
Consistent Cost Estimation for the Automotive Safety Model based Software
Development Life cycle

Demetrio Cortese
FPT Embedded Software Development

CNH Industrial
Turin, Italy

Email: Demetrio.Cortese@cnhind.com

Abstract—The Safety Model based Software Development
Life-cycle, focused on high-level executable models of the
automotive systems to be fielded, has a high maturity level. It
allows compression of the development cycles through a wide
range of exploration and analysis including high fidelity of
simulation, automatic test case generation and even test session
at low cost early in the development phase. Many Software
Development Teams in the automotive industry are already
using model-based development for their safety critical
software. The current software development effort estimation
through sophisticated models and methods (COCOMO
COnstructive COst MOdel, COCCOMOII, functional point,
etc.), obtained at the early stages of development life cycle, is
often inaccurate because of the long duration between the
initialing phase of the project and delivery phase. Also, not
many details of the functions are available at that time. All
these models require as inputs accurate estimates of specific
attributes, such as line of code (LOC), number of complex
interfaces, etc. that are difficult to predict during the initial
stage of software development. Effective software project
estimation is one of the most challenging and important
activities in software development. Proper project planning
and control is not possible without a sound and reliable
estimate. The basis of our approach for estimation of the
development cost of a new model based development project is
to describe it in terms of complexity and then to use this
description to find other similar model–based functions that
have already been completed.

Keywords-Model Based; Executable specification; Cost
estimation; Embedded Software; Autocode generation; Software
Engineering; Functional Safety.

I. INTRODUCTION

The assessment of the main risks in software
development discloses that a major threat of delays is caused
by poor effort/cost estimation of a project. As a consequence,
more projects will face budget and/or schedule overruns.
This risk can affect all phases of the software development
life cycle, i.e., Analysis, Design, Coding and Testing. Hence,
mitigating this risk may reduce the overall risk impact of the
project in a consistent way.

Existing estimation techniques, such as function point
and use case estimation, are done after the analyses phase
and the cost/effort is measured in terms of lines of codes for
each functionality to be incorporated into the software.
Therefore, it is very clear that only a specific part of the total
software development effort is estimated and this estimation

is delayed until after all the analyses and designs are
completed. Current software cost estimation methods first try
to determine the size of the software to be built. Based upon
this size, the expected effort is estimated and it is utilized to
calculate the duration (i.e., time required) and cost
(monetary/human resources) of the project.

We have adapted a different approach and suggested that
effort estimation shall be carried out for each phase of the
development process. Applying a phase-based approach
offers a project manager the possibility to estimate the cost at
different moments in the life cycle. A milestone offers the
possibility to assess each phase and to measure and analyze
possible differences between the actual and the estimated,
step by step. Each milestone should, therefore, be considered
the time for deciding whether the estimation can be adjusted.
This mechanism leads to continuous and dynamic
assessment of the relation between activities and relevant
costs estimation. The philosophy, therefore, is to identify the
project functionalities and define the software development
process in all phases. It is clear that the end of a phase is
characterized by a milestone.

Our approach is a quick and consistent method, based on:
1. Reference Model based Software Life cycle in all

phases, as described in Section II,
2. Definition of an implementation scale of the existing

model based functionalities (five levels), as described in
Section III, subsection A;

3. Definition of a complexity scale of the existing model
based functionalities (five levels), as described in
Section III, subsection B;

4. Complexity Functionality by asking System Experts for
estimate on each functionality of the new project, as
described in Section III, subsection B;

5. Calculation of uncertainty, as reported in Section IV;
6. Affinity process through comparison and tuning for the

new functionalities having as reference the historical
data from point 1 and 2, as given in Section V;

7. Corrector factors (Team Skill, process customization)
to be adjusted according to their risk, considered in
Section V;

In this paper, the application of the above effort
estimation model for a Software development project for a
new Engine ECU (Electronic Control Unit) will be also
presented.

88Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

II. MODEL BASED APPROACH APPLICATION

In the automotive domain, the model-based approach is a
consistent way to master the management and complexity in
the developing software systems. In last 10 years, the CNH
industrial Embedded Software Development Team targets
the Model-Based Application Software Development of the
Functional Safety Systems for all CNH Industrial application
by implementing a Methodology that ensures the safety
critically relevant process satisfies important OEM (Original
Equipment Manufacturer) requirements [8][9]:
• High quality
• Reduction in time to delivery
• Reduction in development cost

This strategy, through the CNH Industrial Infrastructure
framework, allows innovation in existing processes and
yield benefits in the medium term:
• A reduction of the Design Life-Cycle Process
• Anticipating issues at early design phases of

development, leading to reduction in systems project
risks

• Increasing effectiveness and timeliness of the system
verification life-cycle, with reduction of systems time-
to-delivery.
ISO (International Organization for Standardization

standards) [4][5][6], such as ISO 26262 (Truck & Bus), ISO
13849 (Construction equipment) and ISO 25119
(Agricultural) do not specify formally any development
process or validation tools but provide only
recommendations. A clear description of the CNH Industrial
process tailoring has been done in [1].

Here, we repeat the basic concept stating that, while the
requirements of the Functional Safety standard cannot be
tailored, the activities performed to meet the Standard can
and should be tailored. That is, while the requirements must
be met, the implementation and approach to meeting these
requirements may and should vary to reflect the system to
which they are applied. It is each software development’s
responsibility to produce evidence that they follow
development processes addressing the safety-relevant
requirements, and traceability from requirements to
implementation. Additionally, traceability from
requirements to test cases that checks the correctness of
requirements against the developed software, is required.
Besides, it is always important to verify that their
development tools do not introduce errors in the final
software product. In general, there two kinds of safety
requirements: process oriented and technical. Both need to
be addressed and properly documented within a project of
software development. In the following, we identify process
oriented requirements (what needs to be done to ensure
software safety). Technical requirements are those that
specify what the SW function must include. In order to
manage the safety requirements, the software development
process should:
• Identify, manage and monitor the safety requirements

of the software product life-cycle, including generation

of requirements, design, coding, test and operation of
the software.

• Ensure that software acquisitions, whether off the-shelf
or outsourcing, have been evaluated and assessed.

• Ensure that software verification activities include
software safety verifications

• After the Final Software delivery, ensure that all
changes and reconfigurations of the software are
analyzed for their impacts to system safety.

In the last years, a consistent Model-Based Application
software development Life–cycle (as shown in Figure 1,),
compliant with ISO 26262 “Functional Safety“, has been
identified [2] in CNH Industrial.

Figure 1 Model based Sw Life-cycle

Our approach responds to the demand of a collaborative
environment that increases productivity and drastically cuts
the development time. It will be obtained by capturing and
disseminating the expertise of different and distributed
teams. This comprehensive environment helps the Engineers
in all life cycle stages from high-level data and architecture
models through to fully tested and running Software
Modules, harmonizing life cycle phases for the OEM
application. One of the most powerful aspects of our
approach is that it establishes a common language designed
to engage all stakeholders in a process that leads to optimal
applications outcomes, rather than outcomes that are locally
optimized to the needs of any particular area.

89Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Figure 1 describes our Model based Software
development life cycle, where phases and tasks have been
identified.

III. PROJECT COMPLEXITY DEFINITION

Before we begin a piece of software development
estimation, there needs to be an understanding of the scope
of the project in terms of process and functionalities of the
project. In case of the Model based development with a high
maturity level, it can be extremely challenging to estimate
the project effort through two pillars: complexity of the
development process and complexity of the functionality
content.

A. Software development process complexity

Today, engine functionalities often are large and
complex, and the usual approach in our department consists
of building the large functionality from smaller Software
components. A Software component is a unit of complexity
that required a reasonable effort, in general, and far less
difficult than the whole functionality. We identified five
different SW components: very simply, simply, medium,
complex and very complex. The above classification is
based on the timing specified by the Model based Software
development process, as consolidated in the Embedded
Software development department in FPT (FIAT
PowerTrain) Industrial.

Successfully integrating components result in the whole
SW functionality. Integrating the components into a larger
software system consists of putting them together in a
sufficiently careful manner, such that the components fit
together. The use of models consisting of different
submodels within software development has numerous
advantages. Different persons may work on different
submodels simultaneously driving forward the development
of the system. Different types of submodels allow the

separation of different aspects of the system, such as
structural aspects or dynamic behavior of system
components. On this basis, we are viewing each component
in terms of complexity of software development life cycle
phases. Each phase ends with a milestone and defined
outcomes. Using a model based approach, as defined in
previous section, we can estimate the effort needed to
perform each phase. Our approach offers the SW manager
the possibility to estimate different component/models at
different moments in the life cycle for different complexities
of the models (very simple, simple, medium, complex and
very complex). Next, the milestones and the outcomes for
each phase offer the possibility to measure and analyze
possible differences between the actual and estimate step by
step, such that the objectives, the estimate or the planning
can be adjusted. By defining its own SW lifecycles, an
organization can collect and use its own local historical data
obtained from completed MBD (Model Based
Development) projects. For example, we are using the
Model based SW development process since 2005 and,
therefore, we have consistent data to consolidate the
estimation of effort, as shown in TABLE I.

This table represents the effort for each defined phase of
the MBD Software development process for different
complexity of the models. It uses 5 functional complexity
indicators to show the development effort in 6 consolidated
phases (with relevant tasks) of the CNH Industrial Model
based Software development life-cycle. For Intellectual
Property Rights (IPR) reason, the table is empty.

This mechanism leads to continuous and dynamic
assessment of the relationship between process phase and
costs. In case of automatism, we will be able to introduce it
during the SW development process, as for example, more
automatic HIL test procedures.

TABLE I. SOFTWARE DEVELOPMENT COMPLEXITY

Embedded Software Development (ESD)

Work Estimation Details
Very

Simple
Simple Medium Complex

Very
Complex

Remarks
SW Development

Phases
Activity/Task Owner

Effort
Hrs

Effort
Hrs

Effort
Hrs

Effort
Hrs

Effort
Hrs

Requirements

Functionality Requirements
Management

SW Project
Leader

through Polarion customization

Functionality Interfaces
Requirement Specification

SW Project
Leader

Interfaces definition

Functionality Requirements
Specification

System
Engineer

traditional paper based
specification

Functionality Requirements
Traceability

MBD
Engineer

Requirements, Model, Code,
Documentation, testing)

Specification

Requirement Specification
Analysis

MBD
Engineer

through traditional review of
documents

Functionality Modelling
MBD
Engineer

through Simulink customization

Modelling checking
MBD
Engineer

through Model Advisor
customization

90Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Embedded Software Development (ESD)

Work Estimation Details
Very

Simple
Simple Medium Complex

Very
Complex

Remarks
SW Development

Phases
Activity/Task Owner

Effort
Hrs

Effort
Hrs

Effort
Hrs

Effort
Hrs

Effort
Hrs

MIL Testing (including the
report generation)

MBD
Engineer

including the MIL (Model In
the loop) Test report; through
Internal and automized tools

Sw Functionality
Documentation

MBD
Engineer

through internal and automized
tools

Implementation

AutoCoding
MBD
Engineer

through Embedder coder
Customization

Code Review
MBD
Engineer

through polyspace
customization

Code Integration in the ECU
platform (with successful
Compilation)

MBD
Engineer

including configuration files,
compilation

Unit Testing
MBD
Engineer

including the unit test report

Functional Testing

Test Environment Setup
System
Engineer HIL (Hardware In the Loop)

Automatic setup including
automation in test preparation,
execution and reporting

Integration Testing
System
Engineer

Performance Testing
System
Engineer

Delivery

Software Configuration
Management

SW Project
Leader and
MBD
Engineer

Through configuration
management tool

Release/Build Updates
SW Project
Leader

based on the Basic Software
platform provided by the
supplier

Support

Post delivery Support
(eventual incremental
version)

MBD
Engineer

we plan a sw bug to consolidate
the functionality

Work Estimate
Totals

y 1,8y 3.6y 4,8y 6,4y

B. Functionality Complexity

An engine ECU Software is a collection of software
functionalities, describing features that can then be broken
down into smaller and smaller components. Our idea is to
assign a complexity rating to all functional components. The
estimates, provided by an expert who has a background in
the requirements definition, can be modified to suit the
experience/expertise and performance of the team or people
who might actually perform the work. This technique
captures the experience and the knowledge of the experts.
During the lifecycle, re-estimates should be done at major
milestones of the project, or at specific time intervals. This
decision will depend on the situation. SW Changes may be
made during the project and therefore the cost estimates
either increase or decrease. At the end of the project, a final
assessment of the results of the entire cost estimation
process should be done. This allows a company to refine the
estimation process in the future because of the data results
that were obtained, and also allows the developers to review
the development process. It is also true that there are only
very few cases where the software requirements stay fixed.
Hence, how do we deal with software requirement changes,

ambiguities or inconsistencies? During the estimation
process, an experienced expert will detect the ambiguities
and inconsistency in the requirements. As part of the
estimation process, the expert will try to solve all these
ambiguities by modifying the requirements. If the
ambiguities or inconsistent requirements stay unsolved, then
it will correspondingly affect the estimation accuracy.

The approach is flexible and allows us to account for the
effort for all components. Once we have defined the
functionality breakdown and set complexity estimates, we
will be able to have the relevant effort estimation based on
the concept introduced in the previous paragraph (Software
development process complexity). As described in TABLE
II, this is obviously a very simple spread sheet, and the
calculations made are not in any way close to being hyper-
accurate. It provides a handy mechanism to document and
trace effort against functionalities, and a framework for
distributing effort to project tasks (like requirement,
implementation, testing etc.) across the total effort.

91Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

TABLE II. SW FUNCTIONALITY COMPLEXITY

Sw
Layer

First level
Second

level
Name

Tasks
Number

Functional Complexity
Breakdown

Development Time Estimation (Hours)
Total
Effort

Estimation

1 2 3 4 5 1 2 3 4 5 Hours

ASW
Engine

Function
Air System AirMod 6 3 5 0 3x1,8y 5x 3,6y 0

ASW
Vehicle
Function

Active Surger
Dumper

ASDCtl 2 1 1 0 1,8y 3,6y 0 0

ASW
Engine

Function
Air System BstCtl 3 1 2 0 1,8y 2x 3,6y 0 0

ASW
Engine

Function
Air System ChrCtl 5 3 2 0 3x1,8y 2x 3,6y 0 0

ASW
Engine

Function
Air System ChrSet 4 1 1 2 0 3,6y 4,8y 2x6,4y

ASW
Engine

Function
Coordinator

Engine
CoEng 5 2 3 0 2x1,8y 3x 3,6y 0 0

ASW
Communicat

ion
Vehicle

ComVe
h

87 25 50 12 25x 50x1,8y 12x 3,6y 0 0

ASW
Vehicle
Function

Cruise
Control

DrAs 9 4 5 0 4x1,8y 5x 3,6y 0 0

…. …… ……….. ……

…… …………..
………………

……
………..

TABLE II illustrates three important indicators for each
functionality of the Application Software:
• Functional Complexity Breakdown: For each software

functionality, we followed the same approach. We
interviewed an adequate number of experts (Engine and
Vehicle System Engineers). We defined each
functionality as the composition of sub functionalities
(tasks) with different complexity, starting from the
experts experience with the most recent one and going
back as far as they could.

• Development Time estimation: For each software
functionality, the Software Manager will identify the
estimation effort based on TABLE I.

• Total effort estimation: for each functionality, we show
the effort in terms of Hours, days and months.

where
1= Very Simple, 2= Simple, 3=Medium, 4=Complex and
5=Very complex

IV. PROJECT DEFINITION ACCURACY

Accurate project estimation is one of the most
challenging aspects of a project. The estimation becomes
increasingly difficult as the project’s complexity and
uncertainty increases. Effort estimation accuracy depends on
the available information. Usually, there is less information
at the start the project (presales) and more information while
working on the project, for example, after the requirement
consolidation. In order to increase the accuracy level, the

PERT (Program Evaluation and Review Technique) three-
point estimates is used. It provides a range of project
estimates and calculates the weighted average of that range.
In order to use the PERT project estimation technique, we
provide 3 data points, the “best case”, “most likely case”
and the “worst case”.

The optimistic scenario (best case) is usually the shortest
duration and/or the least costly estimate based on the notion
that all will go well on the project. The pessimistic scenario
(worst case) is the longest duration and/or the most costly
estimate, based on the notion that problems may be
encountered during the project. The most likely scenario
falls somewhere in between the pessimistic and optimistic
estimates, based on the notion that the project will progress
under normal conditions.

In general, the experts will be asked to first provide their
worst case estimate and then the best case estimate. Once
these 2 points are agreed upon, it is easier for them to
determine the most likely case, knowing their upper and
lower limits.

Based on the above data, we obtain the PERT estimate:

 E = (o + 4m + p) / 6. (1)

where E is Estimate; o = optimistic estimate; p = pessimistic
estimate; m = most likely estimate.

92Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Standard Deviation:

 SD = (p – o) / 6 (2)

where SD is Standard Deviation; p = pessimistic estimate;
o = optimistic estimate

E and SD values are then used to convert the project
estimates to confidence levels as follows:

1. Confidence level in E value is approximately 75%

2. Confidence level in E value +/- SD is approximately 85%
3. Confidence level in E value +/- 2 × SD is approximately
95%

4. Confidence level in E value +/- 3 × SD is approximately
99.5%

TABLE III describes the approach.

TABLE III. SOFTWARE COST ACCURACY

Sw
Layer

First
level

Second
level

Name

Best
case

Most
Likely
case

Worst
Case Standard

Deviation

0.75
Confidence

0.85
Confidence

0.95
Confiden

ce

0.995
Confidence

Effort
Hrs

Effort
Hrs

Effort
Hrs

Effort Hrs Effort Hrs
Effort
Hrs

Effort Hrs

ASW
Engine

Function
Air System AirMod

ASW
Vehicle
Function

Active
Surger

Dumper
ASDCtl

ASW
Engine

Function
Air System BstCtl

ASW
Engine

Function
Air System ChrCtl

ASW
Engine

Function
Air System ChrSet

ASW
Engine

Function
Coordinato

r Engine
CoEng

ASW
Communic

ation
Vehicle ComVeh

ASW
Vehicle
Function

Cruise
Control/Sp

eed
Limiter

DrAs

….
…………

…
…………
………..

……. ……… …

…...

This technique works great for several reasons:
• Psychologically, it is easier to provide a number when

you can provide a wide range
• Starting with the worst case often leads to less

resistance
• Once worst case and best case are identified, it becomes

easier to provide the most likely case
• Reduces the natural instinct to inflate estimates

V. SOFTWARE DEVELOPMENT PROCESS COST

ESTIMATION

As introduced in the previous sections, the cost of
development activities is primarily the development effort
costs. This is the most difficult to estimate and control, and
has the most significant effect on the overall project cost.
Software cost estimation is a continuing activity which
starts at the proposal stage and continues throughout the
lifetime of a project. Projects normally have a budget, and
continual cost estimation is necessary to ensure that
spending is in line with the budget. Therefore, it is very
important to estimate the software development effort as

accurately as possible. A basic cost equation can be defined
as:

Total_SW_Project = SW_Development_Labor +
Other_Labor

In fact, we may have to consider other labor costs, such as:
• Software project management, performed by the project

Manager, to plan and direct the software project
• Facility Administration, for example software

configuration management and tools maintenance. The
software development facility (SDF) is composed,
generally, of hardware, software, and services utilized
by the MBD Engineering Team to generate and test
code, perform the engineering analysis, generate all of
the required documents and manage the software
development.

• SW Process Enhancement & Innovation.
The Innovation activity is a great way to improve the

SW development process and the quality of the software
product. Enhancement actions of software development
helps organizations to establish a mature and disciplined
engineering practice that produces secure, reliable software

93Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

in less time and at lower costs. It gives us a potential better
way of doing business. Normally, innovation is associated
with higher costs but that’s exactly the wrong way to
looking at it. This is especially true if the company and
finally the customer do not appreciate the change. It is more
common for an automotive company, for example during a

crisis period, to look at the innovation investment, as an
item to be subject to an eventual optimization (reduction)
cost process. In order to protect and to reduce the risk of
reduction of innovation, it could be useful to allocate the
above costs among all the SW development projects.

TABLE IV. SW LIFE CYCLE COST

Software Engineering Development
Effort Element

0.75
Confidence

0.85
Confidence

0.95
Confidence

0.995
Confidence

Comments

Effort Hrs Effort Hrs Effort Hrs Effort Hrs

Project management 3.2 % of Total Project Estimate

Facility Administration 1.5 % of development Estimate

SW Process Enhancement & Innovation 2 % of Development phase Estimate

SW Development Dependent phases as from previous sheet;

SW Engineering Total Effort Estimation

TABLE IV defines the cost for other Organizational
support processes, as Project management, Facility
Administration, Sw Process Enhancement & Innovation,
depending of the direct SW development cost. The above
costs are hardly specific of the Organization structure. The
values, reported in the comments Column, are based on our
experience. The Cost estimation is based on the assumption
that the team will be composed of experienced (more 1+
year) MBD Software Engineers. In case of inexperienced
MBD SW engineers, we need to consider the learning
process cost.

VI. CONCLUSIONS

Today, many software development Managers have
problems in providing accurate and reliable cost estimates,
and, therefore sometimes do not undertake estimation at all.
Besides, the existing cost estimation methods and tools are
more complex and not customized for each specific
software development process. Our approach aims at
yielding more reliable estimates, based on the experience of
all actors involved in the software development life cycle
and it is based on the phases of the software life cycle. The
estimation process improves continuously with the
availability of more data and it continuously adjusts itself to
the evolution of the software development phases. The first
time cost estimation can be done is at the beginning of the
project after the requirements have been outlined. Cost
estimation may even be done more than once at the
beginning of the project. For example, several companies
may bid on a contract based on some preliminary or initial
requirements, and then once a company wins the bid, a
second round of estimation could be done with more refined
and detailed requirements. Doing cost estimation during the
entire life cycle allows for the refinement of the estimate

because there is more data available. Periodic re-estimation
is a way to gauge the progress of the project and whether
deadlines will be able to be met.

Effective monitoring and control of the software costs is
required for the verification and improvement of the
accuracy of the estimates. Tools are available to help
organize and manage the cost estimates and the data that is
captured during the development process. People are less
likely to gather data if the process is cumbersome or tedious,
and so using tools that are efficient and easy to use will save
time. It is not always the most expensive tool that will be
the best tool to buy, but rather the tool that is most suited to
the development environment. Therefore, the success of our
proposal is not necessarily the accuracy of the initial
estimates, but rather the rate at which the estimates
converge to the actual cost. We are using the proposed
approach for our Software development projects for All
Vehicle ECUs (i.e., Engine Control unit, Vehicle computer
Module). Therefore, we have a very valuable database
reflecting our distribution cost in all phases of the software
life cycle. These data are used to develop a software cost
estimation model tailored to all CNH Industrial applications.

REFERENCES

[1] D. Cortese, “New Model-Based Paradigm: Developing Embedded
Software to the Functional Safety Standards, as ISO 26262, ISO
25119 and ISO 13849 through an efficient automation of Sw
Development Life-Cycle” SAE Technical Paper 2014-01-2394, doi:
10.4271/2014-01-2394

[2] D. Cortese, "ISO 26262 and ISO IEC 12207: The International
Standards Tailoring Process to the whole Sw Automotive
Development Life Cycle by Model-Based Approach" SAE Technical
Paper 2011-01-0053, 2011, doi:10.4271/2011-01-0053

94Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

[3] D. Cortese, "Model-based Approach for the realization of a
Collaborative repository of All Vehicle Functionalities"
FISITA Technical Paper F2008-05-039, 2008

[4] Road Vehicles – Functional Safety - International Standard
ISO 26262 : 2011

[5] Tractor and machinery for agriculture and forestry – Safety-
related parts of control systems – International Standard ISO
25119: 2010

[6] Safety of machinery – Safety-related parts of control systems
– International Standard ISO 13849: 2006

[7] CNH Industrial Web site: http://www.cnhindustrial.com/it-
IT/Pages/homepage.aspx

[8] D. Cortese, Iveco Develops a Shift Range Inhibitor System
for Mechanical 9- and 16-Speed Transmissions in Six Weeks,
“https://www.mathworks.com/tagteam/71432_91989v00_IVE
CO_UserStory_final.pdf

[9] D. Cortese, “Developing Embedded Software to International
Standards and On-board Vehicle Software Architectural
Standardization” Course for PH.D. Program in Computer
Science, 2013, http://dott-
informatica.campusnet.unito.it/do/corsi.pl/Show?_id=1f5e

95Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

