
Migration from Annotation-Based to Composition-Based Product Lines: Towards a
Tool-Driven Process

Fabian Benduhn1,2, Reimar Schröter1, Andy Kenner2, Christopher Kruczek2,
Thomas Leich2, and Gunter Saake1

University Magdeburg1, METOP GmbH2, Germany
1email:{fabian.benduhn, reimar.schroeter, gunter.saake}@ovgu.de,
2email:{andy.kenner, christopher.kruczek, thomas.leich}@metop.de

Abstract—Software product lines allow a developer to produce
similar programs based on a common code base. Two main
techniques exist: composition-based and annotation-based ap-
proaches. Although composition-based approaches offer potential
advantages such as maintainability, in practice mostly annotation-
based approaches are used. The main reason hindering the mi-
gration of existing projects is the difficulty of the transformation
process that can take a lot of time in which maintenance and
evolution of the system are put on hold. Thus, for a company,
it is hard to estimate the transformation costs and the success
is uncertain. As already stated in previous work, a hybrid
solution using both approaches may be an adequate solution
to overcome this problem. Therefore, we propose a migration
concept focusing on technical requirements, such as tool- and
language support to reduce the risk during the error-prone
migration process. We exemplify the concept by considering
the partial migration of a real-world system from preprocessor-
based variability to an implementation based on feature-oriented
programming. We identify conceptual and tool-based challenges
that must be addressed for the practical application. We present
technical considerations that must be taken into account for step-
wise migration and specific challenges related to our case study.

Keywords–Software Product Lines; Step-wise Migration; Vari-
ability Mechanisms; Implementation Techniques.

I. INTRODUCTION

Software product lines are a concept to create similar
programs based on a common code base [1][2]. Several imple-
mentation techniques with different advantages and disadvan-
tages exist [3]. We distinguish between annotation-based and
composition-based approaches. In practice, variability is often
implemented by annotating code with preprocessor directives
to achieve conditional compilation. In detail, preprocessors
are an easily accessible mechanism for fine-grained adaptation
of source code to achieve similar programs with low effort.
While the use of preprocessors provides an effective way
to implement software variability, the technique comes with
disadvantages related to code and feature traceability [4][5].

In contrast, composition-based approaches, such as feature-
oriented programming (FOP), avoid these problems by pro-
viding specialized modularization mechanisms [6][7]. In FOP,
each feature, which serves as a configuration option, is en-
capsulated in a dedicated module so that it can be combined
with other features to generate variants. Therefore, compared
to annotation-based approaches, the traceability of features is
straight forward, which eases maintenance and extension of
the source code.

Despite the potential advantages of composition-based over
annotation-based approaches, their use has not been widely
adopted in industry. There are several reasons for this situation.
On the one hand, the usage of FOP in practice is difficult
and error-prone and has high requirements regarding sufficient
tool support. On the other hand, the process of a complete
transformation to these techniques for legacy systems can be
time consuming, and it is hard to estimate the transformation
costs [8]. Thus, preprocessors remain the dominant approach
in industry.

Kästner and Apel formulated the idea to use a combina-
tion of annotation-based and composition-based approaches to
combine their advantages and to enable a step-wise migration
process [9]. We build on this idea of such a hybrid approach
and propose a process for its instantiation considering practical
concerns, such as required tool support. In a case study, we
investigate how Berkeley DB, a database management system
using preprocessor directives to implement variability, could be
migrated using our migration concept. We present details of
the step-wise migration and identify technical and conceptual
challenges.

In detail, we make the following contributions:

• We propose a concept for the instantiation of a step-
wise migration process based on the combination of
annotation-based and composition-based approaches that
considers technical concerns.

• We exemplify our concept considering the migration
of Berkeley DB, from an implementation in the pro-
gramming language C with preprocessor annotations to
a composition-based implementation using FeatureC, a
newly developed extension of FeatureHouse [10].

• We identify technical and conceptual challenges that we
have to consider during our migration concept.

In Section II, we introduce the necessary background for
the rest of the paper. We propose our tool-driven migration
concept in Section III and its practical application to a real-
world project in Section IV. In Section V, we discuss several
project-specific challenges. We give an overview of related
work in Section VI and conclude in Section VII.

II. IMPLEMENTATION OF VARIABILITY IN SOFTWARE
PRODUCT LINES

In this section, we give a brief overview on implementation
techniques for software product lines. We consider two ba-
sic approaches, annotation-based and composition-based [3].

102Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

1 s t a t i c i n t bam getbo thc (dbc , d a t a)
2 DBC ∗dbc ;
3 DBT ∗ d a t a ;
4{
5 . . .
6 r e t u r n (bam ge tbo th f indda tum (dbc , da t a , . . .) ;
7}
8
9 # i f d e f HAVE COMPRESSION

10 s t a t i c i n t b a m g e t l t e (dbc , key , d a t a)
11 DBC ∗dbc ;
12 DBT ∗key , ∗ d a t a ;
13 {
14 i n t r e t ;
15 . . .
16 r e t u r n (r e t) ;
17 }
18 # e n d i f

Figure 1. Conditional compilation using preprocessor directives.

In detail, we focus on the representation of variability in
source-code artifacts. However, the distinction between both
approaches can be generally applied to many types of variable
development artifacts, such as models, specifications, and
documentations [11][12][13]. Now, we present advantages of
both approaches and their combination.

A. Annotation-Based Implementation of Variability

The idea of annotation-based approaches to implement
variability is that certain parts of the development artifacts are
mapped to features by annotating them. Individual variants
can be generated by removing parts representing undesired
features.

As annotation-based technique, preprocessors are
commonly used that exist for many languages and
tools [14][15][16]. In practice, the usage of preprocessors
is widespread, e.g., in open-source projects [17], operating
systems, and databases. The mechanism also allows a
developer to implement fine-grained variability, including
changes to single characters within program statements. In
Figure 1, we exemplify the usage of the C preprocessor for
conditional compilation. The code in Line 9 is annotated
using feature HAVE_COMPRESSION. In detail, the beginning
of the variable code fragment is marked by the directive
#ifdef, the end is marked by #endif. Thus, if feature
HAVE_COMPRESSION is not activated, the preprocessor
removes the specific code before it is given to the compiler.

Preprocessors support very fine-grained source code vari-
ability but this property negatively influences the code com-
prehension of the system. Thus, alternative annotation-based
approaches with more sophisticated tool support and certain
restrictions regarding the discipline of annotation usage have
been developed [18][19][20]. Similarly, researchers have inves-
tigated the code comprehension of preprocessor programs and
related problems and proposed several approaches to improve
them, e.g., with different background colors [4][18]. Despite
these efforts, the general problems with such annotation-based
approaches, such as the C preprocessor, are not completely
solved. However, preprocessors remain the dominant approach
in practice.

Figure 2. FOP - Structural combination of code artifacts.

B. Composition-Based Implementation of Variability
To overcome the problems of annotation-based approaches,

several composition-based implementation techniques have
been proposed [6][7][21][22][23][24][25]. In composition-
based approaches, variable features of a system are mapped
to dedicated modules. The main advantage is that this mod-
ularization improves traceability of features and separation of
concerns [3].

In this paper, we focus on the composition-based approach
FOP. The main idea of FOP is to modularize software into
cohesive units — each module encapsulating a particular
feature of the software. Individual program variants can be
generated by superimposing the desired feature modules based
on a hierarchical representation of their structure, called Fea-
ture Structure Trees (FST) [10]. In detail, two corresponding
inner nodes (i.e., nonterminal) are merged when they have the
same type and name. For terminals (i.e. leave nodes, e.g.,
functions), it depends on the implementation, i.e., whether
the node is refined (i.e., extended) or completely overwritten.
In Figure 2, we exemplify composition-based variability for
FOP. We use the same example as given for the annotation-
based approach of Figure 1. In the base feature, the file
bt_cursor.c with the functions __bam_getbothc and
__bam_getbothc_finddatum exists. However, the file
bt_cursor.c also exists in feature HAVE_COMPRESSION
with the function __bam_getlte. After the combination, the
file includes all functions of both features.

C. Combination of Annotation-Based and Composition-Based
Approaches

Despite the potential advantages of composition-based ap-
proaches, there are some problems regarding their practical
application in industry. First, the migration from legacy sys-
tems, which often use preprocessors to implement variability,
to composition-based approaches is a difficult and error-prone
task. Long migration processes are generally problematic,
because they must usually be performed in parallel to the
regular development and maintenance of the software, and
eventually merged - which is, again, a time-consuming task.
Thus, the risk to switch to composition-based approaches is
high. Second, composition-based approaches are not suitable
for fine-grained variability as used in many preprocessor-
based systems. Thus, it is especially difficult to ensure that
a migration process results in a well-structured system, which
may diminish the potential benefits of the composition-based
approach.

As a possible way out of this dilemma, Kästner and
Apel proposed the idea to combine annotation-based and
composition-based approaches [9]. In detail, they formulated
the idea to use this concept to enable a step-wise migration pro-
cess from annotation-based to composition-based approaches
in which intermediate steps use the combined approach and,
thus, avoid the usually long, atomic migration process. Kästner
and Apel discuss this migration process in a theoretical manner

103Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

Figure 3. General migration concept for the instantiation of a step-wise migration of annotation-based to composition-based approaches.

and state the need for sufficient tool support as a necessary pre-
requisite for its practical application. We present a migration
concept and discuss practical considerations for companies that
are interested in the application of a system transformation.

III. TOOL-DRIVEN MIGRATION CONCEPT

In this section, we introduce our concept for the tool-
driven migration of software systems with annotation-based
implementation of variability to a system using composition-
based variability. Our concept is generally applicable in the
sense that it is independent of specific annotation-based and
composition-based implementation techniques. It describes a
process consisting of four steps, as depicted in Figure 3. In
particular, we have to (1) enable automation, (2) introduce
support for systematic variability management, (3) initialize
the desired composition mechanism, and (4) apply the step-
wise migration.

One of the goals of our approach is to ensure a consistent
state in each step. Thus, a long migration process that hinders
regular development of the project is avoided and costs to
merge the migration results can be reduced. When applying
this to concrete projects, the details on how this consistency
is ensured may vary. Ensuring a minimal interruption of the
continuous development, requires that the application can be
compiled, executed, and tested in each step. In the following,
we describe each step of our concept in detail.

(1) Enabling Automation
The first step of our migration concept is to enable automa-

tion of important tasks in the software-development process for
a given project. This will enable the developer to validate the
correctness of each subsequent step. Typically, this includes the
capability to automate the process of building, executing, and
testing the program as provided by many modern integrated
development environments (IDEs). The choice of the specific
IDE depends on the later steps, e.g., the IDE’s support for
variability management tools. Thus, even if the project already
provides automation for relevant tasks, it might be still neces-
sary to switch the used IDE in preparation of the next steps.

(2) Introducing Systematic Variability Management
Having ensured that we enabled automation, execution,

and testing of our software, a systematic variability manage-
ment should be introduced. An important aspect of variability
management is to provide techniques for the modeling of the
variability space and a mapping to code artifacts. Therefore,
the variability artifacts must be identified and possibly re-
engineered for integration. Furthermore, variability-related tool

Figure 4. Step-wise migration in detail.

support must be provided to establish a tool-driven configu-
ration process and the automation of variant generation. In
addition, the possibility to execute variants or test them is a
frequently desired aspect.

(3) Initialization of the Composition Mechanism
In this step, the technical prerequisites to employ a compo-

sition mechanism must be ensured. The result of this step is a
trivial decomposition into a single module. However, it must be
ensured that the used tools support the desired language, and
that modules can be composed accordingly. For instance, if we
take FOP as composition-based approach, we have to initialize
the project using one base feature module in which we include
all code fragments with all preprocessor directives. Afterwards,
it must be possible to apply the composition mechanism,
which, in this step, results in an output that is equal to the
input (i.e., equal to the base feature). Furthermore, we have to
ensure that the automated variant-generation mechanism using
preprocessors of Step (2) can be used to remove the undesired
features of this composed output.

(4) Step-wise Migration
After the execution of the previous steps, the main task

of the step-wise migration can start. The step-wise migration
consists of small refactoring steps in which we can extract
a specific source-code artifact into a module (cf. Figure 4).
Therefore, it is necessary to (4.1) analyze the code to identify
the next fragment for the modularization, (4.2) refactor the
code to improve the structure, so that it is easier to modularize,
and (4.3) extract the corresponding code fragment into a
module. Since we define each sub-step as a refactoring, the
complete product line should be in a consistent state before
and after each step. This can be ensured by taking advantage
of the support for automated building, executing, and testing,
which has been ensured in the first step.

IV. PRACTICAL APPLICATION TO A REAL-WORLD
PROJECT

In the previous section, we introduced a general process for
the step-wise migration of annotation-based to composition-
based approaches with the focus on necessary tool support to

104Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

enable a successful practical application. Now, we investigate
the applicability of this process to initialize the migration of
a real-world project. Our focus is to identify technical and
conceptual concerns and possible challenges for the process
that may be useful to guide companies in their own migration
projects.

We consider the application of the proposed migration
concept to Berkeley DB, a database management system, from
an annotation-based implementation using the C preprocessor
to a composition-based implementation based on FOP. In
detail, Berkeley DB consists of 229.419 lines of code. Since
Berkeley DB is written in C with preprocessor annotations,
it is a practically relevant case study with high challenges of
an annotation-based product line. Another reason for selecting
Berkeley DB is that it was used in several case studies related
to research on variability (for more details, see Section VI).
According to the properties of Berkeley DB, we have to search
for an IDE that allows us to apply our migration concept and
that supports variability management for C with preprocessors
and a solution for FOP in the programming language C.

Since it supports the required properties for our migration
task, we have chosen the IDE Eclipse with the plugin Fea-
tureIDE for variability support. FeatureIDE supports the com-
plete development cycle of software product lines including the
modeling step, as well as different implementation techniques,
such as annotation-based and composition-based approaches
(i.e., also FOP) [26]. Therefore, besides a hybrid solution of
annotation- and composition-based approaches, it fulfills all
theoretical requirements of our migration concept. In detail,
FeatureIDE integrates a set of command line tools that support
different implementation techniques. In our application, we
extend the command line tool FeatureHouse which implements
FOP based on superimposition as introduced in Section II-B
[10]. In the following, we describe for each step of the
migration process some of the relevant technical decisions and
the tool-specific steps that have to be performed. We focus on
the description of the applicability of the process in general,
as well as on the practicability of the specific tools we have
used.

(1) Enabling Automation – Integration into Eclipse

As described before, to enable automation of the build
and testing process for Berkeley DB, we use Eclipse because
we plan to use FeatureIDE during the subsequent steps. In
detail, we create a new Eclipse project for the programming
language C and include our case study Berkeley DB with all
files and additional material. For the automated generation and
execution of a specific variant, we administrate further Eclipse
settings so that we ensure a correct behavior of Berkeley
DB (i.e., we do not consider variability management so far).
In detail, we use the C and C++ Integrated Development
Environment (CDT) of Eclipse for the configuration and apply
the subsequent make process. In our case, this step took several
hours. But the necessary time for this step strongly depends
on the complexity of the application and on the intended test
mechanism that should ensure the correctness of the system.
Even if this step may take longer for other projects, it has to
be done only once for the complete migration process.

(2) Introducing Systematic Variability Management – Using
FeatureIDE

The next step is to introduce systematic variability manage-
ment for this Eclipse Berkeley DB project. Using FeatureIDE,
we can automatically convert the project into a FeatureIDE
project, by adding specific configuration properties. As result,
it is possible to automate the configuration, generation and
execution for each variant of the product line. A central part
of this step is to make the variability explicit. Therefore, we
need to create a feature model in which we define configuration
options in terms of features and their dependencies. This task
was easy for us, because Berkeley DB was studied several
times and, thus, we reused information of a previous study and
selected 10 out of 28 preprocessor variables as configurable
features. As result, we use FeatureIDE to create a feature
model of Berkeley DB that consists of one root feature and ten
optional child features (i.e., they can be combined arbitrarily to
variants). Afterwards, we can use FeatureIDE’s configuration
editor to specify the specific variants of Berkeley DB that we
want to create. If the build process of a project is straight
forward, FeatureIDE already supports direct compilation and
execution. However, in the case of Berkeley DB, the build
process involves a specific configuration process. Thus, Fea-
tureIDE needs to start the configuration and make process for
which we developed an extension to bridge the gap. Because
of our experience in plugin development, it was easy to create
a first prototype for our needs. Therefore, this step takes only
a few days for us. By contrast, without our experience and
without knowledge of the available variability options, this
step can also take several weeks. Furthermore, the step can
be extended arbitrarily, this depends on the tool support that
a company needs. For instance, it is also possible to develop
IDE views to give a code outline or editors with specialized
visualization techniques to highlight variability. As explained
above, we have decided to use FeatureIDE, but there are other
tools for variability management that could be used, depending
on project-specific requirements [27]. The time that is required
for this step depends largely on project-specific infrastructure,
but in general this step has to be performed only once per
migration process

(3) Initialization of the Composition Mechanism – Using
FeatureC

The main advantage of FeatureIDE is that the plugin also
supports other implementation techniques. Thus, in this step,
we can change the implementation strategy that is used by
FeatureIDE. However, no existing tool supports the required
hybrid approach. Thus, we have developed FeatureC, a feature-
oriented extension of C that additionally supports the use
of preprocessors. Therefore, we have extended the existing
composition tool FeatureHouse. As mentioned above, Feature-
House is a command line tool for FOP in which different
languages can be integrated using a specialized grammar [10].
On the one hand, this grammar is needed to parse a specific
programming language. On the other hand, the grammar
encodes the composition rules for this specific language. For
a hybrid solution, the already existing C grammar of Fea-
tureHouse has to additionally support annotations. Therefore,
we developed the extension FeatureC. With FeatureC, we can
create one feature module in which all the existing annotation-
based source code is located. Afterwards, we can use the same
procedure to configure, compile and execute a specific variant.

105Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

Figure 5. Required grammatical changes to support annotations in feature
modules - illustrated by using the example of Figure 1.

For our case study Berkeley DB, several grammar changes
were necessary. In detail, we adapted the grammar in a
way that directives outside of a function are represented as
nonterminal. This change allows us to parse the preprocessor
annotations and to produce an output in which this annotation
still exists. We depict this fundamental change in Figure 5.
Here, we depict the structural representation of the file given
in Figure 1 that can be combined with the corresponding nodes
of another feature.

By contrast to the mentioned grammatical change, in some
cases we were able to avoid grammatical changes through
source-code disciplines (see next section for detailed infor-
mation). However, in hindsight, we spent the most time on
grammar changes and code disciplination. All other parts of
this step were partly straight forward. In sum, the complete step
required several weeks; however it is largely dependent on the
project-specific languages as well as tools, and is independent
from the actual size of the project or the number of features
to be extracted.

(4) Step-wise Migration – Application on Berkeley DB

In this step, the actual migration procedure can start. As
stated in the previous section, each refactoring consists of three
sub-steps. For our case study, we used a manual approach to
extract two features (HAVE_HASH and HAVE_HEAP) with a
focus on the identification of existing challenges. The identified
project-specific challenges are discussed in the next section.

While we have used a manual approach, we identified the
need for further tool support. We give a short overview on
approaches that could aid the migration procedure based on
our experience with the manual approach. In future work, we
plan to investigate the integration of selected tools. For code
analysis, several tools exist that consider variability [28]. On
the one hand, it would be possible to use tools that aid the
developer to identify potential code fragments representing
features. On the other hand, code analysis can be used to
ensure the correctness of each sub step. With Morpheus,
Liebig et al. provide a promising tool for automated refactoring
of C code that can cope with preprocessor directives [29].
Kästner et al. provide a concept for automatable refactorings
that can be used to aid the migration from annotation-based
to composition-based implementations [30]. The approach
requires specific disciplined annotations and supports a subset
of Java, for which it can be guaranteed that the refactorings
can be performed correctly. It should be investigated to which
extend this approach can be applied to real-world systems in
other programming languages, such as C, for which prepro-
cessor directives already exist. Furthermore, there are several
approaches to transform preprocessor-based implementations
into aspect-oriented implementations [31][32]. While we used
feature-oriented programming for our case study, our general
process can also be applied to a migration to an aspect-oriented

product line. Therefore, this line of research may be interesting
for the practical application.

V. PROJECT-SPECIFIC CHALLENGES

In this section, we discuss details of our experiences and
challenges during the application of our migration concept to
two features of Berkeley DB. Therefore, we present several
insights regarding the application of concepts and discuss
project-specific challenges regarding the tools and languages
used for the migration of Berkeley DB.

A. Interdependence of Process Steps
In our proposed tool-driven migration concept, we propose

multiple steps to achieve an environment in which a step-wise
and fine-grained migration can be applied to an annotation-
based product line. As a result, in Step 4, it should be possible
to refactor the code in a fine-grained manner so that we can
introduce a composition-based approach in which each inter-
mediate step presents a fully-functional hybrid solution. As a
result, the transformation process is much more predictable and
less risky, because it is not necessary to perform the complete
migration process in one atomic step - avoiding expensive
parallel development or delays. Concepts to cope with the
interdependency of the individual process steps are required.

Considering the migration of Berkeley DB, we found out
that a revision of a previous step can help to ease the current
step. For instance, after we started to refactor Berkeley DB, we
identified several tool-driven, as well as conceptual challenges
that required changes to the initialization phase of Step 3. In
detail, it could be beneficial to change the language support
of FeatureC instead of adapting Berkeley DB in an awkward
manner. This problem is strongly related to our next remarks.

B. Undisciplined Use of Preprocessors
We started by using existing tools for the variability man-

agement of our case study. However, it turned out that the lan-
guage support was not sufficient. In particular, the composition
mechanism for FOP (i.e., FeatureHouse) did not support the
hybrid strategy in which annotations are completely supported
in compositions. Therefore, we introduced FeatureC with some
grammatical changes so that it is possible to use FeatureHouse
in a straight-forward manner.

Besides the discussed grammar change of Figure 5, we
realized further adaptions of the underlying C grammar. How-
ever, it was possible to avoid some grammar changes because
their necessity was the result of an undisciplined usage of
preprocessor annotations. Therefore, we restricted the usage of
annotations to certain useful patterns. In Figure 6, we show an
example of such a problematic annotation that we have found
in the source code of Berkeley DB. On the one hand, the
restriction to disciplined preprocessor annotations is a promis-
ing approach to increase the understandability of the code.
On the other hand, it would have been technically difficult to
implement an approach flexible enough for all cases, while
still taking advantage of the existing tool infrastructure. As a
result, we had to refactor the code to introduce the desired
preprocessor discipline. In general, it is advisable to consider
the introduction of preprocessor discipline in concert with
providing the necessary language support for the related tools.

106Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

1 d b e r r x (env , DB STR A(” 0 1 5 3 ” ,
2 ”s(u) : h o s t lookup f a i l e d : s”, ”s u s ”) ,
3 nodename == NULL ? ”” : nodename , p o r t ,
4 # i f d e f DB WIN32
5 g a i s t r e r r o r A (r e t)) ;
6 # e l s e
7 g a i s t r e r r o r (r e t)) ;
8 # e n d i f

9 # i f d e f DB WIN32
10 d b e r r x (env , DB STR A(” 0 1 5 3 ” ,
11 ”s(u) : h o s t lookup f a i l e d : s”, ”s u s ”) ,
12 nodename == NULL ? ”” : nodename , p o r t ,
13 g a i s t r e r r o r A (r e t)) ;
14 # e l s e
15 d b e r r x (env , DB STR A(” 0 1 5 3 ” ,
16 ”s(u) : h o s t lookup f a i l e d : s”, ”s u s ”) ,
17 nodename == NULL ? ”” : nodename , p o r t ,
18 g a i s t r e r r o r (r e t)) ;
19 # e n d i f

Figure 6. Disciplining of annotation-based approaches.

C. Variability in the Presence of Scope-Sensitive Statements
In our practical application of our migration concept, we

adapted existing tool support for FOP to cope with our specific
language requirements, i.e., for C code with preprocessor an-
notations. The migration process to introduce FOP involves the
creation of so-called hook functions, which are a mechanism
to add code by a refinement in the middle of the function. The
reason is that when only a small part of a function is variable,
it is often useful to extract this part into a hook function,
enabling more fine-grained refinements. While this process
may often be straight forward, it may require modifications
that may introduce errors. In particular, we experienced that
statements that depend on the current scope are potentially
problematic in Berkeley DB for instance goto, switch, and
return statements. In Table I, we summarize how often
these statements exist in the complete code, as well as how
often they are part of variable code and compare these values
with all cases in which their usage results in a problem for
all identified features, selected features, and our two extracted
features, HAVE_HASH and HAVE_HEAP.

goto-Statements
In Figure 7, we show an example of a goto-statement of

Berkeley DB. Assume, we extract the code related to Feature
HAVE_HASH (Line 6-12) into a hook function without further
considerations. The result would be that the goto-statement
from Line 9 operates in a new scope and, thus, the correspond-
ing goto-label would be out-of-scope, and lead to an error. In
the complete code of Berkeley DB we count 4642 occurrences
of goto statements, whereas only 635 interact with variable
code. 20% of these occurrences result in a potential problem
considering all features. Several strategies exist to solve this
situation. Depending on the exact occurrences of the problem,
we have to select the most promising strategy that could lead
to new required tool support.

The straight-forward solution is to extract the complete
method into the HAVE_HASH feature module. This would lead
to code clones and diminish the benefit of the modularization.
In some cases, it is possible to create a hook method in which
we insert the considered variable code part including the code
artifacts behind the goto-label. This is often possible in case
of ordinary error handling. However, this might require further

modifications, such as a huge parameter list, in which the
current state of all variables in the scope of the goto-label
must be preserved. A third solution considers a more concep-
tual mechanism of inlining, which allows us to extract only
the variable code into a feature module also with the goto-
statement. Through the generation process of the combined
code, it is possible to achieve a code artifact in which the scope
is again in the correct scope and works correctly. However, this
solution separates the goto-statement from the label and, thus,
breaks the convention regarding this mechanism.

switch-Environment
In Figure 7, we illustrate a switch construct that is prob-

lematic and cannot be treated in a straight-forward manner. In
detail, it is not possible to extract the complete case into a hook
method using a 1:1 extraction of the variable parts. Similar to
the goto-statement, the scope will change and the case cannot
be handled. In Table I, we can see that Berkeley DB includes
429 switch statements, whereas 16% are involved in variable
code artifacts. Only half of them, exactly 36, result in a case
that is not straight-forward manageable. As the problematic
statements are relatively few, an expensive adaption of the
tool-support may not be advisable in this case. Nevertheless,
we discuss multiple solution strategies.

Similar to the goto-statement, multiple solution strategies
exist for this example. First, it is possible to extract the
complete switch into a feature module. However, this is not
a viable option if the number of the used variables and, thus,
needed parameters is too high. A second option could be a
hook method inside of the case. For this, it must be ensured
that the value DB_HASH (cf. Line 7) is actually defined and this
could be error-prone. Third, we also can change the composer
strategy so that, for instance, a new keyword allows us to refine
the case on this specific line. However, special knowledge is
needed to apply such grammar extensions.

return-Statements
Besides the previous problems, we also identified the

extraction of return statements to hook functions as a
challenge. Again, if we extract corresponding code artifacts,
we change the scope of these statements. However, the problem
occurs if a return statement is only defined for some cases and
not for all, such as could appear in an if-else case in which
only one case contains a return. In the code of Berkeley DB,
there are 7779 return statements while only 1254 are part of
variable code. Again, 20% of these variable cases lead to a
potential problem that we can solve in multiple ways.

One solution is an additional parameter of the hook
function that indicates whether we should utilize the return
statement. Afterwards, the caller side needs to evaluate this
additional parameter. By contrast to the first solution, in some
cases, we can directly insert a new return statement for our
purpose. In detail, if we know that, for instance, all original
return statements result in a positive integer, we can also
use a negative integer to indicate that a return is not valid.
Furthermore, we can also use a grammar adaption as third
solution. In this case, it is necessary to create a kind of an
inlining. Nevertheless, the challenge is that a new function
needs a return statement in all cases to be compatible to
the signature. In the grammar-adaption solution, this can be
solved with an additional keyword.

107Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

1 / / db / p a r t i t i o n . c
2 s w i t c h (new dbc−>db ty pe) {
3 c a s e DB BTREE :
4 . . .
5 b r e a k ;
6 # i f d e f HAVE HASH
7 c a s e DB HASH:
8 i f ((r e t = h a m s t a t (new dbc , &hsp , f l a g s)) != 0)
9 go to e r r ;

10 . . .
11 b r e a k ;
12 # e n d i f
13 d e f a u l t :
14 b r e a k ;
15 }

Figure 7. Example of potential problems to extract hook methods.

VI. RELATED WORK

The idea to combine annotation-based with composition-
based implementation techniques to facilitate a step-wise mi-
gration process has been formulated by Kästner and Apel [9].
In our work, we consider a similar concept and investigate its
application to a real-world project with a focus on technical
concerns and challenges that must be considered to prepare
and perform the actual migration process.

Researchers have investigated advantages and disadvan-
tages of many different techniques to implement variability
for product lines [3], and proposed several possible combi-
nations. Aspectual Feature Modules have been proposed to
combine the advantages of two different composition-based
approaches: aspect-oriented programming and feature-oriented
programming [33]. In contrast, we focus on a combination
of annotation-based and composition-based approaches to en-
able the possibility of a step-wise migration of the prevalent
preprocessor-based product lines in practice. Similarly, the
choice calculus has been proposed to provide a formal basis
for the combination of annotation-based and composition-
based approaches to combine their benefits [34]. However, the
potential application to migration has not been discussed. In
order to improve the practicability of approaches that com-
bine annotation-based with composition-based implementa-
tion, Behringer proposes a concept to improve the visualization
of the underlying representations [35]. This complements our
work, in the sense that it could be used to ease the practical
application of the migration process.

Rosenmüller et al. also extracted feature modules from an
implementation of Berkeley DB [36]. Complementary to our
experiences, they have used a step-wise process in which they
refactored the C code into C++, and transformed the resulting
object-oriented version into a feature-oriented version of C++.
In contrast, we have focused on a direct application of FOP to
avoid long and costly refactorings and transformations with the
goal to minimize the risk of the overall process. Furthermore,
they identified the use of local variables as a potential problem
that must be considered when extracting hook methods.

Alves et al. present a case study in which they migrated a
real-world product line from an annotation-based to an aspect-
oriented implementation [37]. They identify several language-
specific strategies to transform certain variability patterns in
the code into aspects. For the specific case of aspect-oriented
programming this work provides complementary insights that
can be used as a guide to perform the actual transformation,
i.e., Step 4 in our proposed process.

TABLE I. OCCURRENCES OF POTENTIAL PROBLEMS IN
BERKELEY DB.

Number of Problems in

Complete Variable All Selected Extracted
Code Code Fea- Fea- Fea-

tures tures tures

#switch 429 71 36 19 11
#goto 4642 634 127 58 35
#return 7779 1254 248 34 9

VII. CONCLUSION AND FUTURE WORK

Software product line engineering provides different de-
velopment approaches. Whereas annotation-based approaches
are mainly used in industry, compositional approaches promise
advantages, such as eased maintainability. However, if a com-
pany plans to transform an existing annotation-based into a
composition-based product line, a wide range of challenges
exist. Whereas complete refactorings are error-prone and can
take a lot of time, existing work proposed to use a hybrid
solution that combines both approaches. We build on this idea
and propose a detailed instantiation that allows us to transform
the system in a step-wise manner. This tool-driven concept is
based on intermediate results and ensures that the complete
product line is in a consistent state at all times. To exemplify
the application of our approach, we developed FeatureC, a
hybrid implementation technique, and applied it to Berkeley
DB as a case study. We identified challenges regarding the
composition-based concept as well as the granularity of mod-
ularizations. In future work, we plan to apply our migration
concept to further case studies. Furthermore, we aim to use
the concept for projects of our industrial partners.

ACKNOWLEDGMENTS

This work is partially funded by the BMBF project NaVaS
(grant number 01IS14017A and 01IS14017B).

REFERENCES

[1] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Boston, MA, USA: Addison-Wesley, 2001.

[2] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product
Line Engineering: Foundations, Principles and Techniques. Berlin,
Heidelberg: Springer, 2005.

[3] S. Apel, D. Batory, C. Kästner, and G. Saake, Feature-Oriented Software
Product Lines: Concepts and Implementation. Berlin, Heidelberg:
Springer, 2013.

[4] J. Feigenspan, C. Kästner, S. Apel, J. Liebig, M. Schulze, R. Dachselt,
M. Papendieck, T. Leich, and G. Saake, “Do Background Colors Im-
prove Program Comprehension in the #Ifdef Hell?” Empirical Software
Engineering (EMSE), vol. 18, no. 4, 2013, pp. 699–745.

[5] D. Le, E. Walkingshaw, and M. Erwig, “#ifdef Confirmed Harmful:
Promoting Understandable Software Variation,” in Proceedings of the
International Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). Washington, DC, USA: IEEE Computer
Science, 2011, pp. 143–150.

[6] C. Prehofer, “Feature-Oriented Programming: A Fresh Look at Objects,”
in Proceedings of the European Conference on Object-Oriented Pro-
gramming (ECOOP). Berlin, Heidelberg: Springer, 1997, pp. 419–443.

[7] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling Step-Wise Re-
finement,” IEEE Transactions on Software Engineering (TSE), vol. 30,
no. 6, 2004, pp. 355–371.

[8] P. Clements and C. Krueger, “Point / Counterpoint: Being Proactive Pays
Off / Eliminating the Adoption Barrier,” IEEE Software, vol. 19, no. 4,
2002, pp. 28–31.

108Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

[9] C. Kästner and S. Apel, “Integrating Compositional and Annotative
Approaches for Product Line Engineering,” in Proceedings of the GPCE
Workshop on Modularization, Composition and Generative Techniques
for Product Line Engineering (McGPLE). Passau, Germany: Depart-
ment of Informatics and Mathematics, University of Passau, 2008, pp.
35–40.

[10] S. Apel, C. Kästner, and C. Lengauer, “Language-Independent and Au-
tomated Software Composition: The FeatureHouse Experience,” IEEE
Transactions on Software Engineering (TSE), vol. 39, no. 1, Jan. 2013,
pp. 63–79.

[11] I. Schaefer, R. Rabiser, D. Clarke, L. Bettini, D. Benavides, G. Botter-
weck, A. Pathak, S. Trujillo, and K. Villela, “Software Diversity: State
of the Art and Perspectives,” International Journal on Software Tools
for Technology Transfer (STTT), vol. 14, 2012, pp. 477–495.

[12] F. Benduhn, T. Thüm, M. Lochau, T. Leich, and G. Saake, “A
Survey on Modeling Techniques for Formal Behavioral Verification of
Software Product Lines,” in Proceedings of the Workshop on Variability
Modelling of Software-intensive Systems (VaMoS). New York, NY,
USA: ACM, 2015, pp. 80:80–80:87.

[13] M. Alférez, R. Bonifácio, L. Teixeira, P. Accioly, U. Kulesza, A. Mor-
eira, J. a. Araújo, and P. Borba, “Evaluating Scenario-Based SPL
Requirements Approaches: The Case for Modularity, Stability and
Expressiveness,” Requirements Engineering, vol. 19, no. 4, 2014, pp.
1–22.

[14] GCC Development Team, “The C Preprocessor,” Website, 2015, avail-
able online at http://gcc.gnu.org/onlinedocs/cpp/index.html; visited on
October 29th, 2015.

[15] Munge Development Team, “Munge: A Purposely-Simple Java Prepro-
cessor,” Website, 2015, available online at http://github.com/sonatype/
munge-maven-plugin; visited on October 29th, 2015.

[16] J. Pleumann, O. Yadan, and E. Wetterberg, “Antenna: An Ant-to-End
Solution For Wireless Java,” Website, 2015, available online at http:
//antenna.sourceforge.net/; visited on October 29th, 2015.

[17] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, “An Anal-
ysis of the Variability in Forty Preprocessor-Based Software Product
Lines,” in Proceedings of the International Conference on Software
Engineering (ICSE). Washington, DC, USA: IEEE Computer Science,
2010, pp. 105–114.

[18] C. Kästner and S. Apel, “Virtual Separation of Concerns – A Second
Chance for Preprocessors,” Journal of Object Technology (JOT), vol. 8,
no. 6, 2009, pp. 59–78.

[19] Big Lever Software Inc., “Gears: A Software Product Line Engineer-
ing Tool,” Website, 2015, available online at http://www.biglever.com/
solution/product.html; visited on October 29th, 2015.

[20] pure::systems, “pure::variants,” Website, 2015, available online at http:
//www.pure-systems.com/pure variants.49.0.html; visited on October
29th, 2015.

[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Lo-
ingtier, and J. Irwin, “Aspect-Oriented Programming,” in Proceedings of
the European Conference on Object-Oriented Programming (ECOOP).
Berlin, Heidelberg: Springer, 1997, pp. 220–242.

[22] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella, “Delta-
Oriented Programming of Software Product Lines,” in Proceedings of
the International Software Product Line Conference (SPLC). Berlin,
Heidelberg: Springer, 2010, pp. 77–91.

[23] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr., “N Degrees of
Separation: Multi-Dimensional Separation of Concerns,” in Proceedings

of the International Conference on Software Engineering (ICSE). New
York, NY, USA: ACM, 1999, pp. 107–119.

[24] Y. Smaragdakis and D. Batory, “Implementing Layered Designs with
Mixin Layers,” in Proceedings of the European Conference on Object-
Oriented Programming (ECOOP). London, UK: Springer, 1998, pp.
550–570.

[25] A. Bergel, S. Ducasse, and O. Nierstrasz, “Classbox/J: Controlling
the Scope of Change in Java,” in Proceedings of the Conference on
Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA). New York, NY, USA: ACM, 2005, pp. 177–189.

[26] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich,
“FeatureIDE: An Extensible Framework for Feature-Oriented Software
Development,” Science of Computer Programming (SCP), vol. 79, no. 0,
2014, pp. 70–85.

[27] J. Pereira, K. Constantino, and E. Figueiredo, “A Systematic Literature
Review of Software Product Line Management Tools,” in Software
Reuse for Dynamic Systems in the Cloud and Beyond, ser. Lecture
Notes in Computer Science. Springer, 2014, vol. 8919, pp. 73–89.

[28] J. Meinicke, T. Thüm, R. Schöter, F. Benduhn, and G. Saake, “An
Overview on Analysis Tools for Software Product Lines.” New York,
NY, USA: ACM, 2014, pp. 94–101.

[29] J. Liebig, A. Janker, F. Garbe, S. Apel, and C. Lengauer, “Morpheus:
Variability-aware Refactoring in the Wild,” in Proceedings of the
International Conference on Software Engineering (ICSE). Piscataway,
NJ, USA: IEEE Computer Science, 2015, pp. 380–391.

[30] C. Kästner, S. Apel, and M. Kuhlemann, “A Model of Refactoring
Physically and Virtually Separated Features,” in Proceedings of the
International Conference on Generative Programming and Component
Engineering (GPCE). New York, NY, USA: ACM, 2009, pp. 157–166.

[31] B. Adams, W. De Meuter, H. Tromp, and A. E. Hassan, “Can We
Refactor Conditional Compilation into Aspects?” in Proceedings of
the International Conference on Aspect-Oriented Software Development
(AOSD). New York, NY, USA: ACM, 2009, pp. 243–254.

[32] A. Reynolds, M. E. Fiuczynski, and R. Grimm, “On the Feasibility
of an AOSD Approach to Linux Kernel Extensions,” in Proceedings
of the AOSD Workshop on Aspects, Components, and Patterns for
Infrastructure Software. New York, NY, USA: ACM, 2008, pp. 8:1–
8:7.

[33] S. Apel, T. Leich, and G. Saake, “Aspectual Feature Modules,” IEEE
Transactions on Software Engineering (TSE), vol. 34, no. 2, 2008, pp.
162–180.

[34] E. Walkingshaw and M. Erwig, “A Calculus for Modeling and Imple-
menting Variation,” in Proceedings of the International Conference on
Generative Programming and Component Engineering (GPCE). New
York, NY, USA: ACM, 2012, pp. 132–140.

[35] B. Behringer, “Integrating Approaches for Feature Implementation,” in
Proceedings of the International Symposium Foundations of Software
Engineering (FSE). New York, NY, USA: ACM, 2014, pp. 775–778.

[36] M. Rosenmüller, S. Apel, T. Leich, and G. Saake, “Tailor-made data
management for embedded systems: A case study on berkeley DB,”
Data and Knowledge Engineering, vol. 68, no. 12, 2009, pp. 1493–
1512.

[37] V. Alves, A. Costa Neto, S. Soares, G. Santos, F. Calheiros, V. Nepomu-
ceno, D. Pires, J. Leal, and P. Borba, “From Conditional Compilation
to Aspects: A Case Study in Software Product Lines Migration,” in
Workshop on Aspect-Oriented Product Line Engineering (AOPLE),
2006.

109Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

http://gcc.gnu.org/onlinedocs/cpp/index.html
http://github.com/sonatype/munge-maven-plugin
http://github.com/sonatype/munge-maven-plugin
http://antenna.sourceforge.net/
http://antenna.sourceforge.net/
http://www.biglever.com/solution/product.html
http://www.biglever.com/solution/product.html
http://www.pure-systems.com/pure_variants.49.0.html
http://www.pure-systems.com/pure_variants.49.0.html

	Introduction
	Implementation of Variability in Software Product Lines
	Annotation-Based Implementation of Variability
	Composition-Based Implementation of Variability
	Combination of Annotation-Based and Composition-Based Approaches

	Tool-Driven Migration Concept
	Practical Application to a Real-World Project
	Project-Specific Challenges
	Interdependence of Process Steps
	Undisciplined Use of Preprocessors
	Variability in the Presence of Scope-Sensitive Statements

	Related Work
	Conclusion and Future Work
	References

