gatewayed 0...*

has_message 0...*

has_interface 1...*

hasSubcomponent

hasSoftwareComponent 1...*

owns

owns 0...*

associates_with 0...*
has_io_port 1...*

associates_with 0...1

uses_port

Reads/Owns 0..*

Reads/Owns 0..*

has_interface 1...*

has_CID 0...*

associates_with 0...*

allowedRange 0...*

allowedValues 0...*

allowedValues 0...*

Figure 2. A UML class diagram of the resources shared in the desired F-IDE.

Tool ownership – Orthogonal to domain ownership, it is
also necessary to clearly identify the data source (or
authoring tool) that is expected to manage each defined
resource being shared in the F-IDE. That is, while
representations of a resource may be freely shared between
the tools, changes or creations of such a resource can only
occur via its owning tool. Assuming a Linked Data approach
also implies that a resource is owned by a single source, to
which other resources link. In practice, it is not uncommon
for data to be duplicated in multiple sources, and hence
mechanisms to synchronize data between tools are needed.
For example, resources of type Communication Interface
may be used in both Communication Specifier and ModArc,
with no explicit decision on which of the tools defines it. To
simplify the case study, we chose to ignore the ModArc
source, but in reality, one needs to synchronize between the
two sources, as long as it is not possible to make one of them
redundant.

That is, in architecting an F-IDE, there is a need to
support the data specification using Linked Data semantics,
while covering the two ownership aspects of tools
(ownership from the tool deployment perspective) and
domains (ownership from the organizational perspective).

Avoid mega-meta-modelling – Information
specifications originate from various development phases
and/or development units in the organization. The resulting
information models may well overlap, and would hence need
to be harmonized. Hence, there is a need to harmonize the
information models – while avoiding a central information
model. Earlier attempts at information modeling normally
resulted in large models that can easily become harder to
maintain over time. The research project CESAR presents in
[11] a typical interoperability approach in which such a large
common meta-model is proposed. It is anticipated that the
Linked Data approach would reduce the need to have such a
single centralized mega information model. The correct
handling of information through Domain and Tool
Ownership (see above) ought to also help in that direction.

Development support – Similar to the challenge faced
in general software development, there is a need to maintain
the information specification and desired architecture
harmonious with the eventual design and implementation of
the F-IDE and its components. The current use of a class
diagram works well as an initial specification, and for
documentation purposes. However, there is no mechanism in
place to ensure the model is updated relative to changes later
performed during the development. Especially when

252

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

adopting an agile development approach, the specification
and architecture are expected to change over time, and hence
the implementations of individual adaptors need to capture
such eventual changes. Likewise, feedback from the design
and implementation phases may lead to necessary changes in
the specification and architecture.

Appropriate tool support is needed to make the
specification models an integral part of development. This
can take the form of a Software Development Kit (SDK),
code generators, graphical models, analysis tools, etc. Such
tool support should also help lower the threshold of learning
as well as adopting OSLC, since implementing OSLC-
compliant tools entails competence in a number of additional
technologies such as RESTful web services and the family of
RDF standards.

V. MODELLING SUPPORT

We take an MDE approach to F-IDE development, in
which we define a graphical modelling language that
supports the toolchain architects and developers with the
needs identified in the previous section.

The language is designed to act as a digital representation
of the OASIS OSLC standard. This ensures that any defined
toolchain complies with the standard. Such a graphical
representation also helps lower the threshold of learning as
well as implementing OSLC-compliant toolchains.

The language is structured into a set of views, in which
each view focuses on a specific need, stakeholder and or
aspect of development. The analysis of the needs from
Section IV leads to the following three views:

• Domain Specification View – for the specification of
the information to be shared across the F-IDE, with support
for the organizational needs.

• Resource Allocation View – for the specification of
information distribution and ownership across the F-IDE
architecture.

• Adaptor Design View – for the detailed design and
implementation of the tool interfaces of the F-IDE.

The next subsection presents further details of the OSLC
standard, which then leads to its reflection by the proposed
meta-model. Based on this OSLC meta-model, three views
are then derived in Section V.B. The proposed graphical
notation of each view is presented through examples from
the use case of Section III. Finally, Section V.C details the
open-source modelling tool developed to realize the
proposed approach.

A. The Meta-model

The OASIS OSLC standard consists of a Core
Specification and a set of Domain Specifications. The OSLC
Core Specification [12] defines the set of resource services
that can be offered by a tool. Figure 3 illustrates the structure
of an OSLC interface and its services. A Service Provider is
the central organizing entity of a tool, under which artefacts
are managed. Typical examples of a Service Provider are
project, module, product, etc. It is within the context of such
an organizing concept that artefacts are managed (created,
navigated, changed, etc.). For a given Service Provider,
OSLC allows for the definition of two Services (Creation

Factory & Query Capability) that provide other tools with
the possibility to create and query artefacts respectively. In
addition, OSLC defines Delegated UI (Selection and
Creation) services that allow other tools to delegate the user
interaction with an external artefact to the Service Provider
under which the artefact is managed. The structure of Figure
3 allows for the discoverability of the services provided by
each Service Provider, starting with a Service Provider
Catalog, which acts as a catalog listing all available Service
Providers exposed by a tool.

OASIS OSLC also defines Domain Specifications, which
include domain vocabularies (or information models) for
specific lifecycle domains. For example, the Quality
Management Specification [13] defines resources and
properties related to the verification phase of development
such as test plans, test cases, and test results. The
standardized Domain Specifications are minimalistic,
focusing on the most common concepts within a particular
domain, while allowing different implementations to extend
this common basis.

Figure 3. OSLC Core Specification concepts and relationships [12]

Using EMF [18], we define the meta-model that reflects
the structure and concepts of the OASIS OSLC standard, as
illustrated in Figure 4. A Toolchain consists of (1) a set of
AdaptorInterfaces and (2) a set of DomainSpecifications (for
legacy reasons grouped under a Specification element):

• An AdaptorInterface represents a tool’s OSLC
interface, and reflects the Core standard structure as
illustrated in Figure 3.

• A DomainSpecification reflects how an OSLC Domain
Specification defines vocabularies. It models the resources
types, their properties and relationships, based on the Linked
Data constraint language of Resource Shapes [14]. Resource
Shapes is a mechanism to define the constraints on RDF
resources, whereby a Resource Shape defines the properties
that are allowed and/or required of a type of resource; as well
as each property’s cardinality, range, etc.

B. The Modelling Views

Based on the OSLC meta-model, we define the following
three views:

253

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. The underlying meta-model of the OASIS OSLC standard, reflecting the Core and Domain Specifications.

Domain Specification View From this perspective, the
toolchain architect defines an information model that details
the types of resources, their properties and relationships,
using mechanisms compliant with the OSLC Core
Specification [12] and the Resource Shape constraint
language [14]. Figure 5 exemplifies the proposed graphical
notation of the Domain Specification view for the resources
needed in our case study.

The top-level container, DomainSpecification, groups
related Resources and Resource Properties. Such grouping
can be associated with a common topic (such as
requirements or test management), or reflects the structure of
the organization managing the F-IDE. This view ought to
support standard specifications, such as Friend of a Friend
(FOAF) [15] and RDF Schema (RDFS) [16], as well as
proprietary ones. In Figure 5, three Domain Specifications
are defined: Software, Communication and Variability,
together with a subset of the standard domains of Dublin
Core and RDF.

As required by the OSLC Core, a specification of a
Resource type must provide a name and a Type URI. The
Resource type can then also be associated with its allowed
and/or required properties. These properties could belong to
the same or any other DomainSpecification. A Resource
Property is in turn defined by specifying its cardinality,
optionality, value-type, allowed-values, etc. Figure 6

illustrates an example property specification highlighting the
available constraints that can be defined. A Literal Property
is one whose value-type is set to one of the predefined literal
types (such as string or integer); while a Reference Property
is one whose value-type is set to either “resource” or “local
resource”. In the latter case, the range property can then be
used to suggest the set of resource types the Property can
refer to.

In RDF, Resource Properties are defined independently,
and may well be associated with multiple Resource types
(Unlike, for example UML Classes, where a class attribute is
defined within the context of a single class). For this reason,
Resource Properties are graphically represented as first-class
elements in the diagram. So, borrowing from the typical
notation used to represent RDF graphs, Resource types are
represented as ellipses, while Properties are represented as
rectangles (A Reference Property is represented with an
ellipse within the rectangle.).

The association between a Resource type and its
corresponding Properties is represented by arrows for
Reference Properties, while Literal Properties are listed
graphically within the Resource ellipse. Such a
representation renders the diagram almost similar – visually -
to the UML class diagram of Figure 2. This makes the
diagram intuitive and familiar for the modeler, yet with the
more appropriate Linked Data semantics behind the view.

254

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Domain Specification View

While the possibility to represent Properties as first-class
elements was appreciated, it was experienced that they (The
squares in Figure 5) cluttered the overall model, and did not
make efficient usage of the available modeling space. An
alternative representation is available, in which Property
definitions are collected within a single sub-container,
confined within its containing DomainSpecification. Figure 7
presents this alternative diagram for a subset of the domain
specification of Figure 5, focusing on the Communication
Domain Specification. Such a notation still ensures that
Properties are defined independently of Resources, while
making the graphical entities more manageable for the
modeler.

Moreover, typical RDF graphs notations represent all
associations between resources and properties by arrows,
irrespective of whether they are Literal or Reference
Properties. If desired, such a representation can be chosen as
well. Figure 8 presents this alternative for a subset of the
domain specification of Figure 5, focusing on the Software
Domain Specification. Such a representation is intuitive for a
small specification. However, it is experienced that for large
specifications, the many associations between Resources and

their associated Literal Properties cluttered the diagram.
Furthermore, common Literal Properties, such as
dcterms:subject, can be associated to many resources across
many domains, leading to many cross-domain arrows that
further clutter the diagram.

Figure 6. The specification of the rdf:type predicate, in the Domain

Specification View [1]

255

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. An alternative Domain Specification View, with Property definitions collected within a single sub-container.

The three alternative representations of Resource
Properties and their associations with Resources are made
available through filtering mechanisms to suite the
preferences of the modeler. It is important to recall that these
alternatives are semantically similar, and are based on the
same meta-model of Figure 4.

Resource Allocation View provides the overall
architecture of the F-IDE, where the toolchain architect
allocates resources to data sources. It gives the architect an
overview of where the resources are available in the F-IDE,
and where they are consumed. For each data source, the
architect defines the set of Resources it exposes; as well as
those it consumes. These Resources are graphically
represented as “provided” and “required” ports on the edge
of the AdaptorInterface element, as illustrated in Figure 9 for
our case study. For example, the Communication Specifier
interface exposes the Message resource, which is then
consumed by the Requirements Specifier.

Figure 8. An alternative Domain Specification View, representing all

associations between resources and properties by arrows.

In the Resource Allocation view, the interaction between
a provider and consumer of a given resource is presented as a
solid edge between the corresponding ports. In addition, any
dependencies between resources that are managed by two
different data sources are also represented in this model – as
a dotted edge. For example, the resource ECUSoftware,
managed by the Code Repository, has a property has_io_port
that is a reference to resource IO_port (which is in turn
managed through the data source Modarc). Hence, for a
consumer of ECUSoftware, it is beneficial to identify the
indirect dependency on the Modarc tool, since any
consumption of an ECUSoftware resource, is likely to lead to
the need to communicate with Modarc in order to obtain
further information about the property has_io_port.

Figure 9. Resource Allocation View

256

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Adaptor Design View is where the toolchain architect
(or the tool interface developer) designs the internal details
of the tool interface – according to the OSLC standard. This
can be performed for any of the Tool entities in the Resource
Allocation view. The Adaptor Design view is a realization of
the OSLC interface structure of Figure 3. Sufficient
information is captured in this view, so that an almost
complete interface code, which is compliant with the
OSLC4J software development kit (SDK) can be generated,
based on the Lyo code generator [17] (See next subsection
for further details.).

An example of the proposed notation from our case study
is presented in Figure 10, in which the Core Repository
provides query capabilities and creation factories on all three
resources. The Adaptor Design view also models its
consumed resources (In Figure 10, no consumed resources
are defined.). Note that the provided and required resources -
as defined in this view - remain synchronized with those at
the interface of the Tool entity in the Resource Allocation
view.

Figure 10. Adaptor Design View [1]

There is no particular ordering of the above views, and in
practice, the three views can be developed in parallel.
Consistency between the views is maintained since they all
refer to the same model. For example, if the toolchain
architect removes a resource from the Adaptor Design view,
the same resource is also removed from the Resource
Allocation view.

C. Architecture of Modelling Tool

An open-source Eclipse-based modelling tool was
developed to realize the proposed approach, whose main
components are presented in Figure 11. Central in the
architecture is the Toolchain Meta-model component that
realizes the meta-model of Figure 4, based on the Eclipse
Modeling Framework (EMF) [18]. The Graphical Modelling
Editor then allows the end-user to graphically design a
toolchain based on the three views presented in Section V.B.
(The figures presented in that section are snapshots of the
graphical editor.) A toolchain design model is ultimately an
instance of the toolchain meta-model. This model can then
be inputted into the Lyo Code Generator [17] to generate
almost-complete code for each of the tool interfaces in the
toolchain.

Lyo OSLC4J SDK

Technology-specific Generators

SQL

4OSLC

Toolchain Meta-model

… EMF

4OSLC
Graphical

Modelling

Editor

 Lyo Code Generator

Figure 11. The layered architecture of the modelling tool, building upon

the Lyo OSLC4J SDK, to provide a model-based development approach.

The Lyo code generator runs as a separate Eclipse
project, and assumes a minimal set of plug-in dependencies.
It is based on Acceleo [19], which implements the OMG
MOF Model-to-Text Language (MTL) standard [20]. The
code generator is designed to be independent of the
Graphical Modelling Editor, and hence its input tool meta-
model instance can be potentially created by any other EMF
mechanism. This facilitates the extension of the generator
with additional components as later described in this section.

The code generator builds upon the OSLC4J Software
Development Kit (SDK) from the Lyo [21] project. While
the OSLC4J SDK targets the implementation phase of
adaptor implementation, our tool complements it with a
model-based development approach, which allows one to
work at a higher level of abstraction, with models used to
specify the adaptor design, without needing to deal with all
the technical details of the OSLC standard (such as Linked
Data, RDF, etc.).

The generator produces OSLC4J-compliant Java code.
Once generated, the java code has no dependencies to either
the code generator, or the input toolchain model. The
generated code can be further developed – as any OSLC4J
adaptor – with no further connections to the generator.

Moreover, it is possible to modify the toolchain model
and re-generate its code, without the loss of any code
manually introduced between generations. For example, a
JAX-RS class method may need to perform some additional
business logic before - or after - the default handling of the
designated web service. The generator ensures that such
manual code remains intact after subsequent changes in the
model and code generations. This promotes the incremental
development of the toolchain, where the specification model
and implementation can be gradually developed.

Upon generation, an adaptor is – almost – complete and
ready-to-run, and needs not be modified nor complemented
with additional manual code. Only a set of methods that
communicate with the source tool to access its internal data
need to be implemented (the dotted arrows in Figure 1). This
communication is reduced to a simple set of methods to (a)
get (b) create (c) search and (d) query each serviced
resource. This manual code is packaged into a single class,

257

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

with skeletons of the required methods generated. It remains
the task of the developer to manual code these methods.

However, for specific tool technologies, a full adaptor
implementation can be generated. For example, targeting
EMF-based modelling tools in general, an additional
EMF4OSLC component was developed [22] to complement
the code generator with the automatic generation of the
necessary code to access and manipulate the data in the
backend tool. This leads to the complete generation of the
adaptor. EMF4OSLC moreover generates the actual interface
specification model based on a predefined mapping between
EMF and OSLC. Similarly, an additional component –
EMF4SQL – is being developed to handle SQL-based tools.
It is anticipated that much code reuse can be gained between
EMF4OSLC and EMF4SQL, while ensuring that both
components build on top of the Lyo code generator.

The modelling tool and supporting documentation are
available as open-source under the Eclipse Lyo [21] project.

VI. DISCUSSION

Compared to the original approach practiced by Scania
engineers of using a UML class diagram (see Figure 2) to
represent the F-IDE resources, the proposed model may
seem to add a level of complexity by distributing the model
information into three views. However, upon further
investigation, it becomes clear that the class diagram was
actually used to superimpose information for both the
Domain Specification and Resource Allocation views into
the same diagram. For example, classes were initially color-
coded to classify them according to their owning tool.
However, the semantics and intentions behind this
classification soon become ambiguous, since the distinction
between tool and domain ownership is not identified
explicitly. In the original approach, different viewers of the
same model could hence draw different conclusions when
analyzing the model, depending on their implicit
understanding of the color codes.

Through a multi-view modelling approach, and by
describing the information model from the two orthogonal
views of managing domains and managing tools, the
information model is no longer expected to be developed in
a top-down and centralized manner. Instead, a more
distributed process is envisaged, in which resources are
defined within a specific domain and/or tool. Only when
necessary, such sub-models can then be integrated, avoiding
the need to manage a single centralized information model.
Moreover, these two orthogonal views of the F-IDE allow
the toolchain architect to identify dependencies within the F-
IDE, from both the organizational as well as the deployment
perspective:

• In the Resource Allocation View of the model, the
toolchain architect can obtain an overview of the
coupling/cohesion of the tools of the F-IDE. One could
directly identify the direct producer/consumer relations, as
well as the indirect dependencies, as detailed in Section V.B.

• In the Domain Specification view, the toolchain
architect views the dependencies between the different
domains (irrespective of how the resources are deployed
across tools). Such dependencies reveal the relationship

between the organizational entities involved in maintaining
the overall information model. This explicit modelling of
domain ownership helps lift important organizational
decisions, which otherwise remain implicit.

Semantically, the usage of a class diagram is not
compatible with the open-world view of Linked Data.
Instead, a dedicated domain-specific language (DSL) that
follows the expected semantics can be better used uniformly
across the whole organization. We here illustrate two
examples where our DSL helped communicate the correct
semantics, which were previously misinterpreted or not used:

• A Resource Property is a first-class element that ought
to be defined independently of Resource definitions within a
Domain Specification. A Property can then be associated
with multiple Resource types, which in turn can belong to
the same or any other Domain Specification. For example,
the allowedValues property (with range KeyValuePair) is
defined within the Variability domain, and its definition
ought not to be dependent on any particular usage within any
Resource. This same Property is then being associated to the
CalibrationParameter & RtdbVariable resources.
Previously, two separate Properties were unnecessarily
defined within the context of each Resource, which is not
appropriate when adopting Linked Data and its RDF data
model.

• Certain Resources can only exist within the context of
another parent Resource, and hence ought not to have their
own URI. For example, Range is defined as a simple
structure of three properties (min, max and step). The
CalibrationParameter resource contains the allowedRange
property whose value-types is set to Local Resource,
indicating that property value is a resource that is only
available inside the CalibrationParameter instance. Our
DSL helped communicate the capability of defining Local
Resources. A class diagram does not provide a
corresponding concept that can be correctly used to convey
the same semantics.

Adopting a class diagram may have been satisfactory at
the early stages of development, where focus was on the
information specification. However, it became apparent that
the diagram is not sufficient in supporting the later phases of
development, when the tool interfaces need to be designed
and implemented. Furthermore, no complements to the UML
class diagram can provide all necessary information
according to the OSLC standard. Instead, the third Adaptor
Design View serves this need satisfactorily. In addition, by
sharing a common meta-model with the other two views, it is
ensured that the detailed designs remain consistent with the
specification and architecture of the F-IDE. Furthermore,
given that the complete model (with its three views) can lead
to the generation of working code, the model’s completeness
and correctness is confirmed.

While the need for a dedicated DSL is convincing, the
proposed notations are not necessarily final, and there
remains room for improvements. The alternative
representations of the Domain Specification View (discussed
in Section V.B) highlight some of the refinements that need
to be dealt with.

258

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VII. RELATED WORK

There exists a large body of research that in various ways
touches upon information modeling and tool integration.
(See for example [2] and [23]). Our work - and the related
work of this section - is delimited to the Linked Data
paradigm, and its graphical modelling.

The most relevant work found in this area is the
Ontology Definition Metamodel (ODM) [24]. ODM is an
OMG specification that defines a family of Meta-Object
Facility (MOF) metamodels for the modelling of ontologies.
ODM also specifies a UML Profile for RDFS [16] and the
Web Ontology Language (OWL) [25], which can be realized
by UML-based tools, such as Enterprise Architect's ODM
diagrams [26]. However, as argued in [14], OWL and RDFS
are not suitable candidates to specify and validate
constraints, given that they are designed for another purpose
- namely for reasoning engines that can infer new
knowledge. The work in this paper builds upon the Resource
Shape constraint language suggested in [14], by providing a
graphical model to specify such constraints on RDF
resources. The constraint language is part of the OSLC
standard, making for its easy adoption within our work. On
the other hand, SHACL [27] is an evolving W3C working
draft for a very similar constraint language, which can also
be supported in the future.

Earlier work by the authors has also resulted in a
modelling approach to toolchain development [28]. In this
earlier work, even though the information was modelled
targeting an OSLC implementation, the models were directly
embedded in the specific tool adaptors, and no overall
information model is readily available. The models did not
support the tool and domain ownership perspectives
identified in this paper.

In general, there are inspiring works done for defining a
visual language for the representation of ontologies. Even if
ontologies are not directly suitable for the specification of
constraints, such languages can be used as inspiration for the
graphical notation presented in this paper. One example is
the Visual Notation for OWL Ontologies (VOWL) [29] that
is based on only a handful of graphical primitives forming
the alphabet of the visual language. In this visual notation,
classes are represented as circles that are connected by lines
and arrowheads representing the property relations. Property
labels and datatypes are shown as rectangles. Information on
individuals and data values is displayed either in the
visualization itself or in another part of the user interface.
VOWL also uses a color scheme complementing the
graphical primitives. It defines colors for the visual elements
to allow for an easy distinction of different types of classes
and properties. In addition to the shapes and colors, VOWL
also introduces dashed lines, dashed borders and double
borders for visualizing class, relation or data properties.

OWLGrEd [30] is another graphical OWL editor that
extends the UML class diagram to allow for OWL
visualization. The work argues that the most important
feature for achieving readable graphical OWL notation is the
maximum compactness. The UML class diagram is used to
present the core features of OWL ontologies. To overcome

the difference between UML’s closed-world assumption and
OWL’s open-world assumption, the authors changed the
semantics of the UML notation and added new symbols.
OWLGrEd introduces a colored background frame for the
relatively autonomous sub-parts of the ontology.
Furthermore, the editor contains a number of additional
services to ease ontology development and exploration, such
as different layout algorithms for automatic ontology
visualization, search facilities, zooming, and graphical
refactoring. Finally, GrOWL [31] is a visual language that
attempts to accurately visualize the underlying description
logic semantics of OWL ontologies, without exposing the
complex OWL syntax.

Lanzenberger et al. [32] summarize the results of their
literature study on tools for visualizing ontologies as: “A
huge amount of tools exist for visualizing ontologies,
however, there are just a few for assisting with viewing
multiple ontologies as needed for ontology alignment. …
Finally, in order to support an overview and detail approach
appropriately, multiple views or distortion techniques are
needed.” We identified the need to support multiple views in
this study, in order to support the different stakeholders of
the same language.

VIII. CONCLUSION

In this paper, an MDE approach to F-IDE development
based on Linked Data and the OSLC standard is presented.
The proposed set of modelling views supports the toolchain
architect with the early phases of toolchain development,
with a particular focus on the specification of the information
model and its distribution across the tools of the toolchain.
Additionally, such views are tightly integrated with a design
view supporting the detailed design of the tool interfaces.
The modelling views are designed to be a digital
representation of the OASIS OSLC standard. This ensures
that any defined toolchain complies with the standard. It also
helps lower the threshold of learning as well as
implementing OSLC-compliant toolchains.

An open-source modelling tool was developed to realize
the proposed modelling views. The tool includes an
integrated code generator that can synthesis the specification
and design models into a running implementation. This
allows one to work at a higher level of abstraction, without
needing to deal with all the technical details of the OSLC
standard (such as Linked Data, RDF, etc.). The Eclipse-
based modelling tool and supporting documentation are
available as open-source under the Eclipse Lyo project.

It is envisaged that the modelling support will be
extended to cover the complete development lifecycle,
specifically supporting the requirements analysis phase, as
well as automated testing. The current focus on data
integration needs to be also extended to cover other aspects
of integration, in particular control integration [33].

REFERENCES

[1] J. El-Khoury, D. Gürdür, F. Loiret, M. Törngren, D. Zhang,
and M. Nyberg, "Modelling Support for a Linked Data
Approach to Tool Interoperability," The Second International

259

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Conference on Big Data, Small Data, Linked Data and Open
Data, ALLDATA 2016, pp. 42-47.

[2] M. Törngren, A. Qamar, M. Biehl, F. Loiret, and J. El-khoury,
"Integrating viewpoints in the development of mechatronic
products," Mechatronics (Oxford), vol. 24, nr. 7, 2014, pp.
745-762.

[3] Road vehicles - functional safety, ISO standard 26262:2011,
2011.

[4] (2016, Nov.) PTC Integrity. [Online]. Available:
http://www.ptc.com/application-lifecycle-
management/integrity/

[5] B. Weichel and M. Herrmann, "A backbone in automotive
software development based on XML and ASAM/MSR,"
SAE Technical Papers, 2004, doi:10.4271/2004-01-0295.

[6] (2016, Nov.) OASIS OSLC. [Online]. Available:
http://www.oasis-oslc.org/

[7] T. Berners-Lee. (2016, Nov.) Linked data design issues.
[Online]. Available:
http://www.w3.org/DesignIssues/LinkedData.html

[8] Linked Data Platform 1.0, W3C Recommendation, 2015.

[9] X. Zhang, M. Persson, M. Nyberg, B. Mokhtari, A. Einarson,
H. Linder, J. Westman, D. Chen, and M. Törngren,
"Experience on Applying Software Architecture Recovery to
Automotive Embedded Systems," IEEE Conference on
Software Maintenance, Reengineering, and Reverse
Engineering, CSMR-WCRE 2014, pp. 379-382.

[10] J. Westman, M. Nyberg, and O. Thyden, "CPS Specifier - A
Specification Tool for Safety-Critical Cyber-Physical
Systems," Sixth Workshop on Design, Modeling and
Evaluation of Cyber Physical Systems, CyPhy'16, 2016

[11] A. Rossignol, "The reference technology platform" in CESAR
- Cost-efficient methods and processes for safety-relevant
embedded systems, A. Rajan and T. Wahl, Eds. Dordrecht:
Springer, pp. 213-236, 2012.

[12] OSLC Core Specification, OSLC standard v2.0, 2013.

[13] OSLC Quality Management Specification, OSLC standard
v2.0, 2011.

[14] A. G. Ryman, A. Le Hors, and S. Speicher, "OSLC resource
shape: A language for defining constraints on linked data,"
CEUR Workshop Proceedings, Vol.996, 2013.

[15] (2016, Nov.) FOAF Vocabulary Specification. [Online].
Available: http://xmlns.com/foaf/spec/

[16] RDF Schema 1.1, W3C Recommendation, 2014.

[17] J. El-Khoury, "Lyo Code Generator: A Model-based Code
Generator for the Development of OSLC-compliant Tool
Interfaces," SoftwareX, 2016.

[18] (2016, Nov.) Eclipse EMF. [Online]. Available:
https://eclipse.org/modeling/emf/

[19] (2016, Nov.) Eclipse Acceleo. [Online]. Available:
https://www.eclipse.org/acceleo/

[20] MOF Model to Text Transformation Language (MOFM2T),
1.0, OMG standard, document number: formal/2008-01-16,
2008.

[21] (2016, Nov.) Eclipse Lyo. [Online]. Available:
https://www.eclipse.org/lyo/

[22] J. El-Khoury, C. Ekelin, and C. Ekholm, “Supporting the
Linked Data Approach to Maintain Coherence Across Rich
EMF Models,” Modelling Foundations and Applications: 12th
European Conference, ECMFA 2016, pp. 36-47.

[23] R. Basole, A. Qamar, H. Park, C. Paredis, and L. Mcginnis,
"Visual analytics for early-phase complex engineered system
design support," IEEE Computer Graphics and Applications,
vol. 35, nr. 2, 2015, pp. 41-51.

[24] Ontology Definition Metamodel, OMG standard, document
number: formal/2014-09-02, 2014.

[25] OWL 2 Web Ontology Language, W3C Recommendation,
2012.

[26] (2016, Nov.) Enterprise Architect ODM MDG Technology.
[Online]. Available:
http://www.sparxsystems.com/enterprise_architect_user_guid
e/9.3/domain_based_models/mdg_technology_for_odm.html

[27] Shapes Constraint Language (SHACL), W3C Working Draft,
2016.

[28] M. Biehl, J. El-khoury, F. Loiret, and M. Törngren, "On the
modeling and generation of service-oriented tool chains,"
Software & Systems Modeling, vol. 13, nr 2, 2014, pp. 461-
480.

[29] S. Lohmann, S. Negru, F. Haag, and T. Ertl, “Visualizing
Ontologies with VOWL,” Semantic Web, vol 7, nr 4, 2016,
pp. 399-419.

[30] J. Bārzdiņš, G. Bārzdiņš, K. Čerāns, R. Liepiņš, and A.
Sproģis, "UML style graphical notation and editor for OWL
2," International Conference on Business Informatics
Research, Springer Berlin, 2010.

[31] S. Krivov, F. Villa, R. Williams, and X. Wu, "On
visualization of OWL ontologies," Semantic Web, Springer
US, 2007, pp 205-221.

[32] M. Lanzenberger, J. Sampson and M. Rester, "Visualization
in Ontology Tools," International Conference on Complex,
Intelligent and Software Intensive Systems, 2009, pp. 705-
711.

[33] A. I. Wasserman, "Tool integration in software engineering
environments," the international workshop on environments
on Software engineering environments, 1990, pp. 137-149.

