
Software Based Test Automation Approach Using
Integrated Signal Simulation

Andreas Kurtz
BMW Group

Integration Electric/Electronics, Software
Munich, Germany

andreas.kurtz@bmw.de

Bernhard Bauer
University of Augsburg

Institute for Computer Science
Software methodologies for

distributed systems
Augsburg, Germany

bauer@informatik.uni-augsburg.de

Marcel Koeberl
BMW Group

Integration Electric/Electronics, Software
Munich, Germany

Abstract—Test automation in distributed systems requires new
methods in signal simulation for the stimulation of the distributed
system. Increasing complexity of electric electronic (E/E) systems
increases the testing-effort. The main challenge is to reduce the
time spent on manual stimulation of input signals in favor of
automated testing. The systems currently used for test automation
have to be adapted to each hardware and software version of the
system to be tested. The approach shows a software-based au-
tomation solution through the integration of a simulation service
in the AUTOSAR architecture. By integrating a generic software-
based simulation module with an interaction point at the basic
software driver layer, the execution of tests can be automated
and improved in terms of adaptively and reproducibility.

Keywords–Automotive; distributed systems; model based testing;
simulation; system model; test model.

I. INTRODUCTION

Mastering complexity and customer orientation are chal-
lenges in the development of electric electronic (E/E) and
software functions in the automotive industry. In current
and future vehicles, the increase of the distribution and the
networking of functions demands new ways of automation
for testing customer features. Software bugs are the main
reason for malfunctions in new developed cars [1]. In the
automotive industry, the safety requirements are extremely
important because of their implications. Therefore, there is a
need to err on the side of caution.

This paper focuses on developing a method for test au-
tomation of the automotive system model. The system model
stands for the total system deemed to be a distributed system
with its networked hardware (HW) and software components
(SWC). The long-term goal is a solution for automating system
model test, at a total system level, with an integrated distributed
software-based solution.

The rest of the paper is structured as followes. Section II
presents the State-of-the-art model based testing approach and
the current realisation level in the automotive industry. Section
III describes the over all approach, followed by Section IV with
a detailed description of a concrete implementation. In Section
V a related approach is shown to point out the difference to the
new approach, concluded in Section IV with a short outlook.

A. Problem Statement

The increasing complexity of developed functions with
shorter developing time leads to exceeding use of methods.
Figure 1 shows the raising demand of using methods when
reducing development time to handle equal development effort.
In addition to an increase of system complexity the conven-
tional methods have to change to virtual development.

Figure 1. Reducing time demands increase of virtualisation [2]

State-of-the-art software-based automation methods, used
in automotive software development, use additional software
functions integrated in the software components to be tested.
This kind of interaction affects the customer function itself.

These functions, used for virtual input stimulation, interact
with the customer functions and require specific solutions for
each type of implementation. Using this kind of automation
does not reflect the functional behaviour of the system model
like in customer usage. Additional signals and interfaces are
used to get access to the implemented customer functions with
the goal to compare the system model towards specification.
Another aspect is the additional software code, needed to
realize the interaction. Last, but not least, crosslinked functions
are not detected because of the high-level interaction point.
Therefore malfunctions in close-by or connected SWCs are
not noticed.

A physical simulation of sensor signals at the hardware
interface does represent the customer usage but is too ex-
pensive to build a specific solution for each HW variation.
The main challenge for physical signal simulation is to find

117Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

a generic solution for all types of hardware interfaces. The
developed method shall use the test model in combination
with the AUTOSAR description files, to generate data for
stimulation of the system model.

This paper focuses on a method for distributed systems,
extracting the needed data out of the test model and the AU-
TOSAR configuration files. AUTOSAR supports the approach
because of the standardised software architecture (Figure 2),
giving the chance of developing a generic method.

Figure 2. AUTOSAR Architecture, Components and Integration [3]

II. STATE-OF-THE-ART

The start scenario to get test cases in model based testing
(MBT) is presented in Figure 3(A), with a test designer and
its mental test model. The tester, expecting to have the entire
test cases, executes the textual test cases. The prospective goal
is to reach scenario (C) shown in Figure 3. This enables to
compute the test cases for a test automation. By a change, from
difficult to understand textual test cases to formal models, we
can enable automation methods.

Figure 3. Textual vs. model based specification of tests [4]

With the mentioned focus on the total system as a dis-
tributed system, the test case models become complex. Due to
the many options of partitioning the variable number of par-
ticipants (SWCs) to the different hardware options, regarding
the standardised architecture framework, the complexity of the
models grows.

Model based testing methods are [4]:

● Component Test or so called ’unit test’, in which the
individual program components are tested in isolation.

● Integration Test is testing the interaction of several
componentes.

● System Test is to ensure the operability of the entire
system according to the requirements

● Acceptance Test is the test under real operating con-
ditions, as well as the interaction of several systems.

At System Test, the aim of the approach, the distribution
of functions increases automation complexity. In addition,
the simulation of input signals is more difficult, due to less
accessible interfaces without disturbing the system’s behavior.

Figure 4 shows a simplified software architecture with the
main layers of AUTOSAR. From bottom up, above the HW
there is the basic software (BSW) allocated. The basic software
contains modules shown in Figure 2. All communication to the
SWCs is distributed via the runtime environment (RTE). Figure
4 shows the same architecture for both cases with two SWCs:
SWC1 (and lower layers) representing the human machine
interface (HMI), iDrive Controller (ZBE), and SWC2 (and
lower layers) representing the Navigation System (Navi) with
symbolised tree structure of the menu.

Figure 4. Use Case - SW-Architecture; (A) Customer Use; (B) Simualtion
state of the Art; simple draft

With reference to the example, we look closer to the
software architecture according to AUTOSAR. Conventional
software-based automation methods interfere at application
SWC layer, shown in Figure 4(B) named Diag. Usually these
functions are integrated for software-based internal error de-
tection and setting data trouble codes (DTC).

Figure 4(A) shows a customer interaction with the total
system via the ZBE, e.g., the customer enters navigation
destination. Figure 4(B) shows the conventional method with a
so-called diagnosis job (Listing: 1) to hit the right menu items.
The conventional virtual interaction via diagnosis job interacts
in SWC2 and tends to a different behaviour in the total system.

1 apiJob(ECU, "steuern_routine", "ARG;MENU;
Ç STR", \%i;\%i;\%i;\%i)

Listing 1. Example Diagnosis-Job

118Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

This function (Listing: 1) uses a unique identifier (ID) to
hit a menu item. A series of these jobs is necessary to reach the
same goal (in this case an entered navigation destination), but
shows a different total system behaviour. For both cases, we
see the same appearance but in Figure 4(B) the communication
between SWC1 and SWC2 is missing. The result is that errors
in the data communication that occur in the customer case are
not detected.

III. RELATED WORK

Model based testing is the basic approach in the automo-
tive product development. Methods for data-flow analysis can
help to improve the explained method by computing realistic
software-paths and the corresponding data sets. With the help
of this information, the test model can be improved to get near
100% test coverage in consideration of the customer use cases.
Domain knowledge is the key for computing user realistic
software paths. Other paths only have to be checked referring
their impact on customer functions.

A existing approach with focus on ’automation, modular-
ization and compatibility of all equipment to do measurement,
calibration and diagnosis’ [8] is the Can Calibration Protocol
(CCP) [8]. The Protocol is used for calibration and data ac-
quisition. Realised as a driver with access to the internal ECU
memory this part of the protocol causes additional CPU load.
During a session using CCP a ’continuous logical connection’
[8] is established to transfer data from the ECU to the master
device (off board test automation). This approach interacts at
the driver layer. CCP has the main goal of data acquisition in
contrast to data simulation.

IV. THE APPROACH

The goal is to compare system- and test model with an
integrated distributed software solution to get the system’s
behavior closer to the system’s behavior in customer’s use.
Figure 5 shows the approach of comparing system- and test
model.

Figure 5. Approach of comparing system- and test model based on a standard
model based approach

The methodological approach is to integrate a generic
software-based simulation module (SIM Module) and a sim-
ulation interface (SIM Interface) in the system model. The
novelty of the approach is the layer of intervention (AUTOSAR
driver layer) with the associated reduced data complexity. The
reduced data complexity is due to the focus on system input
signals. In summary, it is a distributed simulation of input
signals in a distributed system with an engagement in the basic
software driver layer.

– How does this work? – These distributed SIM modules
can receive test cases from the off board test automation system
and execute the test cases, individually or jointly, by order of
the off board system. The data for the test cases is computed
out of the test model and transferred in abstract test data and
a mapping table (Config). The separation has the advantage of
using the test case for different hardware configurations.

Figure 6. System-, test and environment model [4]

Figure 6 is intended to show that the test model is the
combination of the specified system model functional be-
haviour and the environment model. The environment model
includes all external factors e.g., temperature, light or physical
characteristics to the system model as well as the customer.

Figure 7. Automation Approach AUTOSAR view. (A) Customer use; (B)
simple draw of SIM Interface integration in AUTOSAR Basic Software

The interaction of the simulation, formerly manipulation,
at the AUTOSAR basic software interface (Figure 7(B)) allows
the SWCs to operate closer to the customer use.

On the one hand, the customer function operates closer to
the behaviour in the normal customer usage which leads to
detection of errors in the functional implementation or errors
between layers. On the other hand, the simulation gets easier

119Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

by getting closer to the hardware layer, because of reduced
types of signals. There are only discrete signals, because all
data processing of customer input ends up in analog digital
converter. A positive effect is that in case of simulation, cross-
linked functions are also triggered and show their behaviour
as well as the misbehaviour.

V. THE DETAILS

The methodological approach detailed in Figure 5 shows
schematically how the test case data is loaded to the system
model. Based on the assumption that a test model is available
test cases are derived therefrom. To get only the relevant
test cases, we compute theoretical software paths of the test
model with the background knowledge of the specific domain
(Figure 5).

The separation of the total system in cluster e.g., power-
train, power-network, infotainment and other is called domain.
We need the domain knowledge to reduce the number of
computed paths. It is not meaningful to test all theoretical
possible software paths of a single software component at total
system level testing. Looking at the distributed system with
all of its participants, the software components in cooperation
reduce the possible paths. The more components participate the
more complex the system gets, but also the functions limit each
other e.g., timing, min- and max values. For example when
focusing on power-network functions the domain knowledge
does have information and boundaries of the power train
like the engine speed range. The speed range is decisive
for the operating range of the generator and thus for energy
availability.

The bigger part of software functions is developed with a
model based approach and realised with state machines. The
main reasons for the increase of complexity are that on one
hand the conditions for triggering the transitions are built in
various state machines in different software levels, and on
the other hand, almost all of the conditions do have timing
constrains. This expands the number of use cases by testing
boundary values e.g., lower limit, upper limit, lower limit
follower, upper limit follower and last but not least the time
steps on the valid timing interval.

Computing the paths of the menu structure has been per-
formed with a data-flow based model analysis [5] [6]. All paths
had to start and end in the main menu with the requirement
that every transition can be passed only once per path to avoid
loops. The result is a set of paths with the information of states
passed, transitions and trigger for transitions.

After computing all relevant paths of the test model,
we can generate test cases, including information as named
before. With this information, the idea is to compute a set of
all sequences for simulating all user input hardware signals.
The computed data is separated in the interface information
and the data sequence. This dataset describes the overall
customer function input and will be mapped to the ECU
and HW-Channel allocation specified in the system model.
This configuration database is stored in the off board test
automation (Figure 5). With this approach the general customer
input information can be mapped to each specific AUTOSAR
implementation.

Figure 8. Schematic Diagram of AUTOSAR Configuration files [3]

The configuration Config (Figure 5) is an information
depending on the specific implementation, computed out of the
AUTOSAR description files. These files are generated in the
software development process (Figure 8). These files give the
specific input of which SWC is mapped to each ECU as well
as channel and communication path information. In Figure 8,
the shown files contain the following information:

● Software Component Description: Describes the func-
tional dependencies

● System Description: Describes the partitioning of
SWCs to ECUs

● ECU Configuration: Describes the signal routing to
the HW-Abstraction

● Basic Software Description: Describes the mapping of
the HW-Abstraction to the HW-Channels

These descriptions are specific for each AUTOSAR soft-
ware architecture. Therefore, the information depends on the
software of the system model. Errors in the configuration files
are handed to the test automation.

Figure 9 shows the software architecture solution for the
new methodological approach. What is new is that this SIM
module is integrated in each ECU, which reads sensor signals.
The SIM Module represents the merger of the following three
components:

● SimAgent is the logical component, including a state
management and is responsible for the execution of
the sequences, data storage and safety requirements,

● SimGW does only route signal data to the Microcon-
troller Abstraction Layer (MCAL),

● DioSim is the interface to the existing driver (DIO)
and its read services with the goal to replace the
physical signals with the simulated in case of an active
simulation.

120Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

Figure 9. Software Architecture of Simulation module

The SimGW module is used to route the signals from the
SimAgent to the DioSim. This is a temporary solution that
we do not have to edit the I/O-Abstraction of the existing
AUTOSAR basic software. Above the RTE there will be the
SimAgent as a part of the BMW System Function Software
Components next to the normal application software compo-
nents (Figure 10). BMW System Functions are standardised
software components that are integrated into each ECU, e.g
Diagnosis- or DTC-Functions.

Figure 10. Integration of Simulation Interface in AUTOSAR Driver Layer

– The simulation process. – Enabling of the simulation will
follow the sequence shown in Figure 11.

● Init(), activating the SimAgent via diagnosis job
(CAN-Message),

● FlushSim(), erasing the existing data in the memory,

● UpdateSim(), setting initial values and parameters, like
start value and start time,

● EnableSimulation(), activating the simulation service.

After enabling the simulation service, the UpdateSim()-
Function is used to feed the DioSim-module with the data
during the simulation.

The novelty here is that a test case is temporarily stored
in the ECU memory and is executed by the SIM Agent. Each
SIM module has to keep only the simulation data necessary
for the ECU specific simulation to low memory requirements.

Sim Agent SimGw DioSim

Init()

FlushSim()

FlushSim()

UpdateSim()

UpdateSim()

EnableSimulation()

EnableSimulation()

Cyclic()

UpdateSim()

UpdateSim()

looploop

Figure 11. Process Start of Simulation Service [7]

Figure 12 shows the chain of reaction through the AU-
TOSAR basic software when a SWC requests data from the
RTE. If there is a request of a RTE variable, the normal chain
of reaction will be triggered. If the request reaches the Dio-
module the Dio-module will check if there is a simulation
active for the requested channel (GetSimState()) and will
switch to the simulated data if required. In all other cases
the physical state of the hardware I/O will be read.

The additional function request GetSimState() will be in-
tegrated in the Dio-module and will have an insignificant
influence on the time response of the request. There will be
no difference between the time response in normal customer
use or in simulation usage, because in both cases the new
additional function request will be triggered.

The worst case execution time analysis (WCET) calculates
a percentage increase of the processor about 3,3%. This is a
calculation for 255 simultaneously simulated channels, on an
80MHz CPU with a task cycle of 1ms and in case of the non-
existence of simulation data. In this case the software reads,
after failure of reading a simulated value, the physical value
of the hardware I/O.

For the research an 80MHz CPU with a 12.5ns Assembler
instruction execution time is used. This CPU is used to
calculate execution times for 1ms tasks. The first one is with
no simulation active and the second one is with simulation
active without data:

121Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

● DioSim GetSimState=0 - [normal case]
& no active Simulation
WCET = 12,5ns according to 1 function call

● DioSim GetSimState=1 - [worst case]
& no Simulation Data
& Reading real data
WCET = 32950ns

An impact could be a time delay being critical for a SWC.
In normal case the SWC runs in tasks about 10ms and the
delay will be about less than 0,01%.

RTE IoHwAb Dio DioSim

sym runHwIoService()

ReadChannel()

GetSimState()

DioSim
SimulationState

GetSim()

int

Origin ReadChannel()

int

altalt

[DioSim SimulationState ==
ENABLED]

[DioSim SimulationState !=
ENABLED]

Dio LevelType

int

Figure 12. Simulation Service process [7]

Savety functions such as stopping and fall-back mecha-
nisms have been integrated in the SimAgent. This allows to
abort the simulation at any time in two ways: delayed or
immediately. ’Delayed’ for a smooth end of the simualtion.
’Immediately’ in case of a system malfunction.

VI. CONCLUSION

The method of virtual hardware signal simulation, with an
integrated software approach, allows to automate the user input
analogous to the customer use cases and thereby to compare
system- and test model in an innovative way. The approach
shows a different solution with no need of special hardware
equipment because of the integration of the simulation in
the distributed system as a software-based distributed system.
The methodology is realised as a standard module for easy
integration in the AUTOSAR BSW to get an interface for the
automation. The key aspect of this approach is the point of
interaction located in the BSW driver layer. The methodology
uses an abstraction to specific hardware input signals via
mapping to reduce data and to keep the simulation module
as generic as possible.

A simple generic simulation module controls the simulation
process. Because of its simplicity, the simulation has a barely
measurable effect on the CPU workload. The system reaction,
respectively the system interaction with the customer and
environment will be evaluated with proven and tested methods
already in use. Therefore, there is no need in building up new
evaluation methods and systems for the system analysis.

The new approach has a substantial similarity to the CCP
approach in the connection layer: both interact at the driver
layer. The enormous difference between both is the cutting
of the data communication to the SIM Agent (slave), during
simulation. This reduces CPU workload and the new approach
is enables a simulation, much closer to the customer case.

Next steps for the implementation are to check the data size
of the simulation sequences, especially for long-term simula-
tions, beacuase memory space in automotive ECUs is scarce.
The memory space in the automotive ECUs is associated with
high cost hardware, and therefore the main constraint on the
test case steps and the number of parallel simulated channels.

REFERENCES

[1] Basycon Unternehmensberatung GmbH. (2006) Softwarequalität
durch verbesserte Entwicklungsprozesse. [Online]. Available:
http://www.basycon.de/de/web/basycon/publ typ poster [Jan. 5, 2016]

[2] M. Eigner and R. Stelzer, Product-Lifecycle-Management: Ein Leitfaden
für Product-Development und Life-Cycle-Management, 2nd ed., ser.
VDI. Berlin and Heidelberg: Springer, 2013.

[3] AUTOSAR Partnership. (2014) AUTOSAR Components. [On-
line]. Available: http://www.autosar.org/fileadmin/images/media pic
tures/AUTOSAR-components-and-inte.jpg [Dec. 15, 2015]

[4] T. Roßner, Basiswissen modellbasierter Test, 1st ed. Heidelberg:
dpunkt.verl., 2010.

[5] C. Saad and B. Bauer, Eds., Model-Driven Engineering Languages
and Systems: Data-Flow Based Model Analysis and Its Applications.
Springer, 2013.

[6] C. Saad and B. Bauer, Eds., Industry Track of Software Language En-
gineering (ITSLE), 4th International Conference on Software Language
Engineering (SLE 2011)(May 2011): The Model Analysis Framework
An IDE for Static Model Analysis, 2011.

[7] M. Köberl, “Integration softwarebasierter Automatisierungsmethoden in
eine Test-ECU,” Master’s thesis, University of Augsburg, Augsburg,
2015.

[8] H. Kleinknecht, A. Krüger, H.-G. Kunz, R. Maier, H. Schröter, and
R. Zaiser. (1999) Can Calibration Protocol - Version 2.1.

[9] AUTOSAR Partnership. (2014) AUTomotive Open System ARchitec-
ture: Enabling Innovation. [Online]. Available: http://www.autosar.org/
[Dec. 15, 2015]

[10] B. Beizer, Software testing techniques, 2nd ed. New York: International
Thomson Computer Press, op. 1990.

[11] D. W. Hoffmann, Software-Qualität, ser. EXamen.press. Berlin and
Heidelberg: Springer, 2008.

[12] M. Pezzè and M. Young, Software testing and analysis: Process,
principles, and techniques. [Hoboken and N.J.]: Wiley, ©2008.

[13] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing,
3rd ed. Hoboken and N.J: John Wiley & Sons, ©2012.

[14] R. Seidl, M. Baumgartner, and T. Bucsics, Praxiswissen Testautoma-
tisierung, 1st ed. Heidelberg and Neckar: dpunkt, 2011.

[15] S. Byhlin, A. Ermedahl Jan Gustafsson, and B. Lisper, “Applying Static
WCET Analysis to Automotive Communication Software.”

[16] Vector Informatik GmbH, “AUTOSAR Configuration Process - How to
handle 1000s of parameters: Webinar 2013-04-19,” 2013.

[17] H. Balzert, Lehrbuch der Softwaretechnik/2: Software-Management,
2nd ed., ser. Lehrbücher der Informatik. Heidelberg: Spektrum Akad.
Verl, 2008.

122Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

