
Function Point Analysis with Model Driven Architecture
Applied on Frameworks of Partial Code Generation

Rodrigo Salvador Monteiro
Instituto de Computação

Universidade Federal Fluminense, UFF
Niterói, Brasil

e-mail: salvador@ic.uff.br

Roque Pinel, Geraldo Zimbrão
and Jano Moreira de Souza

COPPE / UFRJ
Rio de Janeiro, Brasil

e-mail: {repinel,zimbrao,jano}@cos.ufrj.br

Abstract— Software measurement is a crucial task for the
planning and the developing of information systems. The
Function Point Analysis (FPA) was developed to measure the
complexity of the functionality of systems. Its methods are
independent of technology and can be applied directly to the
specification of features and the domain. However, the
counting should be performed by a metrics analyst, being
under subjectivity, wasting time and a large number of
resources. This article describes the proposal of automation of
function point counting performed using Unified Modeling
Language (UML) models and Model Driven Architecture
(MDA) methodology. Our approach provides a standard
method for counting based on the International Function
Point Users Group (IFPUG), eliminating the subjectivity
present in traditional procedures. The work counts the
number of realized function points, based on the information
system already developed. The counting of function points
achieved allows for transparency to the client receiving the
product besides the construction of an important historical
base for the refinement of future estimates.

Keywords-MDA; Metric; Function Point Analysis;
AndroMDA; MDArte.

I. INTRODUCTION

With the increasing complexity of information systems,
measuring their features is a crucial task for software
projects. Estimation reports become common documents of
the customer relationship, essential to development planning
and organizing tasks. The Function Point Analysis (FPA)
was defined in 1979 as a procedure capable of measuring
the functionality and complexity of information systems [1].
It is performed based on the specifications of features and
the domain, defined as independent of technology, unlike
other metrics, such as Lines of Code (LOC), that depends on
the programming language used. The method of function
points was developed in order to deliver the customer a
measure on the logic functions in the system, based on
specifications. Therefore, the metrics analyst should study
the documentation and count the number of points. Despite
the efforts of the International Function Point Users Group
(IFPUG) [2] to establish a standard for counting, this value
is still under the subjectivity of the analyst. Moreover, this
process is known to require hours of hard work and
dedication, being a large consumer of resources.

Aligned with the independence of technology, we have
the Unified Modeling Language (UML) [3], which allows
projects to have a standard graphical representation. It has
been widely used in information systems specifications,
being the main source for the establishment of the Function
Point Analysis. However, although it is helpful, the analysis
of documents continues to be cumbersome and time-
consuming.

In 2001, the Object Management Group (OMG) released
a guide of definitions about code generation based on
models, the Model Driven Architecture (MDA) [4]. This
methodology uses, among other standards, UML as a
modeling language. Its methods allow the automation of the
life cycle of projects based on UML models, reducing
development time and allowing the standardization of the
system code. The MDA approach provides an environment
ripe for introduction of automatic FPA.

In particular, we explore the use of the framework
MDArte [5], an extension of the AndroMDA framework
[6], to automate the process, extract values from models and
generate artifacts useful in the FPA, such as the
classification of elements of the information system
generated, e.g., Entities, Services and Use Cases. This
choice was based on the maturity of the tool and the number
of information systems that are in production and use [7]. In
addition to automation, its use allows access to systems that
can benefit directly from this proposal. Thus, we aim to
count the number of function points from what was already
realized, i.e., based on functionalities already developed.
Providing an automated procedure for counting the realized
effort aims at delivering transparency to the client receiving
the product. This way, the effort effectively realized can be
confronted with the initial estimates. Moreover, although the
counting is applied on developed functionalities, the results
produced can be used to analyze and understand the
estimation errors. This knowledge must be used in order to
improve the accuracy of the estimations of complexity for
functionalities still under planning.

This paper is organized as follow. Section 2 presents
some related works and our approach to the problem.
Section 3 describes the concepts of Function Point Analysis.
Section 4 explains in detail the proposed automatic
counting. Section 5 discusses the prototype developed.
Section 6 explores the Case Study. Finally, Section 7
concludes the paper.

23Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

II. RELATED WORK

Automation of FPA has been discussed for some time.
The works [8] and [9] approach the process based on UML
models, using Class Diagrams, Sequence Diagrams and Use
Cases as inputs. In general, the models are read and
interpreted by the application responsible for the counting,
with some exceptions in which the user must interact with
the application. This is because, despite the fact that the
UML and the FPA are independent of technology, in
general, the UML models do not have all the information
necessary for the counting.

In order to aggregate automatic counting to models that
are actually used in the development, i.e., that are
synchronized with the current stage of information system,
the work [10] described the process in an MDA framework.
The main difference between the work in [10] and that
is [8] and [9], is that it explores the fact that the system code
and the counting are processed by the same tool, the code
generation framework, not requiring any additional effort.

However, even the models used for code generation
following the MDA approach may not be sufficient for the
automation of the FPA. When working with a specific group
of MDA frameworks that apply the partial generation of
implementation code [11], the model does not fully
represent the business rules of the information system. In
this type of development, a portion of the system is
implemented manually by the developer. Thus, the code will
contain information relevant to the counting, e.g., entities
that are changed by the system or not.

In our work, we chose a different approach to the
problem. We use the MDA to extract information from
models, ensuring its accuracy, and a tool to extract
information from the system code. Since the information
was only extracted from the code, if the technology is
changed, it is necessary to change only the extractor.

By using not only models but part of the code, our work
and [10] count the number of function points from what was
already realized, i.e., based on information systems already
developed. Although the counting is applied on a developed
project, the result produced can be used to create a historical
base and to adjust and improve accuracy of the FPA rules
application. Further, the proposal will be described and
exemplified with the Case Study.

III. FUNCTION POINT ANALYSIS

The FPA measures the functionality provided by a single
information system [2]. It is a recognized ISO (International
Organization for Standardization) standard for measuring
software and can be determined from the requirements
specification, considered as independent of technology. As
proposed in [1], it counts the following system
characteristics: files used by the system, external inputs and
outputs, user interactions and interfaces. Each feature is
considered individually and counted as the weights
assigned.

The version proposed by IFPUG FPA, used in this work,
provides some modifications to the original rules. It is
described in seven steps [2].

1) Determine the type of function point counting.
2) Identify the system boundary.

3) Count the Data Functions.
4) Count the Transaction Functions.
5) Determine the value of unadjusted function points.
6) Determine the adjustment factor.
7) Calculate the adjusted value.
In our work, the type of count used (step 1) will be

Development Project. It measures the functions provided to
the user with the first installation of the system being
delivered. Our work follows steps 2 to 5. Steps 6 and 7 do
not fall within the scope of this work, as they use system
specific features that must be manually adjusted.

The next two subsections describe the two function
types related to the steps 3 and 4, respectively: data function
and transaction function.

A. Data Function

The Data Functions are functions that deal with stored
data. They are classified as Internal Logical File (ILF) or
External Interface File (EIF). ILFs are related to data that
are created or maintained by the system, while EIFs deal
with external data.

B. Transaction Function

The Transaction Functions are functions that interact
with some user or with external agents. They are classified
as External Input (EI), External Output (EO) or External
Inquiry (EQ).

a) EI: controls information or processes data. Its main
objective is to keep one or more ILFs or to change the
system behavior.

b) EO: sends data or controls information outside the
system boundary. Its main objective is to provide
information to the user, as in reports. They should contain
some processing, for example, mathematical formulas,
maintain an ILF or alter the system behavior.

c) EQ: sends data or controls information outside the
system boundary. Its main objective is to retrieve
information from data items. Unlike EO, they should not
contain processing, maintaining an ILF or alter the system
behavior.

Each Transaction Function also has a number of Data
Element Types (DETs), the smallest meaningful data items
presented (or requested) to (by) the user. Beside DETs, each
Transaction Function has a number of File Type References
(FTRs), the number of Data Functions accessed by the
Transaction Function.

IV. PROPOSAL

Although FPA is independent of technology, when
performed without the use of models, the automation of
counting proposed becomes specific of technology. As an
example, we have [12] where only the COBOL code is
considered during analysis.

Figure 1 illustrates the scheme proposed [14], where the
system code, represented by the points of implementation,
and the artifacts with the characteristics of the system are
generated from UML models. Particularly, Figure 1 shows
an example of the MDA methodology using partial
generation of implementation code. These points are the
spots that actually contain the business rules of the
generated systems.

24Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

Figure 1. Schema of the proposal.

In our proposal [14], the system code is also used.
However, only the dependence between the elements is
considered, e.g., a Service that handles Entities. Thus, the
points of implementation must pass through a dependency
analysis before being used in the count. This allows the
decoupling between the language used and the Core of
Counting component.

Together with the dependencies, the system features are
also used by the Core. Such features represent information
that can be extracted from models, to classify elements as,
e.g., Entities or Use Cases. Provided with this information,
the Core can extract the dependencies that actually have
value to count and identify the type of function: data or
transaction. Considering the need to recognize and correctly
count the types of functions, we developed conditions
similar to those described in [8] and adapted for Web
systems.

A. Counting Data Functions

As each Data Function has a number of DETs and
RETs, they are counted as follows:

a) DET: defined as the number of attributes of the entity
plus the number of inherited attributes, recursively,
disregarding the identifying attributes.

b) RET: assumed to be 1 (one), since this value is used
in most situations and has achieved good results [8].

TABLE I. DATA FUNCTIONS – UNADJUSTED VALUE [2]

RET Data Element Type (DET) Complexity ILF EIF

1 ~ 19 20 ~ 50 > 50 Low 7 5

0 ~ 1 Low Low Average Average 10 7

2 ~ 5 Low Average High High 15 10

> 5 Average High High

Through the combination of the number of DETs and
RETs, it is possible to assign a complexity to the Data
Function using the left side of Table 1. To each complexity
is assigned a value of unadjusted function points, as shown
on the right side of Table 1.

B. Counting Transaction Functions

As each Transaction Function has a number of DETs
and FTRs. They are counted as follows:

a) DET: for an EI, it represents the number of arguments
of the transaction. For an EO, it represents the number of
output parameters. Finally, for an EQ, it represents the
number of arguments of the transaction plus the number of
output parameters.

b) FTR: analogous to the number of RET for Data
Functions, it is assumed to be 1 (one) due the achievement
of good results [8].

TABLE II. TRANSACTION FUNCTION – COMPLEXITY [2]

FTR
EI

Data Element Type (DET)
EO and EQ

Data Element Type (DET)

1 ~ 4 5 ~ 15 > 15 1 ~ 5 6 ~ 19 > 19

0 ~ 1 Low Low Average Low Low Average

2 ~ 3 Low Average High Low Average High

> 3 Average High High Average High High

TABLE III. TRANSACTION FUNCTION – UNADJUSTED VALUE [2]

Complexity EI EO EQ

Low 3 4 3

Average 4 5 4

High 6 7 6

Similar to the complexity assigned to Data Functions,
the complexity of the Transaction Functions is realized
based on the values of DET and FTR. Table 2 is used to
determine the complexity of EIs, EOs and EQs. Then, the
unadjusted value of function points can be obtained from
Table 3, for all three types of Transaction Functions.

V. PROTOTYPE

In this section, we describe how the information
necessary to perform the automatic counting of function
points is obtained and processed. In order to achieve this
goal, we developed a Prototype to demonstrate in practice
how the automatic counting of function points is made.
Figure 2 shows its operating model.

According to the model, the process begins with
framework MDArte [5] to generate the artifacts used as
input for the Prototype. The MDArte is a tool that receives
UML models and generates the corresponding codes. It is
one example of MDA framework with partial generation of
implementation code, in which business rules should be
described directly in the code at specific locations called
points of implementation.

Figure 2. Schema of the prototype.

25Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

In our example, we use specific MDArte cartridges to
generate information systems written in Java. Thus, we can
add the tool Dependency Finder [13] to the proposed model.
The Dependency Finder is capable of analyzing compiled
Java code and extracting the dependency list of the
elements. One of the benefits of its use is the generation of
the list of dependencies in XML, as shown in Figure 3,
following a pattern easily reproducible, which could be
generated by other tools to analyze other programming
languages. Thus, the Prototype does not depend directly on
a technology, being flexible to deal with other cartridges
generation, or even systems coded manually.

Figure 3. Example of XML produced by the Dependency Finder.

Figure 4. Example of XML generated by MDArte with system features.

Although the list of dependencies has an important role
in the process, it is not enough for the FPA to be performed.
As seen in Figure 3, the XML produced does not allow for
the classification of elements. So, we use the characteristics
of the information system as auxiliary entry, illustrated by
the XML from Figure 4. This XML excerpt describes some
characteristics of Entity elements.

From Figure 4, we can see that "Person" is an entity and
has a "name" attribute. You may also notice that the entity
"Student" inherits information from "Person", which
explains the presence of method “getName” in Figure 3,
unconfirmed, since it belongs to "Person" and not to

"Student". The information from both types of entries is
related and processed by the Prototype and used to identify
and count the two types of functions: data and transaction.

The Prototype identifies the Data Functions checking
which Entities are inside (ILF) or outside (EIF) of the
boundary of the information system. To do so, it verifies
which Entities have their set methods accessed. This is done
through the attribute "modifier" tag "method", present in the
XML with the characteristics of the system as shown in
Figure 4. This attribute indicates methods that can be used
to change an Entity, which allows its search on the list of
dependencies.

After having classified the Data Function as ILF or EIF,
the process of counting the number of DETs and the number
of RETs begins. Both values are calculated as described in
the previous section. The number of DETs is defined by the
number of attributes of an entity, considering the inherited
attributes and disregarding the identifying attributes. The
number of RETs has been assumed to be 1 (one), as stated
in the proposal.

The Transaction Functions are identified and counted
according to the proposed rules. However, the concepts
have been adapted to Use Cases, particularly the Activity
Diagrams that describe their flow. Figure 5 illustrates how
the Activity Diagrams used by the MDArte are modeled.
The activities with the stereotype <<FrontEndView>>
represent screens and the values associated to the outgoing
transitions its parameters.

Figure 5. Example of Activity Diagram read by the MDArte.

The identification process is represented by the
flowchart in Figure 6. As described in the flow, the
functions are classified into EI or EQ. This flowchart
represents the first stage of the process, remaining to deal
with the EOs.

Figure 6. Flowchart of Transaction Functions identification process. First
Stage.

26Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

After having identified the EIs and the EQs, the process
continues with the second stage described by the flowchart
in Figure 7. Now, the screens not yet identified are checked
looking for a complementary screen of an EQ, e.g., the
screen that shows the results of a query. If it is not the case,
then the screen is classified as EO.

Figure 7. Flowchart of Transaction Functions identification process.
Second Stage.

Next, we describe how the number of DETs for each
type of Transaction Function is counted based on
information provided to the Prototype. Remembering that
the number of FTRs has been assumed to be 1 (one), as
stated in the proposal.

a) External Input (EI): its number of DETs is calculated
by adding the number of input attributes, present on the
screen, including buttons.

b) External Output (EO): its number of DETs is
calculated by adding the number of attributes in the results
screen. Emphasizing that when displaying information as
table, only the columns are counted, not lines.

c) External Inquiry (EQ): its number of DETs is
calculated by adding the number of the input attributes, as
for EIs, and the number of output attributes, as for EOs.

Having counted the number of DETs and RETs for Data
Functions, and the number of DETs and FTRs for
Transaction Functions, the Prototype performs the
assignment of complexity for each function. Afterwards, it
also determines the value of unadjusted function points
based on Tables 1 to 3.

VI. CASE STUDY

The Case Study was prepared following the proposal
described in this paper as well as the rules used by the
Prototype. Its goal is to demonstrate how automatic FPA is
made for real examples.

Therefore, we chose an information system of an
academic environment as example, limited to a few Entities
and Use Cases for better understanding. Thus, our example
is only responsible for keeping the information of Students
and allows the User to change some of its information, like
the password.

First, we analyze the Data Functions and then the
Transaction Functions.

A. Data Functions

Figure 8 illustrates the class diagram of the Case Study.
You may notice the five Entities, separated into two
symbolic groups: academic system and access control.

a) Person: person information.
b) Student: student information.
c) User: system user information.
d) Group: user groups information.
e) Action: information of actions that can be done

through the system related to the group permission.

Figure 8. Example of Class Diagram read by the MDArte.

The entities Group and Action are kept outside the
system boundary, as they represent a part of access control
based on access groups, like profiles. Thus, as described in
the previous section, the identification of the Data Functions
is done by searching for methods that can modify each
entity among the dependencies of system operations.

a) ILF: Person, Student and User.
b) EIF: Action and Group.

TABLE IV. COUNTING DATA FUNCTIONS

DET RET Complexity Value

Action 1 1 Low 5

Group 1 1 Low 5

Person 1 1 Low 7

Student 2 1 Low 7

User 2 1 Low 7

Unadjusted Total 31

After identifying each entity, the counting process of
RETs and DETs starts. The number of DETs is defined as
the number of attributes of the entity plus the number of
inherited attributes, recursively, disregarding the identifying
attributes. The number of RETs has been assumed to be 1
(one), as stated in the proposal. Applying the values in
Table 1, the unadjusted values will be as defined in Table 4.

B. Transaction Functions

In our example, we will use the CRUD of the Entity
Student to validate the proposal. The left side of Figure 9
represents a screen that allows the User to create a new
Student in the system. It is an example of EI, with two
parameters and one button. Its counting is based on Tables 2
and 3, and shown in Table 5.

27Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

Figure 9. Screens for inserting and reading a student.

As an example of EO, we have the screen displaying the
information of a Student, illustrated on the right side of
Figure 9, with two result attributes. Applying the values in
Tables 2 and 3, we have the counting as shown in Table 5.

The identification and counting of an EQ can be
considered the most complicated of the three. We chose to
use the same use case described by the Activity Diagram in
Figure 5. The activity named Student Search is the screen
shown on the left side of Figure 10, and the activity Search
Result represents the screen on the right side. In Student
Search, the input values are displayed, two parameters and
one button. Search Result has four attributes, represented by
two columns and two buttons, where View is counted only
once. Based on the same tables as for EO (Table 2 and 3),
we have the counting shown in Table 5.

Figure 10. Screens for searching student.

TABLE V. COUNTING TRANSACTION FUNCTIONS

DET FTR Complexity Value

Insert Student 3 1 Low 3

Read Student 2 1 Low 4

Search Student 7 1 Low 3

Unadjusted Total 10

Finally, from the totals in Tables 4 and 5, 31 and 10,
respectively, we get the unadjusted total of 41 function
points. The total obtained represents the complexity of the
information system described by the Case Study, according
to the rules established by IFPUG [2] and the proposed
automation of this work.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a proposal for automatic
Function Points Analysis (FPA) following the standards
presented by IFPUG. Our proposal counts the number of
realized function points, based on functionalities already
developed. This work is the first step aiming to answer the
following question: is the complexity of what was
implemented close to the estimated complexity? The answer
to this question provides transparency to the client receiving
the product and allows for the creation of a historical base
that can be used to improve accuracy of functionalities
under planning.

The proposal was evaluated through the construction of
a prototype and a case study. The counting performed on the

case study was accurate. We are aware that some
simplification, such as assuming RET and FTR values
always as 1, will generate deviations on more complex or
realistic scenarios. That is exactly why our future steps are:
(1) evaluate the proposal on real applications developed
using the MDArte; (2) perform the counting on such
applications with the assistance of a FPA specialist; (3)
identify the deviations; and (4) evolve the proposal in order
to gather more required information from both models and
code. The belief is that the more information we can assume
about the patterns and architecture of the information
system developed the more accurate the automatic counting
procedure will be. This led us to another important issue that
will be evaluated in future research: which is the minimum
set of assumptions about the system implementation in order
to achieve a result with reasonable precision?

REFERENCES

[1] A. J. Albrecht, “Measuring application development
productivity,” Proceedings of the Application Development
Symposium, New York, USA, 1979, pp. 83-92.

[2] IFPUG, “Function point counting practices manual,” release
4.1, International Function Points Users Group, NJ, 2000.

[3] G. Booch, J. Rumbaugh, and J. Jacobson, “The unified
modeling language user guide,” Addison-Wesley, MA, 1999.

[4] J. Siegel, and the OMG Staff Strategy Group, “Developing in
OMG’s model driven architecture”, OMG white paper, 2001.

[5] MDArte, “Framework MDArte,”
https://softwarepublico.gov.br/social/mdarte/, accessed on
23/12/2015.

[6] AndroMDA, “Framework AndroMDA,”
http://www.andromda.org, accessed on 23/12/2015.

[7] R. E. A. Pinel, F. B. do Carmo, R. S. Monteiro, and G.
Zimbrão, “Improving tests infrastructure through a model-
based approach,” ACM SIGSOFT Software Engineering
Notes. 36(1), 2011, pp. 1-5, doi:
http://dx.doi.org/10.1145/1921532.1921544.

[8] T. Uemura, S. Kusumoto, and K. Inoue, “Function-point
analysis using design specifications based on the unified
modelling language,” Journal of Software Maintenance:
Research and Practice, vol. 13(4), 2001, pp. 223-243.

[9] T. Iorio, “IFPUG Function Point analysis in a UML
framework,” Proceedings of Software Measurement
European Forum, 2004.

[10] P. Fraternali, M. Tisi, and A. Bongio, “Automating Function
Point Analysis with Model Driven Development,”
Proceedings of CASCON, 2006, doi:
http://dx.doi.org/10.1145/1188966.1188990.

[11] R. Soley, and the OMG Staff Strategy Group 2000, “Model
driven architecture,” OMG white paper, 2000.

[12] V. T. Ho, and A. Abran, “A Framework for Automatic
Function Point Counting From Source Code,” International
Workshop on Software Measurement (IWSM), 1999.

[13] Dependency Finder, http://depfind.sourceforge.net, accessed
on 23/12/2015

[14] R. E. A. Pinel, “Análise de pontos de função em sistemas
desenvolvidos usando MDA,” COPPE, Master thesis, 2012

28Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

