
Verification of Architectural Constraints on Interaction Protocols Among Modules

Stuart Siroky, Rodion Podorozhny, Guowei Yang

Computer Science Department
Texas State University

San Marcos, TX 78666, USA
Email: {cs1773, rp31, gyang}@txstate.edu

Abstract—The importance of adhering to an adopted architec-
tural style throughout software development and maintenance has
been long recognized. This paper introduces an approach to effi-
ciently checking the correspondence of architectural constraints
on sequences of method invocations, i.e., interaction protocols
involving more than two modules. Our approach combines
parameterized slicing and non-deterministic symbolic execution.
Slicing produces an executable portion of the bytecode of the
system under analysis relevant to the given architectural property,
and symbolic execution is applied to the slice to check all paths
and all interleavings for any violations of the given architectural
constraints. We have implemented our approach in a prototype,
where IBM WALA library is used for slicing, Javassist is used to
aid in the mocking of the unused code, and Symbolic PathFinder
is used for symbolic execution. Two case studies on verification of
Model-View-Controller systems have demonstrated the usefulness
of our approach. In particular, property guided automatic slicing,
in some cases, significantly reduces the size of the input to the
symbolic execution, resulting in a reduction of verification time.

Keywords–verification; architecture; symbolic execution; call
graph.

I. INTRODUCTION

Software architecture was defined as a set of constraints
on components, form and rationale by Perry and Wolf [1].
The importance of adhering to an adopted architectural style
throughout software development and maintenance has been
recognized by the software engineering community. It helps
avoid architectural erosion and drift, so that the chosen archi-
tectural style continues providing its benefits and ensuring its
correspondence to requirements.

A number of formal architectural description languages
(ADL) have appeared over the years. For instance, Wright [2],
is an example of ADL with an emphasis on specification
of interaction protocols between modules as part of abstract
behavior specification of components and connectors. Further
work in the area of software architecture paid attention to
automation of checking correspondence between the architec-
tural prescription and implementation. The ArchJava tool [3]
can serve as an example in this direction. The tool and
associated ADL allows for definition of component ports and
connectors and type checking of combinations of ports and
connectors. It also allows for checking correspondence of a
given implementation against an architectural specification.

In this work, we introduce an approach to checking corre-
spondence of architectural constraints on sequences of method
invocations, i.e., interaction protocols involving more than two
modules. For example, constraints of this kind are defined in a
popular Model-View-Controller (MVC) architectural style [4],

[5]. The implementation of the approach for validation uses
Java programming language. Thus, the analysis system pro-
cesses bytecode for a Java Virtual Machine.

First, the approach uses multi-parameter slicing [6] so
that to reduce the amount of the code to be analyzed. The
prototype uses IBM’s WALA [7] library to perform slicing.
Next, mocking is performed with the help of Javassist bytecode
manipulation library [8] to make the produced bytecode slice
executable. Next, the approach uses symbolic execution [9],
[10] via Symbolic PathFinder [11] to systematically explore
all paths connecting the initial and final methods of interest
so that to check if any architectural constraints are violated by
the implementation.

The symbolic execution traversal checks if there are fea-
sible paths that will break the constraints on legal method
invocation sequences and builds path conditions to allow for
test case generation along the legal invocation chains. In our
approach, the search is directed only in the sense that the
paths that do not connect the initial and final methods are
not traversed. The symbolic execution traversal uses results of
the slicing and mocking to explore a smaller state space. The
symbolic execution is non-deterministic in relation to those
variables whose values would not be fixed due to the choice
of a source method. Thus, in case of a concurrent system, all
interleavings in the slice would be traversed, increasing the
assurance level of the analysis results.

We implement our approach in a prototype, where we use
WALA [7] for calculating the slice, Javassist [8] to aid in the
mocking of the code not contained in the slice and use Sym-
bolic PathFinder (SPF) [11] for symbolic execution. Evaluation
based on two case studies demonstrates the usefulness of our
approach. In particular, property guided automatic slicing, in
some cases, can significantly reduce the size of the input to
the symbolic execution, resulting in a reduction of verification
time.

The rest of the paper is organized as follows. Section II
discusses related work. Section III presents our approach to
verification of architectural constraints. Section IV evaluates
our approach using two case studies. Section V concludes the
paper with a discussion of some future work.

II. RELATED WORK

In this section, related work is described. The idea of
slicing paired with symbolic execution is not new. Two closely
related research projects that use a combination of slicing and
symbolic execution are described below.

140Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

First is the work of Jaco Gendenhuys et al. titled “Prob-
abilistic Symbolic Execution” [12]. In this work, the authors
explore the adaptation of symbolic execution to perform a more
quantitative type of reasoning – the calculation of estimates
of the probability of executing portions of a program. They
present an extension of the widely used Symbolic PathFinder
symbolic execution system that calculates path probabilities.
They exploit state-of-the-art computational algebra techniques
to count the number of solutions to path conditions, yielding
exact results for path probabilities. To mitigate the cost of using
these techniques, they present two optimizations, PC slicing
and count memorization, that significantly reduce the cost of
probabilistic symbolic execution. Here, slicing and symbolic
execution are paired together in a way that uses symbolic
execution to calculate path probabilities to aid in the slicing.
This differs from our focus on reducing the state space with
slicing and then using symbolic execution for verification.

Another work that primarily focuses on the line reachability
problem is that of Kin-Keung Ma et al. in “Directed Symbolic
Execution” [13]. In this work, the authors study the problem
of automatically finding program executions that reach a
particular target line. This problem arises in many debugging
scenarios; for example, a developer may want to confirm that
a bug reported by a static analysis tool on a particular line
is a true positive. They propose two new directed symbolic
execution strategies that aim to solve this problem: shortest-
distance symbolic execution (SDSE) uses a distance metric
in an inter-procedural control flow graph to guide symbolic
execution toward a particular target; and call-chain-backward
symbolic execution (CCBSE) iteratively runs forward symbolic
execution, starting in the function containing the target line,
and then jumping backward up the call chain until it finds a
feasible path from the start of the program. They also propose
a hybrid strategy, Mix-CCBSE, which alternates CCBSE with
another (forward) search strategy. The line reachability prob-
lem is very similar to the final point of interest in our problem.
The difference is that they are trying to create test cases and
the constraint is satisfied with a single path; while in our case,
all possible paths between two points must be explored and
the constraint must hold for all such paths.

The two projects mentioned above are related because
they combine slicing and symbolic execution. Yet they do not
focus on verification of architectural constraints in the area of
software architecture research.

Next, related work in the software architecture is
overviewed. The most prominent initial work on a formal
architectural description language (ADL) is that by R. Allen
on the Wright ADL [14] done in the early 1990s. In his
work, R. Allen introduces a formal language for definition
of protocols assigned to connectors in an ADL. The work
itself focuses on description of the suggested formal ADL
and does not contain applications of verifiers even though the
author does suggest doing such verification with a SPIN model
checker [15]. Another related work is by Jonathan Aldrich
on a system for verifying consistency between a specification
in a formal ADL and source code [3]. He developed a tool
called ArchJava that allows for verification of topological
and component constraints consistency between a prescribed
architecture and source code under development. In his work
though the protocols for communication among modules are
not specified and not verified. The ArchJava stops at defining

types of connectors and at checking if topological constraints
of a software architectural prescription are adhered to. Finally,
the work by S. Uchitel shows an application of a model
checker LTSA to verification of protocols among modules
defined in the UML sequence diagram [16]. The author creates
an extension to LTSA model checker [17] by Jeff Magee
and Jeff Kramer that is aimed at verifying for the lack of a
deadlock, race conditions and event sequence properties based
on protocols defined in sequence diagrams. The approach
presented in this work differs in that it verifies the protocols on
the produced bytecode via symbolic execution and uses slicing
to create property specific slice of that bytecode.

III. APPROACH

Our approach combines property-guided slicing and sym-
bolic execution. The kinds of properties we focus on are
constraints on interaction protocols among modules. Such
constraints are often part of architectural constraints on con-
nectors.

An architectural constraint of this kind has a source and
sink method invocations. Thus, we would like to determine a
slice of the program that contains paths by which the execution
threads can move from the source invocation to the sink
invocation. Once, given a property, such an executable slice is
produced, symbolic execution with constraints on the values
of variables that correspond to the property is performed.
Thus, our approach starts with a traversal of the analyzed
system’s call graph that, first, identifies the part of the call
graph containing only the paths connecting a source and sink
methods and, next, does a traversal of implementations of
the methods inside that part of the call graph using symbolic
execution [10], [9].

The symbolic execution traversal checks if there are fea-
sible paths that will break the constraints on legal method
invocation sequences and builds path conditions to allow for
test case generation along the legal invocation chains at a
later time. Thus, slicing prunes the method implementation
of calls not relevant to the property. Yet, care must be taken
to retain those calls on which there is either control or data
dependency. Therefore, we are using a slicing implementation
that constructs a proper system dependency graph (SDG).
Furthermore, our approach makes sure that the obtained slice is
executable so that it can be fed directly to symbolic execution.
The symbolic execution traversal uses the call graph to avoid
invocation of method calls that do not correspond to allowed
transitions. Unlike [13], our approach needs to traverse all
possible call graph paths between source and sink methods to
show there is no violation.

For the initial validation of the approach we constructed
a prototype that uses IBMs WALA library [7] for the slicing,
Javassist [8] to aid in the bytecode manipulation when mocking
the code to create an executable slice and Symbolic Path Finder
(SPF) [11] to perform the symbolic execution for property
verification. Even though we used WALA library, a slicing al-
gorithm customized for this kind of architectural property that
is explicitly constrained both by a source and a sink method
would be more efficient. For instance, such an algorithm
can be improved by concurrent traversal of the SDG starting
simultaneously from the nodes that correspond to source and
sink methods of a given property. These tools however could

141Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

Figure 1. Mocking illustration

not be used for our prototype without modification to deliver
an executable slice.

The summary of the steps of our approach is as follows.
The first step is to define the architectural constraints that
are of interest. The constraints will provide the source and
sink methods based on which a slice will be calculated.
The information from the calculated slice is used to mock
the original bytecode into an executable slice. The modified
bytecode can then be non-deterministically processed by the
symbolic execution component which applies the constraints
to all feasible paths in the slice. The implementation of this
tool is illustrated below.

Once the constraints have been defined it is possible to
begin calculating a slice. Several inputs are fed into the slicing
component. The original byte code, a scope file, exclusion file,
and the name of the class containing the main method. The
scope file helps to define the set of code to be sliced. The
exclusion file is used to ignore libraries and large bodies of
code that can be safely ignored. This would include being able
to ignore java.math or java.io if the code that is being
processed did not use these libraries. Without the exclusion
file there is too much library information for WALA to be
effective. The name of the file containing the main method is
needed so that WALA will know where to begin. With these
four inputs WALA represents the code in a call graph. The
call graph along with the final point of interest, the call and
callee methods, a system dependence graph (SDG) are created
by WALA. The final node of interest is also determined in the
graph using the call and callee methods. Since the final method
of interest in our constraint could be called in multiple places
the point from which it is called, the callee method, is needed
to determine the exact point the slicing should begin from.

The next step is to calculate the actual slice of interest.
Using the call graph, SDG, final point of interest and the
slicing options, a description of the slice can be calculated.
The slicing options allow the user to determine the level
of control and data dependence the slicer will use and the
direction of the slicing calculation, forward or backward. For
all of our experiments backward slicing was used to produce
an executable slice of the code. The dependency option used
for all experiments was full data and control dependence to
help ensuring that the slice calculated would be an executable

slice. The output description of the slice contains the methods,
branches, statements and variables contained in the slice and
their relation. This output description produced by WALA
is not bytecode, nor is it easily transformed to bytecode,
if at all. WALA also does not guarantee that the slice will
be executable. The description of the slice is then parsed,
extracting all of the methods that are contained in the slice.

The list of methods contained in the slice and the original
bytecode for the program are used to create an executable
version of the slice. First, a list of methods to mock needs to
be determined. This list starts off by including all the methods
in the original bytecode. From here, the list of methods
contained in the slice is removed along with other sets of
methods deemed to be needed. This list of methods that is
not contained in the slice that is excluded from mocking (i.e.,
the methods whose complete implementation is needed for
a slice to be executable, but that were not placed into the
slice by WALA) contains the object constructor methods, any
abstract methods, and base library methods. Excluding these
methods from mocking eases the modification of the bytecode
with little impact to the final result. The result is a list of
methods that will be mocked in the code. The list of methods
to be mocked is used to mock the original bytecode, producing
modified bytecode files that can be executed. The mocking step
finds the classes and methods in the code to be mocked and
uses Javassist to remove the bodies of the methods and fix
up the bytecode to keep it executable. If a method returns a
value, an appropriate return type will be inserted back into
the method body. The removal of the method body effectively
removes any traversal further down that path. This approach
to mocking effectively stubs out the remaining irrelevant code
[18].

This is a simplistic and not completely efficient way of
modifying the code. One caveat of doing the code modifi-
cation in this manner is that if there is code that returns
an object and that object then calls some other function.
i.e., getObjA().add(xxx), and then if the result of the
getObjA() method returns a null after mocking the sec-
ondary call of null.add(xxx) then this invocation se-
quence will cause a null exception. Such a situation can be
handled by adding the first method to a list of methods to
exclude from mocking. A more precise approach would be
to remove the invocation of the methods in question and
the associated bytecode. It is sufficient to show the proof
of concept for creating a reduced set of code. The modified
class files are then written back and can be run by any test
program just like the originally complicated code. In our case,
the modified code is fed to the second part of the process,
the verification of the architectural constraints using Symbolic
PathFinder (SPF).

We implement a Java PathFinder [19] listener to monitor
invocations and returns of methods maintaining a call stack.
At the point where an invoke instruction is seen in the stack,
it is checked against the constraints and a violation or a
pass can be reported. Currently, constraint definition is done
programmatically, i.e., it is hardcoded into the listener, albeit
the use of a formal temporal logic appropriate for expressing
the given properties would be preferred. This is left for future
work.

Here, a small example for the slicing and
mocking is described and illustrated in Figure 1.

142Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

Figure 2. MVC Sequence Diagram (by John Hunt)

TABLE I. CALCULATOR MVC SYMBOLIC EXECUTION RESULTS

Techniques # Paths Runtime
(SS) # States Max

Depth
Memory

(MB) # Instructions

Orig; no Slicing 90 3 225 5 78 82,563
W 2 threads; no slicing 90 287 39,947 17 132 133,433,898
W 2 threads; w slicing 3 1 17 5 60 5,626

TABLE II. CALCULATOR MVC SLICING RESULTS

Actions Time (SS)
Build Call Graph 4.37
Create SDG & Slice 7.78
Modify Bytecode 0.631
Total 12.82

In this example code, a slice is to be calculated
for Obj2.method2(). The resulting slice should
contain bytecode for the following sequence of method
invocations: SliceMockExample.initMethod() →
SliceMockExample.m1() → Obj2.method2(). The
other methods will be mocked, having the code removed or
replaced as necessary. The code to be removed and replaced is
highlighted in blue in Figure 1. Even though the removed code
in this illustration is small, a real world implementation will
have more complicated and larger method implementations to
be removed and mocked. There may also be many mocked
methods. Thus, reduction in the amount of code to be removed
from the analyzed system can be noticeable.

IV. EVALUATION

A. Case Study 1: MVC Calculator
For the first case study we chose a simplified implementa-

tion of a calculator that uses the Model View Controller (MVC)
architectural style from [5]. The MVC architectural style can
be considered to be composed out of the following design pat-
terns: Component, Strategy, and Observer. Its implementation
was simplified by replacing Swing library calls with stubs so
that SPF would not execute the Swing library code. The test
driver code was also added so that to mimic a scenario of user
interactions with the calculator.

The constraint on an interaction protocol to be checked is
due to the Strategy design pattern used by MVC.

It requires that a user gesture represented by an invocation
of a method in the View should not directly invoke a method
that modifies state of the Model. Instead, a View method
should invoke a method in the Controller, which, in turn,
should invoke a method in the Model. Thus, a Controller
encapsulates strategies that map user gestures to manipulation
of the Model. The Model is responsible for notifying the view
of any changes. The sequence diagram in Figure 2 illustrates
the event-based notification communication according to MVC
[5].

Our implementation of the approach uses particular method
names specific to this implementation when checking this

143Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

TABLE III. MODELCHECKCTL MVC SYMBOLIC EXECUTION RESULTS

Techniques # Paths Runtime
(SS) # States Max

Depth
Memory

(MB) # Instructions

Orig. No Slicing 4 2 5 2 76 74,851
W slicing 4 1 5 2 76 16,510

TABLE IV. MODELCHECKCTL MVC SLICING RESULTS

Actions Time (SS)
Build Call Graph 3.54
Create SDG & Slice 19.8
Modify Bytecode 0.224
Total 24.22

constraint on interaction protocol between components. Spec-
ification of the constraint itself is currently implemented
programmatically. The following constraints on interaction
protocol were verified:

• The view should never update without notification
from the model.

• The model should never notify if the controller has
not issued an operation.

• The controller should not issue an operation if the
handler has not created an action.

• The handler should not create an action if there is no
activity in the view.

The pertinent classes of the calculator implemen-
tation under analysis include CalculatorView,
CalculatorController, and CalculatorModel.
The whole codebase under analysis contains many more
classes, but these contain the methods used in the architectural
constraint. The CalculatorView contains a method that
mimics pressing a button by invoking a “button pushed”
method on an instance of a given button. It also contains
an inner class Handler with an actionPerformed
method. It is this method that is invoked in response to
a “button pushed” method. The actionPerformed
is supposed to invoke an operation method from the
CalculatorController class. The operation method,
in turn, is supposed to invoke a relevant method from
CalculatorModel. The buttons correspond to basic
calculator operations: addition, subtraction, store,
and equals (to perform the previously chosen operation
between two operands). The constraint requires that an
actionPerformed method should not invoke the
CalculatorModel methods directly.

The verification tool prototype has been applied to several
variants of the Calculator application to collect performance
data. The tool with both slicing and symbolic execution was
run on:

• the Calculator application that does not violate the
given constraints

• the Calculator application that violates the given con-
straints

• the Calculator application that violates the given con-
straints and has a potentially long running execution

paths that are not of interest to the given constraints
(internal concurrency via multi-threading was used)

Also, the tool with symbolic execution alone was run on the
Calculator variants with a violation and without a violation
of the constraint as a baseline.

The results of the first case study are shown in Tables
I and II. The codebase for the Calculator contains 787
total methods in the project, 99 of which are created and
not inherited from the external libraries. After the slicing, the
mocking removed 77 method bodies, a reduction of 77.78%.
The size of the original bytecode was 42.5 KB (43, 577 bytes),
and was reduced to 29.9 KB (30, 654 bytes), 70.3% of the
original bytecode size. From the results, little gain can be
seen between the original code and the sliced code other than
a reduction in the number of paths that SPF traversed. The
total time to verify, including the time slice and modify the
code, was expensive – almost four times what the original
code took to verify. However, when one compares the variant
of the analyzed system with internal concurrency to the sliced
code, the advantage of reducing the problem is more noticeable
due to a large number of interleavings removed from non-
deterministic execution by SPF. There are savings in total time
of verification and the number of paths explored. In this case,
slicing happened to remove a code block with internal concur-
rency. Analysis and modification of the code can be expensive;
however, if it allows the removal of computationally expensive
code, the benefit can be substantial. In this experiment, the
symbolic execution time was reduced from 4 minutes and 47
seconds (287 seconds) to only one second.

B. Case Study 2: ModelCheckCTL
The second case study uses Computation Tree Logic (CTL)

based model checker implemented in the MVC architectural
style. The architectural constraints to verify are the same as
for the first case study as enforced by MVC. This example is
about twice as large compared to the Calculator example
in terms of the size of the codebase. The Model part of
the MVC itself has more components in that it contains
classes for representation of a Kripke Structure, a CTL formula
and a result representation. The Calculator example only
contains one class in the Model part that encapsulates the
calculator’s current computation result and previously entered
operand.

For brevity, we do not describe the implementation details
for the constraint definition in this case study. The model
checker under analysis provides a user with a GUI for def-
inition of a CTL formula in a text field, choice of a file with
a Kripke structure to be analyzed via a file chooser, and a text
area that displays, textually, the result of model checking (i.e.,
whether a property holds and if not - a textual representation of
a counterexample). The GUI has a number of buttons that are
used to run the analysis, to clear the text areas, and to close
the application. As the system was built according to MVC

144Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

architectural style, the verification performed is very similar
to the first case study.

The results of this experiment are shown in Tables III
and IV. The codebase for the model checker contains 1, 097
total methods, 258 of which are created and not inherited.
After the slicing, the mocking removed 196 method bodies,
a reduction of 75.97%. The size of the original bytecode was
96.4 KB (98, 802 bytes), and was reduced to 64.1 KB (65, 736
bytes), 66.5% of the original bytecode size. A significant
amount of bytecode was removed by slicing. Also, we note
that multiple properties can be verified on the slice, so even
greater benefit can be achieved by performing slicing before
symbolic execution.

V. CONCLUSION

In this paper, we introduced an approach to checking
architectural constraints on sequences of method invocations
via combination of slicing and symbolic execution. To our
knowledge, this is a novel approach to property-guided verifi-
cation of architectural constraints. Our approach would make
verification of such properties more efficient by reducing the
application to a potentially much smaller executable slice for a
given increment of a software development process, thus sig-
nificantly cutting down on time taken by regression testing both
during development until release and maintenance after the
release of the analyzed software system. Using slicing for the
reduction of the problem size seems to hold the most promise
for code that has low coupling. It is especially effective in cases
where the code deemed not needed for property verification
is long running and/or contains multi-threading. In such a
case, the resultant slice is noticeably smaller than the initial
codebase, and furthermore, some potentially long running code
not needed for property verification will be removed from the
slice.

This work shows proof of concept of the suggested ap-
proach, and there are a number of directions for further im-
provement. First of all, a slicing algorithm that takes multiple
criteria (statements for which a slice is calculated) can speed up
calculation of a slice. One approach might be to compute one
slice using forward traversal starting from the source method
of an interaction protocol property and another one using
backward traversal from the sink method of the property and
then use their intersection as a resultant slice. Any node already
marked by the former slicing traversal would end the slicing
exploration down that path by the latter slicing traversal and
vice versa. Implementation of the slicing algorithm traversal
from multiple nodes of an SDG could be done concurrently,
further reducing the slicing time. As future work we also
intend to add a general specification of the constraints via an
appropriate logic and a test case generation capability based on

the path conditions created by the symbolic execution of the
property-guided slice. We would like to perform a quantitative
comparative analysis against similar approaches. In addition,
we would like to validate the prototype by applying it to
analysis of larger systems.

REFERENCES
[1] D. E. Perry and A. L. Wolf, “Foundations for the study of software

architecture,” SIGSOFT Softw. Eng. Notes, vol. 17, no. 4, Oct. 1992,
pp. 40–52.

[2] R. Allen, “A formal approach to software architecture,” Ph.D. disser-
tation, Carnegie Mellon, School of Computer Science, January 1997,
issued as CMU Technical Report CMU-CS-97-144.

[3] J. Aldrich, C. Chambers, and D. Notkin, “Archjava: Connecting soft-
ware architecture to implementation,” in Proceedings of the 24th In-
ternational Conference on Software Engineering, ser. ICSE ’02. New
York, NY, USA: ACM, 2002, pp. 187–197.

[4] G. E. Krasner and S. T. Pope, “A cookbook for using the model-view
controller user interface paradigm in smalltalk-80,” J. Object Oriented
Program., vol. 1, no. 3, Aug. 1988, pp. 26–49.

[5] J. Hunt, “You’ve got the model-view-controller,” Planet Java.
[6] F. Tip, “A survey of program slicing techniques,” Journal of Program-

ming Languages, vol. 3, March 1995, pp. 121–189.
[7] “IBM WALA,” http://wala.sourceforge.net/wiki/index.php/Main Page.
[8] “Javassist,” http://jboss-javassist.github.io/javassist/.
[9] L. A. Clarke, “A program testing system,” in Proc. of the 1976 annual

conference, ser. ACM ’76, 1976, pp. 488–491.
[10] J. C. King, “Symbolic execution and program testing,” Communications

of the ACM, vol. 19, no. 7, 1976, pp. 385–394.
[11] C. S. Păsăreanu and N. Rungta, “Symbolic PathFinder: symbolic execu-

tion of Java bytecode,” in Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’10, 2010,
pp. 179–180.

[12] J. Geldenhuys, M. B. Dwyer, and W. Visser, “Probabilistic symbolic
execution,” in Proceedings of the 2012 International Symposium on
Software Testing and Analysis, ser. ISSTA 2012. New York, NY,
USA: ACM, 2012, pp. 166–176.

[13] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks, “Directed symbolic
execution,” in Proceedings of the 18th International Conference on
Static Analysis, ser. SAS’11. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 95–111.

[14] R. Allen, “A Formal Approach to Software Architecture,” Carnegie
Mellon University, Technical Report CMU–CS–97–144, 1997.

[15] G. J. Holzmann, “The model checker spin,” IEEE Trans. Softw. Eng.,
vol. 23, no. 5, May 1997, pp. 279–295.

[16] S. Uchitel, R. Chatley, J. Kramer, and J. Magee, “LTSA-MSC: Tool
support for behaviour model elaboration using implied scenarios,”
in Ninth International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS. Springer Verlag, 2003,
pp. 597–601.

[17] J. Magee and J. Kramer, Concurrency: State Models & Java Programs.
New York, NY, USA: John Wiley & Sons, Inc., 1999.

[18] “Mocking,” http://www.michaelminella.com/testing/the-concept-of-
mocking.html.

[19] “Java PathFinder Tool-set,” http://babelfish.arc.nasa.gov/trac/jpf.

145Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

