
Unifying Modeling and Programming with ALF

Thomas Buchmann and Alexander Rimer
University of Bayreuth

Chair of Applied Computer Science I
Bayreuth, Germany

email: {thomas.buchmann, alexander.rimer}@uni-bayreuth.de

Abstract—Model-driven software engineering has become more
and more popular during the last decade. While modeling the
static structure of a software system is almost state-of-the art
nowadays, programming is still required to supply behavior, i.e.,
method bodies. Unified Modeling Language (UML) class dia-
grams constitute the standard in structural modeling. Behavioral
modeling, on the other hand, may be achieved graphically with
a set of UML diagrams or with textual languages. Unfortunately,
not all UML diagrams come with a precisely defined execution
semantics and thus, code generation is hindered. In this paper, an
implementation of the Action Language for Foundational UML
(Alf) standard is presented, which allows for textual modeling
of software systems. Alf is defined for a subset of UML for
which a precise execution semantics is provided. The modeler
is empowered to specify both the static structure as well as the
behavior with the Alf editor. This helps to blur the boundaries
between modeling and programming. Furthermore, an approach
to generate executable Java code from Alf programs is presented,
which is already designed particularly with regard to round-trip
engineering between Alf models and Java source code.

Keywords–model-driven development; behavioral modeling; tex-
tual concrete syntax; code generation.

I. INTRODUCTION

Increasing the productivity of software engineers is the
main goal of Model-driven Software Engineering (MDSE) [1].
To this end, MDSE puts strong emphasis on the development
of high-level models rather than on the source code. Models
are not considered as documentation or as informal guidelines
on how to program the actual system. In contrast, models have
a well-defined syntax and semantics. Moreover, MDSE aims at
the development of executable models. Over the years, UML
[2] has been established as the standard modeling language
for model-driven development. A wide range of diagrams is
provided to support both structural and behavioral modeling.
Model-driven development is only supported in a full-fledged
way, if executable code may be obtained from behavioral
models. Generating executable code requires a precise and
well-defined execution semantics for behavioral models. Un-
fortunately, this is only the case for some UML diagrams. As a
consequence, software engineers nowadays need to manually
supply method bodies in the code generated from structural
models.

This leads to what used to be called “the code generation
dilemma” [3]: Generated code from higher-level models is ex-
tended with hand-written code. Often, these different fragments
of the software system evolve separately, which may lead to
inconsistencies. Round-trip engineering [4] may help to keep
the structural parts consistent, but the problem is the lack of
an adequate representation of behavioral fragments.

The Eclipse Modeling Framework (EMF) [5] has been
established as an extensible platform for the development of
MDSE applications. It is based on the Ecore meta-model,
which is compatible with the Object Management Group
(OMG) Meta Object Facility (MOF) specification [6]. Ideally,
software engineers operate only on the level of models such
that there is no need to inspect or edit the actual source code,
which is generated from the models automatically. However,
practical experiences have shown that language-specific adap-
tations to the generated source code are frequently necessary.
In EMF, for instance, only structure is modeled by means of
class diagrams, whereas behavior is described by modifications
to the generated source code. The OMG standard for the
Action Language for Foundational UML (Alf) [7] provides
the definition of a textual concrete syntax for a foundational
subset of UML models (fUML) [8]. In the fUML standard,
a precise definition of an execution semantics for a subset of
UML is described. The subset includes UML class diagrams to
describe the structural aspects of a software system and UML
activity diagrams for the behavioral part.

In this paper, an implementation of the Alf standard is
presented. To the best of our knowledge, there is no other
realization of the Alf standard, which also allows to generate
executable code from corresponding Alf scripts (c.f. Section
IV). The currently realized features of the Alf editor are
discussed, and some insights on the code generator, which is
used to transform Alf scripts into executable Java programs are
also given in this paper. The paper is structured as follows: In
Section II, a brief overview of Alf is presented. The realization
of the Alf editor and the corresponding code generation is
discussed in detail in Section III before related work is
discussed in the following section. Section V concludes the
paper.

II. THE ACTION LANGUAGE FOR FOUNDATIONAL UML

A. Overview

As stated above, Alf [7] is an OMG standard, addressing
a textual surface representation for UML modeling elements.
Furthermore, it provides an execution semantics via a mapping
of the Alf concrete syntax to the abstract syntax of the OMG
standard of Foundational Subset for Executable UML Models
also known as Foundational UML or just fUML [8]. The
primary goal is to provide a concrete textual syntax allowing
software engineers to specify executable behavior within a
wider model, which is represented using the usual graphical
notations of UML. A simple use case is the specification of
method bodies for operations contained in class diagrams. To
this end, it provides a language with a procedural character,

10Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

Figure 1: Cutout of the abstract syntax definition of Alf [7]

whose underlying data model is UML. However, Alf also
provides a concrete syntax for structural modeling within
the limits of the fUML subset. Please note that in case the
execution semantics are not required, Alf is also usable in
the context of models, which are not restricted to the fUML
subset. The Alf specification comprises both the definition of
a concrete and an abstract syntax, which are briefly presented
in the subsequent subsections.

B. Concrete Syntax

The concrete syntax specification of the Alf standard is
described using a context-free grammar in Enhanced-Backus-
Naur-Form (EBNF)-like notation. In order to indicate how
the abstract syntax tree is constructed from this context-
free grammar during parsing, elements of the productions are
further annotated.

1 ClassDeclaration(d: ClassDefinition) = ["abstract" (d.
isAbstract=true)] "class" ClassifierSignature(d)

Listing 1: Alf production rule for a class [7]

Listing 1 shows an example for an EBNF-like production
rule, annotated with additional information. The rule produces
an instance d of the class ClassDefinition. The production body
(the right hand side of the rule) further details the ClassDef-
inition object: It consists of a ClassifierSignature and it may
be abstract (indicated by the optional keyword “abstract”).

C. Abstract Syntax

Alf’s abstract syntax is represented by an UML class model
of the tree of objects obtained from parsing an Alf text. The Alf
grammar is context free and thus, parsing results in a strictly
hierarchical parse tree, from which the so called abstract syntax
tree (AST) is derived. Figure 1 gives an overview of the top-
level syntax element classes of the Alf abstract syntax. Each
syntax element class inherits (in)directly from the abstract base
class SyntaxElement. Similar to other textual languages, the
Alf abstract syntax tree contains important non-hierarchical
relationships and constraints between Alf elements, even if
the tree obtained from parsing still is strictly hierarchical with
respect to containment relations. These cross-tree relationships
may be solely determined from static analysis of the AST.

Static semantic analysis is a common procedure in typical
programming languages and it is used, e.g., for name resolving
and type checking.

III. REALIZATION

In this section, details of the implementation of the Alf
standard are presented. As the UML modeling suite Valkyrie
[9] is built upon Eclipse modeling technology, and the road
map includes the integration of Alf into Valkyrie, EMF [5]
and Xtext [10] have been used for the realization. In its current
state, the Alf editor adopts most language features of the Alf
standard. For the moment, language constructs, which are not
directly needed to describe the behavior of method bodies
contained in operations specified in class diagrams have been
omitted (e.g., some statements like inline, accept or classify
statements will be implemented in future work). The main
focus has been put on the structural modeling capabilities and
the description of behavior of activities plus the generation
of executable Java code as these are the mandatory building
blocks, which are required to integrate Valkyrie and Alf at a
later stage.

A. Meta-model

According to the abstract syntax specification given in the
Alf standard, a corresponding Ecore model was created. In
its current state, the Alf meta-model comprises more than
100 meta classes and thus, only some relevant cutouts can be
presented here due to space restrictions. Please note that the
Alf specification provides a model for the abstract syntax of
the language. However, due to the tools used to implement
the specification, tool-specific adaptations had to be done.
Furthermore, some language concepts have been omitted and
will be added at a later stage, as described above. Figure 2
depicts the cutout of our realization of the Alf meta-model
responsible for the structural modeling aspects of the language.

This part of the meta-model comprises all mandatory
meta-classes for Packages, Classifiers, and Features, which
are required for structural modeling. The root element of
each Alf model is represented by the meta-class Model. A
Model contains an arbitrary number of PackageableElements,
i.e., Packages and Classifiers. Classifiers may establish an
inheritance hierarchy using the meta-class Generalization. Like

11Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

SyntaxElement

Classifier

Class

Association

DataType

Enumeration

NamedElement

Package

PackageableElement

0..1

*

Model
1

*

Generalization
0..1*

Operation

Property

FeatureDefinition

1

2..*

1

*
1

*

1
*

EnumerationLiteral 1*

1 0..1

+package

+private

+public

+protected

VisibilityKind

Member

ImportReference

Figure 2: Relevant parts responsible for structural modeling aspects in our realization of the Alf abstract syntax.

UML, Alf supports multiple inheritance between Classifiers.
Classifiers are further specialized by the subtypes Class,
DataType, Enumeration, and Association. While classes, data-
types and associations contain attributes represented by the
meta-class Property, Classes additionally contain Operations.

In Alf, Operations are used for behavioral modeling. Figure
3 depicts a simplified cutout of the Alf meta-model showing
the relevant parts. Operations may be parameterized and may
contain an “Operation Method”. Parameters of an operation
are typed and they possess a name. Additionally, the direction
of the parameter is indicated by the enumeration Parameter-
DirectionKind. Possible values are in, out or inout. The type of
an operation is determined by its return type. The method of
an Operation contains the complete behavior realized by the
operation. One possible way of realizing this method is using
a Block [7], which represents the body of the operation. The
block itself comprises an arbitrary number of Statements.

Statement

ActivityDefinition

Block
1

*

1

-method
0..1

-body

1

0..1

1
*

Parameter

Operation

Figure 3: Simplified cutout of the Alf meta-model for Opera-
tions.

The Alf standard defines different types of Statements.
Figure 4 shows the statements, which are currently realized
in our implementation of the Alf standard as subtypes of the
abstract class Statement.

Besides statements realizing the return values of an oper-
ation (ReturnStatement), several statements dealing with the
control flow are included. Local variables may be expressed
using the LocalNameDeclarationStatement. The initialization
of local variables is done using Expressions, which are encap-
sulated by ExpressionStatements.

Expressions constitute the most fine-grained way of model-
ing in Alf and may be used in different contexts. For example,
they are used for assignments, calculation, modeling of con-
straints or the access to operations and attributes. The current

Statement

ForStatement

SwitchStatement

ExpressionStatement

LocalNameDeclarationStatement

WhileStatement

IfStatement

DoStatement

BreakStatementReturnStatement

Figure 4: Simplified cutout of the Alf meta-model for State-
ments.

state of the Alf meta-model comprises various specializations
of the meta-class Expression, as depicted in Figure 5.

Expression

BinaryExpression

UnaryExpression

AssignmentExpressionIncrementOrDecrementExpression

LiteralExpression NameExpression

InvocationExpressionPropertyAccessExpression

NullExpressionThisExpression

SequenceConstructionExpression

SequenceElementsExpression

Figure 5: Simplified cutout of the Alf meta-model for Expres-
sions.

LiteralExpression is the superclass for various kinds of
literal expressions. They constitute the simplest kind of ex-
pressions and may represent, e.g., strings, boolean values or
numbers. Literal expressions may be used in combination with
assignment expressions or for comparison operations in con-
ditional expressions. While UnaryExpressions, which are used
for boolean or arithmetic negations or type queries (instanceof)
only contain one operator and one operand, BinaryExpressions
have one operator and two operands. Each of the operands may
be an Expression as well and they may be used in conditions
as well as in assignment expressions.

B. Editor

Xtext [10], an Eclipse framework aiding the development
of programming languages and domain-specific languages

12Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

(DSLs), has been used to create a textual editor on top of
the meta-model described in the previous subsection. Xtext
allows for a rapid implementation of languages and it cov-
ers all aspects of a complete language infrastructure, like
parsing, scoping, linking, validation, code generation plus
a complete Eclipse IDE integration providing features like
syntax highlighting, code completion, quick fixes and many
more. Furthermore, it provides means to easily extend the
default behavior of the IDE components using the Xtend [11]
programming language. Since Xtext uses ANTLR [12] as a
parser generator, there are some restrictions on the grammar,
such as that there must not be any left-recursive rules. The Alf
standard uses left-recursion in various places and thus, these
rules had to be rewritten in order to be used with Xtext. For
example this was needed when realizing various Expressions,
e.g., expressions used for member access (dot notation).

In order to provide meaningful error messages and modern
IDE feature like quickfixes for the end-users of the Alf editor,
a set of validation rules has been implemented. Furthermore,
validation rules are mandatory to check the static semantics
given in the Alf standard. Among others, the validation rules
comprise:

• Access restrictions on features with respect to their
visibility

• Uniqueness of local variables in different contexts
(bodies, control structures and operations)

• Validation of inheritance hierarchies (no cycles)

In order to provide an import mechanism for Alf elements,
the scoping rules had to be specified. The default Xtext scoping
mechanism calculates visibilities for each AST element, and
the result is used, e.g., for linking and for validation of DSL
programs. For the Alf editor the scope for different contexts
had to be determined: A scope for blocks (in operations and
control structures) is needed, furthermore a different scope for
realizing feature access (attributes or operations) on classifiers
is required (taking into account possible inheritance hierar-
chies). For example, inherited properties and operations are
considered when the scope is determined. In addition, the
correct scope for accessing link operations of associations and
enumeration literals is also provided.

Figure 6 shows the running Alf editor. The code completion
menu depicts possible values, which could be used at the
current cursor position. The list of possible matches was
computed using the implemented scoping rules as described
above.

C. Type System

The Alf specification uses an implicit type system, which
allows but does not necessarily require the explicit declaration
of typing within an activity. However, static type checking is
always provided based on the types specified in the structural
model elements. In general, requirements for type systems
comprise the following tasks:

• Type definition: Various model elements are defined
as actual and fixed types (e.g. primitive types).

Figure 6: Running Alf editor, showing scoping applied in the
code completion menu.

• Type calculation A type system should be able to
calculate the type of an element and assign a type to
an element respectively.

• Type validation A type system should provide a set
of validation rules, which ensure the well-typedness
of all model elements.

In the Xtext context, several frameworks exist, which assist
DSL engineers when implementing a type system. For the
Alf editor, the tool Xtext Typesystem (XTS) [13] has been
used, which is optimized for expression-oriented DSLs. XTS
provides a DSL, which allows to declaratively specify type
system rules for Xtext DSLs. The validation of the type system
rules integrates seamlessly into the Xtext validation engine. As
an example, Listing 2 shows a simplified cutout of the type
definition for a local variable using XTS.

1 public class AlfTypesystem extends DefaultTypesystem {
2 private AlfPackage lang = AlfPackage.eINSTANCE;
3 protected void initialize() {
4 //Type definition
5 useCloneAsType(lang.getIntegerType());
6 ... // do the same for all other primitive types
7

8 //Type assignment
9 useTypeOfFeature(lang.getLocalNameDeclarationStatement()

, lang.getLocalNameDeclarationStatement_Type());
10 useFixedType(lang.getNaturalLiteralExpression(), lang.

getIntegerType());
11 ... // define other fixed types
12

13 //Type validation
14 ensureOrderedCompatibility(lang.

getLocalNameDeclarationStatement(), lang.
getLocalNameDeclarationStatement_Type(),

15 lang.getLocalNameDeclarationStatement_Expression());
16 }
17 }

Listing 2: Type definition of a local variable using XTS

When the type system is initialized, primitive types are
defined as clones of their own type (c.f. line 5 in Listing 2). For
the meta-class LocalNameDeclarationStatement the assignment
of the type is depicted in line 9. The fixed type IntegerType
is set for the meta-class NaturalLiteralExpression afterwards
before rules for validating the types are specified.

D. Code Generation

In order to execute Alf specifications, they need to be
translated into executable source code. In this case, the Alf
model acts as platform independent model (PIM), and has

13Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

to be transformed into a platform specific one (PSM) first.
As future plans for the Alf editor comprise the integration
into the UML case tool Valkyrie [9], the MoDisco Java
meta-model was chosen as platform specific model. To this
end, a uni-directional model-to-model transformation from
the Alf model to the MoDisco [14] Java model has been
implemented. MoDisco is an Eclipse framework dedicated to
software modernization projects. It provides, among others, an
Ecore based Java meta-model (resembling the Java AST) and
a corresponding discovery mechanism, which allows to create
instances of the Java meta-model given on Java source code
input. Furthermore, a model-to-text transformation is included
allowing to create Java source code from Java model instances.

Legend:

ALF Meta-model

ALF Model

ECORE

ATL Meta-model

ATL Engine

ATL Module

executes

Modisco Java Meta-model

Java Model

MoDisco

Java Generator

.java

generates

from to

outputinput

conforms to

Xtext

EMF

ATL

Eclipse

Figure 7: Conceptual design of the code generation using
model transformations.

Figure 7 depicts the conceptual design of the code gen-
eration engine of the Alf editor. The Atlas Transformation
Language (ATL) [15] was used as the model transformation
tool, since it works very well for uni-directional model-to-
model (M2M) transformations. ATL follows a hybrid ap-
proach, providing both declarative and imperative language
constructs. Furthermore, ATL offers a concept for module
superimposition, allowing to modularize and reuse transforma-
tion rules. The M2M transformation implemented for the Alf
editor takes the Alf abstract syntax as an input and produces
an instance of the MoDisco Java meta-model as an output
(c.f. Figure 7). Afterwards, the model-to-text transformation
provided by the MoDisco framework is invoked on the result-
ing output model to generate Java source code files. Please
note that writing the ATL transformation rules was a tedious
task, since the level of abstraction in Alf is much higher than
in Java. For example, a property of an Alf class has to be
transformed into a Java field declaration plus corresponding
accessor methods. In case of an association, navigability also
has to be taken into account and the resulting Java model must
contain all (AST-) elements allowing to generate Java code,
which ensures consistency of the association ends. In total, the
ATL transformation implemented for the Alf editor comprises
more than 9000 lines of ATL code distributed over 8 modules.

IV. RELATED WORK

Many different tools and approaches have been published
in the last few years, which address model-driven development

and especially modeling behavior. The resulting tools rely on
textual or graphical syntaxes, or a combination thereof. While
some tools come with code generation capabilities, others only
allow to create models and thus only serve as a visualization
tool.

The graphical UML modeling tool Papyrus [16] allows
to create UML, SysML and MARTE models using various
diagram editors. Additionally, Papyrus offers dedicated support
for UML profiles, which includes customizing the Papyrus UI
to get a DSL-like look and feel. Papyrus is equipped with a
code generation engine allowing for producing source code
from class diagrams (currently Java and C++ is supported).
Future versions of Papyrus will also come with an Alf editor.
A preliminary version of the editor is available and allows
a glimpse on its provided features. The textual Alf editor is
integrated as a property view and may be used to textually
describe elements of package or class diagrams. Furthermore,
it allows to describe the behavior of activities. The primary
goal of the Papyrus Alf integration is round-tripping between
the textual and the graphical syntax and not executing behav-
ioral specifications by generating source code. While Papyrus
strictly focuses on a forward engineering process (from model
to source code), the approach presented in this paper explicitly
addresses round-trip engineering.

Xcore [17] recently gained more and more attention in the
modeling community. It provides a textual concrete syntax for
Ecore models allowing to express the structure as well as the
behavior of the system. In contrast to Alf, the textual concrete
syntax is not based on an official standard. Xcore relies on
Xbase - a statically typed expression language built on Java - to
model behavior. Executable Java code may be generated from
Xcore models. Just like the realization of Alf presented in this
paper, Xcore blurs the gap between Ecore modeling and Java
programming. In contrast to Alf, the behavioral modeling part
of Xcore has a strongly procedural character. As a consequence
an object-oriented way of modeling is only possible to a
limited extent. E.g. there is no way to define object constructors
to describe the instantiation of objects of a class. Since Xcore
reuses the EMF code generation mechanism [5], the factory
pattern is used for object creation. Furthermore, Alf provides
more expressive power, since it is based on fUML, while Xcore
only addresses Ecore.

Another textual modeling language, designed for model-
oriented programming is provided by Umple [18]. The lan-
guage has been developed independently from the EMF con-
text and may be used as an Eclipse plugin or via an online
service. In its current state, Umple allows for structural mod-
eling with UML class diagrams and describing behavior using
state machines. A code generation engine allows to translate
Umple specifications into Java, Ruby or PHP code. Umple
scripts may also be visualized using a graphical notation. Un-
fortunately, the Eclipse based editor only offers basic functions
like syntax highlighting and a simple validation of the parsed
Umple model. Umple offers an interesting approach, which
aims at assisting developers in rasing the level of abstraction
(“umplification”) in their programs [19]. Using this approach, a
Java program may be stepwise translated into an Umple script.
The level of abstraction is raised by using Umple syntax for
associations.

PlantUML [20] is another tool, which offers a textual

14Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

concrete syntax for models. It allows to specify class dia-
grams, use case diagrams, activity diagrams and state charts.
Unfortunately, a code generation engine, which allows to
transform the PlantUML specifications into executable code is
missing. PlantUML uses Graphviz [21] to generate a graphical
representation of a PlantUML script.

Fujaba [22] is a graphical modeling language based on
graph transformations, which allows to express both the struc-
tural and the behavioral part of a software system on the
modeling level. Furthermore, Fujaba provides a code gener-
ation engine that is able to transform the Fujaba specifications
into executable Java code. Behavior is specified using Story
Diagrams. A story diagram resembles UML activity diagrams,
where the activities are described using Story Patterns. A story
pattern specifies a graph transformation rule where both the
left hand side and the right hand side of the rule are displayed
in a single graphical notation. While story patterns provide a
declarative way to describe manipulations of the runtime object
graph on a high level of abstraction, the control flow of a
method is on a rather basic level as the control flow in activity
diagrams is on the same level as data flow diagrams. As a
case study [23] revealed, software systems only contain a low
number of problems, which require complex story patterns.
The resulting story diagrams nevertheless are big and look
complex because of the limited capabilities to express the
control flow.

V. CONCLUSION AND FUTURE WORK

In this paper, an approach to providing tool support for
unifying modeling and programming has been presented. To
this end, an implementation of the OMG Alf specification [7],
which describes a textual concrete syntax for a subset of UML
(fUML) [8] has been created. Using the Alf editor, the software
engineer may specify both the structure as well as the behavior
of a software system on the model level. As a consequence,
model transformations may directly be applied to Alf scripts.
In order to execute Alf programs, a Java code generator is
provided, which allows for the creation of fully executable
Java programs and which is already designed particularly with
regard to round-trip engineering.

Future work comprises the integration of the (currently)
stand-alone Alf editor into the UML modeling tool suite
Valkryie [9]. To this end, besides integrating textual and
graphical modeling, also a mapping of the Alf abstract syntax
to the fUML abstract syntax is required as proposed in the Alf
standard [7]. Furthermore, a case study is performed in order
to evaluate the modeling capabilities of the Alf editor.

REFERENCES

[1] M. Völter, T. Stahl, J. Bettin, A. Haase, and S. Helsen, Model-Driven
Software Development: Technology, Engineering, Management. John
Wiley & Sons, 2006.

[2] OMG, Unified Modeling Language (UML), formal/15-03-01 ed., Object
Management Group, Needham, MA, Mar. 2015.

[3] T. Buchmann and F. Schwgerl, “On A-posteriori Integration of Ecore
Models and Hand-written Java Code,” in Proceedings of the 10th
International Conference on Software Paradigm Trends, M. v. S.
Pascal Lorenz and J. Cardoso, Eds. SCITEPRESS, July 2015, pp.
95–102.

[4] T. Buchmann and B. Westfechtel, “Towards Incremental Round-Trip
Engineering Using Model Transformations,” in Proceedings of the
39th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA 2013), O. Demirors and O. Turetken, Eds. IEEE
Conference Publishing Service, 2013, pp. 130–133.

[5] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF Eclipse
Modeling Framework, 2nd ed., ser. The Eclipse Series. Boston, MA:
Addison-Wesley, 2009.

[6] OMG, Meta Object Facility (MOF) Core, formal/2011-08-07 ed., Object
Management Group, Needham, MA, Aug. 2011.

[7] OMG, Action Language for Foundational UML (ALF), formal/2013-09-
01 ed., Object Management Group, Needham, MA, Sep. 2013.

[8] OMG, Semantics of a Foundational Subset for Executable UML Models
(fUML), formal/2013-08-06 ed., Object Management Group, Needham,
MA, Aug. 2013.

[9] T. Buchmann, “Valkyrie: A UML-Based Model-Driven Environment
for Model-Driven Software Engineering,” in Proceedings of the 7th
International Conference on Software Paradigm Trends (ICSOFT 2012),
Rome, Italy, 2012, pp. 147–157.

[10] “Xtext project,” http://www.eclipse.org/Xtext, visited: 2015.09.30.
[11] “Xtend project,” http://www.eclipse.org/xtend, visited: 2015.09.30.
[12] T. Parr and K. Fisher, “LL(*): the foundation of the ANTLR

parser generator,” in Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI 2011, San Jose, CA, USA, June 4-8, 2011, M. W. Hall and
D. A. Padua, Eds. ACM, 2011, pp. 425–436. [Online]. Available:
http://doi.acm.org/10.1145/1993498.1993548

[13] L. Bettini, D. Stoll, M. Völter, and S. Colameo, “Approaches
and tools for implementing type systems in xtext,” in Software
Language Engineering, 5th International Conference, SLE 2012,
Dresden, Germany, September 26-28, 2012, Revised Selected Papers,
ser. Lecture Notes in Computer Science, K. Czarnecki and G. Hedin,
Eds., vol. 7745. Springer, 2012, pp. 392–412. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-36089-3 22

[14] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot, “MoDisco: a generic
and extensible framework for model driven reverse engineering,” in
Proceedings of the IEEE/ACM International Conference on Automated
software engineering (ASE 2010), Antwerp, Belgium, 2010, pp. 173–
174.

[15] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model
transformation tool,” Science of Computer Programming, vol. 72, pp.
31–39, 2008, special Issue on Experimental Software and Toolkits
(EST).

[16] A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha, S. Gerard, P. Tessier,
R. Schnekenburger, H. Dubois, and F. Terrier, “Papyrus UML: an open
source toolset for MDA,” in Proc. of the Fifth European Conference on
Model-Driven Architecture Foundations and Applications (ECMDA-FA
2009). Citeseer, 2009, pp. 1–4.

[17] “Xcore,” http://wiki.eclipse.org/Xcore, visited: 2015.09.30.
[18] “Umple Language,” http://cruise.site.uottawa.ca/umple/, visited:

2015.09.30.
[19] T. C. Lethbridge, A. Forward, and O. Badreddin, “Umplification:

Refactoring to incrementally add abstraction to a program,” in Reverse
Engineering (WCRE), 2010 17th Working Conference on. IEEE, 2010,
pp. 220–224.

[20] “PlantUML,” http://plantuml.com/, visited: 2015.09.30.
[21] “Graphviz,” http://www.graphviz.org, visited: 2015.09.30.
[22] The Fujaba Developer Teams from Paderborn, Kassel, Darmstadt,

Siegen and Bayreuth, “The Fujaba Tool Suite 2005: An Overview
About the Development Efforts in Paderborn, Kassel, Darmstadt, Siegen
and Bayreuth,” in Proceedings of the 3rd international Fujaba Days,
H. Giese and A. Zündorf, Eds., September 2005, pp. 1–13.

[23] T. Buchmann, B. Westfechtel, and S. Winetzhammer, “The added value
of programmed graph transformations — a case study from software
configuration management,” in Applications of Graph Transformations
with Industrial Relevance (AGTIVE 2011), A. Schürr, D. Varro, and
G. Varro, Eds., Budapest, Hungary, 2012.

15Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

