
Integrating Static Taint Analysis in an Iterative
Software Development Life Cycle

Thomas Lie and Pål Ellingsen
Department of Computing, Mathematics and Physics

Western Norway University of Applied Sciences
Bergen, Norway

Email: thomas.lie@student.hib.no, pal.ellingsen@hvl.no

Abstract—Web applications expose their host systems to the end-
user. The nature of this exposure makes all Web applications
susceptible to security vulnerabilities in various ways. Two of
the top problems are information flow based, namely injection
and cross-site scripting. A way to detect information flow based
security flaws is by performing static taint analysis. The idea is
that variables that can directly or indirectly be modified by the
user are identified as tainted. If a tainted variable is used to
execute a critical command, a potential security flaw is detected.
In this paper, we study how to integrate static taint analysis
in an iterative and incremental development process to detect
information flow based security vulnerabilities.

Keywords–Taint Analysis; iterative development; software secu-
rity; injection attacks.

I. INTRODUCTION

The Open Web Application Security Project (OWASP)
analyses data from software security firms and periodically
publishes a report about the top 10 most common security
vulnerabilities found in Web applications. The data analysed
covers over 500,000 vulnerabilities over thousands of applica-
tions making this list a well documented ranking of the most
common vulnerabilities present in Web applications today [1].
Two of the types of vulnerabilities at the top of the OWASP top
10 list are information flow based, namely injection and cross-
site scripting. Being information flow based means that in order
for an attacker to successfully exploit the type of vulnerability,
untrusted data must enter the application. This untrusted data
then bypasses the validation due to a poor validation routine
or a complete lack of validation. When the untrusted data
eventually reaches the critical command the attacker aimed for,
the vulnerability is exploited. In the category of injection based
vulnerabilities reside numerous exploitable implementations,
such as queries for SQL (Structured Query Language), LDAP
(Lightweight Directory Access Protocol), Xpath, NoSQL and
command injection in the form of operating system commands
or program arguments. Due to the widespread use of database
access based on SQL in Web applications, the most common
injection vulnerability is therefore SQL injection. Two other
types of information flow vulnerabilities that are worth briefly
mentioning are path traversal and HTTP (Hypertext Transfer
Protocol) response splitting. Path traversal allows an attacker to
access or control files that are not intended by the application.
This can happen if the application fails to restrict access to the
file system. Path traversal belongs in the category of insecure
direct object references in the OWASP top 10 [1] [2].

Numerous approaches for detecting SQL injection and

cross-site scripting are documented. Some of them are briefly
described in the following paragraphs. SQLUnitGen is a tool
to detect SQL injection vulnerabilities in Java applications.
First, the tool traces input values that are used for an SQL
query. Based on this analysis, test cases are generated in the
form of unit tests with attack input. Lastly, the test cases are
executed and a test result summary showing vulnerable code
locations is provided [3]. Fine-grained access control is more
of a way of eliminating the possibility for SQL injection rather
than detecting it. The concept is to restrict database access to
information only the authenticated user is allowed to view.
This is done by assigning a key to the user, which is required
in order to successfully query the database. Access control is
in fact moved from the application layer to the database layer.
Any attempt to execute SQL injection cannot affect the data
of different users [4].

SQLCHECKER is a runtime checking algorithm imple-
mentation for preventing SQL injection. It checks whether
an SQL query matches the established query grammar rules,
and the policy specifying permitted syntactic forms in regards
to the external input used in the query. This means that any
external input is not allowed to modify the syntactic structure
of the SQL query. Meta-characters are applied to external
input functioning as a secret key, for identifying which data
originated externally [5]. Brower-enforced embedded policies
is a method for preventing cross-site scripting vulnerabilities.
The concept is to include policies about which scripts are
safe to run in the Web application. Two types of policies
are supported. A whitelisting policy is provided by the Web
application as a list of valid hashes of safe scripts. Whenever
a script is detected in the browser, it is passed to a hook
function hashing it with a one-way hashing algorithm. Any
script whose hash is not in the provided list is rejected [6]. The
second policy, Document Object Model (DOM) sandboxing,
is used to enable the use of unknown scripts. This could be
a necessary evil for a Web site that, for example, requires
scripts in third-party ads. Contrary to the first policy, this is
a blacklisting policy. The Web page structure is mapped, and
any occurrences of the noexecute keyword within a <div>
or element enables sandbox mode in that element,
disallowing running scripts [6]. The methods covered in the
preceding paragraphs for both detecting and/or preventing SQL
injection and cross-site scripting have one thing in common.
All approaches present detection solutions limited to their
respective vulnerability, being it either SQL injection or cross-
site scripting. Since both types of vulnerabilities belong to
the same category of vulnerabilities, information flow vulner-

25Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

abilities, a mutual approach is desirable to explore. Such an
approach should also be able to detect all forms of information
flow vulnerabilities. FindBugs [7] is a popular static analysis
tool for Java. It has a plugin architecture allowing convenient
adding of bug detectors presently detecting both SQL injection
and cross-site scripting. The bug detectors analyse the Java
bytecode in order to detect occurrences of bug patterns. Up
to 50% false warnings may be acceptable if the goal of the
analysis is just to get a general idea of where to do coding
improvements in a development process. Having a much more
precise analysis reporting none or low false warnings saves
the developers time. Therefore, finding a method with a much
higher accuracy is preferable. The approach that is explored in
this paper in order to detect information flow vulnerabilities,
is the approach called taint analysis.

In the following, we want to study how taint analysis can
be integrated in the development process, and how suitable
the existing implementations are for this kind of integration.
To carry out this study, we have applied the analysis to the
development of a Java Enterprise Edition (Java EE) application
throughout the development process. The outline of the rest of
this paper is as follows. Section II describes the principles of
taint analysis, and some implementations of this technique. In
Section III, the methodology used in this study is presented.
Based on this, the results and an analysis of these is presented
in Section V. Finally, our findings are summed up in Section
VI.

II. TAINT ANALYSIS

Taint analysis resides within the domain of information
flow analyses. Essentially, this means that tracking how vari-
ables propagate throughout the application of analysis is the
core idea. In order to detect information flow vulnerabilities,
entry points for external inputs in the application need to
be identified. The external inputs could be data from any
source outside the application that is not trusted. In other
words, it must be determined where there is a crossing in the
applications established trust boundary. In a Web application
context, this is typically user input fetched from a Web
page form, but would also include, e.g., URL parameters,
HTTP header data and cookies. In taint analysis, the identified
entry points are called sources. The sources are marked as
tainted, and the analysis tracks how these tainted variables
propagate throughout the application. A tainted variable rarely
exclusively resides in the original assigned variable, and thus
it propagates. This means that it affects variables other than
its original assignment. This can happen directly or indirectly.
Directly in that, e.g., a tainted string object is assigned either
fully or partly to a new object of some sort. An example of
indirect propagation is when a tainted variable that contains an
id is used to determine what data is assigned to a new variable,
see Figure 1 [8].
A tainted variable in itself is not harmful to an application. It is

Figure 1: A tainted source variable containing an id to fetch data
from a HashMap indirectly induces taint on an object.

when a tainted variable is used in a critical operation without
proper sanitization, that vulnerabilities could be introduced.
Sanitizing a variable means to remove data or format it in
such a way that it will not contain any data that could exploit
the critical command in which it will be used. An example
is when querying a database with a tainted string, it could
open for SQL injection if the string contains characters that
either change the intended query, or split it into additional
new queries. Proper sanitization would remove the unwanted
characters, eliminating the possibility of unintended queries
and essentially preventing SQL injection. Contrary to input
data being assigned as sources, methods that executes critical
operations are called sinks in taint analysis. When a tainted
variable has the possibility to be used within a sink, a success-
ful taint analysis implementation would detect this as a vul-
nerability. Taint analysis can be divided into two approaches,
dynamic taint analysis and static taint analysis. The dynamic
taint analysis approach analyses the different executed paths
in an application specific runtime environment. Tracking the
information flow between identified source memory addresses
and sink memory addresses is generally how this kind of
analysis is carried out. A potential vulnerability is detected
if an information flow between a source memory address and
a sink memory address is detected. Static taint analysis is a
method that analyses the application source code. This means
that, ultimately, all possible execution paths can be covered
in this type of analysis, whereas in a dynamic taint analysis
context, only those paths specifically included in the analysis
are covered.

Dynamic taint analysis can be used in test case generation
to automatically generate input to test applications. This is
suitable for detecting how the behaviour of an application
changes with different types of input. Such an analysis could
be desirable as a step in the development testing phase of a
deployed application since this could also detect vulnerabilities
that are implementation specific. Dynamic taint analysis can
also be used as a malware analysis in revealing how informa-
tion flows through a malicious software binary [9]. Taking this
analysis one step further enables malicious software detection
of, e.g., keyloggers, packet sniffers and stealth backdoors. The
concept is to mark input from keyboard, network interface
and hard disk tainted, and then track the taint propagation to
generate a taint graph. By using the taint graph in automatically
generating policies through profiling on a malicious software
free system, detection of anomalies is possible. E.g., in the case
of detecting keyloggers, the profile includes which modules
would normally access the keyboard input on a per application
basis. When a keylogger is trying to access a specific profiled
application, this could be detected [10]. In both static and
dynamic taint analysis implementations, the precision of the
analysis is important for it to be trustworthy. Generally, two
outcomes can affect the analysis precision. The first scenario is
when the analysis for some reason marks a variable as tainted
that has not propagated from a tainted variable. This is called
over tainting and leads to false positives, which means that
the reported error is not truly an error. The second outcome is
when the analysis misses an information flow from a source to
a sink. Thus, the analysis does not report an error that actually
is present. This is called under tainting, and the term false
negative describes the absence of an actual error [9]. Dynamic
taint analysis has, as shown in previous paragraphs, several

26Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

types of applications. However, static taint analysis may be a
better fit for integration within the development process due to
the direct analysis of source code. There are different ways to
implement static taint analysis, and we have considered three
different implementations for Java, which are elaborated in the
following.

A. Implementations of taint analysis

An implementation of taint analysis for Java, described
by Tripp et al. [11], consists of two analysis phases. The
first phase performs a pointer analysis and builds a call
graph. Pointer analysis, also called points-to analysis, enables
mapping of what objects a variable can point to. A call graph
in this context is static, which means that it is an approximation
of every possible way to run the program in regards to invoking
methods. Tripp et al. describe an implementation of specific
algorithms, but the analysis design is flexible in that using
any set of desired algorithms is feasible [11]. The second
phase takes the results of the first phase as input and uses a
hybrid thin slicing algorithm to track tainted information flow.
Thin slicing is a method to find all the relevant statements
affecting the point of interest, which is called the seed. In
comparison to a traditional program slicing algorithm, thin
slicing is lightweight in that it only includes the statements
producing the value at the seed. This means that the statements
that explain why producers affect the seed are excluded in a
thin slice [12]. Thin slicing works well with taint analysis
because the statements most relevant to a tainted flow are
captured. Hybrid thin slicing essentially produces a Hybrid
System Dependence Graph (HSDG) consisting of nodes corre-
sponding to load, call and store statements. The call statements
represent source and sink methods. The HSDG has two types
of edges, direct edges and summary edges, that represent data
dependence. The data dependence information is computed in
the first phase by pointer analysis. Tainted flows are found
by computing reachability in the HSDG from each source
call statement, adding the necessary data dependence edges
on demand [11]. The way this implementation defines sources
and sinks is through security rules. Security rules exist in the
form (S1, S2, S3). S1 is a set of sources. A source is a method
having a return value which is considered tainted. S2 is a set
of sanitizers. A sanitizer is a method that takes a tainted input
as parameter and returns that parameter in a taint-free form. S3
is a set of sinks. Each sink is defined as a pair (m,P), where
m is the method performing the security sensitive operation
and P defines the parameters in m that are vulnerable when
assigned with tainted data [11]. This implementation of taint
analysis for Java includes ways to incorporate Web application
frameworks in the analysis. External configuration files often
define how the inner workings of a framework is laid out.
Therefore, a conservative approximation of possible behaviour
is modelled. For the Apache Struts framework, which is an
implementation of the Model View Controller (MVC) pattern,
the Action and Action Form classes are treated as sources.
These classes contain execute methods taking an ActionForm
instance as a parameter. This instance contains fields which
are populated by the framework based on user input meaning
it should be considered tainted. Thus, the analysis implements
a model treating the Action classes as entry points.

An alternative static taint analysis implementation is
similar to Taint Analysis for Java in that it is based on

pointer analysis and construction of a call graph. However,
this implementation depends on pointer analysis and call
graph alone in detecting tainted flows. The analysis uses
binary decision diagrams in the form of a tool called
bddbddb (BDD-Based Deductive DataBase), which includes
pointer analysis and a call graph representation [2]. Binary
decision diagrams can be utilized in adding compression to
a standard binary decision tree based on reduction rules.
In the context of this analysis, the compression of the
representation of all paths in the call graph makes it possible
to efficiently represent as many as 10 contexts. This allows
the analysis implementation to scale to applications consisting
of almost 1000 classes [2]. In order to detect vulnerabilities,
specific vulnerability patterns need to be expressed by
the user. A pattern consists of source descriptors, sink
descriptors and derivation descriptors. Source descriptors
specify where user input enters the application, e.g.,
HttpServletRequest.getParameter(String).
Sink descriptors specify a critical command that can be
executed, e.g., Connection.executeQuery(String).
Lastly, derivation descriptors specify how an object can
propagate within the application, e.g., through construction
of strings with StringBuffer.append(String) [2].
Tainted Object Propagation Analysis does not implement any
handling of Web application frameworks.

A third implementation, Type-based Taint Analysis, differs
from the preceding approaches in that a type system is the basis
of the analysis. The implemented type system is called SFlow,
which is a context-sensitive type system for secure information
flow. SFlow has two basic type qualifiers, namely tainted and
safe. Sources and sinks are identified in these methods, and
fields are annotated using these type qualifiers. A type system
is a system that intends to prove that no type error can occur
based on the rules established. This is done by assigning a type
to each computed value in the type system, and the flow of
these values is then examined. This concept is called subtyping
[8]. The subtyping hierarchy is defined as safe <: tainted.
This means that a flow from tainted sources to safe sinks is
disallowed. The other way around, assigning a safe variable
to a tainted variable is allowed. A third type of qualifier,
poly, is included in order to correctly propagate tainted and
safe variables through object manipulation, e.g., with String
methods append and toString. All object manipulation
methods, such as String append and toString, would
be annotated as poly. The poly qualifier in combination with
viewpoint adaptation rules ensures that the implementation is
context-sensitive. This means that parameters returned from
such methods inherit the manipulated inbound parameters type
qualifier (tainted or safe). As a result, the subtyping hierarchy
becomes safe <: poly <: tainted [8]. Another benefit with the
poly qualifier implementation is that tainted variables properly
propagate in third-party libraries. As a result all application
code is included in the analysis. Type-based Taint Analysis
also supports Web application frameworks in the same way
as the regular Java API is supported, namely by annotating
the relevant fields and methods. An example of this is that for
the Apache Struts framework, the Action class containing the
execute method is what needs to be annotated. This method
takes an ActionForm instance as a parameter, that contains
fields which are populated by the framework based on tainted
user input. Simply annotating the ActionForm parameter as

27Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Require-
ments

Design Development Test Deployment

Figure 2: The Software Development Life Cycle [13].

tainted would include the framework in the analysis [8]. Type
inference implies identifying a valid typing based on the
subtyping rules defined in the SFlow type system. A succeeded
inference means that there are no flows from sources to sinks.
If the type inference fails, a type error is evident meaning that
a flow from a tainted source to a safe sink is present.

III. METHODOLOGY

When developing software, a common approach is to estab-
lish a Software Development Life Cycle (SDLC). The SDLCs
function is to cover all processes associated with the software
developed. Different types of SDLC models exist. However,
whether it being Waterfall, Agile or some other model, the
processes in the SDLC can be partitioned into different phases.
In this paper, the phases are named according to Merkow and
Raghavan [13] as Requirements, Design, Development, Test
and Deployment, see Figure 2. Developing software requires
planning of both functional requirements and non-functional
requirements in order to deliver an acceptable end product.
The functional requirements refer to the functionality of the
software, whereas non-functional requirements refer to quality
attributes, e.g., capacity, efficiency, performance, privacy and
security. The Requirements phase addresses the gathering and
analysis of requirements regarding the environment in which
the software is going to operate. Non-functional requirements
based on security policies and standards, and other relevant
industry standards that affect the type of software developed,
are included in this phase. The Design phase is where the
functional requirements of the software developed are planned,
based on the mapping of requirements in the first phase. This
phase also includes architectural choices that determine the
technologies used in the development of the software. The
Development phase contains the actual coding of the software
developed. Both functional requirements and non-functional
requirements from the earlier planning phases are being ad-
dressed. A common approach is to develop the functional
requirements in small programs called units. These units are
then tested for their functionality, a methodology called Unit
Testing. The Test phase is where test cases are built, based on
requirements criteria from earlier phases. Both test cases for
functional requirements and non-functional requirements are
included. The test phase is iterative in nature meaning that
the problems found would need to be addressed and fixed
in the development phase. After the problems are fixed, the
system would need to go through the test phase once again.
The deployment phase is the final phase in the cycle, and the
main activity is to install the software and make it ready to
run in its intended environment, or released into the market.
At this point, both testing of functional requirements and non-
functional requirements are finished [13].

The problem description (see Section I) states that we will
study how to integrate static taint analysis in the development
process of a Java EE Web application. Given the tools proposed

in Section I for detecting information flow vulnerabilities,
static taint analysis is explored in this experiment. This choice
is based on the fact that this type of analysis embraces the
detection of the whole domain of information flow vulnera-
bilities. Static taint analysis may also have significantly fewer
false warnings compared to e.g., analyses depending on code
patterns such as the FindBugs static analysis tool. The research
approach regarding the problem description is to carry out a
case study in two main parts. The first part is to develop a
prototype Java EE Web application of an acceptable size so that
it is not too small with regard to performing taint analysis on
it. This means that the prototype application should preferably
have multiple modules interacting with external processes, i.e.,
at a minimum implementing a database connection. Further,
the user interaction would naturally be done through a website
utilizing specific Java EE technologies. The goal of the last
part in the case study is to architect a solution to the taint
analysis integration. Many aspects regarding this integration
would need to be clarified. Based on the experiences with the
implementation of taint analysis in the specific prototype appli-
cation, general conclusions regarding the problem description
can be drawn. Some important approaches to implementing
static taint analysis for Java are given in [2], [8], [10] and
[14]. From these approaches, summarized in Section II-A, the
Type-based Taint Analysis from [8] was selected. This choice
was convenient in that the analysis platform is available as an
open source project and Type-based Taint Analysis also looks
promising with regard to how Web application frameworks are
handled. Analysing frameworks are especially relevant in Java
EE Web applications, e.g., in the form of the Java Server Faces
(JSF) framework managing the applications front-end. Based
on how this analysis method is described in [8], it would seem
that the implementation is feasible as an integrated step in a
Java EE Web application development context.

IV. INTEGRATING TAINT ANALYSIS IN THE SDLC

Considering that modern development practices are team
based, and in fact multi-team based on big projects, it is
important to include this observation in assessing whether
static taint analysis can efficiently be integrated in the SDLC.
An agile development methodology including an iterative and
incremental workflow leads to developing a piece of software
in numerous modules. Being able to properly test both a
single module and a set of modules for detecting information
flow vulnerabilities is preferable. According to Huang et al.
[8], the taint analysis implementation is modular, meaning
that a whole program is not necessary for analysis. This
is promising considering the modern development practice
described in the previous paragraph. Additionally, the taint
analysis implementation should be included in the development
phase along with other testing activities (see Section III)
describing the different phases in the SDLC [8]. In addition to
the development phase, the testing phase could include static
taint analysis. However, the reason to avoid integration within

28Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

the testing phase is that anything added to that phase adds
unnecessary overhead. Even if the overhead of running the
analysis is eliminated by making it fully automated, a system
for countering the output in form of requested fixes for the
next development phase iteration needs some resources. Also,
a known concept is that the earlier vulnerabilities are found
in the SDLC, the cheaper it is to get them fixed. The aim is
therefore to craft a solution to integrate static taint analysis into
the development phase. Some methods for detecting and/or
preventing information flow vulnerabilities are listed in Section
I. Most of these methods focus exclusively on either SQL
injection or cross-site scripting rendering detection of other
information flow attacks uncovered. Although FindBugs is
an example of a static analysis covering most, if not all,
the information flow vulnerabilities, its detecting algorithm is
prone to have a high percentage of false positives. The choice
of type-based taint analysis in the form of SFlow was done
because it can detect a high number of vulnerabilities and also
has a low number of false positives.

For the case study, a Java EE based Web application
for remotely controlling an automated production system was
developed. The size of the project was determined to be
sufficiently large to do a realistic study on the integration of
static taint analysis in the development process, while at the
same time being sufficiently small to focus on the research
question at hand. The development resources for the case study
application amounted to one developer limited to roughly three
months development time. As in one man team, a natural
SDLC approach to adopt is the Big Bang Model. This is
simply a term made to cover an SDLC, which contains no or
little planning and does not follow any specific processes [15].
Although a complete SDLC methodology was not followed
during the case study project, several key activities were
integrated in the SDLC in order to ensure delivery of an
acceptable end product. Enabling development of the prototype
application iteratively and incrementally was done by applying
continuous delivery. This means that the functionality was split
up and developed in smaller tasks and delivered in predefined
iteration cycles of, e.g., two weeks. The prototype application
was developed in iterations with an integrated static taint
analysis as a part of the SDLC. While the prototype application
has a limited size with a moderate number of iterations of
development, we consider taint analysis conducted during the
development cycle to be adequate in order to draw conclusions.
The bigger the application the more value of frequent analysis.
This is because the issues found earlier in a big application
environment would contribute knowledge to prevent making
the same mistakes over and over as the application progresses,
thus saving developer resources.

V. ANALYSIS

A main challenge during the implementation was to prop-
erly annotate external libraries, e.g., frameworks, in order
to enable a working analysis without developer intervention.
Adding annotations manually was not an option because, in
addition to creating extra work for the developer, it is prone
to errors. For SFlow to be a successful security analysis tool,
we found that the annotation process needs to be improved.
One approach in changing the annotation process could be to
use a strategy from the paper by Sridharan et al. [14]. This
paper describes a framework as a solution for adding Web

application frameworks to a taint analysis implementation. In a
similar way, a framework for adding annotations to the SFlow
annotated Java Development Kit (JDK) could be developed
easing the work of figuring out how to conduct the process
of annotation. This framework could also include verification
routines for testing that the annotations are working correctly
[14]. Another change SFlow must undergo is the way the anal-
ysis is conducted. In its current form, SFlow exists as a manual
command-line tool. For this tool to exist in the development
phase without unnecessary overhead, an automatic integration
of the analysis is required. Therefore, integrating SFlow as a
plugin in an IDE (Integrated Development Environment) by
utilizing this support by The Checker Framework could be a
good solution. This would make the taint analysis convenient
and seamless for the developer enabling analysis whenever
the developer builds the application and/or desires to run it.
However, deciding if the integration is not creating too much
overhead for the developer boils down to the running time
of the taint analysis implementation. Results from Huang et
al. [8] state that analysing 13 relatively large applications
resulted in running times of less than four minutes for all
applications except one. The analysis ran on a server with
Intel Xeon X3460 2.8GHz processor and 8GB RAM. As for
the smaller prototype application, the running time is about
30 seconds on a laptop with Intel Core i5-3210M 2.5GHz
processor and 6GB RAM [8]. Even though the running time of
the taint analysis is done within minutes and may not introduce
a significant overhead for the developer running the analysis
in the background, implementation in a different way could
be advantageous. This solution is to incorporate taint analysis
in a continuous integration tool, e.g., Jenkins, by integrating
SFlow in the build system it uses, e.g., Maven. By doing this,
the taint analysis will automatically run on every build. The
errors will then show up as compiler errors and warnings in
the continuous integration tool for the developers to address.
SFlow needs to undergo at least two significant changes in
order to become a powerful taint analysis security tool for
integration in the development phase in the SDLC. First, the
annotation process for adding Web application frameworks and
external libraries must become more user-friendly in order
to be practical. As suggested, a solution to this would be
to develop a framework for easing the annotation process.
And secondly, the analysis should be integrated either in the
developers development environment, or preferably within the
build system of the continuous integration tool.

VI. CONCLUSION

Information flow vulnerabilities can occur when appli-
cations handle untrusted data. SQL injection and cross-site
scripting are the most common information flow vulnerabil-
ities. There are numerous methods presented in countering
these vulnerabilities. One method, static taint analysis, looks
promising in that it has the ability to cover detection of
all kinds of information flow vulnerabilities. Out of three
static taint analysis implementations presented in this paper,
Type-based taint analysis was chosen as the preferred imple-
mentation. This approach looked promising in the way Web
application frameworks are handled. The implementation is
also freely available as an open-source project. A proposed
solution in integrating this taint analysis approach in an itera-
tive and incremental development process was presented. The

29Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

proposed solution used the developed prototype application
as a manageable sized concept application for implementing
taint analysis. Annotations of sources and sinks are needed
to detect information flow vulnerabilities. Some libraries are
already annotated in the taint analysis implementation, referred
to as the annotated JDK. To properly analyse an application,
all libraries containing sources and sinks in a developed
application need to be included in the annotated JDK. The
development of the prototype application gave a good technical
understanding of the inner workings of the application. This
was advantageous in order to identify what needed to be
annotated. The approach of mapping the attack surface of
the prototype application turned out to be an effective way
to identify the libraries containing sources and sinks.

Preparing the taint analysis implementation for analysis
is mostly about making sure the libraries that are used are
included in the annotated JDK and are also working properly.
The experiences with annotation indicates that this is not a
straight forward process, and could need many resources in
order to get it right. A framework for easing the process of
annotation, including verification that the annotation works
correctly, is proposed as a solution to this challenge. Multiple
approaches to conducting the taint analysis are possible. Run-
ning the taint analysis manually in command line, integrating
it in the developers IDE and integrating it in the continuous
integration tool are all possibilities. The latter suggestion is
proposed as the most effective solution; implementing taint
analysis in the continuous integration tools build system. This
is considered an effective approach because an analysis could
take several minutes to complete depending on application
size. Also, processes done automatically and by an external
instance will not be a distraction for the developer. When
to counter any detected type errors is then up to when the
developer monitors the notifications given in the continuous
integration tool.

VII. FURTHER WORK

In order to support static taint analysis during the devel-
opment process, the next step would be to get the annotations
of the application’s classes to work properly. A course worth
researching, as suggested, could be to develop a framework
for easing the process of annotating. Further work could also
include more research in the area of how to best integrate
taint analysis in a development process. The proposed solution
of integrating the analysis in a continuous integration tools
build system is probably worth exploring. An actual proof-
of-concept implementation could be using Jenkins continuous
integration tool with the Maven build system.

REFERENCES

[1] OWASP Foundation, “OWASP top 10 - 2013: The ten most critical
web application security risks,” 2013, Accessed: 2017-04-13. [On-
line]. Available: https://www.owasp.org/images/f/f8/OWASP Top 10 -

2013.pdf
[2] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in java

applications with static analysis.” in Usenix Proceedings of the 14th
Conference on USENIX Security Symposium, vol. 2013, 2005, pp. 271–
286.

[3] Y. Shin, L. Williams, and T. Xie, “Sqlunitgen: Test case generation
for sql injection detection,” North Carolina State University, Raleigh
Technical report, NCSU CSC TR, vol. 21, 2006, p. 2006.

[4] A. Roichman and E. Gudes, “Fine-grained access control to web
databases,” in Proceedings of the 12th ACM symposium on Access
control models and technologies. ACM, 2007, pp. 31–40.

[5] Z. Su and G. Wassermann, “The essence of command injection attacks
in web applications,” in ACM SIGPLAN Notices, vol. 41, no. 1. ACM,
2006, pp. 372–382.

[6] T. Jim, N. Swamy, and M. Hicks, “Defeating script injection attacks
with browser-enforced embedded policies,” in Proceedings of the 16th
international conference on World Wide Web. ACM, 2007, pp. 601–
610.

[7] The FindBugs Project, “Findbugs,” 2015, Accessed: 2017-04-13.
[Online]. Available: http://findbugs.sourceforge.net/

[8] W. Huang, Y. Dong, and A. Milanova, “Type-based taint analysis for
java web applications,” in International Conference on Fundamental
Approaches to Software Engineering. Springer, 2014, pp. 140–154.

[9] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask),” in 2010 IEEE Symposium on Security
and Privacy. IEEE, 2010, pp. 317–331.

[10] H. Yin and D. Song, “Whole-system fine-grained taint analysis for
automatic malware detection and analysis,” 2007, Accessed: 2017-04-
13. [Online]. Available: http://bitblaze.cs.berkeley.edu/papers/malware-
detect.pdf

[11] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman, “Taj:
effective taint analysis of web applications,” in ACM Sigplan Notices,
vol. 44, no. 6. ACM, 2009, pp. 87–97.

[12] M. Sridharan, S. J. Fink, and R. Bodik, “Thin slicing,” ACM SIGPLAN
Notices, vol. 42, no. 6, 2007, pp. 112–122.

[13] M. S. Merkow and L. Raghavan, Secure and Resilient Software Devel-
opment. CRC Press, 2010.

[14] M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri, O. Tripp, and R. Berg,
“F4F: taint analysis of framework-based web applications,” ACM
SIGPLAN Notices, vol. 46, no. 10, 2011, pp. 1053–1068.

[15] T. Bhuvaneswari and S. Prabaharan, “A survey on software development
life cycle models,” Journal of Computer Science and Information
Technology, Vol2 (5), 2013, pp. 263–265.

30Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

