
Exploring the Scala Macro System for Compile Time
Model-Based Generation of Statically Type-Safe REST Services

Filipe R. R. Oliveira, Hugo Sereno Ferreira, and Tiago Boldt Sousa

Department of Informatics Engineering
Faculty of Engineering, University of Porto, Portugal

Email: {filipe.rroliveira, hugo.sereno, tiago.boldt}@fe.up.pt

Abstract—Representational State Transfer (REST) is a prolific
architectural style among modern Web services, mainly due to its
better performance, scalability and simplicity. A common usage
of the style includes services that implement CRUD (Create,
Read, Update, and Delete) operations for entities of a model.
Most frameworks that do this automatically, apply the models
logic in run-time usually using reflection or in-memory data
structures, and are written in dynamically typed programming
languages. Such technical choices usually hinder two software
quality attributes: performance (due to run-time adaptation) and
maintainability (due to absence of compile-time guarantees). This
paper studies the impact of interpreting the models at compile-
time with statically typed programming languages, using Scala as
a representative. Based on a generic architecture, we implemented
a proof of concept, called the Metamorphic framework, which
uses a Domain Specific Language (DSL), supported by a macro
system, to generate entire applications. Evaluation was executed
by performing both quantitative benchmarks and qualitative
analysis of Metamorphic against other frameworks.

Keywords–Model-Driven Engineering; REST; Internal DSL;
Scala Macros.

I. INTRODUCTION

The number of Internet users has tripled in the last decade
[1] mainly due to the appearance and growth of mobile
devices. These users and devices stay connected and explore
their potentialities through the consumption of Web services,
such as, static or dynamic Web pages, mobile applications
content, and real-time services. Two common architectures
for implementing these services were the Remote Procedure
Call (RPC) and the Service-Oriented Architecture (SOA) [2],
mainly explored through the Simple Object Access Protocol
(SOAP).

In the same time-frame of SOAP’s specification, Roy
Fielding defined the Representational State Transfer (REST)
architectural style [3] to be applied in distributed hypermedia
systems. The style defines a set of six constraints: client-
server, stateless, cache, uniform interface, layered system, and
code-on-demand. The uniform interface constraint uses the
concept of resource, around which communication is built.
A resource is an abstract instance of any concept that can
be uniquely identified. All these constraints enable scalability,
portability, visibility, and simplicity in exchange for some
degraded efficiency and reliability. It is normally preferred to
the SOAP approach as it achieves better performance most of
the time [4]. In practice, REST is usually implemented using
URI (Uniform Resource Identifier) for resource identification,
and HTTP for stateless client-server cacheable communication.

The need to implement more complex and robust Web
services led to the development of frameworks, that provide
solutions for recurrent problems and enable better structured
implementations. Some of these use model-driven engineering
[5], i.e., they can deliver CRUD operations for a set of
model entities, reducing repeated code when compared with
most traditional frameworks. This approach has the following
advantages: short-time-to-market, fewer bugs, increased reuse,
and easier-to-understand up-to-date documentation [6].

In general, current model-driven REST frameworks do
in fact reduce repetition of code but due to implementation
decisions there are two main problems.

Firstly, they are mostly implemented in dynamically typed
languages [7], such as Python and JavaScript. These kind of
languages don’t require the use of explicit types, in which
case type-related errors are more susceptible to happen. This
fact combined with dynamic typechecking delays resolution of
these errors to run-time, suggesting longer debugging sessions.
Strongly and statically typed languages reduce substantially
this problem and consequently may enable better performed
services, due to compiler optimizations based on types.

Secondly, these frameworks implement model-based gen-
eration through the inspection of variables or introspection [8]
for collecting the schema, and through parameterized functions
or intercession [8] for responding to requests. All this work is
done at run-time, increasing the program’s setup time or even
the response time to requests.

Following such logic and considering a statically type-
safe programming language that enables generation of REST
services in compile time, a question can be raised:

Can a model-driven REST framework written in
that language improve the development process and
performance when compared to current ones?

In this research, Scala [9] was used as proof of concept
to answer this question. This language, that was built with
scalability in mind, offers a strong static type system, and
an easy capacity for compile-time generation, through macros
[10]. These characteristics promise that developers may be able
to implement their model-driven REST services even faster and
with more robustness, as type errors may be identified sooner.

The paper is organized as follows. Firstly, in Section II
the most relevant model-driven REST frameworks are briefly
presented and compared. Secondly, in Section III, we describe
a generic architecture for model-driven REST applications and
how that was translated into the Metamorphic framework.
Thirdly, in Section IV the validation criteria is defined as well

95Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

as the steps executed to verify that, which include framework
benchmarks and a synthetic environment experiment. At last,
the conclusion of the work is presented followed by future
work that can be explored.

II. MODEL-DRIVEN REST FRAMEWORKS

Model-driven REST frameworks usually consider two
types of resources: collections of entities which may have
create and read operations; and instances of entities which may
have update, replace, and delete operations.

A. Django REST Framework
Django REST framework [11] is an open source framework

in Python to build Web APIs (Application Program Interfaces),
and is built on top of the Django framework [12], a tool
that enables fast development of Web applications, including
model-driven development. The framework is funded in: views
that given requests perform necessary actions and prepare
responses; serializers that define the structure of object’s data;
and urls that connect URLs (Uniform Resource Identifiers)
with views.

class Category(models.Model):
name = models.CharField(max_length = 50)
description = models.CharField(max_length = 100)

class CategorySerializer(serializers.ModelSerializer):
class Meta:

model = Category

class CategoryViewSet(viewsets.ModelViewSet):
queryset = Category.objects.all()
serializer_class = CategorySerializer

router = routers.DefaultRouter()
router.register(r’categories’, CategoryViewSet)
urlpatterns = router.urls

Listing 1. Example of a simple API with the Django REST framework

The support for model-driven development is delivered by
subclassing a base model, a base model serializer, and a base
generic view, as shown in Listing 1. These subclasses override
the interface methods and use reflection in order to implement
the intended functionality. This adds an overhead on responses
when compared with manual implementations that directly
access variables without having to inspect their name in the
beginning.

B. Eve
Eve [13] is also an open source framework in Python, and

is built on top of the Flask microframework [14] that supports
HTTP (Hypertext Transfer Protocol) I/O (Input/Output) oper-
ations and routing. In contrast to Django REST that supports
four types of SQL (Structured Query Language) databases, Eve
only supports non relational MongoDB databases.

DOMAIN = {
’categories’: {
’schema’: {

’name’: {
’type’: ’string’, ’maxlength’: 50, ’required’: True

},
’description’: {

’type’: ’string’, ’maxlength’: 100, ’required’: True
}

}
}}

Listing 2. Example of a simple API with the Eve framework

It is more based in specification rather than writing code
requiring only the initialization of the DOMAIN variable, as
shown in Listing 2.

C. LoopBack

LoopBack [15] is an open source Node.js framework [16],
which means that is written in JavaScript. It is built on top of
the Express framework [17] that provides a thin layer of Web
application features. It considers relations between entities as
resources, besides instances and collections of entities.

{
"name": "Category",
"plural": "categories",
"base": "PersistedModel",
"idInjection": true,
"properties": {
"name": { "type": "string", "required": true },
"description": { "type": "string", "required": true }

},
"validations": [],
"relations": {},
"acls": [],
"methods": []

}

Listing 3. Example of a simple API with the LoopBack framework

The framework tries to hide its inner workings by pro-
viding a command-line tool through which model entities
are specified. In fact, this tool generates JSON (JavaScript
Object Notation) files with the provided specification which
may be edited, as shown in Listing 3. When the server
application is started the model is interpreted and the correct
dispatch functions are dynamically generated, similar to Eve
and contrary to Django REST.

D. Sails

Sails [18] is an open source Node.js framework [16], and
is also built on top of the Express framework [17] providing
a Model-View-Controller (MVC) development architecture. It
enables model-driven development by providing entity scaf-
folding (generation of code templates) using sails generate api
<entity name>.

module.exports = {
attributes: {
name: {
type: "string", maxLength: 50, required: true },

description: {
type: "string", maxLength: 100, required: true }}};

Listing 4. Example of a simple API with the Sails framework

The developer must then complete the generated files with
a specification of the entities, just like in Listing 4. Just like the
previous examples the model is only known by the framework
in run-time by importing the modules.

E. Conclusion

The identified frameworks are implemented in a dynami-
cally typechecked language, either Python or JavaScript. Each
of them implements model-based services with different ap-
proaches: class specialization in the case of Django REST;
variable initialization in the case of Eve and Sails; and
command-line interaction in the case of LoopBack.

96Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

III. PROPOSED FRAMEWORK

Building high-quality frameworks is usually the result of
many design iterations [19] using: either a bottom-up approach
that starts with concrete applications and iteratively abstracts
concepts into the framework; or top-down which relies on
domain knowledge. The development of Metamorphic used
a bottom-up approach. Considering architectures proposed by
the online community, we built a non model-driven base appli-
cation that followed a supposedly ideal architecture. In order
to generate such kind of applications, we designed an internal
DSL that relied on the use of macros. Macro architecture and
tests were designed and implemented iteratively.

A. Application Architecture

Generated applications can either be synchronous or asyn-
chronous but they have only one architecture (Figure 1). The
architecture is not model centered, allowing generation of
generic Web applications. This fact assures better software
quality as components have to be less decoupled from their real
use. Influenced by this decision, the architecture is composed
of a mandatory layer, the application logic, and an optional
layer, data storage, which may be used by the first layer.

The application logic is implemented by an App object that
initiates services. These services may require access to data
storage through repositories. A repository must have an entity
associated with it and the whole application has access to a
set of developer settings.

Settings

App

Repository

Service

*

*

1 1..*

Entity
* 1

Figure 1. Architecture of a generated application.

To enable greater flexibility of generation, the application
logic is defined by a model, as shown in Figure 2. The model
allows the specification of services, which may have depen-
dencies and a set of operations. Each operation implements
an HTTP method for a path, expects the request body to be
serializable for a specified class, and contains a body. It is
at the operations level that one of the possible programming
styles is applied, by using the isAsync flag.

Application

name

Service

name

* services

Code

tree

Operation

isAsync

Method

Path

base

PathParameter

name

RequestBody

name
class

*

operations

0..1 dependencies

1

body Get Post Put Delete

parameters*
requestBody0..1

*

path

1

method

Figure 2. Application logic model.

To enable configurations, the Config [20] library was used,
which enables the use of one file for setting configurations
of all dependencies of a project. This means that besides
Metamorphic’s configurations, developers can still configure
underlying libraries.

metamorphic {
host = "111.111.111.111"
port = 9000
databases.default.name = "file.db"

}

Listing 5. Example of configuration file with a SQLite database

The configurations (Listing 5) are defined inside the meta-
morphic scope and shall be either host (”localhost” as default),
port (8080 as default) or databases. Scopes inside databases
may specify a name, an user, a password, an host, a port, a
number of threads (numThreads) or a maximum queue size
(queueSize).

B. Internal DSL
Scala macros enables generation of classes, traits and

objects either through type providers or macro annotations
[21]. The first discourages reuse of types in the scope calling
the macros, while the second despite some limitations allows
reuse. Through an internal DSL the framework makes use of
these annotations.

Applications are identified by @app annotations in objects
(Listing 6), which may have a set of entity definitions, a list
of default operations, and a set of service definitions.

import metamorphic.dsl._
@app object PersonApp {

@entity class Person {
def fullname = StringField()
def birthdate = DateField()

}

class PersonService extends EntityService[Person] {
val operations = List(GetAll)

def create(person: Person) = {
if (person.fullname.length < 5)

Response("Name is too short.", BadRequest)
else
super.create(person)

}
}

}

Listing 6. Example of simple API with the Metamorphic framework

The model specification follows the metametamodel in
Figure 3 which is independent of any specification source such
as this DSL. In this case entities can be defined using the
@entity annotation in a class. The macro annotation expansion
adds a companion object with replicated content, which helps
to identify types errors as the compiler will typecheck the result
after expansion. Entities are composed by fields which are
case classes that accept a variable number of values to enable
configuration and may be of type: IntegerField, DoubleField,
StringField, BooleanField, DateField, DateTimeField, Object-
Field, ListField, ReverseField.

All fields accept an Option argument, meaning that the
property is not required. The first argument of a ListField or
an ObjectField is the companion object of an entity definition.
These two types of fields are by default mapped to many-
to-many and one-to-many relations, respectively. The use of

97Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

Property

name

PropertyType

1 *

entity

Entity

name

* properties String

Integer

Boolean

Relation

RelationEnd
ListEnd

ObjectEnd

PropertyOptions

isOption
isVisible

1

type
1 options Double

Date

DateTime

RelationPropertyOptions

isReverse

end11 end21

0..1 0..1

reverse

Figure 3. Framework’s metametamodel.

R.Object as argument changes this behavior to many-to-one
and one-to-one relations, respectively.

The generated entity operations can be the ones identified
in Table I, which are implemented using entities plural as
the base path. By default, each entity has all operations
automatically implemented. Declaring the operations variable
in the @app scope changes the set of default operations to
be implemented. Operations are identified using the following
objects: Create, GetAll, Get, Replace, and Delete.

TABLE I. ENTITY OPERATIONS SPECIFICATION

Operation HTTP method Path Success code Error codes

Create POST basePath/ 201 (Created) 400 (Bad Request)

GetAll GET basePath/ 200 (Ok) -

Get GET basePath/:id 200 (Ok) 404 (Not Found)

Replace PUT basePath/:id 200 (Ok) 400 (Bad Request), 404
(Not Found)

Delete DELETE basePath/:id 204 (No Content) 404 (Not Found)

Changes to the default implemented operations are done
via services, which can override the set of default operations
for a particular entity. Operations implementations return a
Response if synchronous or Future[Response] if asynchronous
and can also be overridden. Customized operations can use a
repository variable for accessing storage and use the keyword
super for applying the default implementation.

C. Implementation
The classes and traits required by the DSL were created in

the package metamorphic.dsl (Figure 4), including the @app
annotation. The annotation implementation depends on the
package matcher for translating the code tree into a metameta-
model instance and an application logic model instance. There
is also a dependency of package generator for mapping those
models into the final application tree.

metamorphic.dsl

generator

matcherapplication

model

AppAnnotation

Figure 4. Diagram of packages for the Metamorphic framework.

The framework was designed to have a flexible and loosely
decoupled architecture that allows long-term maintainability.

With that in mind the generator package doesn’t provide
any concrete generation of applications, building them instead
using dependency injection. The framework requires for a
project to provide two dependencies/generators: a repository
generator and a service generator.

dsl

slick

sqlite postgres h2

generator

SlickDriverGenerator

SlickRepositoryGenerator

RepositoryGenerator

ApplicationGenerator

reference
.conf

Settings

Figure 5. Dependency injection of a RepositoryGenerator that uses Slick.

To test this proof of concept, two repository generators
were implemented based in the Slick library [22], one for
synchronous applications and the other for asynchronous ap-
plications. Figure 5 illustrates how dependency injection is
performed for a RepositoryGenerator that uses Slick, which
also uses dependency injection to implement different database
systems. We also implemented a service generator that uses
components from the Spray toolkit [23].

IV. VALIDATION

It was expected that the developed framework would have
the following characteristics:

• Quick and easy to use. Developers that look for these
kind of frameworks want to have a Minimum Viable
Product (MVP) as soon as possible without having to
explore all the framework’s documentation.

• Error preventive. Statically typechecked programs re-
assure developers about their code quality and reduce
frustration when debugging.

• Better response times. Due to its programming lan-
guage origin, improvements in performance should
be noted when compared with existing model-driven
frameworks.

The first and second characteristics were validated using syn-
thetic environment experiments [24], in the form of an aca-
demic quasi-experiment. The last characteristic was validated
through dynamic analysis [24], in the form of benchmarks.

A. Benchmarks
Comparing response times of different REST frameworks

shall not be generic, i.e., comparison must be executed between
services with the same characteristics. The categorization of
compared services followed two properties: the type of entities
and the type of operations. Entities may be: (i) simple entities
which don’t have navigable relations with other entities; (ii)

98Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

entities with objects which have a navigable relation with
multiplicity one; (iii) or entities with lists which have a
navigable relation with an infinite upper bound.

The same scenario was compared using seven different
implementations: (i) synchronous version of Metamorphic; (ii)
asynchronous version of Metamorphic; (iii) LoopBack; (iv)
Sails; (v) Django REST in Python 2.7; (vi) Django REST
in Python 3.4; (vii) Eve. All of these used a PostgreSQL
9.3.8 database (except Eve that used MongoDB) and were
installed in production environments to guarantee maximum
performance.

The experiment was executed in a portable computer
Lenovo Thinkpad T430 with the following specifications:
Ubuntu 14.04 LTS 32-bit; Intel Core i5-3210M @ 2.5GHzx4;
4GB Sodimm DDR3 Memory (1600 MHz); and 500GB 7200
RPM 32 MB Cache SATA Hard Drive. The tests were locally
executed in an environment without Internet connection, all
non-essential programs closed, and two terminals in fore-
ground: server application and benchmark application.

All batches of operations were performed with a maximum
of 10 concurrent requests. For each tuple, (Framework, Opera-
tion, Entity Type) 5000 requests were executed and, to discard
any possible setup effects, 1000 requests were executed before
testing each framework.

TABLE II. FRAMEWORK’S RANK BY ENTITY TYPE AND RANK SUM

Framework Create GetAll Get Replace Delete Sum

LoopBack 1 | 1 | 1 3 | 2 | 1 1 | 1 | 1 2 | 2 | 2 1 | 1 | 1 21

Metamorphic
Async

2 | 2 | 2 1 | 1 | 2 3 | 2 | 2 1 | 1 | 1 2 | 2 | 2 26

Sails 3 | 3 | 6 2 | 6 | 4 2 | 3 | 3 3 | 3 | 6 3 | 3 | 5 55

Django REST 3.4 5 | 5 | 4 5 | 4 | 5 6 | 5 | 5 5 | 4 | 3 4 | 4 | 4 68

Django REST 4 | 4 | 3 6 | 5 | 6 5 | 6 | 6 4 | 5 | 4 5 | 5 | 3 71

Metamorphic 6 | 6 | 5 4 | 3 | 3 4 | 4 | 4 6 | 6 | 5 6 | 6 | 6 74

Eve* 1 | 1 | 1 4 | 3 | 2 4 | 3 | 3 1 | 1 | 2 3 | 3 | 3 35

* pseudo-rank; not comparable.

The frameworks were compared using rank sums. Table
II presents the ranking of the frameworks by entity type
in the following order: simple entities; entities with objects,
and entities with lists. Considering the sum of these rank
sums it is possible to conclude that, in spite of not being
the best performant framework, the asynchronous version of
Metamorphic already achieves performances better than most
model-driven frameworks. In fact, without almost no effort to
optimize framework’s implementation, its results are close to
the most performant framework, LoopBack, and it is the best
solution to implement GetAll and Replace operations.

B. Academic Quasi-Experiment
8 MSc students in their 5th year of the Master in Infor-

matics and Computing Engineering, from the Faculty of Engi-
neering of the University of Porto, were asked to participate.
The experiment tested only one of the current model-driven
frameworks against the synchronous version of Metamorphic.

All subjects started by answering a questionnaire and
reading a problem guide. The subjects were split in two groups
with two different treatments and had to perform the same set
of tasks (Round 1). Then, each subject performed the same set
of tasks as before with another treatment (Round 2). The test
finished by answering another questionnaire.

The treatments were: baseline treatment - a default ready-
to-use Django REST project; and experimental treatment -
a default ready-to-use Metamorphic synchronous project. In
both treatments, a guide about the framework and the language
syntax were handed to the subjects. The experiment consisted
in three tasks: (i) modeling using a UML diagram and the
entities schema; (ii) creation of services operations for the
entities; and (iii) customization of the defined operations.

Each subject executed the test in an isolated area of a low
noise laboratory, with a single portable computer with Internet
access mimicking a real programming situation. The subjects
could only use a text editor of their choice and clarify any
doubts they had. Application running and testing had to be
done using the terminal. A screencast program was used to
correctly measure time and development metrics in a non-
intrusive way.

The questionnaires were designed with a five-point Likert
scale [25]. Their responses were compared using the non-
parametric, two-sample, rank-sum Wilcoxon-Mann-Whitney
[26] test, with n1 = n2 = 4 and significance level of
5%. The results revealed statistical validity of the experiment
and that implementing model-based operations is easier and
more intuitive to do using Metamorphic (ρ = 0.014 in both
rounds). Also, there is an high chance that implementations
of models and customizations are easier and more intuitive
(ρ1 = 0.043, ρ2 = 0.200 and ρ1 = 0.014, ρ2 = 0.100
respectively).

The framework may be considered quicker to use as time
measurements indicate that development time may decrease
35%, and lines of code measurements indicate that the quantity
of code may decrease 28%. As can be seen in Table III,
modeling (Task 1) and operations definition (Task 2) may be
implemented faster even after having knowledge about the
problem (Round 2). The results of Task 3 were unexpected
and may be explained by the reduced amount of requested
customizations, that was 2.

TABLE III. STATISTICS OF TIME MEASUREMENTS (MINUTES)

Measurement Round x̄E σE x̄B σB x̄B − x̄E (x̄B − x̄E)/x̄B

Task 1
1 11.44 03.11 20.13 09.18 08.69 43.2%
2 07.94 01.48 08.81 03.06 00.87 09.9%

Task 2
1 08.31 06.46 22.94 13.73 14.63 63.8%
2 10.69 05.76 17.25 01.49 06.56 38.0%

Task 3
1 05.06 02.12 03.92 02.67 -1.14 -29.1%
2 05.31 01.91 03.44 00.97 -1.87 -54.4%

Total
1 45.81 08.19 70.56 12.14 24.75 35.1%
2 31.50 01.86 51.38 08.29 19.88 38.7%

As illustrated in Table IV, applications built with the
Metamorphic framework barely have runtime errors with mea-
surements indicating the contrary for the baseline treatment. It
should still be noted that the amount of non-runtime errors
using the experimental framework are slightly lower than
runtime errors using the baseline. This corroborates the error
preventive nature as there are less errors that when occur are
detected faster.

At last, the number of test executions measurement in-
dicates that applications built with Metamorphic require less
iterations to validate all the tests.

The results of this experiment should be carefully con-
sidered, as the number of subjects may not be representative
of the developer community. In order to diminish this threat

99Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

TABLE IV. STATISTICS OF ERROR MEASUREMENTS

Measurement Round x̄E σE x̄B σB

Non-runtime errors
1 02.8 2.06 01.5 1.29
2 04.3 1.71 00.3 0.50

Runtime errors
1 00.0 0.00 05.8 4.99
2 00.3 0.50 05.5 1.73

each subject executed the tasks for each of the frameworks
increasing the number of data points.

V. CONCLUSION AND FUTURE WORK

This work required a full and extensive review on REST
frameworks, specially model-driven REST frameworks, as very
little is documented scientifically. With that knowledge a
meta-architecture was developed, through modeling, that is
independent of any programming language. A framework that
follows such meta-architecture was also developed. This was
designed to be as modular as possible by enabling the use of
components through cross-project dependency injection.

Validation of the proof of concept revealed that the re-
sponse to the research problem may be positive. This means
that it is possible to improve the development process and
execution performance of model-based REST services, through
a framework that is written in a statically type-safe program-
ming language that enables code generation in compile time.
Improvements in the development process are backed by a
reduced number of lines of code, a reduced number of run-
time errors, and a reduced development time when using the
proof of concept. Despite unexpected execution performances
in some cases the authors believe the premise may hold for a
more mature framework.

The only identified disadvantage of use of the framework
is the additional development time required for compiling
applications before testing. For big applications this may be
critical as for any small change the entire code will be re-
generated.

The source code of the framework can be found in
https://github.com/frroliveira/metamorphic and more details
about this research, such as the experiments can be found in
http://paginas.fe.up.pt/ ei10038/dissert. Further research of the
identified problem would be connected with Metamorphic as
it is not yet a full featured framework. Future work could be:

1) Test models flexibility. Knowledge on Metamorphic’s
flexibility to other generators is empirical. To ensure
such information another repository and service gen-
erators could be implemented based in other libraries.

2) Extension of models. For a framework to be useful,
it may contain most features developers will need.
Metamorphic has the basic features, so others would
be welcome such as entity inheritance, authentication,
database migrations, filtering, and pagination.

3) Profiling. Understanding any possible bottleneck in
generated applications could be done trough profiling.
This would aim to fully validate the performance goal
initially established.

4) Experiments. Having a new and more mature version
of the framework, its validity should be tested in
industrial environments with samples that are more

size significant. This time both versions, synchronous
and asynchronous, should be tested.

5) Swagger definition. Swagger [27] defines a “standard,
language-agnostic interface to REST APIs which
allows both humans and computers to discover and
understand the capabilities of the service without
access to source code”. This would allow faster
testing of the generated services.

REFERENCES

[1] I. Society, “Global Internet Report 2014,” 2014, URL:
http://internetsociety.org/sites/default/files/Global Internet Report

2014 0.pdf [accessed: 01, 2016].
[2] J. Kopecký, P. Fremantle, and R. Boakes, “A history and future of web

apis,” it - Information Technology, vol. 56, no. 3, 2014, pp. 90–97.
[3] R. T. Fielding, “Architectural styles and the design of network-based

software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[4] P. K. Potti, S. Ahuja, K. Umapathy, and Z. Prodanoff, “Comparing
performance of web service interaction styles: Soap vs. rest,” in Pro-
ceedings of the Conference on Information Systems Applied Research
ISSN, vol. 2167, 2012, p. 1508.

[5] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
Computer, vol. 39, no. 2, 2006, pp. 25–31.

[6] D. Riehle, S. Fraleigh, D. Bucka-Lassen, and N. Omorogbe, “The
architecture of a uml virtual machine,” SIGPLAN Not., vol. 36, no. 11,
Oct. 2001, pp. 327–341.

[7] L. Cardelli, “Type systems,” ACM Computing Surveys, vol. 28, no. 1,
1996, pp. 263–264.

[8] D. G. Bobrow, R. P. Gabriel, and J. L. White, “Clos in context-the
shape of the design space,” Object Oriented Programming: The CLOS
Perspective, 1993, pp. 29–61.

[9] Ecole Polytechnique Fdrale de Lausanne - EPFL, “The Scala Program-
ming Language,” URL: http://scala-lang.org/ [accessed: 01, 2016].

[10] E. Burmako, “Scala macros: Let our powers combine!: On how rich
syntax and static types work with metaprogramming,” in Proceedings
of the 4th Workshop on Scala, ser. SCALA ’13. New York, NY, USA:
ACM, 2013, pp. 3:1–3:10.

[11] T. Christie, “Django REST framework,” URL: http://django-rest-
framework.org/ [accessed: 01, 2016].

[12] D. S. Foundation, “Django,” URL: https://djangoproject.com/ [accessed:
01, 2016].

[13] N. Iarocci, “Python REST API Framework — Eve 0.5 documentation,”
URL: http://python-eve.org/ [accessed: 01, 2016].

[14] A. Ronacher, “Flask,” URL: http://flask.pocoo.org/ [accessed: 01, 2016].
[15] StrongLoop, “LoopBack,” URL: http://loopback.io/ [accessed: 01,

2016].
[16] N. Foundation, “About — Node.js,” URL: https://nodejs.org/about/

[accessed: 01, 2016].
[17] Express, “Express - Node.js web application framework,” URL:

http://expressjs.com/ [accessed: 01, 2016].
[18] M. McNeil, “Sails.js — Realtime MVC Framework for Node.js,” URL:

http://sailsjs.org/ [accessed: 01, 2016].
[19] R. J. Wirfs-Brock and R. E. Johnson, “Surveying current research in

object-oriented design,” Communications of the ACM, vol. 33, no. 9,
1990, pp. 104–124.

[20] Typesafe Inc., “typesafehub/config,” URL: https://github.com/typesafe
hub/config [accessed: 01, 2016].

[21] E. Burmako, M. Odersky, C. Vogt, S. Zeiger, and A. Moors, “Scala
macros,” November 2013, URL: http://scalamacros.org/paperstalks/201
3-11-25-ScalaMacrosPoster.pdf [accessed: 01, 2016].

[22] T. Inc, “Slick,” URL: http://slick.typesafe.com/ [accessed: 2016-01-05].
[23] Typesafe Inc, “spray — REST/HTTP for your Akka/Scala Actors,”

URL: http://spray.io/ [accessed: 01, 2016].
[24] M. V. Zelkowitz and D. R. Wallace, “Experimental models for validating

technology,” Computer, vol. 31, no. 5, 1998, pp. 23–31.

100Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

[25] R. Likert, “A technique for the measurement of attitudes.” Archives of
psychology, 1932.

[26] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric statistical
methods. John Wiley & Sons, 2013.

[27] SmartBear, “Swagger — The World’s Most Popular Framework for
APIs.” URL: http://swagger.io/ [accessed: 01, 2016].

101Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

